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Numerical   Modeling   and   Simulation   is   increasingly   used   as   a   complement  

engineering   applications.   However,   after   more   than   thirty   years   of   worldwide  
research  efforts  around  Adaptive  Modeling  and  Simulation,  the  problem  of  properly  
assessing  and  controlling   the  quality  of   the  numerical   solutions   is   still   relevant,  
as  the  design  of  sophisticated  engineering  systems  requires  increasingly  complex  
and  coupled  modeling,  which  leads  to  increasingly  time-consuming  computations.  

coherent  coupling  of  different  scales  and  mechanisms  in  a  unique  model,  are  more  
strategic  and  indispensable  than  ever.
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PREFACE  

This book contains the Extended Abstracts and Full Papers of the papers presented at 
ADMOS 2013, the sixth International Conference on Adaptive Modeling and Simulation, 
held at Instituto Superior Técnico, Technical University of Lisbon, Portugal, from June 3 to 
5, 2013. 
Numerical Modeling and Simulation is increasingly used as a complement to Experimental 
Modeling and Analysis and as a design or certification tool in engineering applications. 
However, after more than thirty years of worldwide research efforts around Adaptive 
Modeling and Simulation, the problem of properly assessing and controlling the quality of 
the numerical solutions is still relevant, as the design of sophisticated engineering systems 
requires increasingly complex and coupled modeling, which leads to increasingly time-
consuming computations. Adaptive approaches, which provide reliable and cost efficient 
modeling and coherent coupling of different scales and mechanisms in a unique model, are 
more strategic and indispensable than ever.  
The objective of the ADMOS 2013 conference is to provide a forum for presenting and 
discussing the current state-of-the-art achievements on Adaptive Modeling and Simulation, 
including theoretical models, numerical methods, algorithmic strategies and challenging 
engineering applications.  
This book collects the contributions presented by the participants in the conference, which 
address a wide range of topics in adaptive modeling, from the classical theoretical aspects 
and numerical techniques to cutting edge problems and formulations, such as the 
determination of guaranteed error bounds and adaptive strategies for non-linear, transient or 
coupled problems, the application of adaptive techniques to reduced order models, the use 
of goal-oriented anisotropic error estimators and remeshing, as well as the application of 
adaptive techniques in the stochastic framework. 
Advanced numerical techniques are also considered, for example XFEM, Discrete Galerkin, 
Meshless and Domain Decomposition, as well as the more classical methods. The domain 
of the applications covers a wide range of problems, from the traditional areas of structural 
and fluid mechanics, to quantum mechanics or biomechanics, with scales ranging from the 
nanoparticles, via the mesoscopic level, to those of industrial structures and civil 
engineering constructions, all studied with a focus on the main goal of adaptivity, seeking 
reliable and cost efficient modeling. 
This book includes contributions sent directly by the authors, and the editors cannot accept 
responsibility for any inaccuracies, comments and opinions contained in the text. The 
organizers would like to take this opportunity to thank all the authors for submitting their 
contributions. 
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VIRTUAL CHART BASED DESIGN, INVERSE ANALYSIS
AND CONTROL

F. CHINESTA1,2

1 EADS Corporate Foundation International chair
GeM UMR CNRS - Ecole Centrale Nantes

1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France
e-mail: Francisco.Chinesta@ec-nantes.fr

2IUF - Institut Universitaire de France

Key words: Parametric modeling, Model order reduction, PGD, Virtual charts

Abstract. Virtual chart constitutes an appealing tool for performing efficient design,
real time simulations, efficient optimization, inverse analysis and control of systems and
processes. When such charts are available, no more on-line simulation are needed, because
everything reduces to a dialog between the designer or controller and the chart. The chart
contains all the required information, that is, the solution of the physical model for each
choice of the model parameters. These parameters can correspond to the applied loads,
initial or boundary conditions, material or process parameters, parameters defining the
geometry of the domain in which the model is defined, ... The main difficulty related
to the construction of such a chart lies in the fact that the parametric space must be
accurately explored in order to define an accurate chart. When the number of parameters
increases, the sampling of such high-dimensional parametric space becomes unaffordable
when standard discretization techniques apply for each possible scenario. Model order
reduction makes possible the off-line construction of virtual charts in two ways. First, by
constructing an adaptive reduced basis, from which the solution of each direct problem can
be performed very fast, reaching several order of magnitude of CPU time savings. Second,
by introducing the parameters as extra-coordinates and then addressing the solution of
the resulting multidimensional problem by invoking the PGD, one can have access to
the solution of innumerable scenarios, all those represented by the discretization of the
extra-coordinates related of the model parameters. Again the question of adaptivity is
crucial. From these virtual charts, simulation, optimization, inverse analysis, control, ...
can be performed on-line, many times in real time and by using light computing devices
like smartphones or tablets.
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PARALLEL MESH MULTIPLICATION AND GENERATION: 
TOWARDS PETASCALE SIMULATIONS 

ALVARO L.G.A. COUTINHO* 

* Professor, High Performance Computing Center and Department of Civil Engineering 
COPPE/Federal University of Rio de Janeiro  

PO Box 68506, Rio de Janeiro, RJ21945-970, Brazil 
e-mail: alvaro@coc.ufrj.br 

 

Abstract. In this talk we review our current efforts in the development of enabling 
technologies for parallel large-scale simulations. We begin by revisiting the concept of what 
is large, given the current capabilities of today's high performance computers and high 
resolution visualisation devices. In the sequel we discuss a very efficient parallel procedure to 
produce high resolution models, the mesh multiplication (MM). MM recursively refines your 
mesh until a preset level is reached. Implementation issues, associated to mesh partition and 
unknown reordering are addressed. We then show a parallel implementation and performance 
analysis of a linear octree-based mesh generation scheme designed to create reasonable-
quality, geometry-adapted unstructured hexahedral meshes automatically from triangulated 
surface models. We present algorithms for the construction, 2:1 balancing and meshing large 
linear octrees. Our scheme uses efficient computer graphics algorithms for surface detection, 
allowing us to represent complex geometries. We show that our implementation is able to 
execute the 2:1 balancing operations over 3.4 billion octants in less than 10 seconds per 1.6 
million octants per CPU core. Next we examine the performance impact from 
tetrahedralization of non- conforming meshes generated by our parallel octree mesh 
generation scheme. We end our talk with a discussion of the applicability of these enabling 
technologies in challenging new applications in science and engineering. 
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DIRECT FEM-SIMULATION OF TURBULENT FLOW

J. HOFFMAN, J. JANSSON, N. JANSSON, R. VILELA DE ABREU
and CLAES JOHNSON

Computer Science and Communication, KTH, SE-10044 Stockholm, Sweden.

Abstract. Turbulent fluid flow has been considered as the main unsolved problem of clas-
sical mechanics beyond theoretical description and also beyond computational simulation,
because of thin no-slip boundary layers requiring trillions of mesh points to be resolved.
In recent work we have discovered that using a slip boundary condition as a model of
the small skin friction of slightly viscous turbulent flow, allows predictive simulation of
mean value quantities such as drag and lift of turbulent flow with instead millions of mesh
points. Basic aspects of turbulent flow from applications point of view thus show to be
computable by stabilized finite element methods without turbulence modeling referred to
as Direct FEM-Simulation, which opens large areas for exploration. As a key example
the turbulent flow around a wing and complete airplane is computable and inspecting the
solutions leads to a new theory flight essentially different from the accepted theory by
Kutta-Zhukovsky-Prandtl developed 100 years ago.

REFERENCES
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Fluid Mech.

[2] J. Hoffman and C. Johnson, Computational Turbulent Incompressible Flow, Springer
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[5] J.Hoffman, J.Jansson, M.Stckli, Unified continuum modeling of fluid-structure inter-
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[6] J.Hoffman and N.Jansson, A computational study of turbulent flow separation for
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Abstract. The addressed research is based on linear elastic fracture mechanics for the macro-
scale, so far, and on non-local continuum damage mechanics with linear kinematics until 
micro-cracking on micro-scale. The material considered is alloyed ceramics (Yttria (3Y) 
stabilized (with 2%-3%) tetragonal Zirconia-Oxide -- a polycrystalline ceramic 3Y-TZP). The 
main goals are: error-controlled adaptive modeling and numerical approximations on both 
scales, including error estimators for quantities of interest. This also needs energy consistent 
projections from micro- to macro-scale and backwards. The final objective is defined as 
coupled micro-macro damage and crack propagation processes for technologically interesting 
problems. This is scheduled in an overall adaptive scheme, trying to realize step by step 
verification and validation of this coupled process. 
 
Our current results are based on new explicit and implicit residual error estimators for the 
eXtended Finite Element Method (XFEM), including goal-oriented error estimation [1,2]. 
Special features of singular enrichment functions within XFEM are also discussed. In 
particular, it is shown that a significant reduction of the discretization error in crack tip 
element is achieved by using a statically admissible asymptotic displacement field in the 
XFEM discretizations. Alternative to XFEM, the adaptive Singular Function Method (SFM) 
is considered, including new explicit residual (constant-free) error estimator for low order 
triangles [3], yielding very good effectivity indices between 1 and 2. 
 
Modeling of microcrack nucleation and coalescence in ceramic specimen is realized within 
the framework of Continuum Damage Mechanics (CDM), in particular in terms of a non-local 
damage model using the enhanced gradient formulation [4]. Error estimation analysis for this 
coupled problem and results of adaptive mesh refinements are presented. A major point is the 
transition from continuous damage to equivalent micro-cracks, using energetic equivalence 
between damage and fracture [5]. 
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A two-scale coupling of the above two processes is presented. The transition between the two 
scales is realized by the multiscale projection method. 
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Abstract. This work discusses the application of the moment method to a generic form
of kinetic equations, given by the Boltzmann equation, to simplify kinetic models of par-
ticle systems. Implicit to the method of moments is an approximation of moment closure
relations to close the system of equations. The main aim is to explore the opportunities,
pertaining to goal-oriented adaptive modeling, presented by the hierarchical structure of
moment-closure systems.

1 INTRODUCTION

The Boltzmann equation is the classical model in the kinetic theory of (mono-atomic)
fluids, describing rarefied flow by modeling deviations of the velocity distribution from
a local equilibrium, thus, accounting for the transitional molecular/continuum regime.
Boltzmann’s equation provides an evolution equation for the one-particle marginal, viz.,
the probability density of particles in phase (position/velocity) space. The Boltzmann
equation has several fundamental structural properties, notably, conservation of mass,
momentum and energy, Galilean invariance and decay of an entropy functional (the cel-
ebrated H-theorem). These structural properties underly the connection between the
Boltzmann equation and conventional continuum models: all conventional continuum
models, such as the Navier-Stokes-Fourier system [1], can be derived as limits of the
Boltzmann equation.

Boltzmann’s equation poses a formidable challenge for numerical approximation meth-
ods, on account of its high dimensional phase-space setting: for a problem in N spatial
dimensions, the single molecule phase-space is 2N dimensional. Away from the fluid dy-
namical regime numerical approximations of kinetic systems are predominantly based on
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particle methods, such as the Direct Simulation Monte Carlo (DSMC) method. However,
the phase-space description of the system results in the prohibitive computational cost
of DSMC in the fluid dynamical limit. Moreover, from an approximation perspective,
DSMC can be inefficient since it is inherent to Monte-Carlo processes that the approx-
imation error decays only as n−

1
2 for the number of simulation molecules n [2]. Hence,

efficiently modeling gases in the transition regime between the free molecular flow and
fluid dynamics remains difficult.

An alternative strategy to describe deviations from fluid dynamics is by means of
moment-closure approximations [3,4]. In moment-closure approximations, the Boltzmann
equation is projected onto a polynomial space, in the velocity dependence, and the system
is closed by providing an approximation to the one-particle marginal based on the same
polynomial space. This procedure can in fact be conceived of as a Galerkin approximation.
The closure is chosen such that the structural properties of the Boltzmann equation are
retained. Results by Schmeiser and Zwirchmayr [5] show that moment equations converge
to linear kinetic equations as the order of moment approximation tends to infinity and
to a drift-diffusion model in the macroscopic limit, i.e. as the Knudsen number tends to
zero. Furthermore, from an adaptive approximation standpoint, the resulting hierarchical
structure of the the moment closure system presents promising potential for rigorous
model adaptivity. However, fundamental challenges remain to be addressed.

This work discusses the application of the moment method to the Boltzmann equation
to derive a closed hierarchy of moment systems that retain structural features of the sys-
tem in question. In addition opportunities pertaining to goal-oriented adaptive modeling
provided by the hierarchical structure exhibited by the resulting closed system of moment
equations will be explored. The remainder of this paper is arranged as follows, section 2
enlists the structural properties of the Boltzmann equation that are to be retained by the
moment closure approximation; section 3 introduces concepts relevant to moment sys-
tems pertaining to subspace approximations as well as the consequential moment closure
approximation; section 4 discusses the hierarchical structure of the resulting closed sys-
tem of moment equations within a multiscale modeling framework and the oppertunities
this presents for (goal-oriented) model adaptivity; finally, section 5 gives a concluding
summary.

2 THE BOLTZMANN EQUATION: PROPERTIES

Consider a gas composed of a single species of identical classical particles, i.e. a monatomic
gas, contained within a fixed spatial domain Ω ⊂ RD. Based on kinetic theory the
evolution of a non-negative (phase-space) density f = f(t,x,v) over a single particle
phase Ω× RD is governed by the (kinetic) Boltzmann equation expressed as

∂tf + vj∂xjf = C(f) (1)

where the collision operator f 7→ C(f) acts only on the v dependence of f locally at each
(t,x). Let 〈·〉 denote v−integrations of any scalar, vector or matrix valued measurable
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function over the D−dimensional Lesbesgue measure dv. All functions considered in this
work are understood to be Lebesgue measurable in all variables.

The collision operator C is assumed to be defined over the domain D(C) that is con-
tained within the set of non-negative functions of v. Furthermore, it is assumed that C
has the following properties [4]:

1. Conservation: Mass, Momentum and Energy
Definition A quantity γ is said to be a collision invariant of C if

〈γC(f)〉 = 0, ∀f ∈ D(C) (2)

Denote the collection of collision invariants of C by C and let the basis for an N -
dimensional C be written as {ei : 1 ≤ i ≤ N}. Relation (2) leads to N independent
local conservation laws

∂t〈eif〉+ ∂xj〈vjeif〉 = 0 (3)

It is assumed that the set of collision invariants is given by

C = span{1,v, |v|2} (4)

where the notation in (4), adopted throughout this paper, applies to a collection
of scalars, vectors and tensors, implying that the span consists of all scalar-valued
linear combinations of their components. Assumption (4) implies the Boltzmann
equation (1) conserves mass, momentum and energy, and has no other invariants.

2. Entropy Dissipation: H-Theorem
Definition A convex function H = H(f) over R+ is called an entropy for C if

〈C(f)∂fH(f)〉 ≤ 0, ∀f ∈ D(C) (5)

and if for every f ∈ D(C) the following statements are equivalent

i. 〈∂fH(f)C(f)〉 = 0

ii. C(f) = 0

iii. ∂fH(f) ∈ C
(6)

Relations (5) and (6) are abstractions of Boltzmann’s H-theorem, where (5) assumes
that C dissipates some entropy and (6) characterizes local equilibria of C by vanishing
entropy dissipation. Denoting the Legendre transform of the entropy H by H∗, i.e.

H(y) +H∗(z) = yz (7)

3
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(5) and (6) suggest that the equilibrium distribution, denoted by feq, is given by

feq = ∂zH∗(z) for z ∈ C (8)

It is assumed that the entropy of C exists. This assumption implies that solutions
of the Boltzmann equation (1) satisfy the local dissipation law corresponding to
entropy dissipation

∂t〈H(f)〉+ ∂xj〈vjH(f)〉 = 〈C(f)∂fH(f)〉 ≤ 0 (9)

where 〈H(f)〉, 〈vjH(f)〉 and 〈∂fH(f)C(f)〉 are referred to as entropy density, en-
tropy flux and entropy dissipation rate, respectively.

3. Symmetry: Galilean Invariance
The operator C is assumed to commute with translational and orthogonal transfor-
mations. Specifically, given any g = g(t,x,v) for every vector u ∈ RD and for every
orthogonal matrix O ∈ RD×D define transformed functions Tuf and TOf by

Tug = Tug(t,x,v) ≡ g(t,x− ut,u− v), TOg = TOg(t,x,v) ≡ g(t, O>x, O>v)
(10)

It is assumed that if f ∈ D(C) then so are Tuf and TOf :

TuC(f) = C(Tuf), TOC(f) = C(TOf) (11)

Assumption (11) implies that if f satisfies (1) so does the image of f under a Galilean
group.

3 MOMENT CLOSURE

Physically, one may be more interested in functions of f (observables), from which macro-
scopic properties can be extracted, than in f itself. Such reasoning motivates the deriva-
tion of equations for such observables instead. That is, rather than resolving equation (1)
for f , one could resolve moment systems (or weighted averages) of f , which would govern
the evolution of a finite set of velocity moments of f . In resolving the moment equations
instead of (1), the velocity dependence of f is replaced by a finite number of parameters,
thus reducing the complexity of the problem [6].

To derive the moment equations, consider a finite linear subspace Θ of functions of
v (taken to be polynomials) with dimension θ and basis {ϑi = ϑi(v)}θi=1. Denote the
column θ−vector of these basis elements by ϑ = ϑ(v), so that every ϑ ∈ Θ has a unique
representation in the form ϑ(v) = α>ϑ(v) for some α ∈ Rθ. Taking the moments, i.e.
weighted average, of equation (1) over the vector ϑ(v) yields

∂t〈ϑf〉+ ∂xj〈vjϑf〉 = 〈ϑC(f)〉 (12)

4
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thus, a weaker form of equation (1) is formally expressed as a hierarchy of moment systems
of partial differential equations in (12) in the sense that a solution of (1) would also satisfy
(12). In general, it is not known whether the quantities appearing in this equation are
well defined for every solution f of a given kinetic equation. Since, it has been shown
that this is the case for the spatially homogenous equation [7], following Levermore [4] it
shall be assumed here that these quantities are well defined.

Furthermore, it is observed that in equations (12) the flux in one equation appears as
the density in the subsequent one, i.e. the expansion at some order n contains the moments
at orders n± 1. Moreover, the equations contain the production terms which are related
to the distribution function f through the collision term C(f). Therefore, in order to have
a complete set of equations for the moments, constitutive relations are needed to express
the densities 〈ϑf〉, fluxes 〈vϑf〉 and collisional terms 〈ϑC(f)〉 as a function of θ variables,
thus forming a closed system. Generally, this is achieved by finding a relation between
the moments and the distribution function. Deriving such a relation is called the moment
closure problem.

A subspace Θ will be called admissible if it satisfies (see [4])

i. C ⊆ Θ:
In this condition, the collection of collision invariants C is contained within Θ.
More specifically, the constant functions are included in Θ so that any moment
closure will include the conservation law for mass. It also includes multiples of the
polynomial v, which gives a balance law for momentum. Multiples of |v|2 give a
balance law for the energy. This is needed if any fluid dynamical approximation is
to be recovered.

ii. Θ is invariant under actions of Tu and To:
More specifically, this means that Θ is unchanged when v 7→ O>v or v 7→ v − u,
for every vector u ∈ RD and for every orthogonal matrix O ∈ RD×D. This is a
prerequisite of classical dynamics, in particular, that Galilean invariance holds.

Closure of (12) is attained if there exists a function F (and is made known) such that
f(t,x,v) = F(〈f,ϑ〉,v). Then the flux terms 〈vϑf〉 and the collision terms 〈ϑC(f)〉 can
be related to the densities 〈ϑF〉 to provide a closed system of the form

∂t〈ϑF〉+ ∂xj〈vjϑF〉 = 〈ϑC(F)〉 (13)

Note that f is an element of an infinite dimensional vector space and typically cannot be
expressed by any finite number of components. Therefore, any closure will require the
approximation of f . The aim is to devise an approximation that, in addition to providing
well-posedness of (13), maintains the aforementioned structural features of (1) listed in
section 2. Moreover, the closure relation should result in a tractable system.
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Remark Considering the smallest admissible subspace Θ ≡ C reduces (13) to the Euler
equations for a monatomic gas.

Previous studies of moment closure approximations can be found in [3, 4, 6, 8]. Grad’s
moment closure [3] is based on an expansion of the one-molecule marginal using Hermite
polynomials, modulated by the local equilibrium distribution. A deficiency of Grad’s
moment closure system is the potential occurrence of locally negative and therefore in-
admissible phase-space distributions, and potential loss of hyperbolicity [9, 10]. Later,
Levermore [4] developed a moment closure system based on entropy minimization, which
leads to an exponential closure. However, it was subsequently shown by Junk [11] that
Levermore’s moment closure system suffers from a realizability problem, i.e. there ex-
ist moments for which the minimum entropy solution is undefined. On the other hand,
results by Junk [11, 12], Schneider [13] and Pavan [14], show that a relaxation of the en-
tropy minimization problem is well-posed while retaining exponential closure. However,
employing the relaxed minimization problems leads to loss of the one-to-one correspon-
dence between the entropy minimizing distribution and the moments of the single-particle
phase-space densities. An additional deficiency of Levermore’s entropy-based closure is
the potential occurrence of singularities owing to the fact that densities describing lo-
cal thermodynamic equilibrium may belong to the boundary of the set containing all
degenerate densities [11,12,15]. Another fundamental complication pertaining to the im-
plementation of the moment-closure systems based on exponential closure, is that the
resulting formulation requires the evaluation of moments of exponentials of polynomials
of, in principle, arbitrary orders. It is generally accepted that the derivation of closed-form
expressions for such moments is intractable, and accurate approximation of the moments
is a notoriously difficult problem [16] .

Abdel Malik and Van Brummelen [8] have recently investigated moment-closure sys-
tems based on approximations of the exponential of the form given by an even-order
Taylor-series approximation about a Maxwellian. The even-order of the Taylor-series ap-
proximation ensures non-negativity of the approximation. The results in [8] convey that
in this manner, it is possible to construct well-posed moment-closure systems that re-
tain the structural features of the Boltzmann equation listed in section 2, but for which
the evaluation of moments of exponentials of arbitrary polynomials is replaced by the
evaluation of high-order moments of Gaussians. Such high-order moments of Gaussians
can be evaluated in closed form. It has been noted that Grad’s moment closure can be
perceived as a first order approximation of Levermore’s exponential closure [6, 17]. The
results of [8] can be conceived as a refinement of Grad’s moment system as it overcomes
potentially negative densities and potential loss of hyperbolicity by incorporating higher
order approximations.
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4 MULTISCALE HIERARCHY: MODEL ADAPTIVITY

Moment-closure systems potentially offer efficient hierarchical approximations of the Boltz-
mann equation, by exploiting the fact that its solutions converge to functions in a par-
ticular class, the equilibrium distributions. Adaptivity between the Boltzmann equation
(micro model) and the Euler equations (macro model) has been propounded by several
authors, e.g., E and Engquist [18]. However, no methodology to this purpose has been
developed so far. The scale disparity between the Euler equations and the Boltzmann
equations is enormous, which renders direct adaptivity between these two models infeasi-
ble. The hierarchy of moment-closure systems can be conceived of as a gradual transition
from the Euler equations to the Boltzmann equations. The goal-oriented error estimate
provides a systematic refinement criterion.

This section aims to explore the potential opportunities provided by the hierarchical
structure of the moment equations in (13) for numerical approximation of the Boltzmann
equation, more specifically, for goal-oriented model adaptivity.

4.1 Towards Goal-Oriented Model Adaptivity

The general procedure for performing goal-oriented adaptivity consists of repeated appli-
cation of the following operations [19]:

SOLVE→ ESTIMATE→ MARK→ REFINE

Given an initial mesh, the first step concerns the solution of the finite-element problem
on that mesh. The second step is the construction of a computable a-posteriori estimate
of the error in the finite-element approximation, based on the current approximation and
exogenous data. In the third step, the error estimate is decomposed into element-wise
contributions, and the elements which yield the largest contributions to the error in the
goal functional are marked according to some marking strategy. In the final stage, the
marked elements are refined.

In the context of the hierarchy of moment-closure systems, it is envisaged that the
above procedure can be extended to include both mesh-adaptivity and hierarchical-rank
adaptivity. That is, not only estimate the error in the numerical solution, but also the
error in the moment-closure system itself. Accordingly, the adaptive procedure locally
adapts the element size and the hierarchical rank to arrive at an optimal approximation.
The challenges in the development of the a-posteriori error estimate and the adaptive-
refinement procedure, are the construction of a computable error estimate for the moment-
closure hierarchy, and the (nonstandard) decomposition of the error into contributions
from the model error (i.e., the finite rank of the considered moment-closure system) and
the finite-element approximation error (i.e., the finite mesh width). For the a posteriori
error estimation, one could employ duality-based techniques [20–22]. Moreover, by virtue
of the fact that moment-closure systems assume the form of a hierarchy of hyperbolic
systems, the discontinuous-Galerkin formulation is well suited to discretize these systems,
and element-wise refinement indicators can then be derived in a similar manner as in [23].
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5 CONCLUSION

The enormous potential of moment-closure approximations of the Boltzmann equation in
the context of numerical-approximation techniques, lies in the fact that such approxima-
tions assume the form of a hierarchy of systems of hyperbolic partial-differential equations,
which puts the full arsenal of approximation techniques for this class of problems at our
disposal, in particular, (goal-)adaptive finite-element methods based on a-posteriori error
estimates. The hierarchical structure of the moment-closure systems, engendered by the
inclusion relation acting on the polynomials, implies that the solution of each system
can be regarded as an approximation to the solution to the next member in the hierar-
chy. Hence, by virtue of the hierarchical structure, a-posteriori error estimates can be
constructed by evaluating the residual of the next member in the hierarchy. Based on
this observation, we propounded an adaptive numerical approach, in which not only the
mesh width and order of approximation in the finite-element method are locally adapted
for one particular moment-closure system, but in which also the hierarchical rank of the
moment-system is locally adapted, in accordance with an a-posteriori error estimate.
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Abstract. A new technique for efficiently solving parametric nonlinear reduced order
models in the Proper Generalized Decomposition (PGD) framework is presented here.
This technique is based on the Discrete Empirical Interpolation Method (DEIM)[1], and
thus the nonlinear term is interpolated using the reduced basis instead of being fully
evaluated. The DEIM has already been demonstrated to provide satisfactory results in
terms of computational complexity decrease when combined with the Proper Orthogonal
Decomposition (POD). However, in the POD case the reduced basis is a posteriori known
as it comes from several pre-computed snapshots. On the contrary, the PGD is an a priori
model reduction method. This makes the DEIM-PGD coupling rather delicate, because
different choices are possible as it is analyzed in this work.

1 INTRODUCTION

The efficient resolution of complex models (in the dimensionality sense) is probably
the essential objective of any model reduction method. This objective has been clearly
reached for many linear models encountered in physics and engineering [2, 3]. However,
model order reduction of nonlinear models, and specially, of parametric nonlinear mod-
els, remains as an open issue. Using classic linearization techniques such Newton method,
both the nonlinear term and its Jacobian must be evaluated at a cost that still depends on
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the dimension of the non-reduced model [1]. The Discrete Empirical Interpolation Method
(DEIM), which the discrete version of the Empirical Interpolation Method (EIM) [4], pro-
poses to overcome this difficulty by using the reduced basis to interpolate the nonlinear
term. The DEIM has been used with Proper Orthogonal Decomposition (POD) [5, 1]
where the reduced basis is a priori known as it comes from several pre-computed snap-
shots. In this work, we propose to use the DEIM in the Proper Generalized Decomposition
(PGD) framework [5, 6], which is an a priori model reduction technique, and thus the
nonlinear term is interpolated using the reduced basis that is being constructed during
the resolution.

2 DEIM-based PGD FOR NONLINEAR MODELS

Consider a certain model in the general form:

L(u) + FNL(u) = 0 (1)

where L is a linear differential operator and FNL is a nonlinear function, both applying
over the unknown u(x),x ∈ Ω = Ω1 × . . . × Ωd ⊂ Rd, which belongs to the appropriate
functional space and respects some boundary and/or initial conditions. Using the PGD
method implies constructing a basis B = {φ1, . . . , φN} such that the solution can be
written as:

u(x) ≈
N∑
i=1

αi · φi(x)

where αi are coefficients, and

φi(x) = Pi1(x1) · . . . · Pid(xd) , i = 1, . . . , N

being Pij(xj), j = 1, . . . , d, functions of a certain coordinate xj ∈ Ωj. In the linear case,
the basis B can be constructed sequentially by solving a nonlinear problem at each step
in order to find functions Pij. In the nonlinear case a linearization scheme for Eq. (1)
is compulsory, but evaluating the nonlinear term is still as costly as in the non-reduced
model. The DEIM method proposes to circumvent this inconvenient by performing an
interpolation of the nonlinear term using the basis functions. In a POD framework, these
functions come from the precomputed snapshots, but in a PGD framework these functions
are constructed by using the PGD algorithm. Here we propose to proceed as follows:

1. Solve the linear problem: find u0 such that L(u0) = 0 → B0 = {φ0
1, . . . , φ

0
N0
}

2. Select a set of points X 0 = {x0
1, . . . ,x

0
N0
}. Later on we explain how to make an

appropriate choice.

3. Interpolate the nonlinear term FNL using functions B0 in the points X 0. Or in other
words, find the coefficients ϕ0

i such as:

FNL

(
u0m

)
≡ FNL

(
u0(x0

m)
)
=

N0∑
i=1

ϕ0
i · φ0

i (x
0
m) , m = 1, . . . , N0

2
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The previous equation represents a linear system which will be invertible if B0 is
linearly independent (and it is because it comes from the solution of the linear
problem) and all points of X 0 are different.

4. Once we have computed {ϕ0
1, . . . , ϕ

0
N0
}, the interpolation of the nonlinear term reads:

FNL(u) ≈ b0 = −
N0∑
i=1

ϕ0
i · φ0

i

And therefore, the linearized problem writes:

L(u) = b0 (2)

5. At this point, three options can be thought:

(a) Restart the separated representation, i.e., find u1 such that:

L(u1)− b0 = 0

Applying the PGDmethod we will obtain a new reduced basis B1 = {φ1
1, . . . , φ

1
N1
}.

(b) Reuse the solution u0, i.e. u1 = u0 + ũ. Then, we seek ũ such that:

L(ũ) = b0 − L(u0)

We solve this problem by applying the PGD method, i.e. B̃ = {φ̃1, . . . , φ̃Ñ}
and then B1 = B0 ⊕ B̃ and N1 = N0 + Ñ .

(c) Reuse by projecting. In this case we consider

u0,1(x) =

N0∑
i=1

η0i · φ0
i (x)

which introduced into Eq. (2) allows computing coefficients η0i . Then the
approximation is enriched by considering u1 = u0,1 + ũ. In this case, we seek ũ
such that:

L(ũ) = b0 − L(u0,1)

Once this problem is solved by applying the PGDmethod, i.e. B̃ = {φ̃1, . . . , φ̃Ñ}
and then B1 = B0 ⊕ B̃ and N1 = N0 + Ñ .

6. From this point we repeat the precedent steps: let us assume that we have already
computed uk. Then select a set of points X k = {xk

1, . . . ,x
k
Nk
}, interpolate the non-

linear term using Bk, and find uk+1, until a certain convergence criteria is reached.

3
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3 ELECTION OF THE INTERPOLATION POINTS

An open question is how to choose the points X k = {xk
1, . . . ,x

k
Nk
}. Consider that a

certain computation step we know the reduced approximation basis:

Bk = {φk
1, . . . , φ

k
Nk
}

Following [1, 4], we consider:
xk
1 = argmax

x∈Ω
|φk

1(x)|

Then we compute c1 from
c1 · φk

1(x
k
1) = φk

2(x
k
1)

which allows defining:
r2(x) = φk

2(x)− c1 · φk
1(x)

from where we can compute the following point, xk
2 as:

xk
2 = argmax

x∈Ω
|r2(x)|

As by construction r2(x
k
1) = 0, we can ensure that xk

1 6= xk
2. This process can be

generalized and thus, if we are looking for xk
j , j ≤ k, the following function can be

constructed:

rj(x) = φk
j (x)−

j−1∑
i=1

ci · φk
i (x)

where coefficients ci, 1 ≤ i ≤ j − 1, need to be computed. It can be done by imposing
that:

rj(x
k
l ) = 0 = φk

j (x
k
l )−

j−1∑
i=1

ci · φk
i (x

k
l ) , l = 1, . . . , j − 1

that constitutes a linear system whose solution results the coefficients ci. And then we
compute the sought point:

xk
j = argmax

x∈Ω
|rj(x)| (3)

It must be pointed out that, in principle, Eq. (3) implies reconstructing the solution,
that is to say, to compute explicitly the functions φk

l , l = 2, . . . , j − 1 from the separated
functions P k

l,s(xs) with s = 1, . . . , d. For l = 1, notice that things are much simpler:

xk
1 =

(
xk1,1, . . . , x

k
1,d

)
with

xk1,s = arg max
xs∈Ωs

|P k
1,s(xs)| , s = 1, . . . , d

For l > 1 some simplifying procedures must be defined for avoiding the solution recon-
struction and improve the performance in the multi-parametric case. The analysis of such
procedures constitutes a work in progress.

4
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4 NUMERICAL EXAMPLE

Aiming to prove the ability of the DEIM-based PGD method for solving nonlinear
problems, we consider the transient heat equation with a quadratic nonlinearity:

∂u

∂t
−∆u+ u2 = 0 , (x, t) ∈ Ω× (0, T ] (4)

being Ω = [0, 1]×[0, 1] ⊂ R2. The initial condition reads u(x, t = 0) = 0 and the boundary
conditions are given by u(x = 0, y = 0, t) = u(x = 1, y = 0, t) = 0 and ∇u ·n (x = 0.5, y =
1, t) = 1. Outside these boundaries, a zero-flux condition is considered.

A space-time separated representation is sought in this case:

u(x, t) =
N∑
i=1

Xi(x) · Ti(t) (5)

We use here the reuse option, that is to say, the reduced basis is enriched without projec-
tion. Using the notation introduced in the previous section the convergence was reached
after the construction of k = 4 reduced bases in which the nonlinear term was inter-
polated, for a relative error less than 1% to the reference solution. However, a relative
error of 0.5% cannot be attained in spite of the number of basis enrichment. The final
solution involved N = 52 functional products φi = Xi(x) · Ti(t). Fig. 1 compares the
time evolution at different locations obtained with the DEIM based PGD and the exact
solution. Then Fig. 2 and 3 depict the four fist space and time modes respectively. From
these results we can conclude on the potentiality of the proposed technology for solving
non-linear eventually multi-parametric models.

5 CONCLUSIONS

This work presents the DEIM-based PGD technique for solving efficiently reduced
nonlinear models. The improvement is achieved by interpolating the nonlinear term using
the reduced basis, computed as usual with the PGD method, instead of performing its
complete evaluation. As the PGD is an a priori model reduction technique, a progressive
reduced basis enrichment must be considered, and thus up to three different choices can
be done: restart the reduced basis, reuse the previous reduced basis by enrichment and
reuse the reduced basis by projecting. A deep analysis of the different alternatives is in
progress.
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Figure 1: Comparison of the DEIM-based PGD solution (on the left) to the FEM reference
solution (on the right), for three different times, t = 0.32, 0.66, 1.00 sec
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Abstract. Since the advent of computational mechanics, the numerical modelling of
fast structural dynamics has been a major field of interest in industry. Traditionally,
a Lagrangian formulation is employed for the numerical simulation of these problems
and low order spatial interpolation is preferred for computational workload convenience.
The well known second order solid dynamics formulation, where the primary variable is
the displacement, is typically discretised in space by using the Finite Element Method
(FEM) and discretised in the time domain by means of a Newmark (trapezoidal) time
integrator. However, it has been reported that the resulting space-time discretised formu-
lation presents a series of shortcomings. From the time discretisation point of view, the
Newmark method has a tendency to introduce high frequency noise in the solution field,
especially in the vicinity of sharp spatial gradients. From the space discretisation point of
view, the use of isoparametric linear finite elements leads to second order convergence in
displacements, but only first order convergence for stresses and strains. It is also known
that these elements exhibit locking phenomena in incompressible or nearly incompressible
scenarios. Recently, a new mixed methodology [1] has been developed in the form of a
system of first order conservation laws, where the linear momentum and the deformation
gradient tensor are regarded as the two main conservation variables. The current paper
presents the discretisation of these equations by using the Jameson-Schmidt-Turkel (JST)
scheme. The paper will as well focus on comparing the obtained results against the ones
obtained using other methodologies such as cell centred Finite Volume or Two Step Taylor
Galerkin, Stream Upwind Petrov Galerkin (SUPG).
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1 INTRODUCTION

The Lagrangian mixed formulation presented in [1] is in the form of a system of first
order conservation laws, where the linear momentum and the deformation gradient tensor
are regarded as the two main conservation variables. The current paper presents a new
implementation using the Jameson-Schmidt-Turkel (JST) scheme [3] widely know within
the CFD community which is based on the use of central differences an artificial dissipa-
tion. In order to adapt the scheme to the specificities of the problem, dissipation will only
be added to the first equation. This will allow satisfying the compatibility conditions of
the deformation mapping. Special care will be taken in the integration of the boundary
fluxes, by the use of a weighted average of nodes at the boundary faces. The spatial
discretisation will be combined with a two stages Total Variation Diminishing (TVD)
Runge-Kutta time integrator in order to advance the solution in time. The displacements
are integrated in time using a trapezoidal rule which, combined with a Lagrange multiplier
minimisation procedure, ensure the conservation of angular momentum. An additional
correction to the numerical dissipation of the linear momentum is as well added in order
to ensure the conservation of that variable.

2 GOVERNING EQUATIONS

A mixed system of conservation laws was presented in [1] as

∂p

∂t
−∇0 · P = ρ0b

∂F

∂t
−∇0 · (v ⊗ I) = 0

∂ET
∂t

+∇0 ·
(
Q− P Tv

)
= 0 (1)

where p = ρ0v is the linear momentum, ρ0 is the material density, v is the velocity field,
b is the body force per unit mass, F is the deformation gradient tensor, P is the first
Piola-Kirchhoff stress tensor, ET is the total energy per unit of undeformed volume, I is
the identity tensor and ∇0 describes the material gradient operator in undeformed space.
The above system of equations can be rewritten in a more compact form, describing a
first order hyperbolic system as

∂U
∂t

+
∂F I

∂XI

= S (2)

where

2
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U =



p1

p2

p3

F11

F12

F13

F21

F22

F23

F31

F32

F33

ET



, F I =



−P1I(F )
−P2I(F )
−P3I(F )
−δI1v1

−δI2v1

−δI3v1

−δI1v2

−δI2v2

−δI3v2

−δI1v3

−δI2v3

−δI3v3

QI − PiIvi



, S =



ρ0b1

ρ0b2

ρ0b3

0
0
0
0
0
0
0
0
0
0



, ∀I = 1, 2, 3 (3)

Additionally, the conservation law (2) has to be supplemented with a constitutive model
which satisfies the objectivity requirement as well as the relevant laws of thermodynamics.

3 SPACE DISCRETISATION

The JST is a vertex centred Finite Volume Method and, as such, requires the use
of a dual mesh for the definition of control volumes. In this paper, the median dual
approach for triangular meshes, as presented in [4] and [5], has been chosen. This approach
constructs the dual mesh by connecting edge midpoints with element centroids in two
dimensions (see Figure 1) and edge midpoints with face centroids and element centroids
in three dimensions. Such a configuration ensures that only one node of the initial mesh
exists in each control volume. For a given edge connecting nodes e and α an area vector
is then defined as

Ceα =
∑
k∈Γeα

AkNk (4)

where Γeα is the set of facets belonging to edge eα, Ak is the area of a given facet and Nk

is the normal vector of the facet (see Figure 1).
On account of the definition of the dual mesh, the defined area vector satisfy Ceα =

−Cαe. This area vector enables a substantial reduction in the computational cost when
computing the boundary integral used in the Green Gauss divergence theorem (classical
in FVM), since it saves an additional loop on facets. Consider a hyperbolic system of
conservation laws generally written as

∂U
∂t

+
∂F I

∂XI

= 0 (5)

where U is the vector of conserved variables and F I the flux vector. This set of equations

3
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Figure 1: Set of facets related to an interior edge (left) and boundary edge (right) in three
dimensions. The green surfaces correspond to the interior faces to which the edge belongs,
whereas the dark yellow surfaces correspond to the boundary faces. The red surfaces are
the set of interior facets Γeα corresponding to edge eα. The bright yellow zone is the
contributory area of the face eαβ to node e.

can be discretised in space by using the extended JST scheme (see [4] and [5]) to give, for
a given node e,

dU e

dt
= − 1

Ve

∑
α∈Λe

1

2
(F e + Fα)Ceα +

∑
α∈ΛBe

β∈(ΛBe
⋂

ΛBα )

6F e + 6Fα + 6Fβ

8
N eαβAeαβ

+
1

Ve
D(U e)

(6)
where Λe is the set of nodes connected to node e by an edge, ΛB

e is the set of nodes
connected to node e by a boundary edge, F is a matrix gathering the flux vectors as
F = (F1,F2,F3) and D(Ue) is a dissipative operator. The first term of the equation is
the actual Green Gauss evaluation of the cell boundary fluxes. The dissipative operator
reads

D(U e) =
∑
α∈Λe

ε(2)
eαΨeαθeα (Uα − U e)− ε(4)

eαΨeαθeα (L(Uα)−L(U e)) (7)

where ε
(2)
eα and ε

(4)
eα are discontinuity switches which activate second or fourth order dif-

ferences operators, Ψeα is the spectral radius and θeα denote geometrical weights. The
second order differences operator is defined as

4
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L(U e) =
∑
α∈Λe

θeα(Uα − U e) (8)

The first term of the dissipative operator provides the second order differences operator
and the second term the fourth order differences operator. The fourth order differences
operator avoids the appearance of the odd-even decoupling of the solution (that would
result from using averaged fluxes) whilst maintaining the second order accuracy of the
scheme. The second order differences operator is introduced to smear out the solution in
the vicinity of a shock whilst reducing the solution to first order locally.

4 TIME DISCRETISATION

The time discretisation is performed using a Total Variation Diminishing (TVD) Runge-
Kutta time integrator as proposed by Shu and Osher [6]. For a set of equations discretised
in space, but left continuous in time (method of lines) at a given node e,

dU e

dt
= −Re(U e, t) (9)

the method computes the solution at time step tn+1 from the solution at time step tn as

U∗e = Un
e −∆tRe(Un

e , t
n)

U∗∗e = U∗e −∆tRe(U∗e, tn+1)

Un+1
e =

1

2
(Un

e + U∗∗e ) (10)

In addition, the displacements are integrated in time using the trapezoidal rule, which
combined with a Lagrange multiplier minimisation procedure, allows for the conservation
of angular momentum.

5 NUMERICAL RESULTS

5.1 Punch test

A square flat plate of unite side length is constrained to move tangentially on the east,
west and south sides, whereas it is free on the north side. The plate is subjected to an
initial uniform velocity vpunch = 100 m/s on its right half side. The plate is composed
of a NeoHookean rubber material with Young’s modulus E = 1.7× 107Pa, density ρ0 =
1.1 × 103 Kg/m3 and Poissons ratio ν = 0.45. The problem shows the performance of
the method in nearly incompressible scenarios, with absence of volumetric locking and
spurious modes (checker board) for the pressure. Figure 2 compares results obtained using
Mean Dilatation technique and standard Finite Element Method (FEM) for the standard
displacement based formulation and Cell Centred Finite Volume, Stream Upwind Petrov
Galerkin (SUPG) and JST using the proposed formulation. It can be seen how the
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FEM solution suffers from volumetric locking, while the Mean Dilatation technique is
capable of circumventing it. In addition, both solutions exhibit spurious oscillations in
the pressure distribution. The methodologies based in the proposed conservation law
formulation alleviate both the volumetric locking and the appearance of the spurious
pressure oscillations.

5.2 Two dimensional bending column

A rubber column of 1 m with and 6 m height is clamped on its bottom and subjected to
an initial uniform horizontal velocity of V0 = 10 m/s. The example shows the performance
of the numerical technique in bending dominated scenarios. The material is set using a
NeoHookean constitutive model with Young’s modulus E = 1.7 × 107Pa, density ρ0 =
1.1 × 103 Kg/m3 and Poissons ratio ν = 0.45. Figure 3 shows the JST solution at
different times as compared to SUPG and cell centred Finite Volume. All three solutions
exhibit a smooth pressure distribution and absence of volumetric locking. Comparing
the resolution of the three solutions, it can be seen that the JST method offers the most
dissipative solution, whereas the SUPG gives the most accurate one.

5.3 Three dimensional bending column

This example is an extension of the two dimension column bar presented previously.
The example is shown to prove the good performance of the method in three dimensional
bending dominated scenarios. As in the two dimension case, a rubber material column is
clamped on its bottom face (X3 = 0 m), whereas is free on the rest. An initial uniform
velocity V0 = 10(cos(30), sin(30), 0)T m/s is imposed and the bar is left oscillating in
time. A Neohookean nearly incompressible material is chosen with Young’s modulus
E = 1.7 × 107Pa, density ρ0 = 1.1 × 103 Kg/m3 and Poissons ratio ν = 0.45. Figure 4
shows the evolution in time of the pressure distribution in the deformed configuration,
comparing two different mesh discretisations, h = 1/3 m and h = 1/12 m. Both solutions
exhibit a smooth distribution of pressure and absence of volumetric locking. Figure 5
shows the time history of the vertical displacement at point X = (1, 1, 6)T m and pressure
history at point X = (1/3, 1/3, 3)T for three different space discretisations, h = 1/3 m,
h = 1/6 m and h = 1/12 m . It can be seen the convergence of the solutions as the mesh
is refined.

6 CONCLUSIONS

The JST scheme has been implemented for a new mixed conservation law in fast tran-
sient dynamics for triangular and tetrahedral meshes. The implementation has been
carried out with special care to numerical stability, fulfillment of compatibility conditions
and treatment of boundary conditions. This results in an adapted JST scheme, where
the numerical dissipation is only added to the first equation (conservation of linear mo-
mentum) and the boundary conditions are treated using an external loop on faces, where
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Figure 2: Numerical solution of the punch test case with an initial uniform velocity at
the right hand side vpunch = 100 m/s. Material properties E = 1.7 × 107Pa, ρ0 =
1.1 × 103Kg/m3, ν = 0.45 for a Neohookean material. The solution is shown at time
t = 0.03s for different discretisations. From left to right and top to bottom: Mean
dilatation technique, standard FEM, Cell Centred Finite Volume, SUPG and JST for the
last two plots. The solution is obtained using a discretisation of 121 nodes for all the
cases except for the last JST solution, where the number of nodes is doubled.
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Figure 3: Cantilever Beam: Sequence of pressure distribution of deformed shapes using:
(a) CCFVM imposing piecewise linear reconstruction; and (b) SUPG (consistent mass,
τF = ∆t, τp = 0, α = 0.05) (c) JST (κ(4) = 1/64). Results obtained with initial horizontal
velocity V0 = 10m/s. The nearly incompressible Neo-Hookean (NH) constitutive model
is used such that Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7 × 107Pa, density
ρ0 = 1.1 × 103kg/m3 and αCFL ≈ 0.4. Discretisation of 8 × 48 quadrilateral elements.
Time step ∆t = 1× 10−4s.
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Figure 4: Three dimensional bending column. Evolution in time of the pressure distribu-
tion in the deformed configuration. Initial uniform velocity V0 = 10(cos(30), sin(30), 0)T

m/s. Neohookean nearly incompressible material with Young’s modulus E = 1.7×107Pa,
density ρ0 = 1.1 × 103 Kg/m3 and Poissons ratio ν = 0.45. JST spatial discretisation
with h = 1/3 m (a) and h = 1/12 m (b), κ(4) = 1/128 and αCFL = 0.4.
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Figure 5: Three dimensional bending column. Time history of the vertical displacement
at node X = (1, 1, 6)T m (a) and time history of the pressure at node X = (1/3, 1/3, 3)T

m (b) . Initial uniform velocity V0 = 10(cos(30), sin(30), 0)T m/s. Neohookean nearly
incompressible material with Young’s modulus E = 1.7 × 107Pa, density ρ0 = 1.1 × 103

Kg/m3 and Poissons ratio ν = 0.45. JST spatial discretisation with h = 1/3 m (blue),
h = 1/6 m (red) and h = 1/12 m (green), κ(4) = 1/128 and αCFL = 0.4.
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a weighted average of nodal values ensures accuracy and robustness of the solution. In
addition, the numerical algorithm is modified to ensure preservation of linear and angular
momentum. A set of numerical results has been presented both for two and three dimen-
sions. These numerical results have proven second order convergence both for stresses
and velocities. Furthermore, they circumvent the volumetric locking and spurious pres-
sure modes as they appear in standard Finite Element (displacement based formulation)
using linear elements for triangle and tetrahedra. The solutions compare well with other
methodologies that discretise the proposed formulation, such as cell centred Finite Vol-
ume or Stream Upwind Petrov Galerkin. The proposed methodology allows for further
research into more realistic real life problems. In fact, irreversible problems involving
shocks can be easily implemented, due to the straightforward implementation of consti-
tutive models and the built-in shock capturing term. Contact problems can as well be
investigated by using Riemann-Solvers on the external faces.
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Abstract. Adaptive refinement is an important technique to reduce the computation
time of flows in very refined meshes and increasing the local accuracy of the simulation.

A new a-posteriori error estimator, suitable for h-adaptive methods on unstructured
grids, is based on the residual evaluation and a high-order polynomial reconstruction.
The results are performed by the authors own Navier-Stokes code, which has been used
to solve different adaptive problems [1, 2, 3].

The residual least squares (RLS) estimator is applied to different problems with a
known analytic solution to study the numerical error decay with the adaptive algorithm
and it is compared with the classic Taylor Series estimator [4, 5]. The proposed adaptive
procedure is also applied to 3D flows around a sphere for two different types of grids.

The main goal of the present study is to perform the mesh refinement maintaining the
global spatial accuracy to a desired level in the overall computational domain.

1 INTRODUCTION

The reduction of mesh generation effort and the computing time are of outmost rel-
evance for CFD simulations of engineering fluid flow applications. Adaptive techniques
reduce the time of the unstructured mesh generation and potencially the computing time,
because the adaptive mesh has a smaller number of cells than the equivalent uniform
mesh. Adaptive mesh refinement requires an estimator that shows the error distribution
to refine locally the mesh. The information from the error estimator and the stop criterion
should embody numerical accuracy and physical contrains of the numerical solution.

From the point of view of Finite Element Methods FEM the error estimators are
well established and can be divided in three major groups: gradient recovery estimators,
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explicit and implicit residual error estimates. A summary of different error estimators
used in context of FEM was done by several authors [6, 7, 8, 9].

The Richardson Extrapolation [10] is the most popular error estimator in the finite-
volume method (FVM) context and requires the solutions on two meshes with different
spacings, which can be difficult to obtain in 3D industrial flow configurations. There are
some attempts of single-mesh error estimators, based on energy conservation and angular
moment conservation equations, see Haworth et al. [11]. Error estimators based on high
order face interpolation was proposed by Muzaferija and Gosman [12] and later, Jasak
and Gosman [4, 5] proposed an error estimator based in the Taylor series truncation error
and another one based in the conservation of the second moment of the solution. Yahia
et al. [13] has applied the Taylor series truncation to edges integral in the framework of
r-adaptivity. Error estimator based on the residual error from the governing equations
was investigated by Jasak and Gosman [14] and Juretic [15] extended it to a face based
error estimator.

The Residual Least Squares error estimator has two main advantages, when com-
pared to another approaches: the polynomial reconstruction made with the Least Squares
method has the versatility required to be used in the case of unstructured grids which can
have an arbitrary cell distribution and the Residual re-evaluation has information from
the governing equations and the grid quality.

The adaptive grids are treated as unstructured grids, so the same convective and diffu-
sive schemes are used, garantee second order error decay between the cells with different
levels of refinement. In addition the new decision algorithm uses the computed informa-
tion from error estimators without requiring any input parameter from the user or any
previous knowledge of the numerical solution.

2 NUMERICAL METHOD

2.1 Governing Equations and Unstructured Grids Formulation

The steady isothermal flow of an incompressible fluid is governed by the mass and
momentum conservation laws, being expressed by the incompressibility constraint and
the Navier-Stokes equations:

∇ · u = 0 (1)

∇ · (u⊗ u) = ∇ ·
(
ν∇u + ν∇Tu

)
− 1

ρ
∇p (2)

where u is the velocity vector, ν is the kinematic viscosity, ρ is the fluid’s density and p
is the fluid’s pressure. The governing equations are discretized on unstructured meshes
made of cells of arbitrary topology, to address the multiple faces that arise in interfaces
between refined and non-refined cells. Each cell P is a polyhedron with a closed boundary
∂P which is composed by a variable number of faces ∂P = {S1, S2, ..., SF}. Each face Sk

is a plane polygon of arbitrary orientation which connects P and it’s neighbour cell Pk,
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see Figure 1. The computational points are located at the centers of each control volume
corresponding to the so-called “collocated” or “non-staggered” arrangement.

Figure 1: General 2D Polyhedral Control Volume

2.2 Pressure Velocity Coupling Algorithm

The SIMPLE algorithm [16] is used for the pressure velocity coupling. The SIMPLE
algorithm starts by computing an approximate velocity field u∗, which satisfies the mo-
mentum equations using the values from the previous iteration n. The steady equation is
solved implicitly and linearization of the convection contribution is required:

F∑
f=1

Un
f u∗f − ν

F∑
f=1

(∇u∗)f .Sf = −VP
ρ
∇pn (3)

where Un
f is the face velocity defined by un

f .Sf , Sf is the face surface vector defined by
Sfnf , nf is the normal unit vector of the face f and VP denotes the cell P volume. A
system of linear equations is assembled in this form:

1

αu

apu
∗
p +

F∑
l=1

alu
∗
l = −VP

ρ
∇pn +

1− αu

αu

apu
n
p (4)

being αu the under relaxation factor for the momentum equations. The face velocity U∗f
is computed with Rhie-Chow interpolation [17]:

U∗f = u∗p.Sf −
αuVP
ρ ap

((∇pn)f − (∇pn)).Sf (5)

where the over-lined values are obtained by interpolation from the two cells which have
the same face f and ap are the momentum system matrix’s main diagonal elements. This

3

64

lacan
Rectangle
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face velocity is used to solve the pressure correction equation:

F∑
f=1

αuVP
ρ ap

(∇p′)f .Sf =
F∑

f=1

U∗f (6)

where p′ is the pressure correction. After solving the Poisson equation 6, the velocity
values are corrected with the p′ new values to satisfy the continuity equation 1. The
conservative face velocity is computed by:

Un+1
f = U∗f −

αuVP
ρ ap

(∇p′)f .Sf (7)

the cell velocity is corrected by:

un+1 = u∗ − αuVP
ρ ap

(∇p′) (8)

and the pressure is updated:
pn+1 = pn + αpp

′ (9)

the SIMPLE algorithm requires an under relaxation factor for pressure αp. From this
point the residuals are computed, If they are lower than a prescribed value the cycle ends,
if not the computation advances to the next iteration, back to equation 4.

2.3 Numerical Schemes

The author’s own code SOL has the capability to make different types of regressions
from the discrete cell values by solving a Weighted Least Squares (WLS) problem. Dif-
ferent types of polynomials and cell sets can be used in these regressions. Figure 2 shows
examples of cell sets composed by different types of cell neigbours. The subfigure 2(a)
shows the first and second cell’s neighbours by face in a cartesian grid and the subfigure
2(b) shows the first and second cell’s neighbours by vertex in a grid made by triangles.

The versatility of the regressions is suitable to compute the diffusive and convective
values of the arbitrary unstructured cells and achieve second order accuracy, see Kobayashi
et al. [18, 19] for details. Since the face regressions are centered in the face centroid,
they can deal with the severe orthogonality and skewness deviations which exist in the
interfaces between refined and non-refined cells, increasing the accuracy of the diffusive
and convective schemes.

All the least squares regressions use a weight function WP , given by the inverse square
of the distance:

wP = |xP − xref |−2 (10)

where xP is the cell P centroid coordinates and xref is the coordinates of the regression
reference.

4

65

lacan
Rectangle
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(a) Cell Neibours by Face (b) Cell Neibours by Vertex

Figure 2: Different Examples of Cell Neibours

Both diffusive and convective values are computed with a single regression, using a
linear polynomial and the various cells that have the face’s vertices. Figure 3 shows
examples of different computational molecules used in the numerical schemes. Where the
cells used for each regression k of the face Sk are marked with the respective number k.

Figure 3: Possible Stencils used in the Convective and Diffusive Terms Computation

To achieve the second order integration with the finite volume method the regression
is centred at the face’s centroid.

The convective and diffusive schemes used in this work may originate a non positive
definite matrices, so a deferred correction approach (Ferziger [20]) was used where a
stable scheme is computed implicitly and the least squares scheme is computed explicitly.
As stable schemes, the central differences scheme is used for the diffusive term and the
convective fluxes are approximated by the first order upwind.
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3 ADAPTIVE ALGORITHM AND ERROR ESTIMATORS

3.1 Adaptive Algorithm

Error estimators are required for the adaptive decision algorithm and they give a good
approximation of the numerical error and its distribution in the computational domain.
With this information is possible to compute an estimation of the ideal hydraulic radius
hi distribution for a desired local error E0. For a second order method in space, the
following equations are valid:

|E| ∼ Kh2 (11)

|E0| ∼ Kh2
i (12)

where E is the error estimation and K is an unknown constant. After some algebraic
manipulation:

hi ∼ h
√
E0/E (13)

Ideally, the formula 13 can be used to create adaptive grids with approximately constant
error if combined with an automatic grid generator.

The adaptive procedure used in this work is based in the maximum value of the error
estimator. The cells with an error higher than λ max(|E|) are selected for h-refinement,
where λ is a factor that depends of the method’s order. In the case of second order method
this value λ is equal to 0.25, which is the reduction factor (hL/hL+1)2 of the local error,
in each grid refinement.

3.2 Taylor series truncation error

The Taylor series error estimator [4] is derived by the 2nd order term of the Taylor
series and it is computed by:

ET =
1

2VP

∣∣∣∣( ∂2φ

∂xi∂xj

)
P

∣∣∣∣ (Mij)P (14)

where (Mij)P is the inertia tensor of the cell P . The Hessian matrix values are computed
from a regression made with a 2nd order polynomial from the cell’s first and second
neighbours. Due to the assumption of linear variation inside the computational cells,
zones with lower errors will have lower values of the Hessian matrix.

3.3 Residual Least Squares

A regression is done with a 3rd order polynomial and considering the cell’s first and
second neighbors. New face’s values and gradients are computed and compared with the
values from the convection and diffusion schemes. One way to do this, is by recomputing
new residual values, which indicate if the values satisfies the governing equations. The
Residual Least Squares (RLS) vector is computed for each cell by the following formula:
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ER =

∑F
f=1 U

n
f uf − ν

∑F
f=1(∇u)f .Sf +

VP
ρ
∇pn

ap
(15)

where the values uf and (∇u)f are computed from the 3rd order polynomial, ap is the
matrix value used for the momentum equations, which is required to give the RLS error
the same dimensions of the dependent variable. This error gives the indication for local
refinement if the differences between 3rd order profile and the numerical discretization
affect the governing equations. Unlike the Taylor series the RLS criteria depends on the
governing equations discretization and the grid quality.

4 RESULTS

4.1 Poisson Equation in a L-Shaped Domain

For this test case the Poisson equation ∇2φ = 0.0 was solved in a L-shaped domain
[−1, 1]2 \ ([0, 1]× [−1, 0]) Dirichlet boundary condition is prescribed in all boundaries and
the analytic solution is given by the following equation:

φ(x, y) = r2/3sin(2ϕ/3) with (x, y) = r(cos ϕ, sinϕ) (16)

The computations started with a grid of 12 triangles, three types of refinement are ap-
plied to this grid: one with uniform refinement and other two with the adaptive procedure
using the classic Taylor series or the RLS as error estimators. The goal is to study the
main differences between the two error estimators and evaluate their effectiveness. Fig-
ure 4 shows the mean and maximum error for the three types of grids, after 15 levels of
refinement for the Taylor series and 22 levels of refinement for the RLS errors estimators:

(a) Mean Error over Number of Cells (b) Maximum Error over Number of Cells

Figure 4: Poisson Equation: Mean and Maximum Error for the Uniform and Adaptive Grids
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For the uniform grid case, the mean and maximum error slope has an order of 4/3 and
2/3, respectively. Although, at the singularity point (x, y) = (0, 0) the analytic solution is
zero, the analytic gradient is infinite which causes the method to have an order accuracy
lower than 2 for uniform grids.

For both error estimators, the mean error of the adaptive grids has second order slope,
due to the difference between the slopes of the adaptive and uniform grids, the mean error
from the adaptive grids is much lower than the mean error from the uniform grid.

In the subfigure 4(b), the maximum error for the three types of grids is shown. The
adaptive grid with the TS estimator has an maximum error 100 times lower than the error
of the uniform grid and the adaptive grid with the RLS estimator shows an maximum error
1000 times lower, showing an improvement when compared with TS estimator. The ratio
between the maximum and mean error, which is a measurement of adaptivity efficiency,
is 0.053 for the TS estimator and 0.2336 for the RLS estimator.

Figure 5 shows the final adaptive grids obtained with the TS and RLS error estimators.
The adaptive grid with TS has more refined cells and a circular pattern in the grid
interface, this happens due to the loss of accuracy of the TS error estimator after some
adaptive levels. The adaptive grid with RLS has a lower number of cells and a rectangular
pattern is observed, there is an increase in the error estimator accuracy as it was observed
in the subfigure 4(b), there is an over estimation of the numerical error in the boundaries
of the computational domain.

(a) Adaptive Grid using the Taylor Estimator (b) Adaptive Grid using the RLS Estimator

Figure 5: Poisson Equation: Adaptive Grids for the Taylor and RLS Estimators
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4.2 Convection-Diffusion Equation - Point Source in Cross-Flow

For this test case, the convection-diffusion equation U
∂φ

∂x
= Γ∇2φ is solved. The

selected analytical solution was used in previous works by Jasak and Gosman [4, 5] and
is defined by:

φ(x, y) =
S

2πΓ
K0(

U
√
x2 + y2

2Γ
)e(0.5xU/Γ) (17)

where S = 16.67 [φ/s] is the source magnitude, Γ = 0.05 [m2/s] is the diffusion coefficient,
U = 1.0 [m/s] is the imposed velocity in the x axis and K0 is the modified Bessel function
of the second kind and zero order.

This problem is solved in a rectangular domain [0.0, 4.0] × [−0.5, 0.5], the line-source
is located at 0.05m of the left boundary to avoid numerical problems from this singular-
ity. Dirichlet boundary conditions are prescribed in all boundaries, except for the right
boundary (x = 4.0), where a null gradient is imposed.

The same refinement test were done for this solution, a Cartesian grid of 16× 4 is used
as initial grid and the adaptive algorithm is used until 20 levels of refinement are reached.
The mean and maximum error, for the uniform and adaptive grids are shown in figure 6.

(a) Mean Error over Number of Cells (b) Maximum Error over Number of Cells

Figure 6: Line Source: Mean and Maximum Error for Uniform and Adaptive Grids

The curves of the mean error (subfigure 6(a)) show the same slope for the three grids,
the adaptive grids doesn’t show any improvement in the mean error when compared with
the uniform refinement. For both error estimators, the maximum error of the adaptive
grids is lower than for the uniform grid case. The final adaptive grid has a maximum
error 10 times much lower than for the case of the uniform grid.

In this case, the error slope is not always constant due to the grid interface correc-
tion, which prevents the accumulation of the grid interfaces between different levels of

9

70

lacan
Rectangle
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refinement, avoiding the loss of the grid quality and the solution overall accuracy.
When comparing the results from the subfigure 6(b) with the ones obtained by Jasak

and Gosman [5] there is a significant improvement. This happens due to the grid interface
correction and the different decision algorithm of the cells for refinement.

4.3 Flow over a Sphere

The three dimension flow over a sphere is computed as the final test of the RLS
estimator and the adaptive code, two initial meshes were made one with hexahedrons
and another one with tetrahedrons. The initial hexahedron grid has 46800 cells and its
domain has a cylinder form, the computational domain of the initial tetrahedral grid is a
squared prism with 39× 13× 13 diameters and has 126182 cells.

Figure 7: Example of Refinement in the Sphere Flow with Hexahedral and Tetrahedral Grids

Figure 7 shows the adaptive grids for two levels of refinement, with both the hexahedral
and tetrahedral grids, for a Reynolds number of 200. The final meshes have 1331216 and
2707026 cells, respectively, which corresponds to a mesh with less 55.555% and 66.479%
than compared to uniform refinement case. Both adaptive grids are refined near the
sphere wall and in the flow’s wake which are the primary features of this problem. The
cone formed by the refined cells in the flow’s wake is bigger in the tetrahedral grid, since
the cells far away of the sphere have a higher hydraulic radius than in the hexahedral
grid.
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5 CONCLUSIONS

- The Residual Least Squares (RLS) error estimator has been shown to be suitable for
adaptive refinement of Finite-Volume methods on unstructured grids. Unlike other
error estimators, the RLS has information of the governing equations discretization
and information of the grid quality.

- The new adaptive decision algorithm is independent on user defined parameters and
can deal with the problem of the grid quality loss in the cell interface, making it
more suitable than other algorithms from the literature.
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Abstract. We introduce a novel hybrid stress finite element formulation for two-dimensional 
linear electrodynamics.  This approach is an extension of the Piola-Kirchhoff hybrid stress 
formulation that we have recently proposed for linear elastostatics [1], and is applied in this 
communication to problems in the frequency domain. The formulation is consistent with a 
complementary form of the Hamiltonian variational principle, which involves, as fundamental 
unknown  variables,  the  stress  field  components  and  boundary  displacements.  The 
approximate stress fields are split into two parts: a divergence-free (static) part, taken as the 
solution  of  the  homogeneous  momentum  equations,  and  a  dynamic  part,  taken  as  the 
particular solution of the momentum equations. The key ingredient of the formulation is to 
explicitly approximate, in the parent domain, either the second Piola-Kirchhoff stresses, the 
first Piola-Kirchhoff stresses, the Cauchy stresses, or rather their combination, and to enforce 
the divergence-free condition in the physical domain by means of a suitable projection. The 
main advantage of this formulation over traditional hybrid stress formulations [2] is that it 
allows  to  consider  arbitrarily  shaped  elements  without  necessarily  compromising  static 
admissibility.  Feasibility and effectiveness of the proposed formulation will be numerically 
demonstrated through the analysis of benchmark tests, which will also consider the problem 
of characterizing the properties of the error of these solutions.
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Abstract. The simulation of the advancing process for arbitrary alignments during
shield tunneling requires a continuous adaption of the finite element mesh in the vicinity
of the tunnel face in conjunction with a steering algorithm for the Tunnel Boring Machine
(TBM) advance. Moreover, the finite element mesh should match the actual motion path
of the shield machine resulting from the FE-analysis in each excavation step. For this
purpose, a technique to automatize the process of mesh generation based on hybrid mesh
approach is proposed in which a new computational mesh in the vicinity of the tunnel
face will be automatically generated within the advancing process. This contribution is
concerned with the 3D automatic mesh generation of finite element models for numerical
simulations of shield driven tunneling processes.

1 INTRODUCTION

In numerical simulations of shield driven tunneling processes, the realistic modeling of
both the excavation process and the advancement of the Tunnel Boring Machine (TBM)
is a challenge. For a better understanding of these processes during tunnel construction,
the interactions between the shield machine and the surrounding soil need to be investi-
gated, yet this excavation process is difficult to model with existing finite element models.
In addition, the simulation of the advancement of the machine as an independent body
which interacts with all relevant component of the model, requires a realistic kinematics
model of the shield machine which is generally not included in computational models for
TBM tunneling [14]. A prototype for a process-oriented three-dimensional finite element
model for simulations of shield-driven tunnels in soft, water-saturated soil has been devel-
oped and successfully used for systematic numerical studies of interactions in mechanized
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tunneling [7], which has been re-formulated and extended to partially saturated soils and
more advanced constitutive models for soils in the context of a integrated design support
system for mechanized tunneling (see, e.g. [11, 10]). Furthermore, several finite element
models have been proposed, addressing the difficulties inherent in the simulation of the
excavation process. Many of these models account for excavation by removing finite el-
ements from the excavated volume in front of the machine, and then by applying the
nodal forces necessary to preserve equilibrium [1, 3]. A more realistic representation of
the excavation process, based on mesh adaptation, using so-called ”excavating elements”
in front of the machine has been proposed by [8]. In this paper, a steering algorithm
and re-meshing strategy are presented in the context of 3D modeling TBM advancement
processes. The algorithm serves as an virtual guidance system which automatically de-
termines the exact position and the driving direction of the TBM in three dimensional
space. A new approach for hybrid mesh generation is proposed, which adapts the spatial
discretization in the vicinity of the tunnel face according to the actual position of the
TBM. This hybrid mesh attempts to combine full advantage of the numerical accuracy
and practical aspects of structured hexahedra meshes, while the numerical error can be
controlled by the chosen density and interpolation order of the unstructured tetrahedral
mesh within the excavation region denoted as region of interest.

2 FINITE ELEMENT MODELING OF ADVANCEMENT PROCESSES

2.1 The kinematic model of the shield machine

A close to reality modeling of the advancing process and the interaction between the
TBM and the surrounding environment requires a realistic kinematic model of the shield
machine [4]. Therefore, a nonlinear kinematic analysis of the shield, based on the action
forces imposed on the shield and on the inertial forces due to the shield, is performed.
The action forces result from hydraulic jacks pushing against the machine, earth/slurry
pressure at the cutting face, friction with surrounding soils, and the fluid flow of processes
of the support fluid and grouting mortar, whereas the inertial forces are due to the self
weight of the shield and of the equipment. Furthermore, the taper and the thickness of the
shield skin are accounted for in the geometrical representation of the TBM (see figure 1),
allowing for a realistic distribution of the ground reaction forces in both circumferential
and longitudinal directions. A Lagrangian finite element analysis of large deformations
that satisfies both the displacements and forces boundary conditions imposed by shield
machine operation provides the actual TBM kinematics. Within this approach the shield
machine is modeled as a deformable body using a Total Lagrangian Finite Element for-
mulation.

2.2 Steering correction algorithm

The TBM is advanced by hydraulic jacks that are attached to the machine which push
against the previously installed lining ring. The pressure exerted by these jacks must
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a) front 
diameter

rear
diameter

thickness of
pressure wall

length of shield

b)
thickness of
shield skin

Figure 1: Geometrical model of the shield machine: a) transparent view of shield geometry and hydraulic
jacks; b) dimensions of the shield

overcome the resistance generated by the surrounding soil. Moreover, since the machine
is heavier at the head, the jack forces are highest in the invert and conversely the lowest
in the crown. Driving the shield along curves requires additional steering forces along
the sides to ensure the machine follows the intended three dimensional curve. When the
steering or the so-called deviation correction is needed, the pressure at individual hydraulic
jacks is adjusted to produce deflection torques in the horizontal and vertical direction. In
the computational model, the shield machine is pushed forward by extending hydraulic
jacks represented by Crisfield truss elements. These are connected to both the surface
of the lining and the shield. The jack elongations are accomplished by providing initial
strains which describe the desired elongation. Respective values for the jack pressures
are obtained as a simulation result [13]. In accordance with tunneling practice, a reliable
steering algorithm that provides the numerical model with the required information to
keep the TBM on the track is developed. This TBM advancement algorithm serves
as an artificial guidance system which automatically determines the exact position and
the driving direction of the TBM in three dimensional space providing the vertical and
horizontal deviation, shield orientation and direct input for the jacking cylinders. For this
purpose, the steering algorithm provides a non-uniform jack thrusts, forcing the reference
point on the shield to a given point along the alignment. The method for which the
machine is advanced is as follows:

1. The geometry of the tunnel path is described by a set of coordinates in three di-
mensional space.

2. Each jack element J i is defined by its end points: its connection to the lining pL

and its connection to the shield wall pS as shown in figure 2.
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Figure 2: Definitions in the steering algorithm: a) measures related to one jack element J i; b) measures
related to the steering algorithm; c) definition of the offset vector ros

3. A reference point cref on the shield wall is specified to control the deviation of the
machine from the intended path after each advancing step. This point is the centre
of a circle formed by the tips of all nJ hydraulic jack elements on the shield end:

cref = 1
nJ

∑nJ

i pi
S (1)

Since this reference position differs from the centre of the cutting wheel, an offset
vector ros is defined that points from the reference point to the centre of the cutting
wheel.

4. The new position ptarget of the centre of the cutting wheel as well as a director
d for the heading of the shield are required for advancing the shield. These are
determined from the chainage of the tunnel alignment. In the kth alignment station
ak, these quantities are obtained by:

ptarget = ak+1 (2)

d = ak+2 − ak+1

‖ak+2 − ak+1‖
(3)

In combination with the offset vector, the new position of the reference point is
obtained:

cnew = rtarget − ros (4)

From these positions, a translation vector t, that defines the pure translation of the
reference point from its current position to its target position, is calculated:

t = cnew − cref (5)
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Subsequently, the current heading of the shield needs to be determined. For this
purpose, two radial vectors r1 and r2 are defined, from which the current heading
n can be derived by:

n = r1 × r2

‖r1 × r2‖
(6)

5. The new position pi
S,new of each jack element after steering is computed using the

a standard cartesian rotation matrix Arot in three dimensional space. The rotation
axis is perpendicular to both n and d:

v =

{
n× d , if n 6= d

{1, 0, 0} else.
(7)

By this choice of a rotation axis, the rotation angle α and a respective rotation
matrix Arot can be computed:

α = arccos(n · d)

Arot =

 C + v2
1 (1− C) v1v2 (1− C)− v3S v1v3 (1− C) + v2S

v2v1 (1− C) + v3S C + v2
2 (1− C) v2v3 (1− C)− v1S

v3v1 (1− C)− v2S v3v2 (1− C) + v1S C + v2
3 (1− C)

 (8)

with C = cos α and S = sin α

6. The new position of each jack on the shield wall is determined to obtain the required
jack elongations:

pi
S,new = cnew + Arot (pS − cref ) (9)

7. The new reference length and the elongations are computed and applied as an
internal Green Lagrange strain for each Crisfield truss element:

Li
new = ‖pS,new − pL‖ (10)

E11 =
L2
new − l2ref

2 l2ref
(11)

3 AUTOMATIC MODELING OF THE EXCAVATION PROCESS

The simulation of the advancing process for arbitrary alignments by means of the
proposed steering algorithm requires a continuous adaption of the finite element mesh in
the vicinity of the tunnel face. Furthermore, the finite element mesh should match the
actual motion path of the shield machine resulting from the FE-analysis in each excavation
step. For this purpose, a re-meshing algorithm is developed in order to automate the
process of mesh generation in a domain in the vicinity of the tunnel face within the
advancing process.
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3.1 Tunnel geometry

The two major representation schemes used to describe a solid model are Constructive
Solid Geometry (CSG) schemes and Boundary Representations (B-Rep) schemes [6]. In
an underground excavation the site geometry is often irregularly shaped, therefore, the B-
rep scheme is seen to be the most efficient as it can easily describe the polyhedral surfaces
needed to represent the tunnel geometry. A generalized cylinder is a representation of an
elongated object that has a main axis (directrix or spine) and a smoothly varying cross
section (generatrix) [9, 12]. A directrix and a generatrix can both be open or closed curves.
In tunneling simulation , the directrix is a bounded 3D curve representing the tunnel path,
and the generatrix is a closed curve representing the tunnel cross section. The 3D tunnel
path and the tunnel cross section are approximated using piecewise linear line segments
that are optimized to match the circular geometry of the TBM. The surface geometry of
a tunnel is created by sweeping the 2D cross section polygon along the piecewise linear
tunnel path, as this is a quite common approach in underground engineering structures.

3.2 The meshing algorithm

The main aim of this meshing algorithm is to describe the new geometry by generating
a new mesh automatically. By using the so-called piecewise linear system (PLS), not
only is the boundary of excavation path described but also the external boundary of the
re-meshing domain. Figure 3 illustrates one possible representation of the excavation
geometry by means of a piecewise liner system after one advancing step. The internal
facet of the PLS should be automatically updated to describe the new internal boundary,
where the external facets are still fixed.

a) b) c)

12 1

2

3

4 5

6

7

8
9

10

11
13

14

15

16

Figure 3: Representation of the excavation geometry by means of PLS: (a) Region of interest represented
as PLS; (b) Internal boundary; (c) External boundary

This can be realized by sweeping the new facets representing the new excavated part
and adding it to the PLS after each advancing step. The kinematic analysis of the shield
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within the steering procedure provides the exact position and geometry of the new facets
as well as the center of the cutting wheel and some reference points. To mesh the domain,
a 3D Delaunay meshing algorithm TetGen [5] is used to generate an unstructured mesh
consisting of tetrahedral elements. Delaunay-based algorithms are capable of producing
quality meshes and provide control over mesh sizing throughout the domain. The major
components of information required by the meshing algorithm are as follows:

• the input domain, which is a polyhedron, that defines the geometry of the problem,

• the position of the cutting head after each advancing step,

• a set of optional optimization criteria in order to control the quality of the mesh
and the compatibility with neighboring domains.

3.3 Region of interest

Let V be a homogeneous and isotropic deformable body which occupies a domain
Ω ⊂ Rd(d = 2or3) with a boundary Γ ⊂ Rd−1. In this proposed re-meshing technique,
the domain Ω of the complete simulation model is divided into 2 non-overlapping sub-
domains Ω1 and Ω2 with Ω = Ω1 ∪Ω2 and Ω1 ∩Ω2 = 0. Each sub-domain Ωi might
represent either an excavation domain (named as region of interest) or the surrounding
soil around this region with different layers of the geological formation. The boundary Γi

of a sub-domain Ωi can represent the interface between neighboring sub-domains or the
internal boundary of the excavation domain. Here, the region of interest represented by
Ω1 is the region of the mesh that is continuously generated during TBM advance in the
vicinity of the tunnel face. It must include at least the excavation geometry. It can be as
large as the whole simulation domain or be limited to a small region around the heading
face. In any case, the engineer will make the decision based on the available data and his
engineering experience. In Figure 3 the boundary Γ1 of the region of interest is repre-
sented by a closed polyhedron. To enable a dynamic and efficient simulation of arbitrary
TBM advancement paths, information of the target excavation path is incorporated in
the definition of the region of interest.

3.4 Hybrid mesh

The hybrid mesh approach attempts to combine the advantages of both structured
and unstructured mesh layouts. The hexahedral elements are used in regions where no
complex geometries exist, no re-meshing is required, and the numerical accuracy and
practical aspects of structured hexahedra meshes are preserved. Whereas the tetrahedral
elements are generated automatically describes the complex geometry (i.e. excavation
boundary), while deficiency inherent to unstructured tetrahedral meshes is introduced
only in the excavation region named region of interest.

To obtain a compatible hybrid mesh we should ensure a proper connectivity such that
the internal tetrahedral elements (within the region of interest) are connected properly to
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a) b)

Hexahedra elements
Tetrahedra elements
Region of interest

Figure 4: Hybrid mesh representation of excavation geometry; (a) Mesh conmponents (b) Compatible
mesh using hexahedral and tetrahedral elements.

the external hexahedral elements (at the boundary of the region of interest). Here, 27-
noded quadratic hexahedral elements and 10-noded quadratic tetrahedral elements are
employed. In other words, the resultant triangular surface mesh of the tetrahedral ele-
ments match exactly the quadrilateral surface mesh of the hexahedral elements surround-
ing the region of interest. The resulting mesh of this hybrid approach will automatically
match both the external boundary in terms of connectivity to an existing boundary mesh
and, internally, the projected motion path of the shield and the heading face as shown in
Figure 4.

3.5 Modeling of excavation

The re-meshing algorithm works in conjunction with the steering algorithm. The steer-
ing algorithm simulates the advancing process in a step-by-step procedure. After each
advancing step the re-meshing algorithm is invoked and generates a new computational
mesh describing the new excavation geometry. The re-meshing algorithm uses the results
from the steering algorithm as input for generating the new mesh. The exact geometry
and position of the TBM after each advancing step will be extracted and used to generate
the new mesh preserving the deformed configuration of the previous excavated geometry.
By doing so, the excavation and the advancement of the shield machine are numerically
simulated in a continuous manner. After obtaining the new mesh, several mesh operations
and optimization techniques are required as follows:

• Optimization algorithm to project all central nodes of the higher order tetrahedral
elements to their correct position in order to represent the exact curve and the
circular shape of the shield.

• Generation of a new surface mesh to represent the excavation boundary, tunnel face
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and contact surfaces.

• Variable transfer algorithm: after the re-meshing, the values of the stresses and the
internal variables on the new mesh need to be calculated from those obtained in
the original deformed mesh. This is necessary because the equilibrium condition
needs to be satisfied before conducting the next advancing step. An appropriate
algorithm based on Superconvergent Patch Recovery (SPR) [2] for the transfer of
these internal variables is adopted.

4 APPLICATION EXAMPLES

In this section, two examples are presented to demonstrate the flexibility of the re-
meshing algorithm and the applicability for driving the machine along curved alignment.
In the first example, the re-meshing algorithm is invoked to generate a proper mesh
describes the geometry of the of the excavated path. Within this example the mesh will
be regenerated automatically after each advancing step. Furthermore, the machine is to
be advanced in the soil following an arbitrary path. The geometry of the excavation path
is defined by means of the following parameters:

• The radius of the excavation (radius of the machine) = 5.25m.

• The number of the segments on the circular geometry of the machine = 20.

• The size of the advancing step is = 0.5m in each step.

• The tunnelling path is assumed as a quadratic path described by means of a sequence
of points.

After each advancing step the original mesh is replaced with a new mesh to represent
the complete excavation path. The goal of this example is only to show that the new
generated mesh conforms to the excavation geometry at the end of each advancing step.
The generated meshes after different advancing steps are shown in 5 . The advancing is
performed in x-direction whereas the steering is performed in each advancing step in the
two other directions y and z simultaneously. Cross sections through the excavation path
are visualized where the x-y plane and y-z plane are considered.

In this second example, the advancing process and the application of the new excavation
technique are demonstrated by considering the southwestern part of the L9 tunnel ”Mas
Blau”. It consists of a single twin-track tunnel that runs along a strongly curved path.
The tunnel is characterized by a diameter (D) of 9.4 m and a cover depth of 14.0 m.
The tunnel alignment and the simulation domain are shown in Figure 6. In this study,
the elastic model for the lining and the shield machine with basic material properties
summarized in Table 1 is adopted. For the modeling of the soil, a Drucker-Prager
plasticity model is used.
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Advancing step 4 Advancing step 10 Advancing step 16
Cross section through X-Z plane

Advancing step 4 Advancing step 10 Advancing step 16
Cross section through X-Y plane

Figure 5: Conformal tetrahedral mesh for the steering of the TBM, different cross-sections through the
excavation path in x-y plane and y-z plane.
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b)a)

Section - 1

Section - 2

Section - 3

Figure 6: L9 Tunnel ”Mas Blau” ; (a) representation of the simulation domain (b) tunnel alignment and
the position of three cross section

Table 1: Material parameters used in the finite element model

model part γ [kN/m3] ϕ [◦] c [MPa] E [MPa] ν [-]
Lining 25.0 - - 30000 0.2
Shield 76.2 - - 210000 0.27
Soil 28.5 29 0.11 2100 0.28

Figure 7 shows the obtained jack forces in three different positions during the simulation
of the advancing process. The nonuniform jack thrust distributions illustrate the power
of the steering algorithm in conjunction with the developed re-meshing algorithm and the
efficiency of the algorithm that controls the TBM position and keeps it on the intended
target alignment. The diagram in Figure 7 shows the change of the steering forces during
the steering process in the horizontal and vertical directions. Thus, the finite element
results are consistent with the actual shield advancement procedure and guidance system.

The results of the re-meshing algorithm are illustrated in Figure 8 for different advanc-
ing steps. The results obtained from this simulation demonstrate the efficiency and the
high applicability of the re-meshing algorithm to capture the exact excavation path. In
addition, it is possible to advance the TBM at different speed and the meshing algorithm
will account for the size of the mesh automatically. In standard numerical analyses of
TBM advance, where the mesh is generated a priori, this would not be possible.
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Figure 7: Distribution of the Hydraulic jack forces along the shield wall in different advancing steps
(Section-1, Section-2, Section-3 in Figure 6)

5 CONCLUSIONS

A fully automatic re-meshing technique for the modeling of the advancement and the
excavation process of shield tunneling has been proposed, with an efficient and automatic
algorithm to simulate the advancing process along arbitrary tunnel alignments. The
kinematic shield model was used to simulate the advancing process along curved tunnel
alignment.The advancement process of the TBM and the soil excavation was simulated
step wise using a new steering and a problem specific re-meshing algorithm. The steering
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Section - 1 Section - 2 Section - 3

Figure 8: FE mesh representing the excavation geometry for different advancing steps (Section-1, Section-
2, Section-3 in Figure 6)

algorithm in conjunction with the re-meshing algorithm are independent from any a priori
generated discretization and consider the ground movement around the shield. It was
shown, that the proposed computational model is able to simulate the actual motion of
the TBM along arbitrary paths with minimum effort required in the preprocessing stage.
Further developments of the model will focus on the influence of the discretization error
during the excavation process.
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Abstract. This paper considers the practical application of nonlinear models in the analysis of 

an anchor bolt additionally placed in a concrete specimen. The model also considers epoxy 

surface. The results of analyses performed using the concrete model of specialized Atena 3D 

finite element code are presented and discussed. The mesh density and convergence stability 

are compared in single anchor case study. All model results are compared with experimentally 

obtained data. There are also experiments focused on bond stress presented which are very 

important for verification of model assessment. The article is focused on problems of post-

installed steel bonded anchors real behaviour. Experiments and numerical models described in 

this paper are focused on problems of bond stress quality, on anchor joint loaded by tension 

force.  
 

 

1 INTRODUCTION 

The development of a model for the behaviour of concrete is a challenging task. Concrete 

is a quasi-brittle material and has different behaviour in compression and tension. The tensile 

strength of concrete is typically 8-15% of the compressive strength. 

In compression, the stress-strain curve for concrete is linearly elastic up to about 30 

percent of its maximum compressive strength. Above this point, the stress increases gradually 

up to its maximum compressive strength. After it reaches its maximum compressive strength 

σcu, the curve descends into a softening area, and eventually, crushing failure occurs at an 

ultimate strain εcu. In tension, the stress-strain curve for concrete is approximately linearly 

elastic up to its maximum tensile strength. Beyond this point, the concrete cracks and the 

strength decreases gradually to zero. Modelling anchor behaviour we need to take into 

account also a high stress gradient near anchor rod, epoxy material behaviour, possibility of 

failure on (concrete-epoxy, epoxy-steel) contact surfaces. 

In Atena system, the constitutive model of concrete includes 20 material parameters. These 

parameters are specified for the problem under consideration by the user. If the parameters are 

not known, automatic generation can be done using the default formulas given [1]. In this 
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case, only the cube strength of concrete fcu (nominal strength) is specified and the remaining 

parameters are calculated as functions of the cube strength. The formulas for these functions 

are taken from the CEB-FIP Model Code 90 and other research sources. Also the transfer 

coefficient, βt, can be calculated. 

 

 

2. CONTACT - ATENA 

There are two ways for failure criteria for concrete in Atena. In the rotated crack model in 

Atena system the direction of the principal stress coincides with the direction of the principal 

strain. Thus, no shear strain occurs on the crack plane and only two normal stress components 

must be defined. In the fixed crack model also included in Atena system the crack direction is 

given by the principal stress direction at the moment of the crack initiation. During further 

loading, this direction is fixed and represents the material axis of the orthotropy. 

The problem remains in definition of glue working diagram and also the contact elements 

behaviour. 

For contact behaviour description there are two set of stiffness in each direction defined. 

(Normal and tangent stiffness). The first is stiffness valid before reaching the ultimate stress 

value on contact and the second valid after exceeding this boundary value. For normal 

stiffness the boundary value of stress is defined by the value of contact tensile strength (in this 

case it is the mean value of concrete tensile strength). For tangential stiffness the boundary 

value is defined by the ultimate value of bond stress and by friction coefficient. For our model 

we used the mean value of ultimate bond stress from experiments and friction coefficient 0.3.  

For secure the solution stability the stiffness after the contact failure should not be zero. 

Contact model is in detail described in [2].  For concrete modelling the 3D nonlinear 

cementitious model was used. This concrete model is able to represent the non-linear 

behaviour of concrete inclusive tensile and compressive softening.  

The setting of these two set of stiffness values is essential for optimisation of the model. 

The whole behaviour of anchor is depending on anchor bolt deflection. As it is shown further 

in model samples, there is a great dependence of results on mesh size. This is mainly caused 

by GAP elements behaviour which is defined by initial stiffness.  Initial value of stiffness 

should be adjusted in dependence on contact elements size, as it is indicated in [3] as (1). 

K [MN/m] =E,concrete [N/mm] / elem,size [m] * 10  (1) 

 The relation (1) is defined and useful for standard Atena concrete models of structures or 

it parts whit element sizes in range of 0,1m.  Relation (1) cannot be used In case of modelling 

of small detail such as bonded anchor where is need to use smaller elements in range of 

0,01mm. Modell with such contact model is usually unstable and mismatch the results of 

experiments. 

 

2 BONDED STRESS EXPERIMENTS 

Tension resistance of bonded anchor can be increased together with larger anchoring 

length. However due to geometric conditions this solution in not always possible. This can be 

problem of modern structures using high performance materials. The experiments described 
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in this paper are focused on verification of bonded anchor tension resistance limits determined 

by bond strength provided by the glue. Bond strength is an overall parameter used for 

description of connection quality between the steel anchor and concrete. The main principle 

of the bond quality test used (as depicted in fig.1) is to restrict bond failure to the anchor only. 

Load is applied to the anchor bolt by the loading mechanism which is itself supported by the 

concrete in the immediate vicinity of the installed anchor. Experiments are closely described 

in [2] 

 

 
Figure 1: Bond strength experiment 

  Bond strength is defined as shear stresses on one of contact interfaces. It can be evaluated 

on interface between steel and glue or on the interface between glue and concrete, which is 

more suitable for description of combined concrete-bond failure mode. The experiment 

sample after failure is shown in fig. 2a). Fig. 2b) shows similar configuration of experiment 

with use of steel specimen instead of concrete. This configuration was used for determination 

of shear strength of hardened glue not influenced by concrete strength.  Steel specimens were 

manufactured with internal female thread to ensure fine mechanical connection between steel 

and glue. The thickness of glue layer was set to 1 mm as it is usual in common bonded 

anchors systems. 

 

 
Figure 2: a) M12 specimen after failure (epoxy resin). b) steel specimen 
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3 COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULSTS 

Folowing two graphs (fig. 3 and fig. 4) are presenting comparison of results between Atena 

3d model and experiments. All data are for anchor size M12 with the length of contact 60 

mm. Anchors were embedded in concrete with compressive strength 80 MPa by experimental 

epoxy resin based glue with shear strength 30 MPa.  

 

 
Figure 3: Model and experiment comparison (Bond strength) in dependence on initial stiffness [MN/m] for 

contact element size 5 mm 

 
Figure 4: Model and experiment comparison (Bond strength) in dependence on contact element size and initial 

stiffness 3E5 [MN/m] 
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The contact length is 60 mm, therefore the element size in range 5-7 mm is appropriate 

range (in the view of cpu time and also model accuracy and stability) [5].  Fig. 3 and 4 show 

the dependence of model behaviour on initial contact stiffness and also element size. The 

stiffness of anchor in linear part of LD diagram is slightly influenced by the stiffness of whole 

testing system therefore smaller deformation of anchor in model cannot be regarded as 

inaccuracy.  

Figure 5 shows results of numerical study from nine different setting of model. 

Experimental data in fig. 3 and 4 gives the mean value of bond strength 30 MPa. This value is 

also the input of cohesion parameter in contact elements. Therefore the results of model 

should give also value close to 30 MPa. The size of elements around the contact was set to 5, 

7 and 10 mm and for all these three element sizes, the initial value of both stiffness was set to 

3E4, 3E5 and 3E6 MN/m. 

 The black strip in fig 5a) represents the appropriate setting of initial stiffness and element 

size to get the result close to experiment. Sample view on model mesh with cracks 

propagation is shown in fig. 5b)  

 

 
Figure 5: a) Combined dependence of results on initial stiffness and element size; b) model mesh and cracks 

4 CONCLUSIONS 

- Paper shows problems of modelling a small detail of composite structure, such as 

bonded anchor placed in high performance concrete, using Atena software for 

nonlinear modelling of concrete structures.  

- The main problem is the mesh size dependence of model specially using GAP contact 

elements for simulation of glue-concrete behaviour. 

- The size of elements in range of several millimetres leads together with use of typical 

settings of GAP elements sizes for modelling of bigger structure parts leads to model 
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instability and inaccuracy of results.  

- Numerical study shown in fig. 5a has shown that the value initial tangent and normal 

stiffness of GAP elements should be optimised in dependence on element size and  

concrete characteristic according the approximation (2).  

 

K [MN/m] =500*E,concrete [N/mm] /((elem,size [mm])^(-5.3))  (2) 

 
Figure 6: approximation of correlation between element size and initial stiffness 
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Abstract. Phase field models are often used to describe the evolution of submanifolds, e.g., 
the Allen-Cahn equation approximates motion by mean curvature and more sophisticated 
phase field models provide regularizations of the Willmore flow and other geometric 
evolution problems. The models involve small regularization parameters and we discuss the 
dependence of a priori and a posteriori error estimates for the numerical solution of the 
regularized problems on this parameter. In particular, we address the question whether robust 
error estimation is possible past topological changes. We provide an affirmative answer for a 
priori error estimates assuming a logarithmic scaling law of the time averaged principal 
eigenvalue of the linearized Allen-Cahn or Ginzburg-Landau operator about the exact 
solution. This scaling law is confirmed by numerical experiments for generic topological 
changes. The averaged eigenvalue about the approximate solution enters a posteriori error 
estimates exponentially and therefore, critical scenarios are detected automatically by related 
adaptive finite element methods. The devised scheme extracts information about the stability 
of the evolution from the approximate solution and thereby allows for a rigorous a posteriori 
error analysis. 
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Abstract. We present a goal-oriented algorithm for error control and adaptivity, targeting the 
low-mach compressible Navier-Stokes equations. The algorithm, using the GRINS 
computational framework, is illustrated first for stationary problems and then for time-
dependent problems. Issues related to stabilization and linearization are highlighted in the 
former case, while the interplay between storage, efficiency, and numerical accuracy of the 
forward and adjoint solutions is examined in the latter case. 
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Abstract. A priori estimates are applied to the anisotropic mesh adaptation for 2D
viscous flows and 3D ones including Large Eddy Simulation.

1 METHODS

Two novelties were presented [3] in the recent Eccomas conference at Vienna. First, an
a priori analysis for diffusive flows allowing, through a goal-oriented criterion, the direct
specification of mesh metric, i.e. mesh stretching and density, [6]. It is an extension of the
mesh adaptation technique refered as the global unsteady fixed point algorithm. In [5] this
algorithm was applied to Euler flows. This algorithm involves the following ingredients:
(1) an a priori goal oriented error estimate based on an adjoint allowing to define an
optimal metric at each time level, (2) a fixed point encapsulating a time advancing loop,
a backward loop for adjoint, and the generation of a sequence of adapted meshes. Second,
this method is extended to the reduction of approximation error in LES formulations
[4]. We define the convergence of the LES discrete model to a continuous filtered PDE
with prescribed turbulent viscous term and show that an optimal mesh can be defined
according to the goal-oriented optimal metric theory. With the help of the above fixed-
point algorithm, this gives an optimal mesh for a prescribed filter. This process is then
equipped of an external loop for computing the filter as an LES one. These methods were

1
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in [3] benchmarked with the 3D turbulent flow around a cylinder (Reynolds number=
3900). In complement to this very preliminary numerical experiment, we discuss here an
industrial test case related to offshore platforms.

2 Continuous mesh theory

2.1 Mesh parametrization

We propose to work in the continuous mesh framework, defined in [1, 2]. The main
idea of this framework is to model discrete meshes by Riemannian metric fields. It allows
us to define proper differentiable optimization i.e., to use a calculus of variations on
continuous metrics which cannot apply on the class of discrete meshes. This framework
lies in the class of metric-based methods. A continuous mesh M of the computational
domain Ω is identified to a Riemannian metric field M = (M(x))

x∈Ω. For all x of Ω,
M(x) is a symmetric 3 × 3 matrix having (λi(x))i=1,3 as eigenvalues along the principal
directions R(x) = (vi(x))i=1,3. Sizes along these directions are denoted (hi(x))i=1,3 =

(λ
− 1

2

i (x))i=1,3 and the three anisotropy quotients ri are defined by: ri = h3
i (h1h2h3)

−1.
The diagonalisation of M(x) writes:

M(x) = d
2

3 (x)R(x)




r
− 2

3

1 (x)

r
− 2

3

2 (x)

r
− 2

3

3 (x)




tR(x), (1)

The vertex density d is equal to: d = (h1h2h3)
−1 = (λ1λ2λ3)

1

2 =
√

det(M). By integrating
it, we define the total number of vertices C:

C(M) =

∫

Ω

d(x) dx =

∫

Ω

√
det(M(x)) dx.

Given a continuous mesh M, we shall say, following [1, 2], that a discrete mesh H of
the same domain Ω is a unit mesh with respect to M, if each tetrahedron K ∈ H,
defined by its list of edges (ei)i=1...6, verifies:

∀i ∈ [1, 6], ℓM(ei) ∈
[

1√
2
,
√

2

]
and QM(K) ∈ [α, 1] with α > 0 ,

in which the length of an edge ℓM(ei) and the quality of an element QM(K) are defined
as follows:

ℓM(ei) =

∫ 1

0

√
tab M(a + t ab) ab dt, with ei = ab,

QM(K) =
36

3
1

3

(
∫

K

√
det(M(x)) dx)

2

3

∑6
i=1 ℓ

2
M(ei)

∈ [0, 1].

2
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We choose a tolerance α equal to 0.8. We want to emphasize that the set of all the discrete
meshes that are unit meshes with respect to a unique M contains an infinite number of
meshes.

2.2 Continuous interpolation error

Given a smooth function u, to each unit mesh H with respect to M corresponds a
local interpolation error |u−ΠHu|. In [1, 2], it is shown that all these interpolation errors
are well represented by the so-called continuous interpolation error related to M, which
is locally expressed in terms of the Hessian Hu of u as follows:

|u− πMu|(x, t) =
1

10
trace(M− 1

2 (x) |Hu(x, t)|M− 1

2 (x))

=
1

10
d(x)−

2

3

3∑

i=1

ri(x)
2

3
tvi(x) |Hu(x, t)|vi(x), (2)

where |Hu| is deduced from Hu by taking the absolute values of its eigenvalues and where
time-dependency notations “, t)” have been added for use in next sections.

3 Mesh adaptation for laminar flow

We write in short the Navier-Stokes equations as follows:

Ψ(W ) = 0 with Ψ(W ) =
∂W

∂t
+ ∇ · F(W ) + boundary conditions (3)

where notation F(W ) involves the classical inviscid and viscous fluxes. We are interested
in expressing the approximation error of a functional

j = (g,W )

depending on the unknown state W , in terms of interpolation error for functions of the
state, weighted by derivatives of the adjoint. The continuous adjoint system related to
the objective functional writes:

W ∗ ∈ V , ∀ψ ∈ V :

(
∂Ψ

∂W
(W )ψ,W ∗

)
− (g, ψ) = 0. (4)

From Functional Analysis standpoint, a well-posed continuous adjoint system can be
derived for any functional output as far as the linearized system is well posed. The
discrete adjoint systeme writes:

W ∗
h ∈ Vh , ∀φh ∈ Vh :

(
∂Ψh

∂W
(Wh)φh,W

∗
h

)
− (g, φh) = 0. (5)

3
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The error on functional can be written:

δj = (g,ΠhW −Wh) ≈ (W ∗
h ,Ψ(W ) − Ψh(ΠhW )).

The method proposed here involves some heuristics. Indeed, we assume that the interpo-
late of the adjoint is close to the discrete adjoint:

ΠhW
∗ ≈ W ∗

h . (6)

Therefore:
δj ≈ (ΠhW

∗,Ψ(W ) − Ψh(ΠhW )).

According to the a priori estimate established in [6], we have:

δj ≈
∑

mn

∫

Ω

Gm,n(W,∇W ∗
m, λ(W ∗

m)) |Sm,n(W ) − ΠhSm,n(W )| dv.

where Gm,n is a function of W , ∇W ∗, and λ(W ∗), maximal eigenvalue of W ∗’s Hessian,
and Sm,n depends only on W .

A continuous error model is derived by replacing the mesh by a metric M and the
interpolation error by 1 − πM by the continuous analog, as introduced in Section 2:

δj ≈
∑

mn

∫

Ω

Gm,n(W,∇W ∗
m, λ(W ∗

m))|(1 − πh) Sm,n(W )| dv.

Let us define the positive symmetric matrix

H(x, t) =
∑

m,n

Gm,n(W,∇W ∗
m, λ(W ∗

m)) |HSm,n(W )| (7)

where |HSm,n(W )| holds for the absolute value of the Hessian matrix of function Sm,n(W ).
Then we are interested into minimising the following error model:

E(M) =

∫ T

0

∫

Ω

trace
(
M− 1

2 (x, t)H(x, t)M− 1

2 (x, t)
)

dΩ dt

The mesh optimization problem writes:

Find Mopt = ArgminM E(M), (8)

under the constraint of bounded mesh fineness:

Cst(M) = Nst, (9)

4
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where Nst is a specified total number of nodes. Since we consider an unsteady problem,
the space-time (st) complexity used to compute the solution takes into account the time
discretization. The above constraint then imposes the total number of nodes in the time
integral, that is:

Cst(M) =

∫ T

0

τ(t)−1

(∫

Ω

dM(x, t)dx

)
dt (10)

where τ(t) is the time step used at time t of interval [0, T ].
Let us assume that at time t, we seek for the optimal continuous mesh Mgo(t) which

minimizes the instantaneous error, i.e., the spatial error for a fixed time t:

Ẽ(M(t)) =

∫

Ω

trace
(
M− 1

2 (x, t)H(x, t)M− 1

2 (x, t)
)

dx

under the constraint that the number of vertices is prescribed to

C(M(t)) =

∫

Ω

dM(t)(x, t) dx = N(t). (11)

Solving the optimality conditions provides the optimal goal-oriented (“go”) instantaneous
continuous mesh Mgo(t) = (Mgo(x, t))x∈Ω at time t defined by:

Mgo(x, t) = N(t)
2

3 Mgo,1(x, t) , (12)

where Mgo,1 is the optimum for constraint
∫

Ω
dM(x, t)dx = 1:

Mgo,1(x, t) =

(∫

Ω

(detH(x̄, t))
1

5 dx̄

)− 2

3

(detH(x, t))−
1

5 H(x, t). (13)

The corresponding optimal instantaneous error at time t writes:

Ẽ(Mgo(t)) = 3N(t)−
2

3

(∫

Ω

(detH(x, t))
1

5 dx

) 5

3

= 3N(t)−
2

3 K(t) (14)

with K(t) =
(∫

Ω
(detH(x, t))

1

5 dx
) 5

3

. As in [5] (in which details can be found, the space-

time problem is then solved by optimising N(t) under the conditions that:

∫ T

0

τ(t)−1 N(t) dt = Nst.

The unsteady optimality system (3,4,13) is solved by applying the global unsteady
fixed-point adaptation algorithm introduced in [5]. Figures from an application to the
impulsive start around an airfoil (Reynolds 1000) are depicted in Figure 1 which show
meshes an flow density at three time levels of the adaptive calculation.
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Figure 1: Impulsive start around an airfoil, density and mesh at three times

4 Mesh adaptation for turbulent flow

Convergence of LES models is a complicated issue since their filter depends of mesh
size. As a consequence, when h tends to zero, LES comes closer to DNS, a positive
behavior which, however does not give any chance to mesh convergence. Returning to a
finite size mesh practical application, it is anticipated that the solution is made of filtered
small scales and of well-resolved larger scales. In larger scales, we mean quasi-steady
large scales and fluctuating intermediate scales, and both need accurate resolution. Let
us consider the case where LES is obtained by adding as filter a Boussinesq term to
the Navier-Stokes model. The LES model can be built on a modern model like WALE,
which, in contrast to the classical Smagorinsky model, does not suffer of spuriously large
dissipation in boundary layers, [8]. This can also be built by a dynamic version of the
Smagorinsky model. This class of LES models can be described as discretizations of the
continuous filtered Navier-Stokes equations for W = () built from the combination of the
Navier-Stokes equation with a filter term and which we write in short:

∂W

∂t
+ ∇ · F(W ) = −τLES(W ). (15)

The Boussinesq term τLES(< W >) writes:

τLES(W ) = ∇ · µsgs∇




0
u

v

0


 with µsgs = ρ (Cs∆)2

∣∣∣S̃
∣∣∣ , (16)

and is weighted by a scalar field, the local filter width ∆ = ∆(x, t). Cs is the Smagorinsky
coefficient (in practice we shall use the dynamic one, which is a function of W ) and

∣∣∣S̃
∣∣∣ =

√
2S̃ij with S̃ij =

1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

)
.

6

102

lacan
Rectangle



Anca Belme, Adrien Loseille, Hubert Alcin, Frédéric Alauzet, Stephen Wornom and Alain Dervieux

As already mentioned, a LES model is a discretization of (15) and needs to be computed
on a mesh. Then the best predictivity could be classically attained when the local filter
width is taken equal to local mesh size.

Instead, we keep some more time the continuous formulation, and we consider the case
where the local filter size is prescribed. It is prescribed as a given continuous scalar field.
We call filtered continuous model the Navier-Stokes model with the extra Boussinesq term
relying on the continuous filter size:

∂W

∂t
+ ∇ · F(W ) = −∇ · µ(∆)∇




0
u

v

0


 with µ(∆) = ρ (Cs∆)2

∣∣∣S̃
∣∣∣ , (17)

the solution of which is denoted W∆.
Given an discrete approximation of (18) which produce a solution W∆(M) on a mesh

M, our concern is now the following problem:

For a prescribed ∆, find a mesh that is therefore independant of ∆, of a given number
of nodes, which minimizes:

|E∆(M)| = |W∆ −W∆(M)|.

Symbols E∆(M) define the weak error, i.e. the deviation between the discrete LES
and its continuous analog, both defined for the given (mesh independant) filter width. A
basic choice for the norm is an integral on a time interval 0, T of the L1 spatial norm of
the instantaeous deviation.

|E∆(M)| = |
∫ T

0

∫

Ω

W∆ −W∆(M) dx dt|.

Given now a number of nodes, the optimal mesh for reducing the weak error on a
scalar output can be obtained by applying our global unsteady fixed point method with
a prescribed filter size. Thanks to the global unsteady fixed point adaptation algorithm,
the mesh adaptation concentrates resolution on unsteady turbulent structures.

∆ strategies. The above optimal mesh depends on the parameter ∆. In fact we want
the best mesh Mopt for the ∆ which is the local mesh size of this optimal mesh. We can
solve this by an external fixed point.

5 An example

The proposed mesh adaptation method is applied to the computation of the flow around
an offshore platform with a very complex geometry. This flow was accurately computed
and compared with experiments in a specialized conference [7]. For the present mesh
adaptive calculation, we take into account a large enough time interval and compute the
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adjoint on this interval. The resulting mesh adaptation criterion can be concentrated on
the generation of a single mesh, since the vortices concentrate on a region of wake which
is well identified by the algorithm. See Figure 2.
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Figure 2: Mesh adaptive flow around an offshore platform: velocity module at two different times, the

first one with mesh wireframe representation.
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Abstract. The effective numerical description of challenging problems arising from
engineering applications demands often the selection of an appropriate reduced - aka
”surrogate” - model. The latter should result from a trade-off between reliability and
computational affordability (see, e.g., [1, 8]). Different approaches can be pursued to set
up the reduced model. In some cases, one can take advantage of specific features of the
problem at hand for devising an effective ad-hoc model reduction. This is the case, for
instance, of problems featuring a prevalent direction in the dynamics of interest, as in
the modeling of the hemodynamics in arterial trees or of the hydrodynamics in a channel
network. In this context, a possible approach is represented by the so-called geometrical
multiscale, where dimensionally heterogeneous models are advocated for describing inter-
actions at different scales: essentially, a lower dimensional (for instance, 1D) model is
locally replaced by a higher dimensional (for instance, 3D) model to include local relevant
transversal dynamics. This approach has been successfully applied both in hemodynamics
(see, e.g., [3, 4]) and in river dynamics (see, e.g., [6, 5]).

As an alternative to the geometrical multiscale formulation, the so-called hierarchical
modeling has been advocated in [2, 7]. The basic idea is to perform a classical finite
element discretization along the mainstream direction of the problem at hand coupled with
a modal decomposition for the transversal dynamics. The rationale behind this approach
is that the transversal dynamics can be suitably captured by a few degrees of modal
freedom. In addition, the dimenson of the modal discretization can be suitably adapted
along the main direction, according to the local features of the transversal component of
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the solution. This allows to improve hierarchically and adaptively the descripton of the
local transversal dynamics, still in the context of a ”psychologically” 1D solver.

Comparison and coupling with the geometrical multiscale approach, effective criteria for
the selection of the hierarchical modal basis relying upon a principal component analysis
(and alternative to the ones introduced in [2, 7]), applications to real 3D problems (such
as the circulatory system) are steps to be tackled in the development of an effective HiMod
approach in engineering applications.
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Abstract. Aircraft and automotive industries face increasing needs in generating large and 

complex simulation models, especially at the level of assemblies, sub-systems of complex 

products. Starting from the digital representation of sub-systems, i.e., digital mock-ups 

(DMU), as available from CAD software, the major steps of the simulation model generation 

are described. This incorporates the geometry analysis of the DMU to derive functional 

information. Subsequently, this information is used to perform model simplifications and 

domain decomposition consistently with the simulation objectives. Given the complexity of 

these models, the domain decomposition is a key issue to adaptive simulations to be coupled 

with COFAST software as well as error estimators using the LATIN method to avoid solving 

large systems and to take advantage of their decoupling capabilities. An assembly of bolted 

components illustrates the proposed approach. 

 

1 INTRODUCTION 

Companies, especially in the aircraft and automotive industries are increasingly 

interested in setting up numerical simulations throughout a product development process 

(PDP). Because of the inherent complexity of their products, simulations are not only 

targeting isolated components but there is now a strong interest at studying the behavior of 

one or more subsystems of these products [1, 2]. The corresponding requirement is the setting 

of rather complex FE models that cannot be currently handled within the time scale prescribed 
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by an industrial product development project. 

The purpose of the proposed contribution is to describe how FE simulation models can 

be derived from assembly CAD models and how adaptive simulations can take place with 

these large scale models. Consequently, the contribution focuses on the major steps of 

simulation model preparation and its interactions with an adaptive simulation process. The 

target addressed falls into the scope of the national research project, ROMMA [3], and, if all 

the connections between the steps are not completed yet, the paper will report the current 

progress in each of them. 

On the one hand, domain decomposition approaches have been proposed but 

concentrate on the FE mesh generation process [9]. On the other hand, functional information 

attached to components is a current approach of design methodologies [10, 11, 12]. In this 

case, the top-down approach followed does not address the detailed connection with a 3D 

model [13]. This observation calls for new developments that address a detailed connection 

between 3D geometric entities and low level functions. To be able to process large assembly 

simulation models with an adaptive approach, the determination of components’ interfaces is 

a key issue since it is a basic input of domain decomposition approaches. Interfaces are also 

part of the hypotheses of finite element analyses (FEA) to set contact with or without friction 

or even to merge domains representing components in accordance to simulation objectives. 

Assembly models as available either in or from CAD environments don’t incorporate the 

description of interfaces between components. Contributions in this area have addressed B-

Rep NURBS models as available in CAD software [2] or facetted representations [14]. 

However, in either configuration, the interfaces addressed reduce to contact areas, which is 

not the only configuration found in DMUs and no connection is initiated with basic functions 

of components, whereas this is a mandatory approach to produce a bottom-up approach 

connecting geometric information to component functions. 

The paper structure is as follows. Section 2 describes how the automated enrichment 

of components with functional designations and interfaces can help producing simulation 

models with dimensional reduction of components. Section 3 briefly discusses some model 

requirements for adaptive simulations. Finally, section 4 describes the major steps of a 

domain decomposition approach taking advantage of a functionally enriched assembly model 

and shows how adaptive simulations can take advantage of this approach. 

2 FROM CAD ASSEMBLIES TO SIMPLIFIED SIMULATION MODELS 

2.1 Automated enrichment of CAD models with functional information 

In a first place, studying the content and structure of an assembly model, as available in a 

Product Data Management System (PDMS), reveals that product assemblies or Digital Mock-

Ups (DMUs) reduce to a set of components located in 3D space without geometric 

relationships between them. Complementarily, simulation models for assemblies strongly 

need geometric interfaces between components to be able to set up boundary conditions 

between them and/or meshing constraints, e.g. conformal mesh requirements. 
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Figure 1: Interfaces identified between components of an assembly. 

Figure 1: Interfaces extracted from a CAD assembly model. Components are represented with a wireframe 

setting whereas geometric interfaces are depicted in red. 

Another observation derived from this analysis is the prominence of component functions 

as a means for specifying component simplifications/idealizations. This leads to a first step of 

the assembly processing scheme: 

- Identification of geometric interfaces between components (see Figure 1). It has to be 

noticed the interfaces taking place between components in a DMU don’t reduce to 

contacts and clearances. Indeed, components may interfere depending on their 

conventional representation. As an example, screws and nuts with threaded areas are 

often replaced by cylindrical ones. In this case, the screw has a cylinder diameter 

equal to the outer diameter of the thread. A similar setting applies to the nut. As a 

result, the interface between the screw and the nut becomes an interference. This 

observation must be taken into account when defining the shape transformation 

required when adapting the assembly model to simulation objectives [1];  

- Assignment of functional designations to components. Currently, functional 

information is automatically added to some categories of components using a 

qualitative reasoning process. In the assembly of Figure 2, bolted junctions illustrate 

categories of components enriched with functional information, i.e. cap screws, nuts, 

locking nuts; 

- As a result, components are structured geometrically, i.e. key geometric interfaces are 

located on the boundary of each component and in its neighborhood, as well as from a 

functional standpoint, i.e. functional designations of components fit into a taxonomy 

and set constraints over technological data describing the interfaces involved in their 

definitions [4]. Additionally, screws are associated to their load cycles, i.e. the set of 

components they tighten. This is obtained automatically from a qualitative reasoning 

process combining the 3D geometry of interfaces with reference states representing 

qualitative loading configurations. 

All this information, derived qualitatively, contributes to the location of boundary 
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condition areas in the assembly to set up FE models. It is also key information that can be 

used subsequently during adaptive FE analyses incorporating a posteriori error estimators. 

 

Figure 2: Assembly model with functionally enriched components, i.e. screws, nuts, counter nuts. 

2.2 Simplifying assembly models using components’ idealizations 

Because assembly models can lead to highly complex simulation models when it focuses 

on car and/or aircraft models, idealizations of components are key issues of simulation model 

preparation since dimensional reductions is a means to generate efficient simulation models 

while keeping the number of Fes as low as possible. Idealization or dimensional reduction of 

components or sub domains is a common requirement to meet simulation objectives, 

especially when considering early design phases of complex structures. 

To this end, component segmentation has been set up to analyze component morphology 

and decompose a component into sub-domains representing construction primitives. Indeed, a 

component is decomposed into a construction graph representing a set of non trivial 

construction trees. Depending on the primitive shapes, the dimensional reduction constraints 

help selecting the most suited tree that produce the idealized component (see Figure 3). This 

idealization algorithm is robust since the classical weakness of sub domain connection does 

not hold here. Indeed, the connections between sub domains is guided by the interactions 

between the primitives in the construction tree (see Figure 3d). These idealization algorithms 

take also into account meshing constraints, i.e. locations of stiffeners interact with the shape 

and size of FEs and choosing ‘internal’ or ‘external’ stiffener positions rather than mid-

surface can improve the FE mesh quality. 

Figure 4 illustrates the result obtained for the assembly depicted at Figures 1 and 2 after 

the idealization of the major components. In this model, bolts can be idealized as beams using 

the functional information derived in a first place. 
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This result is a first step to address large scale simulation models as needed for COFAST 

software [5] to meet simulation objectives at a rather global level. 

 

Figure 3: (a), (b), (c) construction tree derived from the construction graph as required for the dimensional 

reduction constraints. (d) idealized component derived from the construction tree. 

3 ADAPTIVE FEA APPROACHES AND SIMULATION MODEL REQUIREMENTS 

The iterative scheme that is used in COFAST, is derived from the LATIN method. The 

main principle is to separate the equations in order to avoid solving simultaneously a global 

and a nonlinear problem. The procedure searches for solutions that alternatively satisfy the 

global linear equations (kinematic admissibility and equilibrium on a substructure) and then, 

the local equations (interface equations). This leads to a decoupling of the problem. Because 

very few iterations of the LATIN method generate a solution over the whole time interval, the 

initialization overacts on the whole time interval. The solution obtained with this procedure 

ends up with a very low computation cost and can be parallelized to obtain a very good 

approximation of the solution. 

Functional information becomes also important to set up simulation models dedicated to 

local analyses. Figure 5 illustrates how functional information can be used to simplify bolts 

and derive control areas around these bolts that are used to precisely meet simulation 

objectives. Here, the sub domains are used to model the friction phenomenon around each 

bolt as develops according to the Rotscher’s cone [8]. Additionally, these sub domains 

monitor the mesh generation process so that meshing strategies can be efficiently set up when 

processing complex bolted assemblies. 

(a) 

(b) 

(c) 

(d) 
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(a)                                                                     (b) 
Figure 4: (a) CAD model of an assembly, (b) model demonstrating the results obtained after component 

segmentations, an idealization process and a mesh generation. For illustration purposes some components have 

been idealized but not meshed, others have been idealized and meshed. 

4 SIMULATION MODEL GENERATION BASED ON DOMAIN DECOMPOSITION 

4.1 Setting up a domain decomposition for adaptive simulations 

Functional information derived from the DMU is of qualitative type, e.g. cylindrical 

fittings are not quantified but classified as ‘tight fit’ or ‘loose fit’. However, this information 

acts as a template that can be used when setting up the simulation parameters required at 

interfaces between components. Because components interfaces are clearly identified and can 

be categorized from a mechanical point of view, the simulation model preparation is 

strengthened: the number and type of parameters needed at various interfaces can be 

unambiguously identified, thus avoiding inconsistencies that could arise when setting up 

complex simulation models. 

This concept of template can be extended to include shape transformations as needed to 

meet simulation objectives. Let us consider a configuration where the objective is to study the 

stress field around bolts and take into account the friction phenomenon around each bolt. 

Then, the template-based approach can incorporate all the shape transformations needed for 

this simulation objective (see Figure 5). The transformations can be listed as follows: 

- Removal of the counter nut because the targeted stress field is in the tightened 

components rather than the screws, 

- Merging screw and nut into a single sub-domain because their interface is not of 

interest with respect to the simulation objective, 

- Transformation of the screw heads and nuts to simplify their shape as well as their FE 

mesh while preserving friction areas between the bolt and the tightened components, 

- Generation of a sub-domain around the screw shaft to define the friction area of 

interest at the interface of each tightened component and to model more precisely the 

stress field around the screw shaft as required in the simulation objective.  
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(a) (b) (c)

Rotscher’s  
Cone

Sub-Domains Structured 
Hex Mesh

 
Figure 5: Template-based transformation of a bolted junction into simple mesh model with friction and contact 

areas definition around screw and nut. 

 

The template-based transformation approach is parameterized with respect to the screw 

dimensions (diameter and length), the type of screw head (flat or hex type, …), the number of 

tightened components and the variants of the bolted connection (with or without locking nut, 

screw shaft with or without adjustement). This entirely parameterized template becomes very 

efficient to locate the various bolt configurations and set the appropriate interfaces with 

respect to the simulation objectives. Indeed, bolts can be identified from a user-specified 

function, e.g. bolted junction with locking function, which is a meaningful way for the user to 

process large assembly structures. 

 

(b) (d)

(c) (e)(a)
 

Figure 6: User interface for transformation of ‘assembly Bolted Junctions’ (a), filtering bolts based on 

diameters (b) or screw type (c), template-based transformations with (d) or without (e) sub domains. 

Figure 6 illustrates the previous parameters as input parameters of the template, as seen by 

the user, to be able to target the proper category of bolts when generating his, resp. her, 

simulation model of interest. Once these transformations are performed, interface types and 

locations are entirely defined and can be structured to be transfered to a FE software to 

generate the FE mesh and set all the required boundary conditions deriving from the domain 

decomposition applied to the assembly model. Figure 7 shows the structure of the entities 
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used to generate the FE mesh and the interfaces used to specify the boundary conditions of the 

FE  model. Figure 8 illustrates this overall process on the assembly with bolted junctions of 

Figure 1. Because the components identified are related to a function, sub-domains and 

interfaces can be assigned all the parameters required for a FEA, which significantly improves 

the efficiency of FE model generation and their access to adaptive simulations. 

 
Figure 7: Domain decomposition obtained with the template-based transformation. (a) the simplified screw and 

nut, (b) inner domain of each tightened component containing the imprint of the screw head and nut as 

interfaces, (c) boundaries of inner domains, (d) interfaces around  the screw and nut with an adjusted screw, (e) 

interfaces between tightened components. 

(a) (b) (c)

 

(a)                                   (b)                                      (c) 

Figure 8: (a) CAD model of an assembly after the identification of functional designations of components 

(colors indicate the differences of functional designations), (b) model demonstrating the use of functional 

designations to simplify bolts and set up control volumes around them to adapt the model to the simulation 

objectives, (c) mesh model taking into account the interfaces obtained from the domain decomposition process. 
 

4.2 Structuring an assembly model for adaptive simulations 

Additionally, the precise location of interfaces becomes helpful for setting up input for a 

posteriori error estimators. Indeed, the estimator used here is based on the constitutive error 

relation concept. A pillar of the method is to construct admissible fields [7]. The knowledge 

of interfaces between substructures is then of primary importance. Nevertheless, in order to 

simplify the construction of admissible fields, a generic construction has been built when 

(a) 

(b) (c) 

(d) 

(e) 
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some data are missing [6]. When available, the precise location of the interfaces and more 

generally all the knowledge about the mechanical loading can be integrated in the generic 

method developed and improves the quality of the computed error estimation. The first results 

obtained in the framework of linear elasticity have to be extended to the framework of contact 

with and without friction. The final objective is to obtain a tool that enables the design of a 

robust simulation process of assemblies through an adaptive process.  

The simulation model is based on a domain decomposition of the structure. Indeed, the 

structure is divided into interfaces and substructures (see Figure 9).  

 

Figure 9: A structure split into sub-structures and interfaces. 

 Each sub-structure may correspond to a physical component. The interface may 

correspond to a contact with or without friction. One can also split a part into two sub-parts in 

order to decrease the computational cost. Another solution is to sort part by function, like for 

functional joints. High level mechanical contents can be inserted into some parts, e.g. non 

linear behavior for areas near the joint (Figure 8b).  

 

With these partitions, the problem to solve has three sets of equations defined on the 

substructures and their interfaces:  

- The kinematic constraints (Dirichlet’s conditions and connection between interfaces 

and substructures); 

- The equilibrium equations (Equilibrium, Neumann’s condition and connection 

between interfaces and substructures ); 

- The constitutive relation equations (Classical constitutive equations and contact with 

friction on interfaces). 

 

The constitutive error concept is a tool that measures the distance between the reference 

problem and its numerical simulation [7]. The computation of the measure in itself is easy to 

compute, the difficulty is to construct admissible fields. The construction of admissible fields, 

i.e. fields that check simultaneously kinematical constraints and equilibrium equations is a 

global problem. The construction of such admissible fields can lead to very high post 

simulations. Here, the method developed is to construct the admissible field on a sub-

structure.  
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This local construction has a lower cost than the global method, but introduces an 

approximation. The first results show that for a reasonable number of substructures (up to 

100), the results are very close to the one obtained by an optimization over the whole 

substructure (Figure 10).  

 

Figure 10: The quality of the estimated error vs number of substructures of interest. 

 

Moreover, the method set up does not require a perfect description of the stress 

distribution and displacements at the interfaces of sub-parts to construct admissible fields. 

These quantities are only known in terms of generalized FE quantities. This approach 

introduces more flexibility and makes it possible to evaluate the error in a very simple and 

systematic manner on sub-parts, i.e. patches set around bolts in the example case of bolted 

assembly. 

5 CONCLUSION 

The generation of adaptive simulations for complex structures has been addressed for 

assembly models. Interfaces between components are a first key information that is extracted 

from the assembly model. From these interfaces, a qualitative reasoning process is able to 

derive the functional designation of some categories of components. These results have been 

illustrated with screws and nuts in assembly configurations. The functional designations 

incorporate also the location and type of interfaces between their components and their 

neighborhoods. This is another key information to set up adaptive analyses. 

From the enriched assembly model with the functional designations of some components, 

it has been proposed to set up a template-based transformation that is able to produce a 

domain decomposition and interfaces as suited for adaptive simulations. The content of this 

template has been shown as fully parameterized to be able to address automatically a wide 

range of configurations and perform the corresponding domain decompositions. 

Currently, the construction of admissible fields can be achieved efficiently with a 

decomposed when its interfaces are fully characterized. Current results lead to good quality 
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simulations as shown with the estimated error obtained. 

Further work will address the extension of the current numerical simulation scheme to be 

able to process interfaces with contact with and without friction. Also, complementary 

developments will address the enlargement of the categories of components that can be 

identified and structured with functional designations. 
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Abstract. In this work we propose a dual weighted error estimator with respect to
modelling and discretization error based on time-averages for evolutionary partial differ-
ential equations. This goal-oriented estimator measures the error of linear functionals
averaged in time. It takes advantage of time averages and circumvents the solution of
a nonstationary adjoint problem. We use the proposed estimator to solve convection-
diffusion-reaction equations containing e.g. atmospheric chemistry models as reaction.
This kind of equations are of major interest in meteorology.

1 Introduction

We present a goal-oriented duality based a posteriori error estimator and an adaptive
strategy for the computation of functionals averaged in time for nonlinear time dependent
problems. Error estimation with respect to a quantity of interest instead of the classical
energy norm was presented in e.g. [8]. The concept of dual-weighted residual based
(DWR) error estimation for the discretization error presented in [2] has entered to various
fields, e.g. fluid dynamics [6] and optimization [1], [3]. Adaptvie modelling for free-surface
flows was presented in [9], the concept of dual-weighted error estimation was extended to
model error estimation e.g. in [5].

Functionals averaged in time are typically relevant for periodic or quasi-periodic solu-
tions in time. Applications arise, e.g., in systems of convection-diffusion-reaction equa-
tions including a large amount of chemical reactions. In order to reduce the numerical
complexity, we use simultaneously locally refined meshes and adaptive (chemical) models.

1
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Such strategies come along with the question of how to control the discretization error
and the model error.

These error parts are expressed in terms of output functionals. Hence, consideration
of adjoint problems measuring the sensitivity of the functional output are needed. In
contrast to the classical dual-weighted residual method we favor a fixed mesh and model
strategy in time. Taking advantage of the (quasi-)periodic behaviour, only a stationary
dual problem has to be solved. This implies that the computation of an evolutionary
adjoint problem is circumvented. Storing the primal solution at every timestep is also
not necessary. Only averaging in time is needed which is usually possible without serious
problmes.

This a posteriori estimation technique is applied, e.g., to a system of convection-
diffusion-reaction equations. The performance is checked by evaluating and comparing
the estimated and exact errors for the mesh and the used model.

2 Variational problems and time-averages

Problem specification. We seek solutions u ∈ W so that

(∂tu, ψ)Q +

∫
I

B(u)(ψ) dt = (f, ψ)Q ∀ψ ∈ W, (1)

for given data f ∈ L2(I,W ′) with

B(u)(ψ) := A(u)(ψ) +R(u)(ψ),

where A describes e.g. diffusion and convection and R describes a reaction model. Ω ⊂ Rd,
d ∈ {2, 3} is a Lipschitz domain and I := [0, T ] the time interval with T > 0. We consider
the abstract variational problem in the Bochner space W := H1(I, V ) with a Hilbert
space V . Hence, functions in W are weakly differentiable with image in V .
By (·, ·)Q we denote the L2-scalar product in the time-space slabQ := I×Ω, A : V×V → R
and R : V ×V → R are semilinear forms supposed to be Frechét differentiable with respect
to the first argument. The form R is the expensive part to solve, hence, a simplified model
Rm ≈ R introducing less couplings is preferred.

Therefore, we seek an approximate solution um ∈ W of the reduced system

(∂tum, ψ)Q +

∫
I

Bm(um)(ψ) dt = (f, ψ)Q ∀ψ ∈ W, (2)

with
Bm(u)(ψ) := A(u)(ψ) +Rm(u)(ψ). (3)

By uh and uhm we denote the semidiscrete solutions corresponding to (1) and (2) in
H1(I, Vh) with a conforming finite element space Vh ⊂ V , respectively.

2
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Time-averages. We are interested in an accurate determination of a linear functional
output

J : V → R

for a time averaged solution, e.g., in J(u), where u denotes the time average

u =
1

T

∫ T

0

u dt.

The main goal of this work is the construction of an error estimator η in terms of this
given functional:

η ≈ J(u− uhm).

Integration in time (by taking a test function constant in time) of equations (1) and (2)
leads to the time averaged equations for u, um ∈ H1(I,W ):

σT (u, ϕ) +B(u)(ϕ) = (f, ϕ) ∀ϕ ∈ V, (4)

σT (um, ϕ) +Bm(um)(ϕ) = (f, ϕ) ∀ϕ ∈ V, (5)

where we use the linear forms σ : W × V → R and the semilinear form B : W × V → R
defined by

σT (u, ϕ) :=
1

T
(u(T )− u(0), ϕ),

B(u)(ϕ) :=
1

T

∫ T

0

B(u)(ϕ) dt.

The time average of Bm, denoted by Bm, is defined analogous to B. The (time averaged)
residual of the reduced problem (5) is denoted by

%m(u, ϕ) := (f, ϕ)− σT (u, ϕ)−Bm(u)(ϕ). (6)

Using these prerequisites we can now formulate the estimator using stationary dual prob-
lems.

3 A posteriori estimation of discretization and model error

We will now present a dual-weighted error estimator. Using the time-averaged equa-
tions of the the primal problems (4) and (5) we formulate stationary dual problems
as

z ∈ V : B′(ξ)(ϕ, z) = J(ϕ) ∀ϕ ∈ V, (7)

zm ∈ V : B′m(ξm)(ϕ, zm) = J(ϕ) ∀ϕ ∈ V. (8)

3
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If B(·)(·) or Bm(·)(·) are nonlinear in the first argument, z = z(ξ) and zm = zm(ξm)
depend on the choices ξ, ξm ∈ V . The resulting error estimator is based on fluctuations
in time due to possible nonlinearities of B and Bm defined by

K(u)(ϕ) := B(u)(ϕ)−B(u)(ϕ),

Km(u)(ϕ) := Bm(u)(ϕ)−Bm(u)(ϕ),

These nonlinearities in t result from nonlinearities in the reaction parts R and Rm and
nonlinearities of A in u, e.g. due to nonstationary coefficients in A

Using the definitions of these dual problems we can formulate a dual weighted error
estimator with respect to a linear functional J : V → R.

Theorem 3.1. If B and Bm are continuously Gâteaux differentiable, the discretization
and model error with respect to the linear functional J can be represented by

J(u− uhm) = J(u− um) + J(um − uhm), (9)

where

J(u− um) = −σT (u− um, z)−K(u)(z) +K(um)(z)−R(um)(z) +Rm(um)(z),

J(um − uhm) = %m(uhm)(zm − ihzm)− σT (um − uhm, zm)

+Km(uhm)(zm)−Km(um)(zm),

and z = z(ξ) ∈ V , zm = zm(ξm) ∈ V are the dual solutions of (7) and (8), respectively,
to the linearizations at ξ = λu+(1−λ)um and ξm = λmum +(1−λm)uhm with appropriate
λ, λm ∈ [0, 1].

Proof. We split the proof into the derivation of the model error and the discretization
error and start with the model error J(u− um).

The mean value theorem ensures the existence of at least one λ ∈ [0, 1] so that for
ξ := λu− (1− λ)um ∈ V and em := u− um it holds

B′(ξ)(em, ϕ) =

∫ 1

0

B′(um + sem)(em, ϕ) ds

= B(u)(ϕ)−B(um)(ϕ) ∀ϕ ∈ V.

Let z = z(ξ) ∈ V be the associated dual solution of equation (7). Then it holds with (3),
the time-averaged equations (4), (5) and the definition of K(·)(·):

J(u− um) = B′(ξ)(u− um, z)

= B(u)(z)−B(um)(z)

= −σT (u− um, z)−K(u)(z) +K(um)(z)−R(um)(z) +Rm(um)(z).

4
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The discretization error J(um − uhm) can be derived in a similar way: We use again the
mean value theorem for ξm := λum − (1 − λ)uhm ∈ V and denote by zm = zm(ξm) ∈ V
the associated dual solution of equation (8). By ih : V → Vh we denote an arbitrary
interpolation operator. Using the time averaged residual (6) it holds

J(um − uhm) =B′m(ξm)(um − uhm, zm)

=Bm(um)(zm)−Bm(uhm)(zm)

=(f̄ , zm)− σT (um, zm)−Bm(uhm)(zm) +Km(uhm)(zm)−Km(um)(zm)

=%m(uhm)(zm − ihzm)− σT (um − uhm, zm) +Km(uhm)(zm)−Km(um)(zm).

4 Approximation of the estimator

Finite element approximation. We propose a discretization based on conforming
finite elements for dimensions d = 2 or d = 3. According to this the mesh Th of Ω
consists of quadrilaterals or hexahedrals. By hK we denote the diameter of a cell K ∈ Th

and by Qr(Th) the finite element space resulting from transformations FK : K̂ → K of
polynomials ϕ̂ on a reference cell K̂ of maximal degree r ≥ 0 in each coordinate direction:

Qr(Th) :=
{
ϕ ∈ H1(Ω) : ϕ|K ◦ FK ∈ Qr(K̂) ∀K ∈ Th

}
.

Hence, the finite element approximation of um is uhm ∈ Vh := Qr(Th)s. The formulation
for vector-valued problems is straight forward.

Assuming that Th results from a globally coarser mesh T2h, we can define the higher
order nodal interpolation operator to the coarser mesh T2h:

i
(2)
2h : Qr(Th)→ Q2r(T2h). (10)

By u
(2)
2h we denote the result of applying i

(2)
2h to uh.

In order to get an evaluable error estimator we have to approximate the exact formula-
tion of theorem (3.1). More precisely we have to define approximations ηh ≈ J(um−uhm)
and ηm ≈ J(u− um).
By zh and zhm we denote the solutions of the discrete problems corresponding to (7)
and (8).

Definition of ηh. The numerically evaluable approximation ηh to J(um − uhm) reads

ηh := %m(uhm)(z
(2)
2hm − zhm)− σT (u

(2)
2hm − uhm, zhm)

+Km(uhm)(zhm)−Km(u
(2)
2hm)(zhm).

5
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We cannot expect that σT (u
(2)
2hm−uhm, zhm) is a good approximation to σT (um−uhm, zhm),

because u
(2)
2hm at one point of time contains errors of uhm accumulated over time. Neglect-

ing this part is justified for long time averaging (T >> 1) and/or periodic solutions.
To refine the mesh locally this global estimator has to be localized to get cell- or

nodewise contributions to the error. Techniques to localize the different parts of the
estimator can be found in [4].

Definition of ηm. Neglecting σT (·, ·) again and by the definition of KRm(·)(·) we propose
the following approximation to J(u− um):

ηm := −R(uhm)(zh) +Rm(uhm)(zh). (11)

Solving the primal discrete problem we get uhm and zh, zhm solving the discrete dual
problems. To evaluate the pure model error −K(u)(z) +K(um)(z) a solution to a model
better than Rm is needed. For that the primal problem has to be solved again which is
too costly. However, neglecting this part leads to pretty good estimates as we show in the
numerical results.

Remark 4.1. Computing the solutions z of problem (7) and zm of problem (8), respec-
tively zh and zhm, is not costly because the adjoint problems are linear and stationary.
Nevertheless one may replace zm by z to reduce numerical costs. A comparison of the two
approaches can be found in the numerical examples of [7].

5 Numerical Examples

In this section we present two numerical examples. In the first example we only measure
the model error using 3 different models for atmospheric chemistry. In the second example
we apply the estimator of theorem 3.1 to a simple test case and refine the mesh and adapt
the model simultaneously.

We solve a system of coupled convection-diffusion-reaction equations

∂tu− ν∆u + β · ∇u−Rm(u) = f,

with the viscosity ν, the flow field β and the reaction model Rm.
In order to switch locally between these models, we introduce a non-overlapping par-

titioning of Ω into subdomains Ωi, i = 1 . . .M ,

Ω =
M⋃
i=1

Ωi.

Then in Ωi the reduced model Ri is used and the reaction part Rm is defined by

Rm(u)(ϕ) :=
M∑
i=1

Ri(u)(ϕ)|Ωi
.

6
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To check the gentleness of the error estimator we introduce the efficiency index

Ieff =
η

J(u− uhm)
,

which compares the estimated and the exact error. Hence, an efficiency index near to 1
implies that the error is estimated very well.

Model adaptivity for Atmospheric Chemistry Models. In this example we em-
ploy three different models. The used “exact” model R1 is RADM2, a widely used model in
atmospheric chemistry, see [11]. This atmospheric chemistry model contains 63 chemical
species and 201 chemical reactions, where 5 species are major gases, whose concentrations
are fixed. Therefore we have to solve a system of 58 coupled convection-diffusion-reaction
equations. The medium model R2 consists of 32 reactions (see [10]) and a traditional low
model R3 only of 3 reactions.

In this 3D example the computational domain in kilometres is Ω := (0, 20)× (0, 20)×
(0, 1) and the computed time is one day. In order to keep the implementation as simple as
possible temperature, pressure, turbulent viscosity and photolysis rates are fixed in space
and time. The flow field is also fixed in space and time by β := (−50, 100, 0)Tm/min.
The periodicity of the solution comes from a periodic source in the subdomain Ωs :=
(13, 4) × (16, 7) × (0, 0.5) of NO (nitrogen oxide) and NO2 (nitrogen dioxide). Starting
with high emissions, they are reduced to zero at the middle of the day and increased again
til the end of the day.

The goal functional is given by the mean value in time of O3 (ozone) in the subdomain
Ωd := (13, 4)× (16, 7)× (0, 0.5):

J(u) =
1

|Ωd|

∫
Ωd

uO3 ds,

with the exact value
J(u) ≈ 3.144843e-02,

computed by using RADM2 in the complete domain.
The adaption is chosen in a way, that the cells which sum up to 25% of the estimated

error are adapted to R1 and cells that sum up to the next 25% are adapted to the next
better model; more precisely if the model of used at a cell is R3 it is switched to R2

otherwise from R2 to R1. Other adaption strategies can be found in [7].
The results can be found in table 1. We start with the cheap model R3 in the complete

domain, estimate the model error and adapt the model cellwise. As can be seen by the
efficiency index Ieff , the error is estimated pretty good as Ieff is close to 1. The exact
error decreases from step to step. Hence the localization of the estimated error works
very well. The error of step 1 is reduced by a factor of nearly 100 by just using 20% of R1

and 13% of R2 at step 5. This shows that using the cheap model in the main part of the

7
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Figure 1: Left: Used mesh and area Ωs of source term (red) and area Ωd of goal functional (blue); Right:
Mean solution O3 at adaption steps 1,3 and 5 (above) and corresponding allocation of models R1 (blue),
R2 (green) and R3 (red) (below) of a cut at 250m height.

Table 1: Comparison of real and estimated model error

step %R1 %R2 %R3 J(uh − uhm) ηm Ieff

1 0 0 100 -5.68e-04 -6.04e-04 1.06
2 2 4 94 -1.65e-04 -1.79e-04 1.09
3 7 6 87 -9.29e-05 -1.02e-04 1.10
4 13 8 79 1.12e-05 8.61e-06 0.77
5 20 13 67 6.65e-06 5.86e-06 0.88

domain is absolutely sufficient. In figure 1 the allocation of the mean solution of ozone
and the allocation of the models are pictured. As expected the model is adapted around
Ωs and Ωd and along the route of transport according to the flow field β.

In figure 5 the development of the functional over time is shown. Although the esti-
mator only measures time-averages, it can be seen that the functional output over time
at step 5 is nearly the same as the output using RADM2 in the complete domain.

Combined Mesh and Model Adaptivity In this paragraph we apply the complete
estimator of theorem 3.1 to a test example and simultaneously refine the mesh locally and
adapt the model cellwise. The estimated errors ηh and ηm are equilibrated, so that the
mesh is not refined too much and/or the model is not adapted in too many cells.

We solve a system of three coupled convection-diffusion-reaction equations in the space-
time slab Ω × I := ((0, 40)× (0, 10)) × [0, 50] with the viscosity ν = 10, homogeneous
Dirichlet condition on the lower boundary, homogeneous Neumann conditions on the

8
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Figure 2: Comparison of computed ozone concentrations in ppm at adaption steps 1,3 and 5 to output
of RADM2

remaining parts of ∂Ω and the periodic right-hand-side f = (f1, f2, 0)T

f1(t, x) =

{
ψ(t) if x ∈ Ωs,1 ∪ Ωs,2,

0 else,

f2(t, x) =

{
ψ(t) if x ∈ Ωs,3,

0 else.

with

ψ(t) := 1 + sin

(
3

2
π +

2πt

10

)
,

and Ωs,1 := (25, 27.5) × (0, 2.5), Ωs,2 := (32.5, 35) × (5, 7.5), Ωs,3 := (30, 32.5) × (2.5, 5).
Thus the first component has sources in Ωs,1 and Ωs,2 and the second component a source
in Ωs,3. We apply the reaction model R1(u) = (1, 1,−2)Tu1u2 and no reaction R2(u) =
(0, 0, 0)T and start with Rm(u) = R2(u).
The error of the mean solution of u3 is measured with respect to the functional

J(u) =

∫
Ωd

u3 ds,

with the subdomain Ωd = (0, 10)× (5, 10). We apply the time dependent flow field

β := (−10− 30(1 + sin(3/2π + 4πt/10)), 10)T ,

so that the commutator terms K(·)(·) do not vanish.
The exact value J(u) was computed on a uniform mesh with approximately 4 million

9

127

lacan
Rectangle



Malte Braack and Nico Taschenberger

step #cells %R1 J(u− uhm) ηh ηm η Ieff

1 4096 0 1.35e-02 0 2.01e-02 2.01e-02 1.49
2 4096 16 7.24e-03 -1.04e-05 9.87e-03 9.86e-03 1.36
3 9856 42 3.36e-03 -4.05e-06 4.88e-03 4.87e-03 1.45
4 9856 80 -6.65e-06 -6.98e-06 7.15e-07 -6.26e-06 0.94
5 28924 84 -1.68e-06 -2.11e-06 7.18e-07 -1.39e-06 0.83
6 77836 89 -7.86e-07 -9.47e-07 3.26e-07 -6.21e-07 0.79
7 186088 92 -3.31e-07 -4.11e-07 1.56e-07 -2.55e-07 0.77
8 461740 95 -1.56e-07 -1.76e-07 7.30e-08 -1.03e-07 0.66

Table 2: Development of estimated mesh and model error and comparison of estimated to real error

Figure 3: Local refined mesh and allocation of R1 (red) and R2 (blue) at steps 3, 5 and 7.

cells using Q2 finite elements, the timestep ∆t = 0.0025 and using the model R1(u) in the
complete domain to

J(u) ≈ 1.350916847e-02.

In table 2 the results are presented. In the second column the number of cells of the
local refined meshes are given. The mesh is not refined after the first step, because the
discretization error is estimated to zero. The reason is that we start with Rm = 0 in the
complete domain uhm,3 and zh,1,zh,2 are zero after the first step and from this ηh is zero.
That the mesh is not refined after the third step is due to the equilibration of the error
parts.

The overall estimation η gives a good approximation to the exact error as the efficiency
index Ieff varies between 1.49 and 0.66, which shows pretty good behaviour of η. The
estimated mesh and model errors decrease simultaneously. This shows that not only the
estimation is reliable but rather the localization of the estimated terms lead to very good
local estimates. A detailed inspection of the estimated parts compared to the estimation
using higher order elements can be found in [7].

In figure 3 the local refined meshes and the model allocations are pictured. The mesh
is mainly refined at the sources due to the righthandside f and the model is again adapted
at the source, the area of the goal functional and the route of transport of the species. At
step 5 the fine model is already used in nearly the complete domain. This is due to the
problem setting, because the species are transported through large parts of the domain.

10
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6 Conclusions

We presented a dual weighted a posteriori error estimator based on time-averages.
The estimator circumvents the solution of a dual problem backward in time and uses a
stationary dual problem instead. We can estimate the discretization and the model error
separately and use these localized parts to equilibrate the errors. The numerical examples
show a pretty good behaviour for the error estimation as well as for the used localizations.
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Abstract. This extended abstract presents topology optimisation which uses level set 
functions representing the moving boundaries. The level set function based approach to 
topology optimisation has gained much popularity in the recent years due to its numerical 
stabilities and clear boundary representation of the solution.  One advantage of the level set 
representation is its inherent capability to handle topological changes such as merging and 
splitting boundaries.  We have developed a stable hole nucleation algorithm which makes the 
level set formulation completely suitable for topology optimisation. We demonstrate that our 
level set topology optimisation, both in 2D and 3D, have good convergence properties and 
less dependency on the initial design. We apply this to typical structural optimisation 
problems as well as coupled aero-structural problems.  As coupled multidisciplinary 
optimisation problems have multiple optima, we find that the solutions 3D level set topology 
optimisation produce can be quite different from the solutions from the previous element-
based approaches and simplified 2D solutions, suggesting potential alternatives.   
 
1 INTRODUCTION 

The level set method is a boundary or an interface tracking method. It was first introduced 
by Osher and Sethian [1] and since then it has been applied a range of areas such as image 
processing and multiphase flows. In the field of structural optimisation, the level set method 
can be used to track the curves or surfaces that define structural features as they are optimised 
over iterations. This following sections describe the level set topology optimisation method 
with a stable hole creation algorithm which will be demonstrated using numerical examples. 

2 TOPOLOGY OPTIMISATION 

Topology optimisation is the most general form of structural optimisation; of all structural 
optimisation, topology optimisation finds an optimal solution that is least dependent on the 
initial design.  A common approach to topology optimisation is to formulate the problem as a 
material distribution problem where the available design domain is discretised with finite 
elements. Optimisation then determines whether each element should or should not exist 
iteratively.  This formulation makes the optimisation problem a large-scale binary problem 

131



Christopher J. Brampton and H. Alicia Kim 

 2 

which is typically relaxed to a continuous problem with design variables bounded between 0 
and 1. This enables a gradient-based optimiser to solve the problem efficiently however the 
solutions with design variables between 0 and 1 does not usually represent a physical and 
manufacturable structure as this means a structure with material properties continuous varying 
throughout the structure. Therefore, the solutions with non-0/1 variables are penalised. This 
approach has been applied to many disciplinary problems and demonstrated to work well but 
it is well known that a complete elimination of non-0/1 solutions can be difficult to obtain and 
the numerical procedure introduces various parameters to which the solutions and 
convergence can be highly sensitive.  

 
An alternative approach to topology optimisation using the level set method was 

introduced relatively recently, [2].  Since then, there has been a flurry of activities maturing 
this approach.  One attractive advantage is that the level set method obtains clear boundaries 
defining the general layout of the optimising structure at every iteration and eliminates the 
non-0/1 solutions completely. We will first outline our level set based topology optimisation 
method with a hole creation algorithm.  The following sections will then show the example 
results to demonstrate that our method eliminates chequerboarding, a commonly known 
numerical instability in topology optimisation and reduced dependency on the initial solution 
[3]. The last example shows the application to a coupled multidisciplinary problem, aero-
structural topology optimisation of an aircraft wing. 

2.1 Level Set Topology Optimisation Method 

 The level set method defines the structural boundaries to be where the level set φ, is zero, 
(1). 

   

€ 

φ (x) > 0, x ∈ ΩS

φ (x) = 0, x ∈ ΓS
φ (x) < 0, x ∉ ΩS

' 

( 
) 

* 
) 

 (1) 

where Ω S is the domain of the structure and Γ S is the boundary of the structure. The 
compliance of the structure, C(u, φ) is minimized subject to an upper limit on structural 
volume: 

   

€ 

Minimize :C(u,φ) = Eε(u)ε(u)H φ( )dΩ
Ω

∫

Subject to : H φ( )
Ω

∫ dΩ≤Vol*

E
Ω

∫ ε(u)ε(v)H φ( )dΩ = bvH(φ)dΩ+ fvdΓS
ΓS

∫
Ω

∫

u ΓD
= 0 ∀v ∈U  (2) 

 
where Ω is a domain larger than ΩS such that ΩS ⊂ Ω, Vol* is the limit on material volume, E 
is the material property tensor, ε(u) the strain tensor under displacement field u, U is the space 
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of kinematically permissible displacement fields, v is any permissible displacement field, b 
are body forces, f are surface tractions and H(φ) is the Heaviside function. 
 
 When applied to topology optimisation, the level set method incorporates shape 
sensitivity in computing the velocity function of a typical Hamilton-Jacobi equation, (3). 
 
   

€ 

φi
k+1 = φi

k − Δt∇φi
k Vn,i (3) 

where Vn,i is a discrete value of the velocity function acting normal to the boundary at point i, 
Δt is a discrete time step and k is the current iteration. In the case of (2), the velocity function 
also includes the Lagrangian multiplier, λ for the volume constraint, thus giving (4). 
 
   Vn = λ −Eε(u)ε(u)  (4) 
 
 While this primary level set function modifies, merges and splits existing boundaries, it is 
not possible to create a new boundary, i.e. a hole. We do this by introducing a secondary 
implicit level set function, 

€ 

φ (x) [4]. It can be conceptually explained as the additional third 
dimension in the context of two-dimensional design domain, i.e. fictitious thickness. The 
secondary implicit level set function is initialized to an artificial thickness, 

€ 

h , (5). 
 

   

€ 

φ 0 (x) =
+h , x ∈ ΩS

−h , x ∉ ΩS

' 
( 
)  (5) 

 
The secondary level set function is updated along with the primary level set function using 
(6). 
 
   

€ 

φ i
k +1 =φ i

k − ΔtV n,i  (6) 
 
 A new hole is then created when 

€ 

φ (x) becomes negative within the region of ΩS and the 
new hole is added to the primary level set function by simply copying 

€ 

φ (x) onto φ(x) within 
ΩS. This inherent link between the primary and secondary level set functions forms a 
meaningful link between shape and topological optimisation, determining when and where to 
create a hole consistently. 
 
2.2  A 2D Beam with Three Load Cases 
 
We apply the level set topology optimisation with hole creation of Section 2.1 to a beam with 
three load cases shown in figure 1(a). Each load case has a magnitude of 2.0 and a weight of 
1.0. The material properties are 1.0 and 0.3 for Young’s modulus and Poisson’s ratio, 
respectively. The beam is discretized using 200 ×  50 unit sized square elements and the 
volume constraint is set to 40% of the design domain. Starting from the fully populated 
domain, the structure is optimised through figures 1(b)-(d), where figure 1(d) depicts the 
optimum solution coverged after 144 iterations with total compliance value of 4.67×102. The 
convergence history for this example is shown in figure 2. It is clear that the level set method 
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creates smooth and well-defined boundaries throughout optimisation and holes emerge as 
required. The hole creation does not cause a sudden discontinuity in the convergence history 
of figure 2, indicating that when and where the holes are created, merged and split are 
optimal. It is also noted that there are no chequerboarding and this numerical stability is 
consistent in our experience. 
 

 
Figure 1: Beam optimisation for multiple load cases: (a) initial design; (b) 25 iterations; (c) 40 iterations; (d) 

solution after 144 iterations 
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 5 

 

Figure 2: Convergence history of the beam optimisation 

2.3  A 3D Cantilever Beam 

 This demonstrative example of a 3D cantilever beam is optimised for two load cases, one 
vertical and one horizontal loads at the centre. The other end is clamped. The beam is 45units 
long and the maximum cross-section is 20 × 20 unit2. The volume constraint is set at 25% of 
the design domain. 

 

Figure 3: 3D canilever beam optimisation with two initial solutions. 
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We optimise this problem twice, the first time starting with the fully populated design 
domain and the second with the minimum structure linking the boundary and loading 
conditions by a thin beam, figure 3. We observe that the optimum solutions of the both runs 
agree favourably, with less than 0.5% difference in the compliance values between the two 
solutions. This shows that our level set method is robust and has reduced sensitivities to the 
starting solution. 

 
 2.4  Aero-Structural Wing Optimisation 
 
We perform a preliminary study of 3D optimisation of the internal wing structure with full 

fluid-structure interaction used to update the aerodynamic loading during optimisation. The 
aerodynamic loading on the wing is calculated using the Double Lattice Method. The 
topology optimisation procedure is applied to the internal structure of a simple linearly 
tapered unswept wing box model with a 51×20×7 regular fixed finite element mesh. The wing 
is clamped at the root under a cruise condition.  The top and bottom skins are fixed and 
excluded from optimisation. The volume constraint is set at 35%. 

 

 
Figure 4: Geometry of a tapered unswept wing box model 

 

  

Figure 5: Optimum solution, (a) top and bottom skin thickness distribution; (b) internal column distribution; (c) 
cross-sectional view at span position 18 

 

(a) 

(b) (c) 
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 Figure 5 shows the optimum solution of the wing box.  Looking at figure 5(a), the skin 
distribution along the top and bottom are nearly identical, with the root having the maximum 
thickness and gradually decreasing towards the tip. Perhaps what is the most distinctive about 
the optimum solution is the column like stiffeners connecting the top and the bottom skins, 
shown in figure 5(b). Near the root, the configuration looks somewhat reminiscent of two spar 
arrangements, reducing to a single “spar” arrangement towards the tip.  These spar-like 
stiffeners are somewhat continuous near the room where the bending loads are the most 
significant, then they become discrete columns as the loads are reduced towards the tip. The 
other interesting feature to note is the skin thickness.  It is significantly greatly than the 
typical skin thickness of the conventional wing configuration and figure 5(c) suggests a 
configuration similar to an I-beam. This is an intuitive characteristic as the wing is 
predominantly under bending during cruise. This preliminary optimisation result shows that 
there may be alternative configuration that may be more optimum than the conventional 
configuration and topology optimisation can be used to explore the potentially revolutionary 
optimum designs. 

4 CONCLUSIONS 

 This extended abstract described the level set topology optimisation method and the new 
hole creation algorithm.  Using this method, a few demonstrative examples are shown both in 
2D and 3D: the chequerboarding is naturally eliminated and the method is not strongly 
dependent on the initial solution. Multidisciplinary topology optimisation was applied to a 
simple aircraft wing box under coupled aero-structural considerations. We see that the 
resulting structure is far from the conventional wing configuration suggesting that there is a 
potential for significant weight savings via revolutionary design changes. This warrants 
further studies. 
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Abstract. We discuss a posteriori and a priori error estimates of filtered quantities for
solutions to some equations of fluid mechanics. For the computation of the solution we use
low order finite element methods with either linear or nonlinear stabilization. The aim is
to make the constants of the estimates independent of the Reynolds number, the Sobolev
norm of the exact solution at time t > 0, or nonlinear effects such as shock formation.
For the case of Burgers’ equation this is possible. It follows that we obtain a complete
assessment of the computability of the solution given the initial data. After a detailed
description of the results in the case of the Burgers’ equation we widen the scope and
discuss transient convection–diffusion equations with rough data and the incompressible
Navier-Stokes’ equations in two space dimensions within the same paradigm.

1 INTRODUCTION

The task of designing adaptive finite element methods for flow problems reamains a
challenging problem. A major bottleneck is the need to find a posteriori error estimators
that are robust with respect to the Reynolds/Péclet number. In engineering practice
a popular approach has been to use dual weighted residual type estimates in order to
capture the stability properties of the problem at hand by solving a dual problem. This
methodology however lacks theoretical underpinning, indicating when the approach is
likely to work or to fail, in particular in the convection dominated regime. The aim of
the present paper is to present some basic results showing that in the one dimensional
case, or for special scale separated solutions in two space dimensions, robustness can be
obtained for estimates of filtered quantities, provided a stabilized finite element method
is used. We will here give an overview of recent results. For full proofs of the given results
we refer to the recent publications [2, 3, 4].

1
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For the discretization we use finite element methods with piecewise affine continu-
ous approximation and linear, or nonlinear, artificial viscosity or higher order symmetric
stabilization. These methods are strongly related to so called implicit large eddy simu-
lation(ILES) methods where turbulent flows are approximated using the Navier-Stokes’
equations and a discretization scheme augmented with some dissipative operator to guar-
antuee numerical stability, see [1].

In this framework we prove estimates for a regularized error. The interest of these
estimates stems from the fact that the constant of the estimates are of moderate size
and only depends on the regularity of the initial data in one space dimension, and in
several dimensions the gradients of the large, energy carrying vortices. Hence there is no
dependence on the Reynolds number, nor of the global regularity of the exact solution.
The estimates also give a precise rate of convergence in the meshsize h, depending only
on the filter width. This can be seen as a tentative theoretical explanation to the good
performance of ILES methods for two dimensional flows in the absence of backscatter
effects [7]. In this context our scale separation assumption (Assumption 1) acts as a
sufficient condition to eliminate backscatter.

We will consider the following differential filter that sometimes is applied as a regular-
ization in modified Navier-Stokes’ systems for large eddy simulation,

−δ2∆ũ+ ũ = u(·, T ) on Ω (1)

with ũ = 0 on ∂Ω and δ denoting the filter width. Let ẽ := ũ − ũh, where ũh denotes
the regularized approximate solution. The a priori error estimates that we prove typically
take the form

|‖ẽ(T )‖|δ := ‖δ∇ẽ(T )‖Ω + ‖ẽ(T )‖Ω ≤ C(u0, T ) exp
(
T
τF

)
β

1
2

(
h

δ2

) 1
2

(2)

where ũ and ũh are the filtered exact and computational solution respectively. The con-
stant C(u0, T ) in (2) depends only on the intial data, the mesh geometry and the final
time and the coefficient β is an upper bound on the transport velocity. In some estimates
length scales related to the O(1) size of the domain have been omitted. The characteristic
time τF depends on the velocity field in a nontrivial way and a key point in the below
discussion is when τF can be expected to be O(1) so that the exponential growth is mod-
erate for moderate T . Note that the right hand side of (2) is independent of both the
viscosity parameter and the Sobolev regularity of the exact solution. For previous work
on error estimates for filtered solutions see [6], their estimates however are not robust in
the Reynolds number.

The derivation of the estimate (2) uses:

– sharp energy stability estimates for the finite element method,

– L∞-estimates for the finite element solution in the nonlinear cases,

2
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– a priori stability estimates on a linearized dual problem with regularized data,

– Galerkin orthogonality and approximability.

To obtain precise control of all constants we must control the asymptotic growth of the
residual and work with the exact dual adjoint, involving both the approximate and the
exact solution in the nonlinear case. We will frequently use the notation a . b defined
by a ≤ Cb as well as a ∼ b meaning that a . b and b . a with C a constant independent
of h, any essential physical parameters and of the exact solution. Some dependence on
physical parameters may be included in the constants if it may be assumed not to change
the magnitude of the constant.

2 THE BURGERS’ EQUATION

Consider the simple model case of the Burgers’ equation with periodic boundary con-
ditions, on the space-time domain Q := Ω× I, with Ω := (0, 1) and I := (0, T ) for some
T > 0,

∂tu+ 1
2
∂xu

2 − ν∂xxu = 0 in Q
u(0, t) = u(1, t) for t ∈ I
u(x, 0) = u0(x) for x ∈ Ω.

(3)

First we discuss the L∞(I;L2(Ω)) stability of the Burgers’ equation and conclude that the
resulting estimate includes an exponential factor of the type exp(‖∂xu‖L∞T ) reflecting a
possible instability in the L2-norm. Then we introduce the finite element discretization
and briefly discuss the stability properties of the method. Finally we consider filtering of
the final solution and show that the perturbation equation corresponding to the filtered
solution has improved stability properties and the error may therefore be upper bounded
independently of both the regularity of the exact solution and the physical viscosity. As
we shall see, although ‖(u−uh)(·, T )‖Ω, where uh denotes the finite element approximation
of (3), does not appear to allow for error estimates with moderate constants, the L2-error
of the filtered error, ‖(ũ− ũh)(·, T )‖Ω does. Indeed, for the Burgers’ equation in the high
Reynolds number regime we prove the error estimate

|‖ũ− ũh‖|δ ≤ C̃(u0, T ) exp(D0T )

(
h

δ2

) 1
2

(4)

where ũ and ũh are the filtered exact and computational solution respectively and D0 ∼
supx∈Ω |∂xu0|. We will also use the notation U0 ∼ supx∈Ω |u0(x)|. For simplicity we assume
u0 ∈ C∞(Ω), this does not exclude the formation of sharp layers with gradients of order

ν−1 at later times. For fixed filter width (4) results in a convergence rate of order h
1
2 . If

on the other hand the filter width is related to the mesh size δ ∼ hα with α < 1
2

we get

the convergence rate h
1−2α

2 . The parameter δ determines how strong the localization of
the norm is. The choice δ = 1 leads to a norm related to the H−1-norm and the choice

3
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δ = h leads to a norm similar to the L2-norm. Clearly the estimates proposed here only
makes sense for 0 ≤ α < 1

2
. This indicates that no error bounds in a norm similar to the

L2 case can be obtained in this framework.

3 The Burgers’ equation with viscous dissipation

The wellposedness of the equation (3) for ν ≥ 0 is well known it is also known that for
ν > 0 by parabolic regularization the solution is C∞(Ω). This high regularity however
does not necessarily help us when approximating the solution, since we are interested in
computations using a mesh-size that is much larger than the viscosity and still want the
bounds to be Robust with respect to the Reynolds number.

3.1 L2-stability of Burgers’ equation

Consider a general perturbation η(x) of the initial data of (3).

∂tû+ 1
2
∂xû

2 − ν∂xxû = 0 in Q
û(0, t) = û(1, t) for t ∈ I
û(x, 0) = u0(x) + η(x) for x ∈ Ω.

(5)

Taking the difference of (5) and (3) leads to the perturbation equation for ê := û−u with
a(u, û) := 1

2
(u+ û),

∂tê+ ∂x(a(u, û)ê)− ν∂xxê = 0 in Q,
ê(0, t) = ê(1, t) for t ∈ I
ê(x, 0) = η(x) for x ∈ Ω.

(6)

Multiplying equation (6) by ê and integrating over Q leads to the energy equality

1

2
‖ê(T )‖2

Ω + ‖ν
1
2∂xê‖2

Q =
1

2
‖η‖2

Ω −
∫
Q

(∂xa(u, û))ê2.

We know that due to shock formation −∂xa(u, û) ∼ ν−1. Any attempt to obtain control
of ‖ê(T )‖2

Ω in terms of the initial data will rely on Gronwall’s lemma, leading to

‖ê(T )‖2
Ω ≤ Ca‖η‖2

Ω

with the exponential factor

Ca := exp(‖∂xa(u, û)‖L∞(Q)T ) ∼ exp(T/ν).

This estimate tells us that we have stability (and hence computability) only up to the
formation of shocks. Using this type of argument in the analysis of the finite element
method leads to error estimates useful only for solutions with moderate gradients.
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3.2 Maximum principles for Burgers’ equation

It is well known that the equation (3) satisfies a maximum principle on the form:

sup
(x,t)∈Q

|u(x, t)| ≤ sup
x∈Ω
|u0(x)|. (7)

For our purposes we also need some precise information on the derivative. Since the
solution of (3) is smooth we may derive the equation in space to obtain the following
equation for the space derivative w := ∂xu:

∂tw + u∂xw − ν∂xxw = −w2 in Q
w(0, t) = w(1, t) for t ∈ I
w(x, 0) = ∂xu0(x) for x ∈ Ω.

(8)

Assuming that w takes its maximum in some point x ∈ I and noting that ∂xw(x) = 0
and ∂xxw(x) < 0 it follows that ∂tw < 0 at the maximum and we deduce the bound:

max
(x,t)∈Q

∂xu ≤ max
x∈Ω

∂xu0. (9)

It follows by the smoothness of the initial data that the space derivative is bounded above
for all times.

4 Artificial viscosity finite element method

Discretize the interval Ω with N elements and let the local mesh-size be defined by
h := 1/N . We denote the computational nodes by xi := i h, i = 0, . . . , N , defining the
elements Ωj := [xj, xj+1], j = 0, . . . , N − 1. The finite element space is given by

Vh :=
{
vh ∈ H1(Ω) : vh|Ωj ∈ P1(Ωj);uh(0) = uh(1)

}
.

We define the standard L2 inner product on X ⊂ Ω by (vh, wh)X :=
∫
X
vhwh dx. The

discrete form corresponding to mass-lumping reads (vh, wh)h :=
∑N−1

i=0 vh(xi)wh(xi)h. The

associated norms are defined by ‖v‖X := (v, v)
1
2
X , for all v ∈ L2(X), if X coincides with Ω

the subscript may be dropped, and ‖vh‖h := (vh, vh)
1
2
h for all vh ∈ Vh. Note that, by norm

equivalence on discrete spaces, for all vh ∈ Vh there holds ‖vh‖h ∼ ‖vh‖. Using the above
notation the artificial viscosity finite element space semi-discretization of (3) writes, given
u0 ∈ C∞(Ω) find uh(t) ∈ Vh such that (uh(0), vh)Ω = (u0, vh)Ω and

(∂tuh, vh)h +

(
∂x
u2
h

2
, vh

)
Ω

+ (ν̂∂xuh, ∂xvh)Ω = 0, for all vh ∈ Vh and t > 0, (10)

where we propose two different forms of ν̂:

5

142

lacan
Rectangle



Erik Burman

1. linear artificial viscosity:
ν̂ := max(U0h/2, ν); (11)

2. nonlinear artificial viscosity:
Let 0 ≤ ε and

ν0(uh)|Ωi :=
1

2
‖uh‖L∞(Ωi) max

x∈{xi,xi+1}

|[[∂xuh]]|x|
2{|∂xuh|}|x + ε

, (12)

where [[∂xuh]]|xi denotes the jump of ∂xuh over the node xi and {|∂xuh|}|xi denotes
the average of |∂xuh| over xi. If ε = 0 and {|∂xuh|}|xi = 0 we replace the quotient
|[[∂xuh]]|xi|/{|∂xuh|}|xi by zero.

Further let

ξ(uh)|Ωi :=


1 if ∂xuh|Ωi > 0, ∂xuh|Ωi > ∂xuh|Ωi+1

> 0
and ∂xuh|Ωi ≥ ∂xuh|Ωi−1

> 0
0 otherwise

ν1(uh)|Ωi := ξ(uh)|Ωi max
(
ν0|Ωi−1

∂xuh|Ωi−1

∂xuh|Ii
, ν0|Ωi+1

∂xuh|Ωi+1

∂xuh|Ii

)
. (13)

Finally define:
ν̂(uh)|Ωi := max(ν, h(ν0|Ωi + ν1|Ωi)). (14)

The rationale for the nonlinear viscosity is to add first order viscosity at local extrema
of the solution uh so that (7) holds also for the discrete solution and enough viscosity
at positive extrema of ∂xuh, making (9) carry over to the discrete setting. Using the
properties of the numerical viscosity we may prove the following discrete stability estimate.

The solution uh of the formulation (10) with either the linear artificial viscosity given
by (11) or the nonlinear one of (14) with ε = 0, satisfies the upper bounds

‖uh(T )‖+ ‖ν̂
1
2∂xuh‖Q . ‖u0‖, ‖∂tuh‖Q . (U0T

1
2h−

1
2 + ν

1
2 )‖∂xu0‖. (15)

4.1 Error estimates for the Burgers’ equation

To derive error estimates in the norm |‖·‖|δ we introduce the linearized adjoint problem

−∂tϕ+ a(u, uh)∂xϕ− ν∂xxϕ = 0 in Q,
ϕ(0, t) = ϕ(1, t) for t ∈ I,
ϕ(x, T ) = ψ(x) for x ∈ Ω.

(16)

The following stability estimate for (16) follows easily by standard energy methods since
both the discrete and the continuous solutions satisfy maximum principles of the type (7)
and (9),

sup
t∈(0,T )

‖∂xϕ(·, t)‖2 + ν‖∂xxϕ‖2
Q . exp(D0T )‖∂xψ‖2. (17)
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The rationale for the dual adjoint is the following derivation of a perturbation equation
for the functional of the error |(e(T ), ψ)Ω|, where e(T ) := u(T )− uh(T ).

|(e(T ), ψ)Ω| = |(e(T ), ψ)Ω +

∫ T

0

(e,−∂tϕ+ a(u, uh)∂xϕ− ν∂xxϕ)Ω dt|

= |(e(0), ϕ(0))Ω −
∫ T

0

(∂tuh + uh∂xuh, ϕ)Ω dt−
∫ T

0

(ν∂xuh, ∂xϕ)Ω dt|. (18)

This relation connects the error to the computational residual weighted with the solution
to the adjoint problem and can lead both to a posteriori error estimates and to a priori
error estimates, provided we have sufficient information on the stability properties of the
numerical discretization methods and of the dual problem. Observing that

|‖ẽ(T )‖|2δ = (δ∂xẽ(T ), ∂xẽ(T ))Ω + (ẽ(T ), ẽ(T ))Ω = (e(T ), ẽ(T ))Ω (19)

we deduce that the choice ψ = ẽ(T ) in (16) leads to an error representation for the filtered
error. Using this error representation, Galerkin orthogonality and the stability of the dual
solution (17) we may prove the following a posteriori error estimate. The associated a
priori error estimate is a direct consequence of the a posteriori error bound, the maximum
principles satisfied by the discrete solution and the bounds of (15).

Theorem 1 Let u be the solution of (3), uh be the solution of (10). Then the following
a posteriori and a priori bounds hold:

|‖ẽ(T )‖|δ . exp(D0T )

(
h

δ2

) 1
2 (
h

1
2‖(u− uh)(0)‖+ h

1
2

∫ T

0

inf
vh∈Vh

‖vh + uh∂xuh‖ dt

+ h
3
2

∫ T

0

‖∂x∂tuh‖ dt+

∫ T

0

‖max(0, ν̂ − ν)
1
2∂xuh‖ dt+ h

(∫ T

0

ν‖[[∂xuh]]‖2
N dt

) 1
2
)
, (20)

where ‖[[∂xuh]]‖N :=
(∑N−1

i=0 (∂xuh(xi)|Ωi+1
− ∂xuh(xi)|Ωi)2

) 1
2
, with ΩN identified ith Ω0 by

periodicity.

|‖ẽ‖|δ . exp(D0T )

(
h

δ2

) 1
2 ((

h
1
2 + U

1
2

0

√
T
)
‖u0‖ + (TU0 + h

1
2ν

1
2 )‖∂xu0‖

)
. (21)

5 EXTENSION TO FLOW IN HIGHER DIMENSION

In higher dimension the difficulty compared to the Burgers equation, is that the gra-
dient tensor of the velocity can not be expected to have any sign, even when the flow
is incompressible. If strong vortices or separation is present in the flow the diverging
streamlines may cause exponential growth of perturbations with factor proportional to
the maximum velocity gradient in the energy estimates. This reflects that two particles
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that initally are close may be separated very quickly by the flow, hence giving rise to sensi-
tivity to perturbations. Below we will discuss how the idea of estimating filtered quantities
can be used for the derivation of robust error estimates, first for passive transport with
rough data and then for the two-dimensional Navier-Stokes equation. A key assumption
in the below argument is a large eddy hypothesis, stating that the velocity field allows
for an a priori decomposition where the main energy is carried by large eddies with mod-
erate gradients and that remaining component can have arbitrary oscillation, but energy
comparable to the diffusive/viscous dissipation, as made precise in this assumption.

Assumption 1 (Large eddy scale separation)
Let β ∈ [W 1,∞(Ω)]2. Given µ ∈ R+, assume that there exists a decomposition of the
velocity field,

β = β + β′,

where, for all t, ‖β‖W 1,∞(Ω) ∼ 1 and ‖β′‖2
L∞(Ω) ∼ µ.

Under this assumption we may define a global timescale for the flow relating to both the
coarse scale spatial variation and the fine scale amplitude,

τF := min(‖β̄‖−1
W 1,∞(Ω), µ/‖β

′‖2
L∞(Ω)) ∼ 1. (22)

Of course for any given β and viscosity µ one can find the optimal decomposition β +
β′ that maximizes τF , which gives a measure of the computability of that particular
flow problem. Essentially we assume that the velocity vectorfield can be decomposed
in a coarse scale, responsible for transport, that is slowly varying in space and a fine
scale, responsible for mixing, that has small amplitude but may have very strong spatial
variation. Expressed in Péclet numbers this means that the coarse scale Péclet number
may be arbitrarily high, whereas the fine scale Péclet number must be of order one.

The Assumption 1 may now be used to derive a posteriori and a priori error estimate
that are robust in the multidimensional case. We will briefly review the cases of passive
transport and two dimensional Navier-Stokes’ below.

5.1 Transient convection–diffusion equations

The problem that we will consider takes the following form. Let Ω be an open
polygonal/polyhedral subset of Rd, with boundary ∂Ω, u0, f ∈ L2(Ω) and let β ∈
[C0(I;W 1,∞(Ω))]d, µ ∈ R+, then formally we may write, for t > 0 find u ∈ H1

0 (Ω)
such that u(x, 0) = u0(x) in Ω and

∂tu+ β · ∇u− µ∆u = f, in Ω. (23)

For the boundary conditions let u|∂Ω = 0 and assume that the velocity field satisfies non-
penetration boundary conditions β · n∂Ω|∂Ω = 0. We also consider the associated dual
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problem, for t > 0 find ϕ ∈ H1
0 (Ω) such that

−∂tϕ− β · ∇ϕ− µ∆ϕ = 0 in Ω
ϕ = 0 on ∂Ω

ϕ(·, T ) = ψ(·) in Ω.
(24)

Using energy methods and the Assumption 1 we may prove the following stability estimate
for the dual solution

sup
t∈I
|‖ϕ(·, t)‖|δ + T−1‖δ1/2∇ϕ‖Q + T−1‖δ1/2∂tϕ‖Q + ‖(δµ)1/2∆ϕ‖Q . CτF ,T |‖ψ‖|δ, (25)

with CτF ,T ∼ e

(
T
τF

)
, where τF is given by (22).

5.1.1 Finite element discretization

Let {Th}h be a family of nonoverlapping conforming, quasi uniform triangulations,
Th := {K}h where the triangles K have diameter hK and that is indexed by h := maxhK .
We let the set of interior faces {F}h of a triangulation Th be denoted by F .

We will consider a standard finite element space of piecewise affine, continuous functions
Vh := {vh ∈ H1(Ω) : vh|K ∈ P1(K), ∀K ∈ Th}, where P1(K) denotes the set of affine
polynomials on K also let V 0

h := Vh ∩H1
0 (Ω).

For t > 0 find uh ∈ V 0
h such that uh(x, 0) = πhu0(x) and

(∂tuh, vh) + a(uh, vh) + sh(uh, vh) = (f, vh), ∀vh ∈ V 0
h , (26)

where a(·, ·) is defined by:

a(u, v) := (β · ∇u, v) + (µ∇u,∇v)

and
sh(uh, vh) := γ

∑
F∈F

〈
h2
F‖β · nF‖L∞(F )[[∇uh · nF ]], [[∇vh · nF ]]

〉
F
. (27)

The finite element method (26) satisfies the estimate

sup
t∈I
‖uh(t)‖Ω + ‖µ∇uh‖Q +

(∫ T

0

sh(uh, uh) dt

) 1
2

.
∫ T

0

‖f‖Ω dt+ ‖u0‖Ω. (28)

Theorem 2 (A posteriori error estimate) Let ẽ := ũ− ũh. Then there holds

|‖ẽ‖|δ . CτF ,T

(
h

δ2

)1/2 (∫
I

inf
vh∈Vh

‖h1/2(β · ∇uh − vh)‖Ω dt

+

∫
I

∑
F∈F

(
‖µ[[∇uh]]‖2

F

)1/2
dt

+

∫
I

sh(uh, uh)
1
2 dt+ h1/2

∫
I

‖f − πhf‖Ω dt+ h1/2‖u0 − πhu0‖Ω

)
, (29)
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where we recall that CτF ,T ∼ e

(
T
τF

)
.

Theorem 3 (A priori error estimate) Assume that
‖β‖L∞(Q))h

µ
> 1, with ‖β‖L∞(Q)) ∼ 1,

then there holds

|‖ẽ‖|δ . CτF ,T

(
h

δ2

)1/2

(h1/2 + T
1
2

(∫ T

0

‖f‖Ω dt+ ‖u0‖Ω

)
. (30)

The right hand side of (30) is independent of µ and Sobolev norms of the solution. It only
depends on the L2-norm of data, showing that even for cases with rough source terms
and initial data, such as those encountered in environmental flows, this estimate holds.

Note that the stability of the dual problem holds regardless of the numerical method
used. The stabilization in the numerical method allows us to control the first residual
in the a posteriori error estimate, by using the discrete stability estimate (28). If no
stabilization is present there is no control of the streamline derivative, making it impossible
to obtain uniformity in µ. If the domain is convex so that elliptic regularity can be used
one may prove an optimal estimate valid also in the low Reynolds number regime

5.2 The Navier-Stokes’ equations in two space dimensions

We will consider the Navier-Stokes’ equations written on vorticity-velocity form. Let Ω
be the unit square and assume that the boundary conditions are periodic in both cartesian
directions. The equations then writes, ω(x, 0) = ω0(x) and

∂tω +∇ · (uω)− ν∆ω = 0, in Q,

−∆Ψ = ω in Q, (31)

u = rot Ψ in Q.

Let L∗ := {q ∈ L2(Ω);
∫

Ω
q = 0}. The associated weak formulation takes the form for

t > 0, find (ω,Ψ) ∈ H1(Ω)×H1(Ω)∩L∗(Ω), with ω(x, 0) = ω0(x) and such that for t > 0
and ∀(v,Φ) ∈ H1(Ω)×H1(Ω) ∩ L∗(Ω),

(∂tω, v) + (∇ · (uω), v) + (ν∇ω,∇v) = 0,

(∇Ψ,∇Φ) = (ω,Φ), (32)

u = rot Ψ in Q.

6 Finite element discretization

Define Vh to be the standard space of piecewise affine, continuous periodic functions.
Let V∗ := Vh ∩ L∗. We consider continuous finite elements with equal-order to discretize
in space the vorticity ω and the stream function Ψ. The discrete velocity is given by
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uh|K := rot Ψ := {∂yΨ,−∂xΨ}. Note that using this definition ∇ · uh = 0 in Ω, i.e. the
discrete velocity is globally divergence free. For t > 0 find ωh,Ψh ∈ Vh × V∗ such that

(∂tωh, vh)M + (∇ · (uhωh), vh) + (ν∇ωh,∇vh) + s(uh;ωh, vh) = 0

(∇Ψh,∇Φh)− (ωh,Φh) = 0 (33)

uh − rot Ψh = 0, ∀vh,Φh ∈ Vh × V∗.

Here s(·; ·, ·) denotes a stabilization operator that is linear in its last argument and
(∂tωh, vh)M denotes the bilinear form defining the mass matrix, this operator either co-
incides with (·, ·)Ω or is defined as the scalar product (·, ·)Ω approximated using nodal
quadrature, i.e. so called mass lumping. We will assume the stabilization term satisfies
the bounds

‖h[[uh · ∇ωh]]‖F . s(uh, ωh;ωh)
1
2 . h

1
2 (U0 + ‖uh‖L∞(Ω))‖∇ωh‖,

s(uh, ωh; vh) . h
1
2 (U

1
2

0 + ‖uh‖
1
2

L∞(Ω))s(uh, ωh;ωh)
1
2‖∇vh‖.

This typically holds for (27) or for standard linear artificial viscosity with coefficient (11).
The dual adjoint problem associated to the perturbation equation of (32) and (33) takes
the form

−∂tϕ1 − u · ∇ϕ1 − ϕ2 − ν∆ϕ1 = 0 in Q,

−∆ϕ2 −∇ωh · rot ϕ1 = 0 in Q, (34)

ϕ1(x, T ) = ψ(x) in Ω.

A key result for the present analysis is the following stability estimate for the dual
adjoint solution.

Proposition 1 Assume that the exact velocity u satisfy the Assumption 1 with µ = ν.
Then there holds for the solution (ϕ1, ϕ2) of (34),

sup
t∈I
‖∇ϕ1(·, t)‖+ ‖ν

1
2D2ϕ1‖Q . CτF ,T‖∇ψ‖ (35)∫

I

‖∇ϕ2(·, t)‖ dt ≤ CτF ,T

∫
I

‖ωh‖L∞(Ω) dt ‖∇ψ‖. (36)

Using the dual problem with ψ = ω̃− ω̃h we may prove the following a posteriori estimate,

Theorem 4 (A posteriori error estimates)

|‖ω̃ − ω̃h‖|δ . e
T
τF

(
h

δ2

) 1
2 (
‖(ω − ωh)(·, 0)‖+

∫ T

0

‖h[[uh · ∇ωh]]‖F dt

+

∫ T

0

‖ν
1
2 [[nF · ∇ωh]]‖F dt+ h

1
2 sup
t∈I
‖ωh(·, t)‖

∫ T

0

‖ωh(·, t)‖L∞(Ω) dt

+

(
h

3
2

∫ T

0

‖∂t∇ωh‖ dt

)∗
+

∫
I

s(uh;ωh, ωh)
1
2 dt

)
(37)
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where the term marked with a ∗ is omitted if the consistent mass matrix is used. For the
velocities we have the estimate

‖(u− uh)(·, T )‖ ≤
(
‖h

1
2 [[nF · ∇Ψh(·, T )]]‖F + |‖(ω̃ − ω̃h)(·, T )‖|1

)
(38)

where |‖(ω̃ − ω̃h)(·, T )‖|1 may be a posteriori bounded by taking δ = 1 in (37).

If we assume that sh(uh, ωh, vh) is strong enough so that ‖ωh‖L∞(Q) . ‖ωh(·, 0)‖L∞(Ω) then
Theorem 4 together with the stability properties of the finite element method leads to
the following a priori error estimates, that are independent of the Reynolds number and
Sobolev norms of the exact solution,

|‖(ω̃ − ω̃h)(T )‖|δ . e
T
τF

(
h

δ2

) 1
2

and ‖(u− uh)(·, T )‖ . e
T
τF h

1
2 .

This can be achieved for instance using a linear artificial viscosity, similar to (11), or
nonlinear diffusion of shock-capturing type (see [5] for precise definitions) on meshes for
which the Laplacian produces an M-matrix, as detailed in [4].
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Abstract. In an obstacle problems with an affine obstacle, homogeneous Dirichlet boundary
conditions, and standard regularity assumptions, the Crouzeix-Raviart non-conforming finite
element method (FEM) allows for linear convergence as the maximal mesh-size approaches
zero. The residual-based a posteriori error analysis leads to reliable and efficient control over
the error with explicit constants. It involves the design of a new discrete Lagrange multiplier and
allows for the computation of a guaranteed upper error bound. A novel energy control for non-
conforming FEMs lead to a computable guaranteed lower bound for the minimal energy. The
paper presents numerical experiments to investigate the theoretical results empirically and so to
explore the possibilities of the non-conforming finite element method with respect to adaptive
mesh refinement in practice.

1 INTRODUCTION

Given a bounded polygonal Lipschitz domain Ω ⊂ R2 with boundary ∂Ω, the energy product
a : H1(Ω) × H1(Ω)→ R on the Hilbert space H1(Ω) reads

a(u, v) =

∫
Ω

∇u · ∇vdx for all u, v ∈ H1(Ω)

and induces the energy semi-norm |||·||| := a(·, ·)1/2, which is a norm on the vector space V :=
H1

0(Ω) := {v ∈ H1(Ω)| v = 0 on ∂Ω}. Given some source term f ∈ L2(Ω) set F ∈ L2(Ω)∗ by

F(v) :=
∫

Ω

f vdx for all v ∈ L2(Ω).

The obstacle χ ∈ H2(Ω) ∩W1,∞(Ω) satisfies χ ≤ 0 along ∂Ω in order to ensure that the closed
and convex subset

K := {v ∈ H1
0(Ω) | χ ≤ v a.e.} of H1

0(Ω)
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is non-empty. The well established weak formulation of the obstacle problem seeks u ∈ K such
that

F(v − u) ≤ a(u, v − u) for all v ∈ K. (1.1)

It is well known [KS80], that a unique weak solution u of (1.1) exists. The a priori conver-
gence analysis of [Fal74] provides linear convergence of the error in the H1 semi-norm |||•|||
for u ∈ H2(Ω) approximated by a P1 conforming finite element method. The more recent
analysis of [Wan03] for a non-conforming P1 FEM requires u ∈ W s,p(Ω) for some 2 < p and
2 < s < 2 + 1/p.
The non-conforming finite element method seeks some approximation in the set KNC where the
obstacle condition is tested at the midpoints of the edges in a regular triangulation of the poly-
gonal domain into triangles. Hence the term non-conforming refers to the fact that the discrete
solution is not a Sobolev function as well as to the additional fact that the discrete solution uCR

does not satisfy the obstacle condition almost everywhere in the domain.
This paper announces some theoretical results which guarantee linear convergence for the error
in the discrete energy norm for any weak solution u in H2(Ω) which is in parallel analogy to the
classical result [Fal74] for conforming FEMs. The adaptive mesh-refinement is based on some
a posteriori analysis and the first reliable and efficient error estimators are introduced and tested
in this paper; cf. [BC04], [Vee01], [CM10], and [Bra05] for conforming first-order methods.
Three computational benchmarks are revisited to empirically verify the theoretical predictions.
The aim is to provide numerical evidence for the guaranteed error control and for the superiority
of adaptive over uniform mesh-refinements.
The rather technical proofs for the underlying theoretical statements utilise the medius analysis
in that they combine arguments from the a priori and a posteriori error analysis and will appear
elsewhere.
The remaining parts of this paper are organised as follows. Section 2 introduces the discreti-
sation of the obstacle problem. Section 3 presents a new a priori error analysis under minimal
regularity assumptions and an a posteriori error result. The paper concerns three computational
benchmark examples in Section 4. The first example discusses a typical corner singularity on
an L-shaped domain. The second concerns a smooth obstacle on a square domain and the third
has a piecewise affine obstacle also on a square domain.
Throughout this paper, the standard notation for Lebesgue and Sobolev spaces and their norms
‖•‖L2(Ω), |||•||| = ‖∇•‖L2(Ω) and |||•|||NC := ‖∇NC•‖L2(Ω) and their local variants are used. Moreover
A . B abbreviates A ≤ CB for some generic constant C and A ≈ B abbreviates A . B . A.

2 Preliminaries

2.1 Discretisation

Let Ω ⊂ R2 be a bounded polygonal Lipschitz domain partitioned in a shape-regular trian-
gulation T into triangles with the set of edges E and interior edges E(Ω). Any edge E ∈ E has
length |E|, the midpoint mid(E), the unit normal νE and the tangent τE; mid(E) := {mid(E)| E ∈
E} denotes the set of all midpoints. The subdivision of each triangle T ∈ T into four congruent
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sub-triangles by straight lines through the edges midpoints results in the red-refined triangula-
tion red(T ). For any k ∈ N0, set

Pk(T ) := {vk : T → R| vk is a polynomial of degree ≤ k},

Pk(T ) := {vk ∈ L2(Ω)| ∀T ∈ T , vk|T ∈ Pk(T )},

CR1(T ) := {vCR ∈ P1(T )| vCR continuous at mid(E)},

CR1
0(T ) := {vCR ∈ CR1(T )| ∀E ∈ E(∂Ω), vCR(mid(E)) = 0},

KNC := {vCR ∈ CR1
0(T )| ∀E ∈ E(Ω),

?
E
χds ≤ vCR(mid(E))}.

The triangulation T is shape regular in the sense that any interior angle of any triangle is
bounded from below by some universal positive constant ω0 and all the generic constants hid-
den in the notation . may depend on ω0 > 0. The triangulation T is regular in the sense
that any two distinct triangles in T with non-empty intersection are either identical or share
exactly one common node or one common edge. For any triangulation T , define the (local)
mesh-size hT ∈ P0(T ) and L2-projection Π0 : L2(Ω) → P0(Ω) by hT |T := hT := diam(T ) and
Π0|T f :=

>
T

f dx for all T ∈ T and f ∈ L2(Ω), with the integral mean
>

T
• dx :=

∫
T
• dx/|T |.

With the piecewise gradient ∇NCvCR of any discrete function vCR ∈ CR1(T ), the discrete energy
product aNC : CR1(T ) × CR1(T )→ R reads

aNC(uCR, vCR) :=
∫

Ω

∇NCuCR · ∇NCvCRdx for all uCR, vCR ∈ CR1(T )

and induces the discrete energy semi-norm |||·|||NC := aNC(·, ·)1/2 in CR1(T ). Owing to the
discrete Friedrichs inequality ‖vCR‖L2(Ω) . |||vCR|||NC for all vCR ∈ CR1(T ) (cf. [BS08]) this is a
norm in CR1

0(T ).
The discrete analogue to the variational inequality (1.1) seeks uCR ∈ KNC with

F(vCR − uCR) ≤ aNC(uCR, vCR − uCR) for all vCR ∈ KNC . (2.1)

The abstract results on variational inequalities in the Hilbert space
(
CR1(T ), aNC

)
guarantee the

unique existence of a discrete solution uCR. Each edge E ∈ E(Ω) is associated with its edge-
oriented basis function ψE ∈ CR1(T ) such that ψE ≡ 1 along E while ψE(mid(F)) = 0 for any
other edge F ∈ E\{E}, and its support ωE := ∪{T ∈ T | E ∈ E(T )}. For each edge E ∈ E(Ω),
the solution uCR to the discrete variational inequality (2.1) satisfies the discrete consistency
condition

0 ≤ uCR(mid(E)) −
?

E
χds ⊥ F(ψE) − aNC(uCR, ψE) ≤ 0. (2.2)

This follows from direct considerations with the degrees of freedom in (2.1) and is the discrete
analogue of the well known (continuous) consistency condition [KS80] for u ∈ H2

loc(Ω) which
satisfies

0 ≤ u − χ ⊥ f + ∆u ≤ 0 almost everywhere in Ω. (2.3)
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3 Error Analysis

This section provides an a priori and a posteriori error estimate for the error |||u− uCR|||NC for
the solutions u and uCR of the continuous and discrete obstacle problem (1.1) and (2.1) as well
as lower bounds of the minimal energy E(u) based on the discrete energy ENC(uCR).

Theorem 3.1 (a priori error estimate) The continuous and discrete solutions u ∈ K and uCR ∈

KNC to the obstacle problem with u ∈ H2(Ω) satisfy

|||u − uCR|||NC . ‖hT f ‖L2(Ω) +
∥∥∥hTD2u

∥∥∥
L2(Ω)

+ ‖χ − INC χ‖L∞(Ω) + ‖hT∇(χ − INC χ)‖L∞(T ) . �

Given the discrete Crouzeix-Raviart solution uCR ∈ KNC, define some function

λCR :=
∑

E∈E(Ω)

ρE
ψE

‖ψE‖
2
L2(Ω)

with ρE := F(ψE) − aNC(uCR, ψE) (3.1)

for the edge-oriented basis function ψE ∈ CR1(T ) associated to the edge E ∈ E(Ω). It holds

ΛCR(vCR) =

∫
Ω

λCRvCRdx for all vCR ∈ CR1
0(T ).

In the sequel, ΛCR(v) always denotes the L2 scalar product of any Lebesgue function v ∈ L2(Ω)
with the above λCR ∈ CR1

0(T ). The following a posteriori error estimate involves the continuous
Lagrange multiplier

Λ := F − a(u, •) ∈ V∗

with the L2 representation λ = f + ∆u. Define |||Λ − ΛCR|||∗ by

|||Λ − ΛCR|||∗ := sup
v∈V\{0}

∫
Ω

(λ − λCR)(v)dx/|||v|||.

Theorems 3.2-3.3 utilise the subset T ′ :=
{
T ∈ T

∣∣∣ 0 < |{x ∈ T |λCR(x) > 0}|
}

of T with the 2D
Lebesgue measure | • | and the oscillations of a function g given by

osc(g,T ) :=
√∑

T∈T

h2
T ‖g − Π0g‖2L2(T ).

Theorem 3.2 (guaranteed upper error bound) Any v ∈ K satisfies

ja 1/2|||u − uCR|||
2
NC + Λ(u − v) +

∫
T ′

(χ − u)Π0λCRdx +

∫
T\T ′

(χ − u)λCRdx

≤ 1/2
(
κCR ‖hT ( f − λCR)‖L2(Ω) + osc(λCR,T

′)/ j1,1

)2
+ 1/2|||v − uCR|||

2
NC

+

∫
T ′

(χ − v)Π0λCRdx +

∫
T\T ′

(uCR − v)λCRdx;

jb |||Λ − ΛCR|||∗ ≤ |||u − uCR|||NC + osc( f − λCR,T )/ j1,1

+ 1/2 ‖Π0( f − λCR) (• −mid(T ))‖L2(Ω) + |||uCR − v|||NC. �
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The universal constant κCR ≤ 0.298217419 is derived from an interpolation error estimate for
the non-conforming interpolant INC as in [CGR12]. The lower bound for the exact energy E(u)
is given in the following theorem.

Theorem 3.3 (lower bound for the minimal energy) The discrete solution uCR and the con-
tinuous solution u to the obstacle problem satisfy

ja ENC(uCR) −
κ2

CR

2
‖hT f ‖2L2(Ω) ≤ E(u);

jb ENC(uCR) −
(
κCR ‖hT ( f − λCR)‖L2(Ω) + osc(λCR,T

′)
)2
/2

−

∫
T ′

(χ − uCR)Π0λCRdx +

∫
T\T ′

(INC χ − χ)λCRdx ≤ E(u). �

For any v ∈ K, the a posteriori error estimate of Theorem 3.2 leads to a computable global upper
bound GUB(v) of the five non-negative error terms in LHS (v)

LHS (v) :=|||u − uCR|||NC + Λ(u − v)1/2 +

(∫
T ′
λCRΠ0(χ − u)dx

)1/2

+

(∫
T\T ′

(INC χ − u)λCRdx
)1/2

+ |||Λ − ΛCR|||∗ . GUB(v)

GUB(v) := ‖hT ( f − λCR)‖L2(Ω) + osc(λCR,T
′) + |||v − uCR|||NC

+

(∫
T ′
λCRΠ0(χ − v)dx

)1/2

+

(∫
T\T ′

λCR(uCR − v)dx
)1/2

+ osc( f − λCR,T ) + ‖Π0( f − λCR)(• −mid(T ))‖L2(Ω) .

This reliable error bound is efficient in the sense that the converse inequality holds up to some
generic factor hidden in the notation . and up to data oscillations.

Theorem 3.4 (efficiency) Any function v ∈ K with |||u − v||| . |||u − uCR|||NC satisfies

GUB(v) . LHS (v) + osc( f ,T ) + osc(λ,T ). �

4 Computational Benchmarks

This section is devoted to the presentation of a novel adaptive mesh-refinement algorithm
and the empirical investigation of the superiority of adaptive over uniform meshes, the compu-
tational comparison of conforming and non-conforming first-order FEMs and the verification
of the guaranteed error and energy bounds in practice.

4.1 Numerical Realisation

Adaptive Algorithm. INPUT is a coarse mesh T0, and a parameter 0 < θ ≤ 1.
LOOP For level ` = 0, 1, 2, ... until termination do

5
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COMPUTE the discrete solution uCR on T` with ndof many unknowns with code similar to
[ACF].
ESTIMATE the error |||u − uCR|||

2
NC with any of the estimators ηP1red, ηEnergy, ηJ2 defined below.

Theorem 3.2 leads to an estimator

η2
v(T ) :=

(
κCR ‖hT ( f − λCR)‖L2(T ) + Osc(λCR,T )/ j1,1

)2
+ |||v − uCR|||

2
NC(T ) + 2I(T )

where

Osc(λCR,T ) :=

 osc(λCR,T ) for T ∈ T ′,
0 for T ∈ T \ T ′,

I(T ) :=


∫

T ′
(χ − v)Π0λCRdx for T ∈ T ′,∫

T ′
(uCR − v)λCRdx for T ∈ T \ T ′.

The estimator depends on a function v ∈ K. Three different possibilities ja − jc for v ∈
P1(red(T )) ∩ C0(Ω) ∩ K are presented in this paper all of which follow from linear interpo-
lation once the values at the nodes are defined.ja vP1red is computed in two steps. In a first step a function w2 is defined to equal uCR(mid(E))
at the edges’ midpoints and the values at a node z ∈ N(Ω) are chosen such that on the patch
ω∗z w2 minimises 1/2|||w−uCR|||

2
NC(ω∗z ) +

∫
ω∗z

(χ−w)Π0λCRdx+
∫
ω∗z

(uCR−w)λCRdx over all function
w ∈ P1(red(T ))∩C0(Ω). This is a one dimensional minimisation problem. In a second step set
v := PK(w2) where PK is the projection onto the set of admissible function with respect to the
energy norm.jb vEnergy is computed in two steps. In a first step a function w2 is defined which equals
uCR(mid(E)) at the edges’ midpoints and the values at a node z ∈ N(Ω) are chosen such that on
the patch ω∗z w2 minimises E(w) − ENC(uCR) locally over all function w ∈ P1(red(T )) ∩ C0(Ω).
This is a one dimensional minimisation problem. In a second step set v := PK(w2) where PK is
the projection onto the set of admissible function with respect to the energy norm.jc vJ2 is set to the arithmetic mean of the different values of uCR at the nodes. The values at the
edges’ midpoints are chosen such that

>
E

vJ2 ds = uCR(mid(E)) along any edge E ∈ E.
Those three functions lead to the error estimators ηP1red, ηEnergy, ηJ2.
With Theorem 3.3 estimate the lower bounds µ j, ( j = 1, 2) for the energy defined as

µ1 :=ENC(uCR) −
κ2

CR

2
‖hT f ‖2L2(Ω)

µ2 :=ENC(uCR) −
(
κCR ‖hT ( f − λCR)‖L2(Ω) + osc(λCR,T

′)
)2
/2

−

∫
T ′

(χ − uCR)Π0λCRdx +

∫
T\T ′

(INC χ − χ)λCRdx.

MARK the minimal setM` ⊆ T` such that

θ
∑
T∈T`

η(T ) ≤
∑

T∈M`

η(T ).

REFINE by red-refinement of elements in M` and red-green-blue-refinement of further ele-
ments to avoid hanging nodes and compute T`+1. od
OUTPUT efficiency indices

√∑
T∈T η

2
v(T )/|||u − uCR|||NC.
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4.2 L-Shaped Domain
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Figure 4.1: Convergence history of the exact errors for the non-conforming and conforming FEM on uniform and
adaptive meshes (left) and efficiency indices (right) of the three different error estimators for the non-conforming
scheme as functions of the number of unknowns on adaptive and uniform meshes for the Example 1 with the error
estimators from Theorem 3.2.
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Figure 4.2: Adaptive mesh with refinement indicator ηP1red (left) and E(u)−lower bound for the lower bounds µ1
and µ2 of the exact energy E(u) on uniform and adaptive meshes for Example 1.

The first example from [BC04] involves the L-shaped domain Ω := (−2, 2)2\([0, 2] ×
[−2, 0]), the obstacle χ := 0, the Dirichlet data uD := 0, and the source term

f (r, ϕ) := −r2/3sin(2ϕ/3)(7/3(∂g/∂r)(r)/r + (∂2g/∂r2)(r)) − H(r − 5/4)

g(r) := max{0,min{1,−6s2 + 15s4 − 10s3 + 1}} for s := 2(r − 1/4)
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with the Heaviside function H. The exact singular solution reads

u(r, ϕ) = r2/3g(r) sin(2ϕ/3)

and has a typical corner singularity at the re-entrant corner. The experiments on uniform meshes
show an experimental convergence rate of approximately −0.44 in terms of the number of de-
grees of freedom which appears suboptimal when compared with the optimal rate −1/2 for
linear convergence for the conforming and the non-conforming finite element method. The
non-conforming FEM leads to efficiency indices between 1.6 and 3 as shown in Figure 4.1 on
the right. For the calculation of the efficiency index it needs to be taken into account, that the
error estimator does not only estimate |||u − uCR|||NC but also the terms

|||u − uCR|||NC + Λ(u − v)1/2 +

(∫
T ′
λCRΠ0(χ − u)dx

)1/2

+

(∫
T\T ′

(INC χ − u)λCRdx
)1/2

+ |||Λ − ΛCR|||.

The computation of the entire exact error will lead to even better efficiency indices. The adaptive
algorithm for the non-conforming method, with ηP1red as the refinement indicator, leads to an
improved convergence rate of approximately −0.5. An adaptive algorithm for the conforming
scheme shows the same behaviour (see Figure 4.1 on the left). This indicates, that the error
estimators yield good results on unstructured grids as well as on uniformly refined meshes.
The efficiency indices for the non-conforming method on an adaptive mesh are comparable to
the efficiency indices on uniform meshes (see Figure 4.1). Furthermore the mesh displayed in
Figure 4.2 (left) shows, that the contact zone is less refined by the refinement indicator ηP1red

then the area around the re-entering corner at the point (0, 0), although the boundary of the
contact zone is well refined and clearly visible. The lower bounds for the minimal energy
E(u) show very similar behaviour. Both lower bounds converge slightly faster for the adaptive
algorithm with ηP1red as a refinement indicator, than on uniform meshes as demonstrated in
Figure 4.2 on the right.

4.3 Smooth Obstacle

This example from [GK09] on the square domain Ω := (−1, 1)2 involves the smooth obstacle
χ(x, y) := −(x2 − 1)(y2 − 1), the homogeneous Dirichlet data uD|∂Ω := 0 and the source term
f := ∆χ. The exact solution to this problem reads u = χ. On uniformly refined meshes both
the conforming and non-conforming finite element method lead to an experimental convergence
rate of −0.5. Both methods converge with the same convergence rate for an adaptively refined
mesh; cf. Figure 4.3 on the left. The non-conforming scheme leads to good efficiency indices.
Again it needs to be taken into account, that more terms of the exact error are estimated. Figure
4.3 right shows the efficiency indices both for a uniform mesh and an adaptive mesh. For this
example the adaptive algorithm leads to an almost uniform refinement of the entire domain,
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Figure 4.3: Convergence history of the exact errors for the non-conforming and conforming FEM on uniform and
adaptive meshes (left) and efficiency indices (right) of the three different error estimators for the non-conforming
scheme as functions of the number of unknowns on adaptive and uniform meshes for the Example 2 with the error
estimators from Theorem 3.2.

although the central part and the corners are refined more strongly as can be seen in Figure 4.4
on the left. The adaptive refinement does not indicate the contact zone for this problem. The
lower bounds for the minimal energy are comparable for this example as well. They converge
with a very similar behaviour both on uniform meshes and on an adaptively refined mesh with
the refinement indicator ηP1red although the adaptive algorithm leads to slightly better results
(see Figure 4.4 on the right).

4.4 Pyramid Problem

This example from [BC04] has an unknown exact solution u. The experiment is conducted on
the square domain Ω := (−1, 1)2 and involves the pyramidal obstacle χ(x, y) := dist(x, y, ∂Ω).
This experiment has homogeneous Dirichlet data and the constant source term f := 1. The exact
solution is approximated by solving the discrete problem after two additional red refinements
in each step. Both the conforming and the non-conforming scheme lead to the experimental
convergence rate of −0.5 on uniform meshes, as can be seen in Figure 4.5 on the right. The
adaptive algorithm does not show this convergence rate but rather has very bad convergence.
On uniform meshes additional undocumented experiments show that the error estimator for the
non-conforming finite element method only converge with a convergence rate of −0.3. The
efficiency indices in Figure 4.5 on the right confirm this, as they do not tend to a constant value
but continue to rise. This does not contradict Theorem 3.2 as the error estimate is still reliable.
The efficiency in Theorem 3.4 is shown for all the error term |||u−uCR|||NC + |||Λ−ΛCR|||∗+Λ(u−
v) +

∫
Ω
λCRΠ0(χ − u)dx. The numerical experiments only considers the error term |||u − uCR|||NC

and hence indicate that the remaining terms have more impact on the overall error then in the
other examples. Furthermore, the approximation of u by two additional red refinements might
not be a good approximation and can lead to errors. The mesh created by the adaptive algorithm
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Figure 4.4: Adaptive mesh with refinement indicator ηP1red (left) and E(u)−lower bound for the lower bounds µ1
and µ2 of the exact energy E(u) on uniform and adaptive meshes for Example 2.

depicted in Figure 4.6 on the left demonstrates very clearly the one-dimensional contact zone,
which is the union of the two diagonals. The area towards the diagonals is much more refined.
Figure 4.6 on the right shows the quality of the lower bounds of the exact energy. As in the
examples before the lower bound µ1 shows the better convergence. This holds true, both for
the adaptive algorithm with the refinement indicator ηP1red and for the calculation on uniform
meshes. In this example the initial mesh is aligned with the obstacle and hence it does not make
a big difference whether the adaptive or the uniform mesh design is employed.

5 Conclusions

The numerical experiments confirm the theoretical results from Section 3. It is clearly shown
that guaranteed upper error bounds are possible even for a non-conforming discretisation of the
non-linear obstacle problem. The accuracy of the non-conforming method differs from those
of the conforming scheme only by a multiplicative constant, but overall they show the same
convergence rate in terms of the number of degrees of freedom. This is in contrast to the state-
ment on page 111 in [Bra07]: In the numerical experiments of this paper, even for a singular
solution, the convergence rate is comparable for conforming and non-conforming FEMs; cf.
[CPS12] and the website [Bra].
The first two benchmark examples show that an adaptive algorithm leads to the optimal conver-
gence rate of −0.5 whereas, in Example 1, the uniform algorithm only leads to a convergence
rate of −0.44. The third benchmark example does not show this improved behaviour with re-
spect to the convergence rate but, nonetheless, the adaptive algorithm leads to an improvement
of the efficiency indices. For uniform refinement the error control for this example is not effi-
cient, but this proves to be the case for adaptive refinement.
The lower bounds of the minimal energy show that the bound µ1 is preferable to the lower
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Figure 4.5: Convergence history of the exact errors for the non-conforming and conforming FEM on uniform and
adaptive meshes (left) and efficiency indices (right) of the three different error estimators for the non-conforming
scheme as functions of the number of unknowns on adaptive and uniform meshes for the Example 3 with the error
estimators from Theorem 3.2.

bound µ2, although in the examples at hand, the difference between the two estimates, as well
as between uniform and adaptive mesh refinement is marginal. All three experiments conducted
for this paper show that an adaptively refined mesh also leads to better lower bounds for the en-
ergies.
All the adaptive refinements were done with the error estimator ηP1red as a refinement indicator.
Undocumented experiments show that the same adaptive algorithm with either ηJ2 or ηEnergy as
refinement indicators establish comparable results.
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Abstract. Optimization of prosthetic graft configuration with regard to blood dynamics is the 
major target of this research. Hemodynamic simulations of idealized arterial bypass systems 
are acquired using a finite element arterial blood simulator exhibiting hemodynamic flow 
changes due to compliance differences of a stiff graft and an elastic arterial wall. An artificial 
neural network simulating hemodynamic specific conditions is developed in order to reduce 
computational time. Optimal graft configurations are searched using a multi-objective genetic 
algorithm. An optimal set of solutions are presented and analyzed. 

 
 
1 INTRODUCTION 

Vascular grafts are special tubes that serve as replacements for damaged blood vessels. 
When suitable autologous veins are unavailable, prosthetic graft materials are used for 
peripheral arterial revascularisations. Research studies over the last three decades have 
established that hemodynamic interactions with the vascular surface as well as surgical injury 
are inciting mechanisms capable of eliciting distal anastomotic intimal hyperplasia (IH) and 
ultimate bypass graft failure. Compliance and calibre mismatch between native vessel and 
graft contributes towards poor long term patency [1].  

The ideal vascular bypass graft would replicate the mechanical properties of native artery 
perfectly. Research study of dynamic arterial wall properties of large arteries such as the 
carotid and femoral arteries is becoming more common. Using non-invasive techniques the 
maximum and minimum arterial diameters and the intima-media thickness (IMT) at the point 
of maximum diameter and minimum diameter have been determined over the cardiac cycle. 

 The pressure wave following the ejection of blood by the heart is gradually conveyed to 
the periphery. Close to the heart the wave velocity is of the order of 5 m/s and gradually 
increases towards the periphery [2]. The arterial diameter and intima-media thickness values 
can be used together with the blood pressure measurements to calculate several standard 
arterial stiffness indices [3]. Nevertheless, in vitro and in vivo experiments have demonstrated 
that the diameter-pressure relationship exhibits an exponential characteristic [4], which can be 
accounted for by replacing the pulse pressure in the distensibility coefficient by the logarithm 

162



Catarina F. Castro, Carlos C. António and Luisa C. Sousa 

 2

of the ratio of systolic and diastolic pressure [5].  
Computational approaches have been used simulating blood flow through idealized bypass 

models [6, 7, 8].  They exhibit particular patterns characterized by the presence of 
recirculation zones and secondary flows in certain regions. Pulsatile simulations of artery-
graft systems show elevated and negative wall shear stresses at the toe, heel and hood regions 
of the anastomosis. The region where the wall shear stress (WSS) is negative corresponds to 
recirculation regions within the artery. Regions of reverse flow are usually associated with 
local deposit of particles, which results in a blockage of the artery. Therefore, potential artery-
graft anastomosis design improvements that reduce the amount of wall shear stress and 
recirculation zones may have to be performed in order to increase the clinical success of 
vascular bypass grafts.  

In this project a developed multi-objective genetic algorithm [6] is considered in order to 
reach optimal graft geometries for idealized arterial bypass systems of fully occluded host 
arteries. Genetic algorithms require a large number of computer simulations. So, an artificial 
neural network (ANN) is developed to efficiently calculate specific outputs associated with 
blood flow for predefined graft geometries. Input and target data have been acquired using a 
modified version of a finite element (FE) arterial blood simulator previously developed and 
tested considering fully unsteady incompressible Navier-Stokes equations and a three-
dimensional geometry [9, 10].  

2 MULTI-OBJECTIVE GENETIC ALGORITHM 

Geometry plays the key role in determining the nature of hemodynamic patterns. This 
investigation will address rigid sinusoidal grafts with walls drawn by sine curves. In order to 
understand the dependence of the bypass blood flow on arterial wall variability, finite element 
model simulations were performed using a modified version of a previously developed code 
[9, 10]. Figure 1 presents the deformable model that includes both the proximal and distal 
bypass sections in order to analyze the flow development along the entire bypass.  

 
Figure 1: Anastomotic configuration and nomenclature of the graft/artery geometry 

For modeling purpose the simplified arterial graft prosthesis is a tubular vessel disposed 
around a longitudinal axis as described in the bypass model given in Figure 1. Each design 
vector b has four geometric components � � ��, �,��, 	
 as displayed in Figure 1: the 
distance from the near wall of the graft to the near wall of the artery H, the junction angle β, 
the width of the prosthesis at its longitudinal symmetric line Wp and the suture line dimension 
D. The host artery is assumed to be a fully stenosed conduit, simulated using two cylindrical 
tubes of 6 millimeter diameter, the proximal host artery before the obstruction and the distal 
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host artery after obstruction. The graft is symmetric and meets the host artery with a side-to-
end proximal anastomosis and an end-to-side distal anastomosis. As usually adopted by most 
previous investigations, vessels are assumed to be impermeable tubes.  

A general multi-objective optimization seeks to optimize the components of a vector-
valued objective function. For the shape optimization application presented here, the genetic 
algorithm (GA) begins by randomly setting an initial population of possible individuals, 
where individuals represent different graft geometries. The successive populations maintain 
the same number of individuals as it evolves throughout successive generations. Each 
individual is referred as a chromosome containing design variable values referred as genes of 
the chromosome over which genetic operators are applied. Operators such as 
selection/crossover, mutation and elimination supported by an elitist strategy are considered 
to ensure that fitness of the forthcoming generations is always improved [6, 9]. 

For the study presented here two functional values qualifying and quantifying the graft 
local hemodynamics are considered. Multiple hemodynamic factors capable of eliciting a 
hyperplastic response at the cellular level indicate the potential significance of platelet-wall 
interactions coinciding with regions of low WSS in the development of intima hyperplasia 
(IH). The first functional to be considered is:  

 ����
 � ∑ ‖���‖�
��
�   (1) 

where WSS are the smoothed wall shear stress values at the floor of the distal artery-graft 
junction. Sites of significant particle interactions with the vascular surface have been 
identified by functions associated to long near-wall residence times capturing a significant IH 
formation. A second component is associated with the fluid velocity distribution at the cross-
section of the distal graft-artery junction: 

 ����
 � ∑ ��
�

����
∗ ��
 		  (2) 

For the same inlet velocity profile, values of this function ����
  will be larger for disturbed 
longitudinal velocity distributions along the distal graft-artery junction and smaller for smooth 
and parabolic distributions. 

In the project reported here, an artificial neural network (ANN) is developed to efficiently 
simulate blood flow for specific graft geometries. A set of randomly generated 500 input 
vectors � � ��, �,��, 	
 and target vectors � � �����
, ����

  has been collected using the 
FE code within the design space given as follows 

 

10 ≤ � ≤ 30	!!

0.15 ≤ � ≤ 0.785	&'(

6 ≤ �� ≤ 10	!!

6 ≤ 	 ≤ 10	!!

  (3) 

The ANN analysis was performed using MATLAB with the Neural Network Application 
Toolbox (The MathWorks Inc., MA, USA). The multilayer feed-forward neural network of 
the software is well suited for function fitting problems. Since the initial weights and biases 
are randomly set more than one trial was done. The regression analysis was considered using 
the R value as an indication of the relationship between the outputs and targets. For this 
example, the training data indicates a good fit. The validation and test results showed R values 
greater than 0.99. Once the ANN has demonstrated acceptable pattern recognition skills, its 
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creation has been achieved being ready for use. 

3 EFFECT OF LUMEN-ADAPTED ARTERY 

The influence of wall variability on blood flow behavior has been studied and published 
either in vascular replicas as well as in real vascular anatomies. By their elastic nature, major 
conduit arteries should be able to store blood volume temporarily during systole and release it 
during diastole. This reduces the systolic blood pressure required for the flow of a given 
volume quantity and gradually suppresses the pulsatile flow pattern. The repetitive stretching 
of the wall (strains of up to 10 per cent) may cause fragmentation of the elastic fibers in the 
wall, modifying wall elasticity. To maintain wall stress the elastic arteries respond with a 
diameter increase in combination with an increase of arterial wall thickness. In recent years 
various methods have been developed to assess and monitor the above interaction. Most of 
these methods are based on ultrasound techniques because of its wide availability and its non-
invasive and non-traumatic nature. Presently these techniques enable the assessment of wall 
thickness, diastolic diameter, distension waveform, i.e. the time-dependent change in 
diameter, the relative pulsatile increase in diameter, and pulse wave velocity, for elastic and 
muscular arteries in humans. For the carotid artery, comparison between the computed and 
experimentally measured wall movement during a cardiac cycle showed that the pressure 
waveform plays the main role in driving the wall movement while the pressure gradient 
resulting from the flow only has a secondary influence [11].  

A basic problem for the assessment and evaluation of mechanical parameters is to acquire 
the local time dependent blood pressure. The artery responds to the pulsatile change in 
transmural pressure during the cardiac cycle with a pulsatile change in cross-sectional area. 
The transient wall motion can be divided into three phases: rapid dilation, rapid partial 
contraction, and slow contraction. The minimum artery diameter occurs during the low-
pressure end-diastolic cardiac phase and the maximum artery diameter during the peak 
systolic phase. Evaluation of arterial vessel diameter variability along the cardiac cycle has 
been addressed by several authors. Using computerized edge detection-sequential multi-frame 
image processing Selzer et al. presented a typical plot of the continuous measurement of 
carotid arterial diameter over 2 cardiac cycles [3]. 

In this work, the material of the graft wall is assumed to be rigid and the material of the 
artery wall is assumed to be incrementally linear elastic. For the 6mm diameter artery, the 
basic geometrical parameters considered here are the initial (end-diastolic) diameter, the 
change in diameter and the wall thickness. As expected, intima-media thickness (IMT) varies 
according to the arterial dimension. When the arterial diameter is at its minimum, IMT is at its 
thickest point and when the arterial diameter is at its maximum, IMT is at its thinnest point. 
Using Selzer et al. measurements [3] polynomial curves were fitted defining both the arterial 
diameter and IMT over the cardiac cycle. The shape of the pressure waveform is highly site-
dependent and is modified not only by proximal and distal bifurcations, curvatures and artery 
tapering, but also by the site-dependent mechanical characteristics of the artery itself. In the 
numerical simulation, a flow waveform boundary is specified at the model inlet. A pulsatile 
velocity curve along the cardiac cycle has been adapted by Carneiro [12] from Taylor and 
Draney [13].  

In order to realize the necessity to introduce the arterial wall elastic behavior, FEM 
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simulations were performed considering the same geometric bypass defined by parameters 
� � �� � 18.67!!, � � 0.782&'(,�� � 6.11!!,	 � 7.40!!
 at the end of the 
diastolic phase. In the computations, the non-Newtonian behavior of blood will follow the 
Casson model as used in the software validation by Sousa et al. [9]. This model shows both 
yield stress and shear-thinning non-Newtonian viscosity, broadly used to describe the shear 
thinning behavior of blood [14]. Comparison between the Newtonian and non-Newtonian 
fluid models has demonstrated that the velocity profile of the non-Newtonian fluid is 
somewhat flattened, due to its shear-thinning behavior.  

 
Figure 2: Magnitude variability of the functional associated to wall shear stress for elastic and rigid artery 

model along the cardiac cycle 

 
Figure 3: Magnitude variability of the functional associated to velocity distribution at the distal graft-artery 

junction for elastic and rigid artery model along the cardiac cycle 
 
The introduction of arterial diameter variability along the pulsatile blood velocity curve 

induces 0.4mm diameter variability so the simulated diameter artery goes from 6mm at the 
end-diastolic phase up to 6.4mm at the systolic peak. Simulated values for the objective 
functions ����
 and ����
 considering different artery conditions are given bellow. Figure 2 
presents a comparison of the magnitude variability of functional ����
 associated to wall 
shear stress between the elastic and the rigid artery model together with the pulsatile velocity 
waveform. As expected high WSS values correspond to the systolic phase. The difference 
between the rigid and the elastic model is that higher and earlier values are observed for the 
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rigid model.  
Figure 3 presents a comparison of the magnitude variability of functional ����
 associated 

to fluid velocity distribution at the cross-section of the distal graft-artery junction between the 
elastic and the rigid artery model. Contrarily to the previous functional, the rigid model 
presents higher values at the peak systolic phase as compared to the elastic model. This result 
can be explained due to lack of compliance between artery and prosthetic graft. Mismatched 
biomechanical properties between the graft and native surrounding tissue are commonly cited 
as a cause of graft failure. 

4 RESULTS AND CONCLUSIONS 

Pareto optimality is a concept that formalizes the trade-off between a given set of possible 
contradicting objectives. By only one time global search procedure all the Pareto optimal 
solutions are found managing the drawing of the Pareto front and then extracting optimal 
solutions according to selected preferences. As a compromise between computer time and 
population diversity, parameters for the genetic algorithm were taken as 12 and 5 for the 
population and elite group size, respectively. The number of bits in binary codifying for each 
design variable is 5. The GA termination has been defined by fixing the total number of 
generations as 300. For each generation 6 new individuals (five from crossover plus one from 
mutation) are created. Simulation results for the optimized bypass graft are presented in 
Figures 4 and 5.  

 
Figure 4: WSS distribution for the optimal elastic artery model at peak systolic phase 

 
Figure 5: Velocity distribution for the optimal elastic artery model at peak systolic phase 

Qualitatively, the distributions of wall shear stress as well as velocity in the elastic artery 
model do not change significantly compared to the rigid artery model, despite the quite large 
wall variations. However, less flow separation and reversed flow is observed in the elastic 
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model. At peak systolic phase (t/tp=0.16), Figure 4 shows regions of high WSS appear around 
stenosis at the distal corner of the proximal bifurcation and at the toe of the distal anastomosis 
suggesting that both the proximal and distal regions are responsible for early bypass graft 
failure.  

The velocity values are given in Figure 5 (t/tp=0.16) demonstrating a very good quality of 
the finite element simulation being capable of capturing the flow acceleration as it emerges 
from the graft to the artery and the flow recirculation at the floor of the host artery, 
consistently with the expectations. The abrupt connection between artery and graft induces 
large velocity variations. Long residence times usually observable immediately after the toe of 
the distal anastomosis are quite undetectable. The importance of designing optimized bypass 
graft cannot be neglected. 

Transient hemodynamic flow induces minimum artery diameter during the low-pressure 
end-diastolic cardiac phase and the maximum carotid artery diameter during the peak systolic 
phase and the IMT has an opposite behavior [3]. On the other hand, the prosthetic graft is stiff 
and the hemodynamic flow changes due to compliance differences across an anastomosis 
cause increased shear stress to damage endothelial cells and also reduced shear stress leading 
to areas of relative stagnation and increasing interaction between platelets and vessel wall. 
The aim of geometry design is to minimize these disruptive flow characteristics. The 
optimization process manages to achieve geometries presenting wall shear stress values with 
the expected variability for the blood behavior in the systemic arterial tree. 

The problem reported here is related with both shape design and flow control that are 
involved in the simulation of the bypass system. Improving blood flow dynamics in the graft 
system is an important element for the long-term success of bypass surgeries. Comparison 
between the rigid and compliant models illustrates a considerable reduction of reversed flow 
in the distensible model [15]. This is because when the graft flow rate decreases during the 
deceleration phase, in order to satisfy the fluid’s mass conservation in the rigid wall model, 
this decrease can be compensated for, only by means of reducing the flow velocity. However, 
in the compliant model, the vessel’s contraction partially compensates the flow rate drop by 
reducing the cross sectional area; consequently, less would be left to be compensated for, by 
reducing the velocity. As a result, less reversed flow is present in the distensible-wall models. 

Further investigation on the hemodynamic benefits of the blood flow in graft artery 
compliance and configurations and in more realistic bio-mechanical conditions will be 
addressed by the authors. 
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Abstract. In this work, we define a verification procedure that enables to build guaran-
teed PGD-reduced models for linear elliptic or parabolic problems depending on many
parameters. It is based on the general concept of constitutive relation error and provides
for strict bounds on both global error and error on outputs of interest. Furthermore,
it helps driving adaptive strategies by assessing contributions of various error sources.
Consequently, virtual charts that may be constructed from the PGD approximate solution
can be certified. Technicalities and performances of the control approach, in particular
when dealing with a large set of model parameters, are detailed on a transient thermal
problem.

1 INTRODUCTION

Due to the continuous advances in both modeling and computing resources, numerical
simulation has become a common tool in science and engineering activities. Nowadays,
it is numerically possible to deal with very complex models that aim at giving an accu-
rate representation of the real world. However, due to an overwhelming computational
effort, this practice remains difficult and often impossible when considering mathematical
models with various fluctuating parameters. This case is for instance encountered when
tackling stochastic or optimization problems in which a large amount of scenarios need to
be considered. For such multi-parameter models, numerical simulation faces the so-called
curse of dimensionality that leads to a huge number of degrees of freedom when using
classical brute force (i.e. grid-based) approximation methods. Therefore, alternative com-
puting approaches are necessary in this context.
During the last decade, model reduction techniques have been the object of a growing
interest both in research and industry. They exploit the fact that the response of complex
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models can often be approximated with a reasonable precision by the response of a sur-
rogate model, seen as the projection of the initial model on a low-dimensional functional
basis. Model reduction techniques, that distinguish themselves by the way of defining and
constructing the reduced basis, are thus an appropriate computing tool for addressing
multi-parameter models. In particular, an appealing model reduction technique called
Proper Generalized Decomposition (PGD) has recently emerged and is currently the to-
pic of various research works [1]. It is based on separation of variables within a spectral
resolution approach, and contrary to the well-known POD, no partial knowledge on the
solution is required which is a major asset. PGD basis functions (or modes) are compu-
ted on the fly, once for all and in an offline process, by solving a series of manageable
mono-parameter problems. The obtained PGD approximation, that explicitly depends on
all model parameters, can then be used in an online optimization process.

Performances of PGD have been shown in many applications for which variations in
loading, boundary or initial conditions, material behavior, geometry,. . .were taken into
account as additional model coordinates [2, 3, 4, 5] . However, a major difficulty for its
transfer and intensive use in industry is the control of the PGD-reduced model. Indeed,
certifying the accuracy of the PGD solution is a fundamental issue in order to perform
robust and reliable design. This control requires mastering the number of PGD modes
which are computed, but also the numerical methods which are employed in these com-
putations.
There are actually very few works which have addressed the control of PGD-based ap-
proximations until now. Basic results on a priori error estimation for representations with
separation of variables are given in [6], whereas a pioneering work mostly devoted to
adaptivity can be found in [7]. A first robust approach for PGD verification, using the
concept of Constitutive Relation Error (CRE) [8, 9], was proposed recently [10]. It ap-
plies to linear elliptic or parabolic problems depending on parameters, and provides for
guaranteed PGD-reduced models for both global error and error on specific outputs of
interest [11, 12]. Furthermore, the approach enables to assess contributions of various er-
ror sources (space and time discretizations, truncation of the PGD decomposition, etc.),
which can help driving adaptive strategies.
In previous works [10, 11, 12], performances were shown with only few parameters. Here,
we present new advances which have been performed in this PGD-verification method. We
particularly focus on cases with numerous model parameters. We also use a non-intrusive
procedure for the solution of the adjoint problem, in order to limit implementation issues.
Therefore, virtual charts associated with quantities of interest and computed from PGD
models can now fully benefit from the verification method to satisfy a prescribed accuracy.
Numerical experiments on a transient thermal model with fluctuating material parameters
are conducted to illustrate the proposed verification approach and its performances.
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2 REFERENCE PROBLEM AND NOTATIONS

We consider a transient diffusion problem defined on an open bounded domain Ω ⊂ Rd

(d = 1, 2, 3), with boundary ∂Ω, over a time interval I = [0, T ]. We assume that a
prescribed zero temperature is applied on part ∂uΩ 6= Ø of ∂Ω and that the domain is
subjected to a time-dependent thermal loading that consists of : (i) a given thermal flux
rd(x, t) on ∂qΩ ⊂ ∂Ω, with ∂uΩ∩∂qΩ = Ø and ∂uΩ ∪ ∂qΩ = ∂Ω ; (ii) a source term fd(x, t)
in Ω.

Ω

f

r
d 

d 

Figure 1: Representation of the reference problem.

For the sake of simplicity, we consider that initial conditions are set to zero. The material
that composes Ω is assumed to be isotropic but heterogeneous and partially unknown.
Therefore, diffusion coefficient k and thermal capacity c depend on space variable x but
also on a set of N parameters p = [p1, p2, . . . , pN ] belonging to a given bounded domain
Θ = Θ1 ×Θ2 × · · · ×ΘN .

The associated mathematical problem consists of finding the temperature-flux pair
(u(x, t,p),ϕ(x, t,p)), with (x, t,p) ∈ Ω× I ×Θ, that verifies :

• the thermal constraints :
u = 0 in ∂uΩ× I ×Θ (1)

• the equilibrium equations :

c
∂u

∂t
= −∇ · ϕ+ fd in Ω× I ×Θ ; ϕ · n = rd in ∂qΩ× I ×Θ (2)

• the constitutive relation :

ϕ = −k∇u ∀(x, t,p) ∈ Ω× I ×Θ (3)

• the initial conditions :
u|t=0+ = 0 ∀(x,p) ∈ Ω×Θ (4)

n denotes the outgoing normal to Ω. In the following, in order to be consistent with other
linear problems encountered in Mechanics (linear elasticity for instance), we carry out the
change of variable ϕ → −ϕ which leads, in particular, to the new constitutive relation
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ϕ = k∇u.
Defining V = H1

0 (Ω) = {v ∈ H1(Ω), v|∂uΩ = 0}, the weak formulation in space of the
previous problem reads for all (t,p) ∈ I ×Θ :

Find u(x, t,p) ∈ V such that b(u, v) = l(v) ∀v ∈ V (5)

with u|t=0+ = 0. Bilinear form b(•, •) and linear form l(•) are defined as :

b(u, v) =

∫

Ω

{

c
∂u

∂t
v + k∇u ·∇v

}

dΩ ; l(v) =

∫

Ω

fdvdΩ−

∫

∂qΩ

rdvdS (6)

As regards the full weak formulation, we introduce the functional spaces T = L2(I), Pi =
L2(Θi), and L

2(I,Θ;V) = V ⊗ T ⊗N
n=1 Pn. We therefore search solution u ∈ L2(I,Θ;V),

with
∂u

∂t
∈ L2(I,Θ;L2(Ω)), such that :

B(u, v) = L(v) ∀v ∈ L2(I,Θ;V) (7)

with

B(u, v) =

∫

Θ

[
∫

I

b(u, v)dt +

∫

Ω

cu(x, 0+)v(x, 0+)dΩ

]

dp

L(v) =

∫

Θ

∫

I

l(v)dtdp

(8)

The exact solution of (7), which is usually out of reach, is denoted uex (and ϕex = k∇uex).
It is classically approximated using the FEM in space associated with a time integration
scheme and a given grid in the parameter space Θ.

Remark : in the steady-state case, we merely consider :

b(u, v) =

∫

Ω

k∇u ·∇vdΩ ; B(u, v) =

∫

Θ

b(u, v)dp ; L(v) =

∫

Θ

l(v)dp (9)

3 CONSTRUCTION OF THE PGD APPROXIMATION

We now introduce the recently called Proper Generalized Decomposition (PGD) tech-
nique [1] which constitutes an a priori construction of a separated variables representation
of the solution of (7). The approximate PGD solution is searched under the form :

u(x, t,p) ≈ um(x, t,p) ≡
m
∑

i=1

ψi(x)λi(t)Γi(p) with Γi(p) =
N
∏

n=1

γi,n(pn) (10)

m is the order (i.e. number of modes) of the representation, whereas space functions ψi(x),
time functions λi(t), and parameter functions γi,n(pn) respectively belong to V, T , and

4
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Pn. An attractive feature of the PGD technique is that the construction of modes does
not require any knowledge on u. Neither ψi(x) nor λi(t) nor γi,n(pn) are initially given ;
these are computed on the fly. In the following, we give a classical version of the PGD
technique, called progressive Galerkin-based PGD and inspired from classical fixed-point
algorithms used to solve eigenvalue problems.
We assume that a PGD approximation of order m − 1 has been computed. The PGD
approximation of order m is then defined as :

um(x, t,p) = um−1(x, t,p) + ψ(x)λ(t)Γ(p) with Γ(p) =

N
∏

n=1

γn(pn) (11)

ψ, λ, and γn (n = 1, . . . , N ]) are a priori unknown functions belonging respectively to
discretized subsets Vh, Th, and Pnh ; we assume Vh and Th respect kinematic constraints
and initial conditions, respectively. Starting from an initialization ψ(0)(x)λ(0)(t)Γ(0)(p),
one builds a new mode representation ψ(1)(x)λ(1)(t)Γ(1)(p) thanks to the following sub-
iteration :

– determine λ(1) ∈ Th such that :

B(um−1 + ψ(0)λ(1)Γ(0), ψ(0)λ∗Γ(0)) = L(ψ(0)λ∗Γ(0)) ∀λ∗ ∈ Th (12)

– for n0 = 1, . . . , N , determine γ
(1)
n0 ∈ Pn0h such that :

B(um−1 + ψ(0)λ(1)γ(1)n0
Γ
(1,0)
/n0

, ψ(0)λ(1)γ∗Γ
(1,0)
/n0

) = L(ψ(0)λ(1)γ∗Γ
(1,0)
/n0

) ∀γ∗ ∈ Pn0h (13)

with Γ
(1,0)
/n0

=

n0−1
∏

n=1

γ(1)n ×

N
∏

n=n0+1

γ(0)n ;

– determine ψ(1) ∈ Vh such that :

B(um−1 + ψ(1)λ(1)Γ(1), ψ∗λ(1)Γ(1)) = L(ψ∗λ(1)Γ(1)) ∀ψ∗ ∈ Vh (14)

Few sub-iterations are performed in practice ; in the following numerical results, the pro-
cess has been stopped after 4 sub-iterations. Furthermore, time function λ(j)(t) and pa-

rameter functions γ
(j)
n (pn) are normalized at each sub-iteration j.

4 GLOBAL ERROR ESTIMATION IN THE PGD FRAMEWORK

4.1 The Constitutive Relation Error method - Principle

The verification strategy we propose uses the concept of Constitutive Relation Error
(CRE) (see [8] for full details). Let (û, ϕ̂) be an admissible solution of the problem, i.e.
verifying (1), (2), and (4). The CRE measure, that depends on p, then reads :

E2
CRE(p) =

1

2

∫

I

∫

Ω

1

k
[ϕ̂− k∇û] · [ϕ̂− k∇û]dΩdt ≡

1

2
|||ϕ̂− k∇û|||2 (15)
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where ||| • ||| is an energy norm in the space-time domain, and one has the extension of
the Prager-Synge theorem :

|||ϕex − ϕ̂
∗|||2 +

1

2

∫

Ω

c(uex − û)2|TdΩ =
1

2
E2

CRE (16)

with ϕ̂
∗ = 1

2
[ϕ̂+ k∇û]. The value of ECRE can be used as an estimate of the global error

between uex and um.

Remark : Again, in the steady-state case, we would consider :

E2
CRE(p) =

1

2

∫

Ω

1

k
[ϕ̂− k∇û] · [ϕ̂− k∇û]dΩ ≡

1

2
||ϕ̂− k∇û||2 (17)

||ϕex − ϕ̂
∗||2 =

1

2
E2

CRE (18)

4.2 Construction of an admissible solution

We now explain how an admissible pair (ûm, ϕ̂m) can be obtained as a post-processing
of all information available from the computation of the PGD solution um. Constructing
the kinematically admissible field ûm(x, t,p) is rather simple, and one usually takes ûm =
um. Getting ϕ̂m(x, t,p) is more difficult and technical. In order to use classical tools
that enable to compute equilibrated fluxes (in particular the prolongation condition, see
[8, 13]), one should first construct a field ϕm(x, t,p) which satisfies the following FE
equilibrium for all (t,p) ∈ I ×Θ :

∫

Ω

ϕm ·∇u∗dΩ =

∫

Ω

(fd − c
∂ûm

∂t
)u∗dΩ−

∫

∂qΩ

rdu
∗dS ∀u∗ ∈ Vh (19)

For the sake of simplicity, let us suppose that the loading can be written under the radial
form :

(fd(x, t), rd(x, t)) =
J
∑

j=1

αj(t)
(

f
j
d (x), r

j
d(x)

)

(20)

We thus compute, for each couple (f j
d , r

j
d), a field ϕ

j
d(x) verifying the FE equilibrium :

∫

Ω

ϕ
j
d ·∇u∗dΩ =

∫

Ω

f
j
du

∗dΩ−

∫

∂qΩ

r
j
du

∗dS ∀u∗ ∈ Vh (21)

It is in practice obtained using the finite element method in displacement, i.e. by searching
vj ∈ Vh with ϕ

j
d = ∇vj . It follows that ϕd =

∑J
j=1 αj(t)ϕ

j
d(x) can be introduced in the

calculation of ϕm, which should then verify for all (t,p) ∈ I ×Θ :
∫

Ω

(ϕm − ϕd) ·∇u∗dΩ = −

∫

Ω

c
∂ûm

∂t
u∗dΩ = −

m
∑

i=1

cλ̇iΓi

∫

Ω

ψiu
∗dΩ ∀u∗ ∈ Vh (22)

6
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Noticing that at the end of sub-iterations to compute each PGD mode m0 ∈ [1, m],
condition (14) yields :

B(um0
, ψ∗λm0

Γm0
) = L(ψ∗λm0

Γm0
) ∀ψ∗ ∈ Vh (23)

We thus get :

∫

Ω

[
∫

Θ

∫

I

λm0
Γm0

(k∇um0
−ϕd)dtdp

]

∇ψ∗dΩ

= −

∫

Ω

[
∫

Θ

∫

I

cλm0
Γm0

∂um0

∂t
dtdp

]

ψ∗dΩ ∀ψ∗ ∈ Vh

= −

∫

Ω

m0
∑

i=1

[
∫

Θ

∫

I

cλm0
Γm0

λ̇iΓidtdp

]

ψiψ
∗dΩ ∀ψ∗ ∈ Vh

(24)

It follows that for m0 ∈ [1, m], term :

Qm0
≡

∫

Θ

∫

I

λm0
Γm0

(ϕd − k∇um0
)dtdp (25)

equilibrates
m0
∑

i=1

[
∫

Θ

∫

I

cλm0
Γm0

λ̇iΓidtdp

]

ψi in a FE sense. By a simple inversion of the

system, one obtains that a term of the form
m
∑

j=1

RijQj equilibrates ψi in the FE sense

(i = 1, . . . , m). Consequently,

ϕm = ϕd −
m
∑

i=1

m
∑

j=1

cλ̇iΓiRijQj (26)

satisfies FE equilibration (19) (or (22)).

Then, usual techniques [8, 13] can be used to build, from ϕm, a flux ϕ̂m that verifies the
full equilibrium :

∫

Ω

ϕ̂m ·∇u∗dΩ =

∫

Ω

(fd − c
∂ûm

∂t
)u∗dΩ−

∫

∂qΩ

rdu
∗dS ∀u∗ ∈ V (27)

This flux reads ϕ̂m = ϕ̂d −
m
∑

i=1

m
∑

j=1

cλ̇iΓiRijQ̂j where ϕ̂d and Q̂j are computed solving

local problems on each element or patch of elements.
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Remark : for the steady-state case, (23) reads :

B(um0
, ψ∗Γm0

) = L(ψ∗Γm0
) ∀ψ∗ ∈ Vh (28)

and we get :
∫

Ω

[
∫

Θ

Γm0
(k∇um0

−ϕd)dp

]

∇ψ∗dΩ = 0 ∀ψ∗ ∈ Vh (29)

Therefore, Qm0
≡

∫

Θ
Γm0

(ϕd − k∇um0
)dp is auto-equilibrated (in a FE sense), and ϕm

and ϕ̂m can be defined as :

ϕm(x,p) = ϕd(x) +
m
∑

m0=1

βm0
(p)Qm0

(x) ; ϕ̂m(x,p) = ϕ̂d(x) +
m
∑

m0=1

βm0
(p)Q̂m0

(x)

(30)
where βm0

are coefficients, depending on p, which are explicitly obtained by minimizing
∫

Θ
E2

CRE(p)dp.

5 GOAL-ORIENTED ERROR ESTIMATION

5.1 Guaranteed bounding

Let I be an output of interest defined by the extraction pair (ϕΣ, fΣ) :

I(p) =

∫

I

∫

Ω

{ϕΣ ·∇u+ fΣ · u}dΩdt (31)

ϕΣ(x, t) and fΣ(x, t) can possibly be Dirac distributions. We therefore introduce the as-
sociated adjoint problem, and compute an approximate (resp. admissible) PGD solution
(ũm̃, ϕ̃m̃) (resp. (ˆ̃um̃, ˆ̃ϕm̃)) for this problem. In practice, the PGD solution of the adjoint
problem is performed using an order m̃ possibly different from m, as well as introducing
local enrichment functions in the vicinity of the space-time region where I is defined [14].
The fundamental result for linear elliptic and parabolic problems then reads (see [9]) :

|Iex − Im − Icorr| ≤ ECREẼCRE (32)

where Iex(p) (resp. Im(p)) is the exact (resp. approximated by PGD) value of the output
of interest, Icorr(p) is a correction term computed from approximate solutions of both
reference and adjoint problems, and ECRE(p) (resp. ẼCRE(p)) is the constitutive relation
error of the reference (resp. adjoint) problem. Let us note that this bounding result does
not use any Galerkin orthogonality property, but only properties of admissible solutions.

Consequently, strict bounds on the local error Iex−Im (or directly on Iex) can be obtained
for any value p of material parameters.
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5.2 Specific indicators on error sources

In the problem we consider, the error Iex − Im comes from two main sources : (i) the
truncation of the sum in the PGD representation (10) at a given order m ; (ii) discretiza-
tions used to compute modes. Indeed, the error reads :

Iex − Im = (Iex − Idis) + (Idis − Im) = Edis + EPGD (33)

where Idis is the value of the output of interest obtained after discretization of the refe-
rence problem inside all parameter domains, and Edis (resp. EPGD) is part of the error due
to discretization (resp. to truncation of the PGD representation). Furthermore, error due
to discretization can also be split between contributions coming from the discretization
of each parameter domain (space, time,. . .).
In order to control the computation process and lead adaptive strategies, we thus intro-
duce an indicator for each error source. This is performed using verification tools presented
previously, but considering additional (intermediate) reference problems obtained from a
partial numerical method applied to the initial reference problem. For instance, asses-
sing part EPGD of the error only due to truncation in the PGD representation can be
done considering the discretized problem (i.e. the one providing for Idis) as the reference
problem. It is of the form :

U1
h = 0 ; M

U
p+1
h −U

p
h

∆t
+KU

p
h = F

p
h ∀p ∈ [1, P − 1] (34)

where ∆t is the time step size, P is the number of time steps, whereas M and K are
classical matrices deriving from the FEM. Admissible pairs are then defined with respect
to the new reference problems, and are in practice computed as a direct post-processing
of available information.

6 NUMERICAL RESULTS

As a simple example, we consider the 2D structure of Figure 2 which is a section
presenting two rectangular holes in which a fluid circulates. It is subjected to a given
source term fd(x, y) = 200xy, a given flux rd(t) = −1 on the holes boundaries, and a zero
temperature is imposed on other boundaries. Using symmetries, we only keep the upper
right quarter of the structure that we denote Ω.

9
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x

y

Ω
1

ω

2
Ω

3
Ω

4
Ω

Figure 2: The 2D reference problem.

We consider that the diffusion coefficient k is fluctuating but remains piecewise ho-
mogeneous, i.e. it is homogeneous in each of the four non-overlapping subdomains Ωi

(i = 1, 2, 3, 4) defined in Figure 2 and such that Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 = Ω. Furthermore, the
thermal capacity c is supposed homogeneous in the whole domain Ω. In the following, the
two material coefficients are defined as :

k(x, θi) = 1 +

4
∑

i=1

giIΩi
(x)θi c(x, θ5) = 1 + 0.2 θ5 (35)

with [g1, g2, g3, g4] = [0.1, 0.1, 0.2, 0.05], θi ∈ [−2, 2], and IΩi
(x) denoting the indicatrix

function of subdomain Ωi.
The resulting solution u(x, t, θ1, θ2, θ3, θ4, θ5) is searched using the PGD technique, with
four-nodes quadrangular elements in space and a forward Euler time scheme.

Figure 3 gives the evolution of the constitutive relation error (seen as a global error
estimate) with respect to the number m of PGD modes taken in the approximation ; this
estimate is computed for θi = 0 (i = 1, . . . , 5). We observe that after 5 modes, the error
reaches an asymptotic value that corresponds to the discretization error.
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Figure 3: Relative error estimate with respect to the number m of PGD modes.

Assuming that θi are (truncated) centered reduced normal variables, and considering
a given zone ω ⊂ Ω (see Figure 2), we study two quantities of interest :
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– the mathematical expectation (in the probabilistic sense) of the mean value of u
inside ω at final time T :

I1 = E

[

1

|ω|

∫

ω

u|TdΩ

]

(36)

– the maximal value of the mean value of u inside ω at final time T :

I2 = sup
θi

1

|ω|

∫

ω

u|TdΩ (37)

We choose an order m = 3 for the approximate PGD solution of the reference problem.
For both I1 and I2, obtained normalized upper bounds on Iex−Im−Icorr as well as specific
error indicators are given in Figure 4 with respect to the number m̃ of computed PGD
modes for the adjoint solution.
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Figure 4: Normalized upper error bound and error indicators with respect to the number m̃ of PGD
modes used for the adjoint solution : I1 (left), I2 (right).

We observe that the correcting term Icorr enables to assess Iex very effectively. The remai-
ning asymptotic error could be decreased by improving discretizations used to compute
PGD modes.

7 CONCLUSIONS

PGD-reduced models are a promising tool for solving complex engineering problems.
However, a central and main question is to guarantee their accuracy. The verification
method described here is a first attempt to address this challenge for elliptic and para-
bolic problems. It can be applied in the case of numerous parameters (such as stochastic
problems), even though optimizations when performing numerical integrations should be
investigated in that case to decrease computational effort. It can also be directly extended
to cases where the loading is defined with parameters.
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Abstract. Meshless approximations provide a great resource in the analysis of structures as 
the desired continuity in the approximated fields can be achieved. This feature is well suited 
for thin structures like shells, as stresses can be obtained as smoothly as desired. However, the 
non-interpolatory characteristic of such approximants makes the imposition of essential 
boundary and interface conditions not straightforward. For instance, in the classical Element-
Free Galerkin Method (EFG), Lagrange multipliers are used to enforce such conditions. 
Recently, an alternative has been revisited: the Interior Penalty Method, usually referred to as 
Nietsche’s Method, which identifies the Lagrange multiplier with the flux at the essential or 
interface boundary and introduces a penalty parameter, which warrants the convergence rate 
of the approximation. In the elasticity case, the reaction tractions are the same as the stress 
normal to the boundary. The present work aims at developing the study of this method in the 
linear elastic analysis of shells, firstly for the imposition of boundary displacements and latter 
for multi-region problems. In the former case, its advantage over Lagrange Multipliers is that 
no additional degrees of freedom are introduced and there is no need to introduce a new 
approximation space (which would have to obey an inf-sup condition), in the latter, 
refinement over one portion of the domain can be performed without affecting other regions, 
even maintaining their stiffness matrices, and different regions can be discretized with 
different approximants, e.g., finite elements. 
  

182



VI International Conference on Adaptive Modeling and Simulation 
ADMOS 2013 

J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) 
 
 
 

DEVELOPMENT OF A 3D NAVIER-STOKES DG SOLVER FOR 
ADAPTIVE SCHEME AND MODELLING 

VINCENT COUAILLIER, FLORENT RENAC, MARTA DE LA LLAVE PLATA 
EMERIC MARTIN, JEAN-BAPTISTE CHAPELIER, MARIE-CLAIRE LE PAPE 

Onera The French Aerospace Lab  
F-92322 Châtillon, France  
vincent.couaillier@onera.fr 

  
 

Keywords. Discontinuous Galerkin method, hybrid mesh, turbulent flow, High-order 
discretization methods 
 
Abstract. Over the years, the development of new and increasingly powerful CFD simulation 
tools has helped manufacturers in the aerospace industry gain a greater understanding of the 
operating performance of their products. This has allowed them to progress through the design life 
cycle in a more timely and cost-effective manner by supplementing or replacing experimental 
testing with CFD computations. 
The industrial demand for CFD predictions at an ever-increasing level of detail is the driving 
force for the development of highly accurate simulation techniques able to predict not only overall 
flow features, but also local values of the quantities of interest. This will allow engineers to 
expand the range of flow conditions to which CFD can be applied. 
Nevertheless, most of the industrial CFD codes used today are based on second-order methods, 
which appear not to be sufficiently accurate to reach these goals. With the aim of overcoming the 
limitations of second-order approaches, Onera has launched the development of a DG solver 
called Aghora [1], [2]. The main goal is to develop a new demonstrator able to integrate efficient 
high-order schemes based on Discontinuous Galerkin methods using hybrid type meshes 
(tetrahedral, hexahedra, prisms and pyramids) for the simulation of turbulent flows using different 
levels of modelling, i.e. RANS [2], LES, hybrid RANS/LES and DNS. Adaptive techniques based 
on local HPM methods (H for grid, P for accuracy of shape function, M for model) will be used in 
order to represent accurately the flow physics. 
However, these methods require the solution of very large discrete systems. This leads to long 
execution times and high memory requirements. Consequently, in order to tackle such challenges, 
the project focuses on the implementation of efficient algorithms for modern multi-core 
architectures with highly-scalable parallel strategies. The paper will present the status of the 
modal DG schemes implemented in Aghora as well as representative test cases illustrating the 
adaptability capacity of DG methods. 
In order to illustrate the interest of DG approach with high order polynomial degrees, a 
convergence analysis in terms of number of Degrees of Freedom (DOFs) is presented hereafter. 
The calculations are performed with the compressible Navier-Stokes equations for the simulation 
of a manufactured solution of a Poiseuille flow (M=0.1). Fig. 1 shows the evolution of the L2 
norm of the error vs. the characteristic size of the elements h, represented here by the Degrees of 
Freedom. The slopes obtained by the computations, compared to the theoretical slopes, 
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demonstrate the effective accuracy of the implemented Navier-Stokes DG scheme in Aghora.  

 
 
Mesh convergence analysis (h) and polynomial degree convergence analysis (p) for turbulent flow 
computations will be presented. Fig. 2 illustrates the solution of a transonic flow around the Onera 
M6 wing for a DGP1 computation performed with the Kω Wilcox model. 
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Abstract.
A lot of practical problems are related to the resolution of Partial Differential Equa-

tions (PDEs) defined on surfaces embedded in a three dimensional space. In such cases
the classical differential operators have to be suitably modified to recover tangential in-
formation (see [1]); likewise, the derivation of error estimators is usually not a trivial task,
essentially due to the fact that these estimators should include the error due to the finite
element approximation as well as to the fitting of the computational domain (see [3]).

Moving from the theory proved in [2], we propose an anisotropic a-priori error estimator
to control the L2-norm of the interpolation error associated with linear finite elements
defined on surfaces. This new error estimator consists of two different contributions:

- an almost best-approximation term, typical of a finite element discretization;

- a geometric error term, related to the discretization of the surface.

Moving from to this estimator, we settle a metric-based anisotropic mesh adaptation
procedure which essentially employs local operations (node smoothing, edge collapsing,
edge splitting, edge swapping) to adapt the mesh. Since an anisotropic estimator takes
into account the directional features of the solution at hand, we obtain adapted meshes
whose elements are suitably oriented to match the intrinsic directionality of the function
defined on the surface, and of the surface itself.

As expected the employment of anisotropic meshes leads to a remarkable improvement
of the mesh adaptation procedure in terms of computational costs.
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Abstract. The aim of this paper is to extend the global error estimation and control
addressed in Lang and Verwer [SIAM J. Sci. Comput. 29, 2007] for initial value problems
to finite difference solutions of parabolic partial differential equations. The classical ODE
approach based on the first variational equation is combined with an estimation of the
PDE spatial truncation error to estimate the overall error in the computed solution.
Control in a discrete L2-norm is achieved through tolerance proportionality and mesh
refinement. A numerical example illustrates the reliability of the estimation and control
strategies.

1 Introduction

We consider initial boundary value problems of parabolic type, which can be written
as

∂tu(t, x) = f(t, x, u(t, x), ∂xu(t, x), ∂xxu(t, x)) , t ∈ (0, T ] , x ∈ Ω ⊂ Rd , (1)

equipped with an appropriate system of boundary conditions and with the initial condition

u(0, x) = u0(x) , x ∈ Ω. (2)

The PDE is assumed to be well posed and to have a unique continuous solution u(t, x)
which has sufficient regularity.

1
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The method of lines is used to solve (1) numerically. We first discretize the PDE in
space by means of finite differences on a (possibly non-uniform) spatial mesh Ωh and
solve the resulting system of ODEs using existing time integrators. For simplicity, we
shall assume that this system of time-dependent ODEs can be written in the general form

U ′h(t) = Fh(t, Uh(t)) , t ∈ (0, T ] ,

Uh(0) = Uh,0 ,
(3)

with a unique solution vector Uh(t) being a grid function on Ωh. Let

Rh : u(t, · )→ Rhu(t) (4)

be the usual restriction operator defined by Rhu(t) = (u(t, x1), . . . , u(t, xN))T , where
xi ∈ Ωh and N is the number of all mesh points. Then we take as initial condition
Uh,0 = Rhu(0).

To solve the initial value problem (3), we apply a numerical integration method at a
certain time grid

0 = t0 < t1 < · · · < tn < · · · < tM−1 < tM = T , (5)

using local control of accuracy. This yields approximations Vh(tn) to Uh(tn), which may
be calculated for other values of t by using a suitable interpolation method provided by
the integrator. The global time error is then defined by

eh(t) = Vh(t)− Uh(t) . (6)

Numerical experiments in [5] for ODE systems have shown that classical global error
estimation based on the first variational equation is remarkably reliable. In addition,
having the property of tolerance proportionality, that is, there exists a linear relationship
between the global time error and the local accuracy tolerance, eh(t) can be successfully
controlled by a second run with an adjusted local tolerance. Numerous techniques to
estimate global errors are described in [9].

In order for the method of lines to be used efficiently, it is necessary to take also into
account the spatial discretization error. Defining the spatial discretization error by

ηh(t) = Uh(t)−Rhu(t) , (7)

the vector of overall global errors Eh(t) = Vh(t) − Rhu(t) may be written as sum of the
global time and spatial error, that is,

Eh(t) = eh(t) + ηh(t) . (8)

It is the purpose of this paper to present a new error control strategy for the global
errors Eh(t). We will mainly focus on reliability. So our aim is to provide error estimates

2
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Ẽh(t) ≈ Eh(t) which are not only asymptotically exact, but also work reliably for moderate
tolerances, that is for relatively coarse discretizations.

The global errors are measured in discrete L2-norms. A priori bounds for the global
error in such norms are well known, see e.g. [6, 10]. However, reliable a posteriori error
estimation and efficient control of the accuracy of the solution numerically computed
to an imposed tolerance level are still challenging. We achieve global error control by
iteratively improving the temporal and spatial discretizations according to estimates of
eh(t) and ηh(t). The global time error is estimated and controlled along the way fully
described in [5]. To estimate the global spatial error, we follow an approach proposed in
[1] (see also [7]) and use Richardson extrapolation to set up a linearised error transport
equation.

2 Spatial and time error

By making use of the restriction operator Rh, the spatial truncation error is defined by

αh(t) = (Rhu)′(t)− Fh(t, Rhu(t)) . (9)

From (3) and (9), it follows that the global spatial error ηh(t) representing the accumula-
tion of the spatial discretization error is the solution of the initial value problem

η′h(t) = Fh(t, Uh(t))− Fh(t, Rhu(t))− αh(t) , t ∈ (0, T ] ,

ηh(0) = 0 .
(10)

Assuming Fh to be continuously differentiable, the mean value theorem for vector func-
tions yields

η′h(t) = ∂Uh
Fh(t, Uh(t)) ηh(t)− αh(t) +O(ηh(t)

2), t ∈ (0, T ],

ηh(0) = 0 .
(11)

With Vh(t) being the continuous extension of the numerical approximation to (3), the
residual time error is defined by

rh(t) = V ′h(t)− Fh(t, Vh(t)) . (12)

Thus the global time error eh(t) fulfills the initial value problem

e′h(t) = Fh(t, Vh(t))− Fh(t, Uh(t)) + rh(t) , t ∈ (0, T ] ,

eh(0) = 0 .
(13)

Again, the mean value theorem yields

e′h(t) = ∂Uh
Fh(t, Vh(t)) eh(t) + rh(t) +O(eh(t)

2), t ∈ (0, T ],

eh(0) = 0 .
(14)

3
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Apparently, by implementing proper choices of the defects αh(t) and rh(t), solving (11)
and (14) will in leading order provide approximations to the true global error. The issue
of how to approximate the spatial truncation error and the residual time error will be
discussed in the next sections.

3 Estimation of the residual time error

We assume that the time integration method used to approximate the general ODE
system (3) is of order p ≤ 3. Following the approach proposed in [5] we define the
interpolated solution Vh(t) by piecewise cubic Hermite interpolation. Let Vh,n = Vh(tn)
and Fh,n = Fh(tn, Vh,n) for all n = 0, 1, . . . ,M . Then at every subinterval [tn, tn+1] we
form

Vh(t) = Vh,n + An(t− tn) +Bn(t− tn)2 + Cn(t− tn)3, tn ≤ t ≤ tn+1, (15)

and choose the coefficients such that V ′h(tn) = Fh,n and V ′h(tn+1) = Fh,n+1. This gives

Vh(tn + θτn) = v0(θ)Vh,n + v1(θ)Vh,n+1 + τnw0(θ)Fh,n + τnw1(θ)Fh,n+1 (16)

with 0 ≤ θ ≤ 1, τn = tn+1 − tn, and

v0(θ) = (1− θ)2(1 + 2θ), v1(θ) = θ2(3− 2θ), w0(θ) = (1− θ)2θ, w1(θ) = θ2(θ− 1). (17)

Now let Yh(t) be the (sufficiently smooth) solution of the ODE (3) with initial value
Y (tn) = Vh,n. Then the local error of the time integration method at time tn+1 is given
by

len+1 = Vh,n+1 − Yh(tn+1) = O(τ p+1
n ). (18)

Combining (16) and (18) and applying a Taylor expansion gives

Vh(tn + θτn)− Yh(tn + θτn) = v1(θ)len+1 +
1

24
(2θ3 − θ2 − θ4)τ 4

nY
(4)
h (tn) +O(τ p+2

n ) . (19)

Recalling Y ′h(t) = Fh(t, Yh(t)) for t ∈ (tn, tn+1] and rewriting the residual time error as

rh(t) = V ′h(tn + θτn)− Y ′h(tn + θτn) + Fh(t, Yh(t))− Fh(t, Vh(t)) , (20)

with θ = (t− tn)/τn, we find by differentiating the right hand side of (19)

rh(tn + θτn) = 6(θ − θ2)
len+1

τn
+

1

12
(3θ2 − θ − 2θ3)τ 3

nY
(4)
h (tn) +O(τ p+1

n ) . (21)

Setting θ = 1/2 in (21) will reveal

rh(tn+1/2) =
3

2

len+1

τn
+O(τ p+1

n ) . (22)

4
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Thus the cubic Hermite defect halfway the step interval can be used to retrieve in leading
order the local error of any one-step method of order 1 ≤ p ≤ 3 (see also [5], Section 2.2).
Following the arguments given in [5], Section 2.1, we consider instead of (14) the step size
frozen version

ẽ′h(t) = ∂Uh
Fh(tn, Vh,n) ẽh(t) + 2

3
rh(tn+ 1

2
), t ∈ (tn, tn+1], n = 0, . . . ,M−1,

ẽh(0) = 0
(23)

to approximate the global time error eh(t). Using

Vh(tn+1/2) =
1

2
(Vh,n + Vh,n+1) +

τ

8
(Fh,n − Fh,n+1) (24)

and

V ′h(tn+1/2) =
3

2τ
(Vh,n+1 − Vh,n)− 1

4
(Fh,n + Fh,n+1) (25)

we can compute the residual time error halfway the step interval from (12)

rh(tn+1/2) = 3
2τ

(Vh,n+1 − Vh,n)− 1
4
(Fh,n + Fh,n+1)

−Fh
(
tn+ 1

2
, 1

2
(Vh,n + Vh,n+1) + τ

8
(Fh,n − Fh,n+1)

)
.

(26)

Remark 3.1 From (21) we deduce

1

τn

∫ tn+1

tn

rh(t) dt =
len+1

τn
+O(τ p+1

n ) , (27)

showing, in the light of (22), that 2
3
rh(tn+1/2) is in leading order equal to the time-averaged

residual. Thus, we can justify the use of the error equation (23) without the link to the
first variational equation. ♦

4 Estimation of the spatial truncation error

An efficient strategy to estimate the spatial truncation error by Richardson extrapola-
tion is proposed in [1]. We will adopt this approach to our setting.

Suppose we are given a second semi-discretization of the PDE system (1), now with
doubled local mesh sizes 2h,

U ′2h(t) = F2h(t, U2h(t)) , t ∈ (0, T ] ,

U2h(0) = U2h,0 .
(28)

In practice, one first chooses Ω2h and constructs then Ωh through uniform refinement.
The following two assumptions will be needed. (i) The solution U2h(t) to the discretized
PDE on the coarse mesh Ω2h exists and is unique. (ii) The spatial discretization error

5
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ηh(t) is of order q with respect to h. We define the restriction operator Rh
2h from the fine

grid Ωh to the coarse grid Ω2h by the identity R2h = Rh
2hRh and set

ηch(t) = Rh
2hηh(t), U c

h(t) = Rh
2hUh(t), V c

h (t) = Rh
2hVh(t) . (29)

From the second assumption it follows that

ηch(t) = 2−qη2h(t) +O(hq+1) (30)

and therefore

R2hu(t) =
2q

2q − 1
U c
h(t)−

1

2q − 1
U2h(t) +O(hq+1) . (31)

The relation U c
h(t)− U2h(t) = ηch(t)− η2h(t) together with (30) gives

U c
h(t)− U2h(t) =

1− 2q

2q
η2h(t) +O(hq+1) . (32)

The spatial truncation error on the coarse mesh Ω2h is analogously defined to (9) as

α2h(t) = (R2hu)′(t)− F2h(t, R2hu(t)) . (33)

Substituting R2hu(t) from (31) into the right-hand side, using the ODE system (28) to
replace U ′2h(t), and manipulating the expressions with (32) we get after Taylor expansion

α2h(t) =
2q

2q − 1

(
(U c

h)
′(t)− F2h(t, U

c
h(t))

)
+O(hq+1) . (34)

Analogously to (6), we set ech(t)=V c
h (t)− U c

h(t). Substituting (U c
h)
′(t) by Rh

2hFh(t, Uh(t))
and using again Taylor expansion it follows that

α2h(t) = 2q

2q−1

(
Rh

2hFh(t, Vh(t))− F2h(t, V
c
h (t))

)
+O(hq+1)

− 2q

2q−1

(
Rh

2h

(
∂Uh

Fh(t, Vh(t)) eh(t)
)
− ∂Uh

F2h(t, V
c
h (t))ech(t)

)
+O(eh(t)

2) .

(35)
Assuming the term on the right-hand side involving the global time error to be sufficiently
small, we can use

α̃2h(t) =
2q

2q − 1

(
Rh

2hFh(t, Vh(t))− F2h(t, V
c
h (t))

)
(36)

as approximation for the spatial truncation error on the coarse mesh. To guarantee
a suitable quality of the estimate (36) we shall first control the global time error for
attempting that afterwards the overall error is dominated by the spatial truncation error
(see Section 6).

An approximation α̃h(t) of the spatial truncation error on the (original) fine mesh
is obtained by interpolation respecting the order of accuracy (see Section 5). Thus, to
approximate the global spatial error ηh(t) we consider instead of (11) the step-size frozen
version

η̃′h(t) = ∂Uh
Fh(tn, Vh,n) η̃h(t)− α̃h(t), t ∈ (tn, tn+1], n = 0, . . . ,M−1,

η̃h(0) = 0 .
(37)

6
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5 The example discretization formulas

In order to keep the illustration as simple as possible we restrict ourselves to one
space dimension. For the spatial discretization of (1) we use standard second-order finite
differences. Hence we have q=2. The discrete L2-norm on a non-uniform mesh

x0 < x1 < . . . < xN < xN+1 , hi = xi − xi−1 , i = 1, . . . , N + 1 , (38)

for a vector y = (y1, . . . , yN)T ∈ RN is defined through

‖y‖2 =
N∑
i=1

hi + hi+1

2
y2
i . (39)

Here, the components y0 and yN+1 which are given by the boundary values are not con-
sidered.

The example time integration formulas are taken from [5]. For the sake of completeness
we shall give a short summary of the implementation used. To generate the time grid
(5) we use as an example integrator the 3rd-order, A-stable Runge-Kutta-Rosenbrock
scheme ROS3P, see [3, 4] for more details. The property of tolerance proportionality [8]
is asymptotically ensured through working for the local residual with

Est =
2

3
(Ih − γτnAh,n)−1rh(tn+1/2) , Ah,n = ∂Uh

Fh(tn, Vh,n) , (40)

where γ is the stability coefficient of ROS3P. The common filter (Ih − γτnAh,n) serves
to damp spurious stiff components which would otherwise be amplified through the Fh-
evaluations within rh(tn+1/2).

Let Dn = ‖Est‖ and Toln = TolA + TolR‖Vh,n‖ with TolA and TolR given local toler-
ances. If Dn > Toln the step is rejected and redone. Otherwise the step is accepted and
we advance in time. In both cases the new step size is determined by

τnew = min
(
1.5,max(2/3, 0.9 r)

)
τn , r = (Toln/Dn)1/3 . (41)

After each step size change we adjust τnew to τn+1 = (T − tn)/b(1 + (T − tn)/τnew)c so as
to guarantee to reach the end point T with a step of averaged normal length. The initial
step size τ0 is prescribed and is adjusted similarly.

The linear error transport equations (23) and (37) are simultaneously solved by means
of the implicit midpoint rule, which gives approximations ẽh,n and η̃h,n to the global time
and spatial error at time t= tn. We use the implementations

(Ih −
1

2
τnAh,n) δen+1 = 2ẽh,n +

2

3
τnr(tn+1/2) , ẽh,n+1 = δen+1 − ẽh,n , (42)

and

(Ih −
1

2
τnAh,n) δηn+1 = 2η̃h,n − τnα̃h(tn+1/2) , η̃h,n+1 = δηn+1 − η̃h,n . (43)

7
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Clearly, the matrices Ah,n already computed within ROS3P can be reused. The spatial
truncation error α̃2h(t) at t= tn+1/2 is given by

α̃2h(tn+1/2) =
4

3

(
Rh

2hFh
(
tn+1/2, Vh(tn+1/2)

)
− F2h

(
tn+1/2, R

h
2hVh(tn+1/2)

))
. (44)

Since Vh(tn+1/2) and Fh(tn+1/2, Vh(tn+1/2) are available from the computation of rh(tn+1/2)
in (26), this requires only one function evaluation on the coarse grid. The vector α̃2h(tn+1/2)
on the coarse mesh is prolongated to the fine mesh and is then divided by 2q = 4 if the
neighboring fine grid points are equidistant, otherwise it is divided by 2q−1 = 2. The
remaining α̃h(tn+1/2) on the fine mesh are computed by interpolation respecting the order
of the neighboring spatial truncation errors.

Due to freezing the coefficients in each time step, the second-order midpoint rule is a
first-order method when interpreted for solving the linearised equations (14) (or likewise
the first variational equation) and (11). Thus if all is going well, we asymptotically have
ẽh,n=eh(tn) +O(τ 4

max) and η̃h,n=ηh(tn) +O(τmaxh
q
max) +O(hq+1

max).
After computing the spatial truncation errors we can solve the discretized error trans-

port equations (43) for all η̃h,n. We restrict here to globally uniform refinement. A locally
adaptive refinement strategy can be found in [2]. Although the uniform strategy may
be less efficient, it is very easy to implement and therefore of special practical interest if
software packages which do no allow dynamic adaptive mesh refinement are used.

Let Tol be a given tolerance. Then our aim is to guarantee ‖ηh(T )‖ ≤ Tol. From
(43), we get an approximate value η̃h,M for the spatial discretization error at T . If the
desired accuracy is still not satisfied, i.e., ‖η̃h,M‖ > Tol, we choose a new (uniform) spatial
resolution

hnew = q

√
Tol

‖η̃h,M‖
h (45)

to account for achieving ‖ηhnew(T )‖ ≈ Tol. From hnew we determine a new number of
mesh points. The whole computation is redone with the new spatial mesh.

6 The control rules

Like for the ODE case studied in [5] our aim is to provide global error estimates and to
control the accuracy of the solution numerically computed to the imposed tolerance level.
Let GTolA and GTolR be the global tolerances. Then we start with the local tolerances
TolA = GTolA and TolR = GTolR.

Suppose the numerical schemes have delivered an approximate solution Vh,M and global
estimates ẽh,M and η̃h,M for the time and spatial error at time tM = T . We then verify
whether

‖ẽh,M‖ ≤ CTCcontrolTolM , T olM = GTolA +GTolR‖Vh,M‖, (46)

where Ccontrol ≈ 1, typically > 1, and CT ∈ (0, 1) denotes the fraction desired for the
global time error with respect to the tolerance TolM . If (46) does not hold, the whole
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computation is redone over [0, T ] with the same initial step τ0 and the adjusted local
tolerances

TolA = TolA · fac, TolR = TolR · fac, fac = CTTolM/‖ẽh,M‖. (47)

Based on tolerance proportionality, reducing the local error estimates with the factor fac
will reduce eh(T ) by fac [8].

If (46) holds, we check whether

‖ẽh,M + η̃h,M‖ ≤ CcontrolTolM . (48)

If it is true, the overall error Eh(T ) = Vh(T )−Rhu(T ) = eh(T ) + ηh(T ) is considered
small enough relative to the chosen tolerance and Vh,M is accepted. Otherwise, the whole
computation is redone with the (already) adjusted tolerances (47) and an improved spatial
resolution.

We use the new mesh size computed from (45) with Tol = (1 − CT )TolM . To check
the convergence behaviour in space and therefore also the quality of the approximation
of the spatial truncation error, we additionally compute the numerically observed order

qnum = log

(
‖η̃h,M‖
‖η̃hnew,M‖

)/
log

(
h

hnew

)
. (49)

If qnum computed for the final run is not close to the expected value q used for our
Richardson extrapolation, we reason that the approximation of the spatial truncation
errors has failed due to a dominating global time error, which happens, e.g., if the initial
spatial mesh is already too fine. Consequently, we coarsen the initial mesh by a factor two
and start again. If the control approach stops without a mesh refinement, we perform an
additional control run on the coarse mesh and compute qnum from (49) with hnew=2h. It
turns out that this simple strategy works quite robustly, provided that the meshes used
are able to resolve the basic behaviour of the solution.

Summarizing, the first check (46) and the possibly second control computation serve
to significantly reduce the global time error. This enables us to make use of the approx-
imation (36) for the spatial truncation error, which otherwise could not be trusted. The
second step based on suitable spatial mesh improvement attempts to bring the overall
error down to the imposed tolerance. Using the sum of the approximate global time and
spatial error inside the norm in (48), we take advantage of favourable effects of error can-
cellation. These two steps are successively repeated until the second check is successful.
Additionally, we take into account the numerically observed order in space to assess the
approximation of the spatial truncation error.

7 Numerical illustration

To illustrate the performance of the global error estimators and the control strategy,
we consider the Allen-Cahn equation modelling a diffusion-reaction problem. For results
on further test problems and adaptive mesh refinement, see [2].
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The bi-stable Allen-Cahn equation is defined by

∂tu = 10−2 ∂xxu+ 100u (1− u2) , 0 < x < 2.5 , 0 < t ≤ T = 0.5 , (50)

with the initial function and Dirichlet boundary values taken from the exact wave front
solution u(x, t) = (1 + eλ (x−α t))−1, λ = 50

√
2, α = 1.5

√
2. This problem was also used

in [5].
We set GTolA = GTolR = GTol for GTol = 10−l, l = 2, . . . , 7 and start with one and

the same initial step size τ0 = 10−5. Equally spaced meshes of 25, 51, 103, 207, 415,
831, and 1663 points are used as initial mesh. The control parameters introduced above
for the control rules are CT = 1/3 and Ccontrol = 1.2. All runs were performed, but for
convenience we only select a representative set of them for our presentation, which can
be found in Table 1.

Table 1: Selected data for the Allen-Cahn problem.

Tol N TolM ‖Ẽh,M‖ ‖ẽh,M‖ ‖η̃h,M‖ Θest Θctr qnum

1.00e-2 103 2.05e-2 1.84e-0 1.45e-1 1.98e-0 9.89 0.11
4.69e-4 103 2.05e-2 5.78e-1 1.26e-3 5.79e-1 2.69 0.10
4.69e-4 677 2.02e-2 6.04e-3 1.11e-3 7.15e-3 1.19 3.98 2.34

1.00e-2 415 2.02e-2 7.69e-2 1.44e-1 6.73e-2 3.05 0.80
4.66e-4 415 2.02e-2 1.86e-2 1.11e-3 1.97e-2 1.23 1.34
4.66e-4 207 2.03e-2 9.17e-2 1.15e-3 9.29e-2 1.47 0.32 2.24

1.00e-3 207 2.03e-3 9.82e-2 2.97e-3 1.01e-1 1.60 0.03
2.27e-4 207 2.03e-3 8.80e-2 4.93e-4 8.85e-2 1.39 0.03
2.27e-4 1683 2.02e-3 6.14e-4 4.71e-4 1.09e-3 1.11 3.67 2.10

1.00e-3 831 2.02e-3 2.26e-3 2.87e-3 5.12e-3 1.33 1.19
2.35e-4 831 2.02e-3 4.01e-3 4.91e-4 4.50e-3 1.12 0.57
2.35e-4 1521 2.02e-3 8.42e-4 4.90e-4 1.33e-3 1.12 2.68 2.02

1.00e-4 1663 2.02e-4 8.89e-4 1.86e-4 1.08e-3 1.07 0.24
3.63e-5 1663 2.02e-4 9.88e-4 6.14e-5 1.05e-3 1.05 0.21
3.63e-5 4643 2.02e-4 7.30e-5 6.14e-5 1.34e-4 1.04 2.89 2.00

Table 1 contains the following quantities, Tol = TolA = TolR from (47), the number
of mesh points N , TolM = GTol (1 + ‖Vh,M‖) from (46), the estimated global error
Ẽh,M = ẽh,M + η̃h,M at time t = T , the estimated time error ẽh,M , and the estimated
spatial truncation error η̃h,M . Note that we always start with Tol = GTol in the first run.

The indicators Θest = ‖Ẽh,M‖/‖Eh(T )‖ for the ratio of the estimated global error and
the true global error, and Θctr = TolM/‖Eh(T )‖ for the ratio of the desired tolerance and
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the true global error serve to illustrate the quality of the global error estimation and the
control. Θctr ≥ 1/Ccontrol = 5/6 indicates control of the true global error.

The numerically observed order qnum for the spatial error is also given. From the
table one can see whether a tolerance-adapted run to control the global time error, a
spatial mesh adaptation step or an additional control run on a coarser grid was necessary.
Especially, the latter is marked by a dashed line.

Table 1 reveals a high quality of the global error estimation and also the control process
works quite well.

Let us pick one exemplary run out to explain the overall control strategy in more
detail. Starting with GTol = Tol = 10−3 and 831 mesh points, which corresponds to
the fourth simulation, the numerical scheme delivers global error estimates ‖ẽh,M‖ =
2.87 × 10−3 and ‖η̃h,M‖ = 5.12 × 10−3 for the time and spatial error of the approximate
solution Vh,M at the final time tM = T . The first check for the time error estimate
‖ẽh,M‖ ≤ CTCcontrolTolM = 8.08 × 10−4 fails and we adjust the local tolerances by a
factor fac = CTTolM/‖ẽh,M‖ = 2.35 × 10−1, which yields the new Tol = 2.35 × 10−4.
The computation is then redone. Due to the tolerance proportionality, in the second run
the time error is significantly reduced and the inequality ‖ẽh,M‖ ≤ 8.08 × 10−4 is now
valid. We proceed with checking ‖Ẽh,M‖ ≤ CcontrolTolM = 2.42× 10−3, which is still not
true. From (45), we compute a new number of spatial mesh points N = 1521. Finally,
the third run is successful and with the numerically observed spatial order qnum = 2.02
the numerical solution is accepted.

The ratios for Θest = ‖Ẽh,M‖/‖Eh(T )‖ lie between 1.04 and 1.23, after the control runs.
Control of the global error, that is ‖Eh(T )‖ ≤ CcontrolTolM , is in general achieved after two
steps (one step to adjust the time grid and one step to control the space discretization),
whereas the efficiency index Θctr = TolM/‖Eh(T )‖ is close to three. This results from
a systematic cancellation effect between the global time and spatial error, which is not
taken into account when computing hnew from (45).

8 Summary

We have developed an error control strategy for finite difference solutions of parabolic
equations, involving both temporal and spatial discretization errors. The global time error
strategy discussed in [5] appears to provide an excellent starting point for the development
of such an algorithm. The classical ODE approach based on the first variational equation
and the principle of tolerance proportionality is combined with an efficient estimation
of the spatial error and mesh adaptation to control the overall global error. Inspired
by [1], we have used Richardson extrapolation to approximate the spatial truncation
error within the method of lines. Our control strategy aims at balancing the spatial and
temporal discretization error in order to achieve an accuracy imposed by the user.

The key ingredients are: (i) linearised error transport equations equipped with suf-
ficiently accurate defects to approximate the global time error and global spatial error
and (ii) uniform or adaptive (see [2]) mesh refinement and local error control in time
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based on tolerance proportionality to achieve global error control. For illustration of the
performance and effectiveness of our approach, we have implemented second-order finite
differences in one space dimension and the example integrator ROS3P [4]. On the basis
of the test problem in this article and two other test problems in [2] we could observe that
our approach is very reliable, both with respect to estimation and control.
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Abstract. In this paper, we present developments done to obtain efficient parallel com-
putations on supercomputers up to 8192 cores. While most massively parallel computation
are shown using regular grid it is less common to see massively parallel computation using
anisotropic adapted unstructured meshes. We will present here two mains components
done to reach very large scale calculation up to 10 billions unknowns using a muligrid
method over unstructured mesh running on 8192 cores. We firstly focus on the strategy
used to generate computational meshes and in particular anisotropic ones adapted to cap-
ture a quite complicated test function. Then we will briefly describe a parallel multigrid
method. Performance test over a large range of cores from 512 to 8192 cores is then pre-
sented using the French national supercomputers Jade and Curie. The last section will
present a calculation done on smallest number of cores on our own cluster, but using more
realistic data obtain directly from experimentation. The goal is to be able to realize such
kind of simulation on really complex micro structure obtain by tomography at a larger
scale.

1 INTRODUCTION

From the last years computers power increase mainly by cores multiplication (rather
than clock rate rise) inside each CPU (classically 8 or 16 cores in 2012) and also for the
supercomputers of the top500 that contain several thousand to more than one million
cores. this context impose to develop fully parallel softwares to at least be able to take
advantage of new computer hardware. If we look at numerical simulation, computation
times are always to important and has soon as they decrease the user want to have more
precise computation by introducing more physical properties or by looking in computing
lower scale calculation to improve the material behavior. One of the mains way to reduce
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computation time is to use parallel computers and in the ideal case divide the CPU time
by the number of cores used. For that it is then necessary to develop algorithms that could
run on massively parallel computer containing hundred, thousand or even more cores like
ones present in the top500 list of supercomputers. We present here some algorithms done
to allow our application CimLib to run over massively parallel supercomputer using up
to 8192 cores. The first section will focus on parallel mesh adaptation with anisotropic
elements taht lead to generate smaller meshes for a given precision. A second part will
briefly present parallel multigrid method implemented to reduce the complexity of the
algorithm used to solve linear systems and fully utilize the power and memory given on
a computer. We present parallel performance on solving incompressible Stokes equation
using from 8 to 8192 cores and enable resolution of a linear system containing more that
10 billions unknowns by using 8192 cores. The last section will present more reasonable
simulation but on a more realistically and complex case. It consists in computing a flow
through a micro structure given directly from a real one using tomography.

2 parallel anisotropic mesh adaptation

2.1 parallel mesh adaptation strategy

We briefly present here the methodology used to parallelize our unstructured and non
hierarchic mesher, MTC [1]. At the beginning of this work, the sequential mesher already
exist and is likely to evolve (we recently add anisotropic mesh size [2]), so we want to keep it
as it was, by not including parallel instructions inside. So, we have not parallelized directly
it, but only give the oprtunity to use it inside a parallel context. The strategy is then to
combine local remeshing (inside each processor domain, freezing the interfaces between
the partitions) [3] and parallel mesh repartitioning [4] to move unremeshed interfaces
inside domains for the next step, in order to be able to apply the remeshing procedure on
theses zones during the next phase. Figure 1 illustrate this strategy on a simple geometry
using seven processors.

2.1.1 optimization and performance

This strategy of parallelization leads to several iterations (depending of the space di-
mension) between the mesher and the repartitioner, but the work to be done at each
iteration decreases quickly. For example, in a 2d space : the first remeshing step is
proportional to a surface, the second to a line and the last one to a point. For the reparti-
tionner, as we only need to move bad quality zones inside the domain in order to remesh
it, the proportion of elements and nodes to be migrate across the processors decreases in
the same way. For that reason the cost of using a multi steps strategy must be really
close to a single remeshing step: the global work done by the mesher is approximately the
same, and only some few mesh migrations are done during repartitioning steps. For that
purpose an optimization of the update procedures in case of small changes has been done
(the time spent to remesh or migrate 10 elements is then close to zero). This optimization
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Figure 1: Illustration of the parallelization strategy used for the mesher in a 2d case with a refinement by
4, over 7 processors. Each image represent one step of the iterative methodology consisting in successively
call parallel remeshing with frozen interfaces and parallel repartitioning, until convergence to good quality
mesh. The last repartitionning phase is done to load balance the work by considering finite element
resolution to come. 3
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is based on a permute-copy-past algorithm that leads to reduce the complexity from N

(the data size) to m (the moving size) with m ≪ N . Permutation removes any copy of all
the data by making instead some few permutations. After that, work is performed only
in the cutting zone and pasted back after being done. This optimization was essential to
maintain the iterative strategy costless, and so provide a good parallel efficiency to the
mesher.

2.2 anisotropic error estimator

Anisotropic meshes are used to keep the same accuracy of isotropic meshes but with a
smaller number of nodes and elements by allowing different mesh size depending of the
direction. The use of such anisotropic meshes could reduce drastically the size of the mesh
and in particular in 3d where a uniform refinement of a factor 2 increase the number of
nodes by a factor 8 that has to be compared to only a factor 2 if the refinement is only
needed in one direction. For anisotropic mesh adaptation we need use a mesh size definied
by a scalar for isotropic mesh and a symmetric positive defined tensor (named metric) for
anisotropic one. In order to enable mesh adaptation we need to provide to the mesher a
continuous field of mesh size one simple solution is to give a P1 interpolate field where
a local mesh size is defined at each mesh nodes. The way to compute this field could be
a average of the elements metrics containing this node with the difficulty of choosing a
good average value for tensors. A more direct way to defined this metric consist in using
the distribution tensor describe in [2] and given by :

Xi =
1

|Γ(i)|

∑

j∈Γ(i)

X ij ⊗X ij

where X ijis the vector
−−−→
XiXj between two neighbor nodes i and j and Γ(i) the neighbors

nodes of i.
This tensor give the anisotropic size of the envelope containing of the elements belong-

ing to node i, and the natural metric for the mesh is then simply defined by Mi = X
−1
i to

insure that using this metric this envelope has an unit length.
The anisotropic error estimator is well presented in [2] and we will here only present

the mains ideas. To be able to build a anisotropic error estimator we first need to be
able to define an anisotropic error and for that we will use the same technique of the
distribution tensor. For a given Level Set we will compute the error over nodes edges as :

eij =
∣

∣GijX ij
∣

∣

where Gijis the gradient variation of the level set function across the edge ij.
With this anisotropic error and given a number of nodes mesh we could define (for

demonstration refer to paper [2]) a metric tensor to generate an adapted mesh that will
uniformly distribute the error across its edges. The metric is given by :
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Mi =
1

|Γ(i)|





∑

j∈Γ(i)

s2ijX
ij ⊗X ij





−1

with

p ∈ [1, d]
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∑
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p+2
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where d is the space dimension, A is the global number of edges in the mesh and p

is the power of the power law estimation for the number of edges generated in the mesh
when we want to divide one edge. For example: for a one direction anisotropic mesh
divide an edges in that direction by a factor 2 will only multiply by 2 the global number
of edges in the mesh and then p = 1; in case of an isotropic mesh divide an edge by two
will generate eight times more edges so p = 3.

2.3 application test case

We present in this section an application test case adapted to massively parallel com-
putation. It consist in computing a adapted mesh to allow a good representation of a
complicated function defined by :

f(x) = a ◦ a(x− x0) + a ◦ a(x− x1)

where

a(x) = tanh

(

Esin

(

4 ∗N + 1

2
Π‖x‖

))

and

x0 = (0, .., 0) x = (1, ..., 1)

E and N are two parameters that can be adjusted. They respectively influence the
thickness and the complexity of the details present in the function: if E increase the size
of the detail decrease and if N increase then each detail contain become more and more
complex. The figure 2 represent the test function on an uniform square mesh containing
around 50000 nodes for E,N parameters equal to 1, 2 and 4. We notice that for E=4
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and N=4 the uniform mesh start to be to small to obtain a good representation of the
function f.

As soon as these parameters increase the function become really difficult to capture and
we need to activate both the anisotropic mesh adaptation and parallel computation to gen-
erate meshes fine enough to represent the test function. The bottom of figure 3represent
the 23 millions nodes anisotropic mesh generate to represent the test function with E=16
and n=6 on the unit square. It clearly illustrate the benefit of being able to execute
anisotropic mesh adaptation in parallel, here using 256 cores.

The figure 4 represent the same test case in a 3d context using smaller parameters
N = 1 and E = 4. E and N parameters. The 3d adapted mesh contain 2 millions
nodes and have been generate using 50 mesh adaptation iterations using 64 cores of Jade
supercomputer in 15.5 hours .

3 Multigrid solver

Using powerful computers containing a large numbers of cores could lead using very
big meshes with several millions nodes. Solving physical equation using for example
the finite element method will ends in solving very large linear systems. Using iterative
methods like Krylov ones will parallel preconditioner give good parallel performance but
the algorithm complexity (around O(n3/2) in 3d) become a bottleneck as soon as the
number of unknowns start to be important (taking a problem 2 times bigger and using
2 times more cores the time spent to solve will be greater than 2). To over come this
difficulty we have implemented a parallel multigrid solver using the framework give by
PETSc [5]. To do this we need to provide for each level the system to be solve and also
the interpolation/restriction matrix operator. Of course all these matrices must be build
and store in a distributed way to allow using a large number of cores. More details are
presented in [6] but a particular attention have been given to reduce the communication
during the construction of the interpolation operator using a parallel octree localization
algorithm and pixel mask filter distributed over processors to limit false positive external
nodes detection. The figure 5 present parallel performance of the multigrid resolution for
Stokes equation over a 2d square mesh of 800 millions nodes and using 512 to 4096 cores.
Time spent to solve the system decrease from 96.7 seconds with 512 cores to 17.7 seconds
with 4096 cores, in the same time the number of multigrid iteration only increase from
11 to 13 and leads to a speed-up of 5.46.

Even if a good parallel performance of the multigrid solver is important, the main
interest is the scalability of this approach that make us able to solve very very large
systems. An ideal scalability will be give by a algorithm that will use exactly the same
computing resources for a given per core problem size independently of the number of
cores uses. A scalability test have been done from 8 to 8192 cores on the multigrid solver.
The results are very interesting : the memory used per core during the process stay nearly
constant (from 1.94 to 2.14 GB) as well as the time spent to assemble all levels systems
(from 9.7 to 11 seconds) and the multigrid iterations (from 13 to 11); only the resolution
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Figure 2: Influence of the two parameters N and E on the complexity of the test function. This test
function is plot on an uniform 2d mesh containing 50 000 nodes. From the top to the bottom the
parameter N = 1, 2, 4 and from the left to the right the parameter E = 1, 2, 4. On the left bottom the
uniform mesh used to plot the test function.
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Figure 3: Anisotropic mesh adaptation around the test function f(x) = g ◦ g(‖x − 0‖ + g ◦ g(‖x − 1‖)
with g(x) = tanh(Esin(4∗N+1

2
πx)) with 2 sets of parameters : on the top N=3, E=16 and at the bottom

N = 6, E = 16. For these two sets we present : the function on the unit square, one cross detail and a
zoom on the mesh for a deep detail inside the cross detail. The 2d adapted meshes containing respectively
1 million and 23 millions nodes. They where build in respectively 576 seconds over 128 cores and 3 hours
on 256 cores of Jade supercomputer. The smallest mesh size is around receptively 10−5 and 10−6.

Figure 4: Anisotropic mesh adaptation in 3d around the test function with N = 1 and E = 8 for a final
mesh containing 2 millions nodes.
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Figure 5: Parallel efficiency for the multigrid resolution using 512 to 4096 cores. The number of multigrid
iteration needed to converge stay almost constant (efficiency close to one) has well as the parallel efficiency
per iteration. At the global point of view the parallel efficiency is a bit worse due to the combination of
per iteration parallel performance and increasing number of iteration but still very good (close to one)
has the problem size per core decrease as number of cores used increase.

time increase a beat more from 90 to 148 seconds. This augmentation of 50% of the time
spent to solve the problem between 8 and 8192 cores is still reasonable and may also
be reduce using more multigrid level over 8192 cores as the coarse level system size may
become to big (around 600 000 unknowns) to be solve in a efficient way. To conclude this
multigrid solver implementation have been able to solve a global system (based on the
Stokes equation) containing more than 10 billions unknowns using 8 levels in 158 seconds
using 8192 cores and 17.5 PB of memory.

4 From real to virtual

In this section we present some work done to enable making simulation using real micro
structure. Today tomography could produce some really nice (well defined but also heavy)
image of real material as shown on the left of figure 6 [7]. This image is constituted of a
large number of gray level voxel (equivalent to pixel in 2d), the back ones represent the
polymer matrix and white one solid fibers. From this image we extract the an isosurface
mesh (shown on the right of figure 6). Depending of the image definition the number of
voxel and thus the number of faces in the isosurface mesh could become really important
and may need to be executed in parallel using some small enough part of the whole domain
using some similar technique as octree. Once we have the isosurface mesh, it could be
immerse into the computational mesh by computing for all the mesh nodes the distance to
the isosurface that give a level set representation of the micro structure [8]. To improve the
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Figure 6: From real to virtual: a large 3d voxel image of the microstructure obtain by tomography
and treated with a segmentation algorithm, its surface mesh given by the isosurface 127, and finally the
computational domain with an anisotropic adapted mesh.

immersion of the microstrure we could lauch some anisotropic mesh adaptation procedures
that will provide the computational adapted mesh as shown in bottom of figure 6.

If the previous figures 6were done to illustrate the mesh adaptation to the real mi-
crostructure using anisotropic mesh, using bigger image for the microstructure generate
very big mesh and justify using massively parallel computer for both anisotropic mesh
adaptation but also for computing the solution. Figure 7 represent the computed flow us-
ing Stokes equation across the immerged microstucture. Computation was done using 96
cores on a 10 millions nodes adapted mesh to a microsuture image containing 900x900x220
voxels. This is this type of computation than we plan to do in a close future but over
much more larger image with around 4000x4000x4000 voxels given by new tomographic
acquisition. For being able to do that all the computational chain need to be run in
parallel from the image generation to the visualization of the computed results.

5 CONCLUSIONS

In this paper, we have presented the parallelization strategy for the mesher that consist
in iterate between a remeshing step with frozen interfaces and repartitionning step used to
migrate interfaces. In that way the mesher engine stay sequential and do not contain any
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Figure 7: Large numerical simulation of the 3d flow across a microstructure done using a big 900x900x220
tomographic image. Flow is compute over a 10 millions nodes adapted mesh using 96 cores. The isosurface
represent fibers microstructure, vector the velocity field.
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parallel instruction so it could still be developed (introduce anisotropic mesh) without any
specific knowledge. The implementation of a permutation cut and past optimization gives
excellent parallel performance as well as a better quality control for meshes generated.
Some examples of anisotropic distributed meshes adapted to well represent a complicated
test function are give and clearly show the interest of using anisotropic mesh rather than
isotropic ones : a 23 millions nodes anisotropic mesh adapted using 128 cores can capture
the test function with parameters N=6 and E=16 leading to a very complex function,
a equivalent representation will need a picture containing around one thousand billions
pixels.

A massively parallel multigrid method working on unstructured meshes have been also
presented. The construction of interpolation/restriction operators between very large dis-
tributed meshes and using a large number of cores need a powerful localization algorithm
used to determine which element contain a node. For that we use a parallel octree local-
ization method improve by a domain filter define by a pixel mask to reduce false detection
of non local nodes. By using this filter we have a important reduction of communication
even when domains are unrelated???. Very good parallel performance have been presented
for the multigrid approach use to solve Stokes equation on very fine meshes over a large
range of cores from 8 up to 8192 cores. The multigrid method developed allow to better
use all the resources of massively parallel computers (CPU and memory). Over 8192 cores
a global system containing more than 10 billions nodes have been solved with an 8 levels
multigrid solver in 148 seconds, using a total of 17,5Po of memory. It is important to
notice that for such a resolution we have been oblige to remove the 32 bits integer limit
in our code.

Finally we presented some more realistic simulation done on real micro structure ob-
tained by tomography. Tomography of a real material gives a 3d image (voxels) segmented
to represent the micro structure. This image is then used to build a Level-Set function.
A anisotropic adapted computational mesh is build in parallel to fit the micro structure.
Once this adaptation is done we could compute the flow through the micro structure. We
have presented here one simulation done over a 10 millions nodes 3d adapted mesh using
a micro structure image with 900x900x200 voxels. Visualization of the results has been
done using a parallel version of the Paraview [9]software, coupled with distributed results
files and using python scripts [10].

Future work we be done to improve and validate our algorithms and be able to scale
over tens to one hundred of thousands cores as the 32 bits integer limits have already
been removed. We will also look to simulate non linear materials on a larger VER given
by new tomographic acquisition leading to 4000x4000x4000 voxels images.
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Abstract. We derive a framework for a posteriori error estimates in unsteady, nonlinear,
possibly degenerate, advection-diffusion problems. Our estimators are based on a space-
time equilibrated flux reconstruction and are locally computable. They are derived for the
error measured in a space-time mesh-dependent dual norm stemming from the problem
and meshes at hand augmented by a jump seminorm measuring possible nonconformities
in space. Owing to this choice, a guaranteed and globally efficient upper bound is achieved,
as well as robustness with respect to nonlinearities, advection dominance, domain size,
final time, and absolute and relative size of space and time steps. Local-in-time and in-
space efficiency is also shown for a localized upper bound of the error measure. In order to
apply the framework to a given numerical method, two simple conditions, local space-time
mass conservation and an approximation property of the reconstructed fluxes, need to be
verified. We show how to do this for the interior-penalty discontinuous Galerkin method
in space and the Crank–Nicolson scheme in time. Numerical experiments illustrate the
theory. More details on the analysis and results can be found in [1].
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A common feature of the various groups of the team "mécanique et environnement" of 
the Institute of Fluid Mechanics and Solid Strasbourg is the numerical modeling of various 
flows in complex geometries: turbulent flows, free surface flows, fluid-structure interaction, 
flows in airways. For this purpose, we use very different solvers, either free solvers or 
commercial solvers or solvers developed at IMFS developed. This raises, among others, the 
problem of continuity of knowledge.  

Aware that a Navier-Stokes can not claim universality and potential to deal with any 
possible issues, we have developed a flexible and versatile tool for solving incompressible 
Navier-Stokes equations on Cartesian unstructured meshes. While the heart of a Navier-
Stokes solver can be based on a relatively small selection of proven methods, the geometry 
processing for codes claiming geometric 
flexibility represents up to 90% of the 
investment in terms of development effort. The 
numerical method proposed is based on a finite 
volume conservative discretization and a 
unstructured and non-conforming grid 
designed to circumvent the problem of mesh 
generation by the use of automatic mesh 
refinement. The immersed boundary method is 
used handle the geometry. 

The solver is fully parallelized with 
MPI and so far it has been extensively validated on the test cases of the driven cavity, the 
cylinder and the square cylinder before it application on the simulation of flow in human 
airways. So far the AMR is only available as a pre-processing tool. In this conference we will 
present the concept of this solver, its validation and its application to the simulation of 
unsteady flows in a Human airways model under realistic breathing conditions. 

Figure 1Geometry of human airways 
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Abstract. We present a p-adaptive method which takes advantage of the ability of
a discontinuity sensor used to quantify the di↵erence between the actual solution and a
projected reduced order solution in order to vary the polynomial resolution in an element.

1 INTRODUCTION

High-order methods have become increasingly more attractive in the field of aero-
dynamics due to their ability to increase the accuracy locally, their minimal numerical
di↵usion and dispersion properties, and the possibility to employ high-order meshes to
better describe the geometry. The present work focuses on a spectral/hp element method
using the Discontinuous Galerkin (DG) formulation [4] that is implemented using the open
source library Nektar

++. The main advantages of the DG method range from its high
accuracy to being highly flexible (allows for higher order meshes and h/p refinement) and
its e�ciency since it is easy to parallelise due to its block diagonal mass matrix structure.
Although the DG formulation has numerous advantages, its main disadvantage is that it
is computationally costly. A second limitation for the DG method is related to the treat-
ment of flow discontinuities which, if approximated by a polynomial of high degree, leads
to oscillations in the solution. As a result, an automatic polynomial adaptive procedure
(p-adaption) is proposed in the present work.

The p-adaptive process can be applied to both inviscid and viscous flows and lead to
a reduction in the computational cost of the simulation that could be significant, without
loss of accuracy. A similar dynamic p-adaptive method is described in [1] and it is applied
to the shallow water equations in [3]. The procedure described in these articles is based
on a sensor that reconstructs the gradient of the solution and updates the polynomial
degree by checking whether the magnitude of the sensor is higher or lower than a certain
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threshold value. The method is applied at each time step and the adaption strategy is
limited to use either p = 1, 2 or p = 2, 3 in each simulation.

The local support of the DG discretisation allows for the application of di↵erent polyno-
mials and di↵erent number of quadrature points in di↵erent zones of the domain. Fur-
thermore it is also possible to define the polynomial degree and the number of points of
each element of the domain independently from each other. This property is intrinsic in
the discontinuous features of the DG method. Since information is propagated between
two elements only through their interface, the expansion within an element depends only
upon its own values and the interface values of adjacent elements.

2 SENSOR-BASED P-ADAPTION STRATEGY

This study proposes an alternative strategy and the adaption procedure is applied af-
ter the current spatial distribution of polynomial degree, p, has converged to a steady
solution. Moreover, the maximum degree is not imposed, but each element is free to
assume any degree and the automatic p-adaptive strategy stops when a stable spatial
p-distribution is reached. This method has been developed for modelling steady problems
but it may be extended to time-dependent problems provided that an e�cient method to
vary the polynomial degree at each time step is implemented.

This procedure takes advantage of the ability of a discontinuity sensor used to quan-
tify the di↵erence between the actual solution (p) and the projected reduced one (p � 1)
in order to vary the polynomial resolution in an element. The value of the sensor in an
element is defined in the same way as described in [6]:

S

e

=
||⇢p

e

� ⇢

p�1
e

||
L2

||⇢p

e

||
L2

(1)

where ⇢

p

e

and ⇢

p�1
e

are the average solutions of degree p and p�1 respectively on the same
element. The polynomial degree is decreased when a discontinuity is present in order to
avoid oscillations and increased when a high gradient is identified to improve the accuracy.
This procedure allows the simulation to adapt to the flowfield, increasing the accuracy of
the solution only where needed and, as a consequence, reducing the computational cost
required for solving the problem. Furthermore, this sensor is used to locally add an extra
di↵usion term to enable shock capturing as described in [5, 6].

Initially, a converged linear solution is obtained after which the sensor in each element
is calculated. Based on the determined sensor value and the pre-defined sensor thresh-
olds, the degree of the polynomial approximation in each element is increased, reduced or
maintained and a new converged solution is obtained. The sensor distribution is divided
into four zones:
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where s

ds

, s

sm

and s

fl

are the threshold values to identify discontinuities, smooth and flat
solutions respectively. This procedure is carried out iteratively.

In order to determine the solution at p�1 and threat the numerical fluxes at the edges of
the element accordingly, the solution at polynomial order p, determined using a modified
basis, has to be projected onto a hierarchical orthogonal expansion basis. Hence, using a
more general formulation, the solution of a variable u is expressed as:

u

0 = u (3)

where u and u

0 represent the general solution obtained using a modified basis (B) and
orthogonal (B0) respectively, hence:

B0
û

0 = Bû ! û

0 =
⇥
B0

⇤�1
Bû (4)

where û represents the vector of coe�cients at polynomial p

+. Since a hierarchical basis
is used, it is possible to lower the polynomial order to p

� where p

+
> p

�. Since the
coe�cients are not coupled in the hierarchical orthogonal basis and the information about
the mean is contained only in the first coe�cient, it is possible to apply a cut-o↵ filter to
the orthogonal coe�cient vector. This cut-o↵ filter sets all the coe�cients that are higher
than p

� equal to zero. The information contained in the high frequency components
is removed without altering the mean value. The orthogonal coe�cients represent the
solution at p

� using an orthogonal basis, hence the following transformation has to be
applied to obtain the modified filtered coe�cients of the lower polynomial degree:

û

f

=
⇥
B�1

⇤
B0

û

0
f

(5)

The solution ⇢

p�1
e

, is obtained from ⇢

p

e

using this post processing step.

When dealing with di↵erent polynomial degrees, it is important to ensure an adequate
treatment of the two following operations: the change of the polynomial degree of the so-
lution in one element and the computation of the numerical flux on the interface. Hence,
after the sensor is applied and the polynomial order of the element is changed, a similar
filtering procedure is performed to compute the advective numerical fluxes on the inter-
face of two elements with di↵erent expansions since the appropriate number of quadrature
points has to be used. The number of quadrature points has to be equal to the number
used by the highest polynomial degree of the two adjacent elements to avoid numerical
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instabilities [2]. To ensure conservation and stability, the continuity of the total flux is
required and therefore: Z

�f�

Fu

�d�
f

=

Z

�f+

Fu

+d�
f

(6)

Where Fu

� and Fu

+ represent the numerical flux on the edge between two elements with
a lower and a higher polynomial order respectively. If the order or the quadrature points
is di↵erent, the coe�cients are copied directly on the higher resolved side, but fewer
coe�cients have to be set on the other side. The interface flux is then projected on the
space of orthogonal polynomials and then filtered to delete the high-order frequencies.
Once the degree of the orthogonal expansion is decreased to the lower degree, a reverse
projection is carried out and modified coe�cients are found.

3 RESULTS

The performance of the p-adaptive method is illustrated for the solution of the tran-
sonic flow (M = 0.8) over a NACA0012 aerosol under an angle of attack of ↵ = 1.25�.
Two shocks are generated on the aerofoil: a strong shock on the top, at about x = 0.6 and
a weaker shock on the bottom of the aerofoil at x = 0.3. The reference C

p

distribution
used for comparison is taken from [8], in which the numerical solution is obtained with a
finite volume method, the aerofoil wall is discretised by 320 cells and the farfield bound-
ary is placed at 25 chords. Figure 1 depicts the density and Mach distribution around
the aerofoil, the final spatial p distribution and the sensor distribution. Even though the
grid is very coarse, the shock is well resolved, it is captured in only one cell and it does
not create oscillations in the neighbour cells. The discontinuity sensor is active only at
the shock waves and the rest of the flow field is di↵usion free. The p-adaptive procedure
increases the polynomial degree of the discretisation close to the aerofoil and maintains
p = 3 on the shock in order to avoid oscillations of the solution. Since the mesh is very
coarse, most of the error in the C

p

calculation is introduced at the shock position on
the top of the aerofoil. Since the p-adaptive procedure does not increase the polynomial
degree in the elements where the shock is present.

The e�ciency of the p-adaptive procedure comes from the reduction in the number of op-
erations required to solve the equations, but also the initial condition of each 1  p  p

max

simulation is a converged solution obtained with a lower degree (1  p  p

max

�1). How-
ever, the smaller CFL time restriction associated with p

max

has to be imposed over all
the domain, thus reducing the time step also in the regions with lower polynomial order.
A possible improvement could be the application of a domain decomposition technique or
variable timestepping to deal with di↵erent values of� t through the domain.

Current work is performed on the extension of the illustrated p-adaption technique to
time-dependent 3D problems in Nektar

++ provided that an e�cient method is developed
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to vary the polynomial degree at each time step. Furthermore, ongoing investigation is
performed on the topic of shock capturing in 3D compressible flow and results of both
topics will be discussed during the ADMOS conference.

7. p-adaption
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Figure 7.8: Solution of the inviscid transonic flow past a NACA0012 aerofoil. (a)
Density distribution; (b) Mach distribution; (c) Polynomial degree

distribution: blue: p = 1, green: p = 2, yellow: p = 3, red: p = 4; (d)
Sensor distribution.

the shock is present, the accuracy of the solution presents little improvement when the

polynomial degree is increased above p = 3, as Table 7.1 shows.

Transonic viscous flow

Finally a transonic viscous flow with free-stream conditions corresponding to a Mach

number Ma= 0.8, a Reynolds number of Re= 73 and at an angle of attack of ↵ = 10�

136

Figure 1: Solution of the inviscid transonic flow past a NACA0012 aerosol. (a) Density distribution; (b)

Mach Distribution; (c) Polynomial degree distribution: blue: p = 1; green: p = ; yellow: p = 3; red: p

= 4; (d) Sensor distribution.
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Abstract. Aerodynamic design and optimization of engine installation is a pivotal part of the 

helicopter design process. To this purpose an adaptive, problem-independent and reliable 

optimization methodology would be particularly valuable in reaching such goal. The 

application of advanced evolutionary algorithms coupled with CFD solvers for the accurate 

flow solution of validated numerical models represents a very powerful tool for the parametric 

design and optimization of engine installation components. Within the JTI Clean Sky FP7 

project “HeavyCopter” the consortium constituted by the University of Padova (UNIPD) and 

the spin-off company HIT09 developed an automatic optimization loop based on the home 

made genetic algorithm GeDEA, and applied it to engine installation design of a heavy-class 

helicopter, as well as to aircraft components optimization problems. This paper illustrates the 

application of the GeDEA-based optimization loop both at forward and hover reference flight 

conditions for such helicopter. The algorithm pursues the minimization of the total pressure 

losses at the inlets while keeping the flow distortion at the engine inlet at the lowest level; 

regarding the exhaust, the back-pressure is minimized in order to increase the power output of 

the engine while preserving the entrainment ratio. The results highlight significant improved 

performance margins in all the components. 
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 2 

1 INTRODUCTION 

Within the Clean Sky framework, the joint technology initiative funded by the European 

Commission and industry, a specific activity is dedicated to the study of the engine 

installation of the AgustaWestland AW101 heavy helicopter. A consortium constituted by the 

University of Padova and the companies HIT09 and MDA submitted the HEAVYcOPTer 

project proposal in response to a specific Call on the subject [1]. The Call pertained a 

contribution and the supporting in accomplishing the aerodynamic optimisation of the intake 

and exhaust of the AW101 helicopter. 

Efficient aerodynamic design of air intakes is a challenging objective for airframe 

manufacturers: inlet flow typically develops in adverse pressure gradient conditions, which 

leads to boundary layer instability and possible flow separation. Therefore inlet cross 

sectional area distribution along the central line should be optimized in order to minimize 

boundary layer “loading” and avoid separation [1]. In addition, for helicopter intake 

applications, an S-shaped duct is usually required to channel the air to the engine face; this is 

due to the presence of the engine shaft and the requirement for short and compact duct layout. 

From the fluid-dynamic point of view, a curved duct induces a secondary flow pattern, which 

essentially sets up pockets of swirling flow at the duct exit [2] and determines engines 

performance degradation [3].  In severe situations, these pockets can produce rotating stall 

instability of the compressor rotor [4]. Therefore, the internal shape of the curved duct should 

embody proper strategies in order to minimize total pressure loss and flow distortions at the 

engine face [5]. Finally, stability of boundary layer in turboprop and helicopter inlets may 

also be remarkably affected by the aircraft operating conditions and flight speed [6], [8], [8]. 

In such a context, CFD is a powerful tool which can be used to accurately evaluate the 

complex flow behaviour within inlet ducts: [10] and [11] are remarkable examples of CFD 

application to intake aerodynamics. When coupled with geometry parameterization 

techniques, CFD provides an effective automatic design methodology for inlet ducts.  

Within the HEAVYcOPTer framework, the baseline intake CFD model has been built up 

and validated by means of a comparison against the available wind tunnel experimental data, 

starting from the existing AW101 engine installation geometry provided by AgustaWestland 

Ltd. via CATIA® CAD models. CFD analysis has been carried out for the nominal hover and 

forward flight cruise conditions; then, results have been analyzed in terms of total pressure 

losses, flow distortions, flow separations and all those aspects that affect the efficiency of the 

helicopter intake system. This analysis allowed to properly understand the aerodynamic 

behaviour of the actual design and to identify the most appropriate parametric changes to be 

applied to the geometry during the optimisation phase.  

The baseline CFD solution and its associated parametric geometrical model are then the 

main inputs for the optimisation procedure selected, which involves the application of the 

GeDEA [12]. The GeDEA is the University of Padova home-made genetic algorithm able to 

perform multi-objective optimisation analysis with the general approach of the Pareto frontier 

search; it has been compared to others state of the art genetic algorithm with excellent results 

and, interfaced with flow solvers, it has been successfully used in several fluid-dynamics 

applications; in particular, within the clean-sky GRC2 research program [13], the GeDEA 
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based optimisation loop has been successfully applied to several fuselage and engine 

installation components of the European tilt rotor ERICA [13].  

The results obtained by the application of the above mentioned optimisation chain on the 

AW101 engine installation are presented in this paper, with focus on the air intakes and 

exhaust number one optimisation outcomes. 

2 DESCRIPTION OF THE OPTIMISATION METHOD 

The aerodynamic optimisation procedure which has been implemented and used for the 

project HEAVYcOPTer is structured in three phases as follows: 

- Baseline model preparation and simulation phase; 

- Automatic optimisation phase; 

- Post-processing and optimized CAD model reconstruction phase. 

2.1 Baseline model simulation 

Typically the starting point is represented by the CAD model of the baseline configuration. 

Starting from the geometrical model, the procedure moves into the “baseline simulation 

block” (see Figure 1), where the baseline configuration of the component under consideration 

is analyzed via CFD in terms of aerodynamic performance in the most relevant operating 

conditions. The assessment of the baseline solution allows the designer to proper understand 

the flow field characteristics of the object under analysis, gives fundamental indications for 

the optimisation objectives and constraints identification and make it possible to setting up the 

geometrical parametric model. 

 

Figure 1: Optimisation method flow-chart 
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2.2 Automatic optimisation execution 

When the preliminary operations have been completed, the optimisation can be carried out 

by means of the automatic optimisation loop in Figure 1: it is constituted by the following 

components: 

- GeDEA (Genetic Diversity Evolutionary Algorithm): it is an advanced multi-objective 

optimisation algorithm developed at the University of Padova [12]. It is the selected 

optimisation engine; 

- Altair HyperMorph®:  it makes possible to convert the design parameters coming out 

from GeDEA into morphed CFD cases, suitable for the objective function evaluation; 

- Ansys Fluent®: the selected flow solver; it takes in input the morphed CFD cases 

coming from HyperMorph® and gives back to GeDEA the corresponding values of 

the chosen objective functions.  

During the optimisation process, GeDEA lets a population of individuals “evolve” (each 

one corresponding to a different set of design variables and so to a different geometrical 

configuration) until the convergence to the Pareto optimal frontier has been reached, being the 

Pareto frontier the set of non-inferior solutions, which represents the solution of a multi-

objective optimisation problem; a non-inferior solution, also called Pareto optimal or non-

dominated solution, is one in which an improvement in one objective requires the degradation 

of another [15].  

2.3 Post-processing 

The Pareto frontier in output from the automatic optimisation loop represents a multiple set 

of solutions equally optimal according to the Pareto concept but of course different form the 

aerodynamic and engineering point of view. In fact each solution over the Pareto frontier may 

present advantages and drawbacks with respect the other solutions. In order to choose among 

the optimal set the most appropriate solution a post-processing is necessary. Thanks to the 

intrinsic multi-objective approach adopted, the designer is allowed to select, among the Pareto 

optimal set, the solution which is more suitable for his needs: for example, choosing to 

privilege the improvement of one objective with respect to the other or even including other 

considerations such as non-aerodynamic requirements. The strength of the selected approach 

is that the designer can choose the proper trade-off between the objectives when the 

optimisation work has been completed and he is not forced to introduce his arbitrariness in the 

problem set up, as commonly happens using traditional optimisation approaches. 

3 AW101 ENGINE INSTALLATION DESCRIPTION 

The AW101 engine intake system is constituted by three side intake ducts feeding the three 

helicopter engines; from now on, we will refer to air intakes as "intake#1" and "intake#3" for 

the two symmetrical intakes on the fuselage sides, and "intake#2 for the intake placed at the 

top of the fuselage roof (Figure 2). 
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Figure 2: View of the engine installation on the AW101 CAD model. 

An intake duct is an S-shaped duct connecting the side entry section with the engine 

compressor face, commonly referred as Aerodynamic Interface Plane (AIP). CAD layouts of 

engine#1 and engine#2 bay internal components were provided by AgustaWestland Ltd in 

order to allow the definition of geometrical modifications of the duct surfaces so as to be 

compliant with the installation architectural constraints (Figure 3). 

 

 

 

 

Figure 3: Internal view of intake S-duct and bay internal components layout for engine#1 and engine#2. 

AW101 engine bay and exhaust are replaced by a simplified rig configuration, which was 

tested at the AWL wind tunnel facility in order to get cold flow data on current engine system 

and to validate CFD models. The CAD layout of the exhaust internal components was 

provided by AgustaWestland Ltd in order to allow the definition of geometrical modifications 

of the daisy nozzle and central body surfaces so as to be compliant with the installation 

architectural constraints (Figure 4). The swirl generator blades are replaced by a flat surface 

S-duct 

entry section 

Bay#1 layout 
AIP 

Bay#2 layout 
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normal to the main flow direction, where a FAN boundary conditions is applied in order to 

reduce mesh size and to make the model more representative of the real exhaust installation.  

Only the primary nozzle and the central body installed on Engine#2 is optimised.  

 

Figure 4: Boundary Conditions applied to full scale Rig model. 

4 SET UP OF THE PARAMETRIC MODEL 

Once the main geometrical features characterising the baseline designs are identified, 

design parameters are generated for the complete geometrical control of the intake#1 and 

intake #2 duct shapes and of the exhaust daisy nozzle and central body shapes. Those 

parametric shapes are generated using the Altair software HyperMesh® by means of the mesh 

morphing and parameterisation techniques available within the morphing toolbox 

HyperMorph®, utilizing a combination of different free form techniques available within the 

tool. When applied, the nodes displacements can be saved as perturbation vectors and then be 

reapplied to the baseline model with any given scaling factor. Shape scaling factors become 

then the design variables for the optimisation problem; the morphed geometry results 

therefore from the linear combination of the user defined shapes multiplied by their own 

scaling factors: 

 

(1) 

 where: 

-  is the global displacement vector; 

-  are the i
th

 basic shapes defined within HyperMorph®. 

-  is the i
th

 shape scaling factor generated by GeDEA. 

- n is the number of parameters for the current application. 

During the automatic optimisation process, the scaling factor  represents the set of design 

parameters controlled by the genetic algorithm. 

 

Mass flow 

inlet 

Exhaust to 

ambient 

conditions 

Pressure Inlet 

Ambient 

conditions 

FAN Swirl Generator 
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Some examples of shapes are shown in Figure 5 and Figure 6. 

 

 

 
  

Figure 5: Examples of shapes respectively for intake#1, intake#2 and exhaust#2 

   

Figure 6: Examples of shapes respectively for intake#1, intake#2 and exhaust#2 

5 FORMULATION OF THE OPTIMISATION PROBLEM 

The GeDEA-based optimization loop has already been successfully applied to several 

fuselage and engine installation components of the European tilt rotor ERICA [14]: the 

interested reader can find an extensive description of the main achievements of the Clean Sky 

GRC2 projects CODETilt [16] and TILTOp [17] in the conference papers [18], [19] and [19]. 

Two different objective functions are formulated to pursue the HEAVyCOPTer optimization, 

one for the air intakes and one for the exhausts, respectively. 

The former is a two-objective and two-component vector function; it is obtained from the 

sum of the total pressure loss term and a penalty function term. It can be formally expressed 

as: 

 

minimize {G(x) = [F(x) + PF(x)]} (2) 

Baseline 

Sh14=1 

Sh5 = 1  

Sh4=1 

Baseline 

Sh3 = 1 

 
Baseline 
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Where F(x) accounts for aerodynamic total pressure loss (ΔPT) within the intakes at the 

two reference flight conditions: 

cruisexP

hoverxP
xF

T

T

@|)(

@|)(
)(

 

(3) 

The penalty function PF(x) introduces a functional constraint on the flow distortions at 

the engine inlet by worsening the score of a new configuration with an additional term that is 

proportional to the DC60 factor difference with respect to the baseline configuration: 
 

baseline

baseline

DC60DC60(x) if 
60

60)(60

DC60DC60(x) if                                    0

)(

baseline

baseline

DC

DCxDCxPF

 

(4) 

 

where the coefficients β and γ control the intensity and shape of the penalty function 

respectively. Again, this term is evaluated at the two flight conditions. 

The design variables vector, x, is given by the set of scaling factors, subject to the 

variable bounds which will differ between Intake#1 and Intake#2: 
  

x = [ α1...αn] 
(5) 

 

The exhausts objective function E(x) is a bi-objective two component vector function, 

evaluated  at the forward flight condition only: 
 

cruiseERxER

cruisexBP
xE

baseline @|)(

@|)(
)( minimize

 
(6) 

 

where BP(x) and ER(x) represents the back-pressure and the entrainment ratio respectively: 
 

hot

cold

s

sinletexhaustT

m

xm
xER

P

PP
xBP

)(
)(;)(

,

 
(7) 

 

where Ps represents the free-stream static pressure. 

As mentioned before, G(x) and E(x) are evaluated and passed to the algorithm by means 

of CFD simulations of the individual x. 

6 SUMMARY OF THE OPTIMISATION RESULTS 

The both intakes and exhaust#2 optimisation results are discussed within in this section: 

the optimization loop had completed 7, 5 and 5 evolutionary generations on Intake#1, 

Intake#2 and Exhaust#2 respectively. Remarkable improvements on the objective functions 

are achieved. Figure 7, Figure 8 and Figure 9 show the final Pareto frontiers calculated by the 

GeDEA algorithm for Intake#1, Intake#2 and Exhaust#2 respectively: despite the number of 

generations is relatively small, significant improvements in both hover and forward flight 

objective functions can be observed. 
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Figure 7: Intake#1 GeDEA Pareto frontier, 7th generation and evolution of the Pareto front through the 

generations; the selected optimal individual is highlighted. 

 

 

Figure 8: 5
th

 generation  Intake#2 GeDEA Pareto frontier, including (orange dots) and excluding (brown dots) 

the penalty function (Error! Reference source not found.) in the computation of the fitness value. The no-

penalty fitness score of the optimised solution is highlighted in yellow. 
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Figure 9: 5
th

 generation  Exhaust#2 GeDEA Pareto frontier; the selected optimal individual is highlighted. 

Hover: total 

pressure 

distribution along 

the duct 

  

Hover: 
AIP total pressure 

distribution 

  

 
 

Figure 10: Hover AIP Total Pressure distribution comparison (normalised by free stream total pressure value) 

for intake#1; baseline (left) and optimal solution (right). 
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Forward flight: 
total pressure 

distribution along the 
duct 

  

Forward 
flight: 

AIP total pressure 
distribution 

 

  
 

 

Figure 11: Forward flight AIP Total Pressure distribution comparison (normalised by free stream total pressure 

value) for intake#2; baseline (left) and optimal solution (right). 

 

Figure 12: Forward flight Total Pressure [Pa] contours over x-y plane section comparison for exhaust#2; 

baseline (left) and optimal solution (right). 
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Figure 13: Forward flight Turbulent Viscosity [kg/s] over x-y plane section comparison for exhaust#2; baseline 

(left) and optimal solution (right). 

7 CONCLUSIONS 

The selected optimised geometry for Intake#1 displays a -25/-33% total pressure loss 

reduction from the baseline in hover/forward flight respectively, without any detrimental flow 

distortion effect.  

The cruise-optimized geometry of Intake#2 does worsen the hovering performances to a 

limited extent, while significantly improving the forward flight efficiency: a +10/-25% total 

pressure loss drop is obtained (hovering/cruise). 

Back-pressure on Exhaust#2 was lowered by the 22% from the baseline, while 

maintaining the entrainment ratio (which increases by the 4%). 

The paper demonstrate the strength of the parametric approach chosen: the genetic 

algorithm GeDEA provides an efficient search procedure for alternative designs and optimal 

solutions while the morphing technology adopted allows solution compatibility with 

feasibility considerations and industrial constraints. 
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Abstract. A fully coupled solver for the solution of steady laminar incompressible flow
problems on locally refined non-matching block-structured grids that promises improved
convergence properties is presented. For this a coupled velocity-pressure algorithm devel-
oped by Darwish [1] that solves the momentum and pressure equations simultaneously is
extended correspondingly. The spatial finite-volume discretisation applied is of second-
order accuracy. All blocks are implicitly coupled and the method is fully conservative.
The newly developed method is verified via comparisons with manufactured solutions. Its
performance is evaluated by systematic comparisons with standard segregated pressure-
correction solution techniques for representative test cases.

1 INTRODUCTION

Incompressible flows of Newtonian fluids can be described mathematically by the non-
linear Navier-Stokes equations. To handle these equations in the present approach nu-
merically, they are discretised with a finite volume method on collocated block-structured
grids.
Geometrically complicated flow configurations demand highly adapted grids in order to
achieve the required numerical accuracy. In general the grid should be very fine in re-
gions with larger variations of the dependent variables. Choosing the grid resolution of a
block-structured grid such as large variations of the dependent variables are sufficiently
resolved, can lead to high densities of grid points in regions where they are not required.
One possibility to avoid regions with too high grid resolution are local grid refinement ap-
proaches. Various strategies for local grid refinement have been proposed in literature [3].

1
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The present approach constitutes a h-method where the grid cells are obtained by dividing
the control volumes (CVs) into four subcells in two dimensions and eight subcells in three
dimensions. The approach can be easily extended to an arbitrary refinement of grid cells.
A block-wise refinement of the block-structured grid is performed.
There are mainly two strategies to couple the local refinement region with the non-refined
regions: The first one treats the refinement region as a different grid level and the result
on a coarse level serves as a boundary condition and an initial guess to the computation
of a finer level. In case of a rather complex multigrid datastructure is already used such
approaches are fairly easy to implement due to the preservation of the grid structure and
straightforward treatment of the coarse-fine interface. Based on the idea of Berger and
Collela [4] Quirk [5] successfully implemented an hierarchical adaptive grid refinement
approach for compressible flows.
The second strategy couples refined and non-refined regions at the same level, computing
the whole grid simultaneously [6, 7]. Special discretisation schemes are required for the
coarse-fine grid interface to ensure a proper coupling of the subdomains. The presented
algorithm follows this second strategy.
There are several ways by which blocks can be interconnected. Arbitrary overlapping
blocks connected to each other can be generated during a grid generation process (so-
called Chimera grids). With these Chimera grids it is difficult to ensure conservation.
Interpolation between overlapping regions may have to be constructed problem depen-
dent, restricting the generality of the algorithm.
In the presented approach the internal block boundaries are patched together, making
them share a common interface line, but allowing a different point distribution for each
block. Compared to Chimera grids redundant regions are avoided. These patched grids
are also called zonal grids or block adaptive grids.
Besides the choice of the grid the velocity-pressure coupling algorithm is an essential part
with respect to the efficiency and robustness of a solution algorithm for the Navier-Stokes
equations. There are mainly two strategies to perform the velocity-pressure coupling on
collocated grids, either a segregated or a coupled approach. In the segregated approach,
the system of equations for all variables are solved sequentially using fixed values from the
last iteration of other dependent variables. A well known representative is the SIMPLE
algorithm [8].
In the coupled approach all discretised equations of all dependent variables are solved in
one system. Pressure based coupled solvers can be divided into two groups. In the first
group the Navier-Stokes equations are discretised in a straightforward manner, i.e., no
pressure variable in the mass-conservation equation is introduced. An example for this
group is Vankas [10] symmetric coupled Gauss Seidel algorithm. These approaches lead to
an ill-conditioned system of equations because of the present zeros in the main diagonal
of the continuity equation. The solution of these stiff algebraic equation systems is rather
difficult.
In the second group, which includes the approach presented here, a pressure equation is

2
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derived in the same way as in the SIMPLE algorithm. Examples of this group are Lons-
dale’s [11] control-volume finite element method and the method of Webster [12]. In the
presented approach the velocity-pressure coupling on collocated structured grids devel-
oped by Darwish [1] is extended to non-matching block-structured grids. The extention
allows the specific adaptation of the numerical grid for each flow configuration.
The local block refinement (LBR) method described in this paper is aimed at increasing
accuracy and efficiency in the computation of flow problems. The general discretisa-
tion procedure for the coupled approach is first outlined in the next section, followed by
a description of the refinement method in section 3. In section 4 the LBR method is
verified via Manufactured Solutions. In section 5 the performance is evaluated by sys-
tematic comparison with standard segregated pressure-correction solution techniques for
representative test cases.

2 DISCRETISATION PROCEDURE

Laminar incompressible steady flows of Newtonian fluids can be described by the fol-
lowing nonlinear partial differential equations describing conservation of mass and mo-
mentum:

∂ui
∂xi

= 0 (1)

∂(ρui uj)

∂xj
=

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
− ∂p

∂xi
+ ρfi (2)

where ui denotes the components of the velocity vector, xi is the vector of Cartesian
coordinates, µ the dynamic viscosity, p the pressure and fi the outer force vector.
The governing equations (1) and (2) are solved via the block-structured finite volume
method, whereby the flow domain is divided into blocks and each block is discretised
by a structured grid. Each control volume is associated with a main grid point at its
geometric center. To calculate the balance of the conserved quantities, the governing
equations are integrated over each CV. Through the use of the divergence theorem the
volume integrals of the convection, diffusion and pressure gradient terms are transferred
to surface integrals, which, with the application of the continuity equation and application
of approximation schemes of second order accuracy for the surface and volume integrals
(mid-point rule), results in: ∑

f=nb(P )

ρfui,fni,fSf = 0 (3)

∑
f=nb(P )

[
ρf ui,f uj,f nj,f − µ

(
∂ui
∂xj

)
f

nj,f + pf ni,f

]
Sf = ρ fi,P VP (4)

where variables with subscript f are CV-face variables, variables with subscript P are
CV-center variables, Sf denotes the face area, nf the unit cell-face normal vector and VP

3

237

lacan
Rectangle



Ulrich Falk, Michael Schäfer

the cell volume.
To yield an algebraic equation system for the momentum equations the variation of the
dependent variables and its derivatives have to be expressed in terms of grid-point center
values. The diffusive fluxes are discretised by a central differential scheme (CDS), the
convective fluxes are treated with a so called deferred correction approach, i.e. a first-
order-upwind approximation (UDS) is used to calculate the elements of the coefficient
matrix while the explicitly calculated difference between the UDS and CDS approxima-
tion is added on the right hand side of the equation system. The overall approximation
order (formal order of accuracy) is therefore second order.
Starting point for the derivation of the pressure equation is the equation of mass con-
servation. The mass flow through a CV-face emerges from the product of face-velocity,
density and the face-area. The aim is to express the face-velocity by means of pressure and
center-point-velocities. This can be achieved by the construction of a pseudo-momentum
equation at the CV-face. Therefore two momentum equations at, e.g. CV-mid-point P
and the adjacent CV-mid-point F, are Rhie-Chow interpolated [13]. The face-velocity is
obtained as

uf,i = uf,i︸︷︷︸
linear interpolated velocity

−Df

[(
∂p

∂xi

)
f

−
(
∂p

∂xi

)
f

]
︸ ︷︷ ︸

correction term

(5)

where Df is the quotient of the cell volume and the corresponding coefficient of the main
diagnonal of the discretised momentum equation (aup , avp, a

w
p ). The variables with overbar

in equation (5) are linearly interpolated cell face values from the neighboring cell centers.
A detailed explanation of the derivation of the pressure equation can be found in [1]. The
continuity equation then becomes

∑
f=nb(P )

ρf

[
uf,i −Df

(
∂p

∂xi

)
f

]
ni,fSf = −

∑
f=nb(P )

ρfDf

(
∂p

∂xi

)
f

ni,fSf . (6)

The variables on the left hand side of equation (4) and (6) are treated implicitly. This is
the cornerstone of the coupled algorithm and can accelerate the convergence.
The discretised momentum equations (4) are linearized using values for mass fluxes from
the previous iteration. The PETSc linear algebra library [14] (preconditioned Generalized
Minimal Residual Krylov method) is used to solve the resulting sparse linear system.

3 LOCAL BLOCK REFINEMENT

At the interior of each block each CV has four neighbors in two dimensions or six neigh-
bors in three dimensions which share a common face. At non-matching block interfaces
this is not necessarily the case (see Figure 3). The aim is now to solve the conservation
equations on a global grid, while the non-matching block interfaces should be treated
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Figure 1: A typical CV and notation used.

implicitly, i.e. not by means of boundary conditions. The non-matching block interface
treatment described below is based on Lilek’s work [6] and was adjusted accordingly for
the coupled approach of Darwish [1]. Since both surface and volume integrals are approx-

BLOCK A BLOCK B
L

R

R

R

R

CV-center

CV-face center

l1

l2

l3

n
1

L1

2

3

4

2

Figure 2: A typical non-matching block interface in two dimensions.

imated using the mid-point rule, nothing has to be changed for the calculation of volume
integrals when non-matching block interfaces are present. However some adaptions have
to be performed in order to approximate the surface integrals. When non-matching block
interfaces are present a CV can have several adjacent neighboring CVs (see Figure 3, L2
has R2, R3 and R4 as neighbor) at the interface. According to the number of adjacent
CVs, face value approximations (see Figure 3, l1, l2, l3) for the convective, diffusive and
pressure terms in the equations (4) and (6) have to be calculated. Details on various
options to calculate these approximations can be found in Ferziger and Peric [15]. Here
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only methods used in the present approximations will be described for the east side. The
other CV-faces are treated accordingly. CV-face variables (u,v,w,p) are approximated us-
ing linear interpolation with a correction term to restore second-order accuracy on skewed
grids (see Figure 1):

σe ≈ σE γe + σP (1− γe) + (gradσ)e′ · (re − re′) (7)

with the linear interpolation factor γe, the linearly interpolated CV-face gradient in the
CV-center (grad σ)e′ and the position vectors re and re′ . The CV-center gradient can be
calculated explicitly using the midpoint-rule approximation based on the Gauss theorem:(

∂σ

∂xi

)
P

≈
∑

k σk S
i
k

V
with (k = e, w, n, s, . . . ) (8)

where σk is calculated in the same way as in equation (7). For the diffusive term the
following second order accurate approximation is applied:

(gradσ)e · ne ≈
σE − σP
|rE − rP |

− (gradσ)e
old
(
rE − rP
|rE − rP |

− ne

)
(9)

The underlined term is calculated using prevailing values of the variables. The explicitly
calculated gradient at the CV face (denoted by the overbar) is obtained by linear inter-
polation of the CV-center gradients.
Correspondingly to the finite volume discretisation these approximations are multiplied
by the overlapping CV area of the adjacent CVs, so that the conservativity is fulfilled.

4 VERIFICATION

Figure 3: Manufactured Solution left: geometry and boundary conditions, right: applied blocking.

In this section it is demonstrated, that (i) the LBR method is correctly integrated in
the coupled approach, (ii) the implemented LBR approach is stable for a higher refinement
rate than two, (iii) it is possible to improve the solution accuracy with the implemented
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LBR method and (iv) the obtained solution accuracy is identical to a segregated LBR
approach presented in [6]. These mentioned points can be examined in a simple way using
the Method of Manufactured Solutions (MMS) in a code verification process. The MMS
is used to obtain exact solutions for the governing equations to determine whether the
calculated solution is converging and the discretisation error is reduced at the expected
rate (observed order equals formal order of accuracy). The form of the Manufactured
Solution was chosen to be infinitely differentiable:

Figure 4: Examples of used grids in verification process; left: 2 blocks grid spacing 1/4, middle: 2 blocks
grid spacing 1/4 & 1/8, right: 2 blocks grid spacing 1/4 & 1/16

u(x, y) = − cos(2πx) sin(2πy)

v(x, y) = sin(2πx) cos(2πy) (10)

p(x, y) = −1

4
(cos(4πx) + cos(4πy))

with x, y ∈ [−1, 1]2. Additional source terms after applying the Manufactured Solutions
to the governing equations with density ρ and viscosity µ set to one are:

su(x, y) = −8π2 cos(2πx) sin(2πy)

sv(x, y) = 8π2 sin(2πx) cos(2πy) (11)

where su(x, y) is the source term for the u-momentum equation and sv(x, y) is the source
term for the v-momentum equation. The flow geometry, boundary conditions and the
applied blocking are shown in Figure 3. Examples of applied grids are shown in Figure 4.
Results obtained with different sequences of meshes are given in Tables 1 and 2. Due to
the symmetry of the velocity components and therefore identical results concerning error
and observed order of accuracy in the following the v-velocity component is omitted. The
observed order of accurary is calculated by the following equation:

observed order =
log
(
εN/2/εN

)
log (2)

(12)
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Table 1: Solution error and observed order (OO) of accuracy of u-velocity.

grid spacing εN coupled OO coupled εN segregated OO segregated

1/16 0.7643E-02 - 0.7646E-02 -
1/16 & 1/32 0.3840E-02 - 0.3842E-02 -
1/16 & 1/64 0.2001E-02 - 0.2015E-02 -

1/32 0.1906E-02 2.01 0.1906E-02 2.00
1/32 & 1/64 0.9621E-03 2.00 0.9596E-03 2.00
1/32 & 1/128 0.5043E-03 1.99 0.5069E-03 1.99

1/64 0.4761E-03 2.00 0.4761E-03 2.00
1/64 & 1/128 0.2395E-03 2.00 0.2399E-03 2.00
1/64 & 1/256 0.1265E-03 2.00 0.1272E-03 1.99

where N is the number of grid points and ε is the error defined by

εN =

√∑
i=1,NT (σi − σi,exact)2

NT
. (13)

NT is the total number of grid cells and σ stands for the velocity-components and pressure.
The results confirm, that (i) the approach is correctly implemented, (ii) the observed order

Table 2: Solution error and observed order (OO) of accuracy of pressure.

grid spacing εN coupled OO coupled εN segregated OO segregated

1/16 0.6261E-01 - 0.8658E-01 -
1/16 & 1/32 0.5287E-01 - 0.6019E-01 -
1/16 & 1/64 0.6575E-01 - 0.6789E-01 -

1/32 0.2015E-01 1.63 0.2062E-01 2.06
1/32 & 1/64 0.1421E-01 1.89 0.1541E-01 1.96
1/32 & 1/128 0.1398E-01 2.23 0.1470E-01 2.20

1/64 0.5287E-02 1.93 0.5317E-02 1.95
1/64 & 1/128 0.3687E-02 1.94 0.3808E-02 2.01
1/64 & 1/256 0.3344E-02 2.06 0.3844E-02 1.93

and formal order of accuracy agree independent of the refinement rate, (iii) it is possible
to improve the numerical accuracy by local block-refinement and (iv) the solution error
of the coupled and segregated approach is almost identical independent of the refinement
rate.
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5 APPLICATION

Separated flows behind a backward facing step have become an important test for CFD
code developers. We use such a configuration to investigate possible performance gains
through the application of LBR.
The geometry and applied blocking of the two-dimensional backward facing step flow is
shown in Figure 5, where all length scales are given relative to the inflow height D = 1 m.
The kinematic viscosity ν = 10−3 m2s−1 and density of ρ = 1.0 kg m−3 is prescribed.
At the inlet boundary a parabolic velocity profile is defined resulting in a steady flow at
Re=200. Examples of applied grids are shown in Figure 6.

The physical quantity for comparison is the reattachment length XRL of the flow behind

Figure 5: Backward facing step flow configuration left: geometry and boundary conditions, right: applied
blocking.

Figure 6: Examples of used grids backward facing step flow configuration left top: 2 blocks grid spacing
1/4, right top: 2 blocks grid spacing 1/8 & 1/4, bottom: 2 blocks grid spacing 1/16 & 1/4

the backward facing step. The results are summarized in Table 3 for various grids, where
the coupled solver is called CP and the segregated solver is called SG. LBR indicates
the application of local block refinement. Besides the reattachment length, the memory
requirement, the total computing time and the computing time per CV are listed in Table
3 to allow a realistic comparison of the performance of both algorithms and the benefits
through LBR. All computations were carried out on a workstation with Intel Core i7-960
CPU, 3.2 GHz and 5979 Mbyte memory. Since no exact solution for the stated flow prob-
lem is available, no quantitative statement about the error in the reattachment length can
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Table 3: Results for backward facing step flow.

Code Grid spacing XRL [m] Memory [MB] CPU time [sec] CPU time/CV [sec]

CP 1/8 4.8597 16.71 1.20 0.0007839
1/16 5.1599 48.06 4.50 0.0007325
1/32 5.2585 189.76 22.78 0.0009273
1/64 5.3003 822.35 130.67 0.0013293

CP LBR 1/16 & 1/8 5.1589 32.33 3.29 0.0008574
1/32 & 1/16 5.2584 119.15 14.38 0.0009360
1/64 & 1/32 5.2983 509.41 75.97 0.0012365

CP LBR 1/16 & 1/4 5.1515 29.44 4.42 0.0013543
1/32 & 1/8 5.2572 105.82 15.27 0.0011701
1/64 & 1/16 5.2989 448.52 74.30 0.0014228

SG 1/8 4.8613 3.14 2.15 0.0013985
1/16 5.1612 4.21 23.54 0.0038309
1/32 5.2601 8.56 308.12 0.0125375
1/64 5.3008 25.41 4155.18 0.0422687

SG LBR 1/16 & 1/8 5.1593 3.70 12.49 0.0032512
1/32 & 1/16 5.2595 6.82 151.28 0.0098488
1/64 & 1/32 5.3008 18.92 2149.76 0.0349901

SG LBR 1/16 & 1/4 5.1521 3.56 9.51 0.0029156
1/32 & 1/8 5.2572 5.77 123.47 0.0094570
1/64 & 1/16 5.3002 14.81 1711.89 0.0327798

be given. However, the results show a good convergence behaviour. To access the benefit
through LBR block one (see Figure 6) is always refined. Ideally, the reattachment length
should be the same as if the fine grid spacing is applied for the entire domain.
The results in Table 3 demonstrate that the reattachment length XRL is nearly indepen-
dent of the grid refinement rate at the block interface. That means the reattachment
length XRL with the application of LBR is nearly the same as if the fine grid spacing
is applied for the entire domain. This represents a saving of at most 46 per cent in the
total number of CVs for a refinement rate of four. Therefore, the memory requirement,
which can be a limiting factor for the application of the coupled approach, can be almost
halved. Due to the smaller number of CVs and hence smaller computational effort needed
per iteration, the computational time is reduced to 57 per cent of the computational time
for a conventional grid. Therefore, the performance of the already highly efficient coupled
approach could be increased significantly through the integration of the LBR approach.
According to the results in Table 3 for the coupled approach a refinement rate greater two
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offers no great benefit with respect to the computation time. It seems that an excessive
non-orthogonality at the block interface for refinement rates greater two reduces the linear
solver convergence to an extend that it cancels the advantage of the saving of CVs.
For completeness the results for the segregated solver are presented in Table 3 also. Gener-
ally speaking, the results are consistent with those of the coupled approach. The memory
requirement and computing time can be reduced drastically through LBR in contrast to
the coupled approach even for higher refinement rates.
The superiority of the coupled approach compared to the segregated approach could also
be demonstrated for the integrated LBR approach. The results show that the CPU time
per control volume are at least one magnitude shorter compared to the segregated ap-
proach.

6 CONCLUSIONS

The coupled approach introduced by Darwish [1] was successfully extended by a lo-
cal grid refinement procedure. By means of Manufactured Solutions it was exemplified
that the method proved to preserve second order accuracy of the underlying numerical
scheme. Moreover, the local grid refinement was found to be robust even for higher re-
finement rates and provided substantial gains in performance and reduction of memory
requirements. In the considered backward facing step case, computing time gains of 43
per cent and reduction of memory requirements up to 45 per cent could be verified.
Although the implementation and results presented correspond to the two-dimensional
version of the code, the extension of the procedure to three dimensions is straight for-
ward. For the three-dimensional local block refinement procedure even larger gains in
performance and reduction of memory requirements are expected.
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Abstract. The paper presents a goal-oriented strategy in the framework of stochastic
non-intrusive Monte Carlo finite element simulations. The methods consists in a successive
enrichment of a reduced basis. This enrichment is performed on the fly, during the Monte
Carlo process. The error made by the representation on the reduced basis is assessed
introducing a dual problem associated to the quantity of interest. The efficiency of the
proposed approach is illustrated in numerical examples. In particular, an extension of
the work developed in [6] is introduced. It consists in introducing a reduced basis for
solving the dual problem in an efficient way. Different variant are tested for the successive
enrichment of the dual reduced basis.

1 INTRODUCTION

Stochastic Finite Element Methods (FEM) are currently an essential tool for the quan-
titative prediction of the response of mechanical models that include randomness. Both
for the research and industrial players, a key issue is to reduce the computational cost
in order to afford dealing with large scale applications. A state of the art for stochastic
methods can be found for example in [1, 2, 3].

In [4, 5], the authors introduced a reduced basis methodology to reduce the cost of
Monte Carlo simulations, offering an attractive framework for solving stochastic problems
with a large number of parameters. The idea is simple and effective because the different
Monte Carlo shots lead to similar FE problems and therefore the reduced basis approach
is highly performant.
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This paper describes a new approach to generate a reduced basis in the context of
Monte Carlo strategies for stochastic modeling. The reduced basis is constructed auto-
matically, ensuring a prescribed level of accuracy for the output of interest. The proposed
methodology uses standard elements in goal-oriented error assessment and adaptivity [6],.
Here, the error which is assessed is the approximation introduced by the Reduced Basis
with respect to the complete FE solution, for a given mesh. That differs from the usual
practice in the Verification framework, in which the error introduced by the mesh is evalu-
ated. Numerical tests demonstrate the efficiency and robustness of the proposed strategy.
The use of this method for 3D massive industrial examples, where the cost is of primary
importance, is going to be the object of further research.

2 PROBLEM STATEMENT

Let Ω be a bounded domain and ∂Ω its boundary which is divided in two parts ∂DΩ
and ∂NΩ such that ∂DΩ∪ ∂NΩ = ∂Ω, ∂DΩ 6= ∅ and ∂DΩ∩ ∂NΩ = ∅. Displacement ud is
imposed on ∂DΩ and a traction gd is applied on ∂NΩ and a body force field fd is applied
in Ω.

The material is linear elastic, and K(x, θ) is the Hooke tensor random field, where
x ∈ Ω is the position and θ ∈ Θ denotes the randomness. Θ is the set of possible
outcomes of θ.

The problem reads: find the unknown displacement field u(x, θ) such that

div (K(x, θ)ε [u(x, θ)]) + fd(x, θ) = 0 in Ω (1a)

K(x, θ)ε [u(x, θ)] .n = gd(x, θ) on ∂NΩ (1b)

u(x, θ) = ud(x, θ) on ∂DΩ (1c)

The corresponding standard weak form reads as follows: find u(x, θ) such that

a(u(x, θ),w(x)) = `(w(x)) ∀w(x) ∈ U (2)

where a(·, ·) is a bilinear form , `(·) is a linear form and U the set of admissible displace-
ments, satisfying (1c).

3 MONTE CARLO NON INTRUSIVE SOLVING SCHEME

The non-intrusive approach decouples the discretization of the physical space and the
stochastic space, represented here by Ω and Θ. This can be described in two steps.

� Step 1: finite element discretization.
In this first phase, the problem is considered as deterministic (for a given value of θ.)

The discretisation of the space is characterized by the standard finite element functions
Ni(x), i = 1, 2 . . . NFE Uh ⊂ U

Uh = span {N1, N2, . . . NNFE
} (3)
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The numerical approximation in the space defined in (3) is uh such that

u(x, θ) ≈ uh(x, θ) =

NFE∑
i=1

ui(θ)Ni(x) = NT (x)U(θ), (4)

with U = [u1 u2 · · · uNFE
]T and N(x) = [N1(x)N2(x) · · · NNFE

(x)]T . The corresponding
discretized form of (2) is the linear system of equations

K(θ)U(θ) = F(θ), (5)

where K is the classical finite element stiffness matrix and classical F nodal forces.

� Step 2: Monte Carlo simulation.
The Monte Carlo technique consists in generating a number NMC of realizations of θ.

Note that these realizations are generated using the actual Probability Density Function
(PDF) of θ. This is equivalent to determine NMC realizations of K(θ) and therefore,
solving NMC linear systems of equations (5), obtaining NMC realizations of U(θ).

Thus, the PDF of U(θ) or some specific Quantity of Interest (linearly dependent with
U) is approximated from these realizations.

This non-intrusive strategy is extremely simple because it decouples the approximation
of the stochastic behavior and the solution of the deterministic mechanical model. The
main drawback is that the numerical cost is can be very large.

4 METHOD DEVELOPPED

4.1 Reduced Basis

The reduced basis method allows to reduce computational costs when solving a large
number of problems, but introduce an error linked with the size of the reduced basis size.
Monte Carlo sampling requires solving many instances of problem (5) and Reduced Basis
Strategy can help. A collection of NRB linearly independent solutions creates a approxi-
mated subset of the FE space :

{
uh(1), uh(2), . . . , uh(NRB)

}
described by the corresponding

vectors of nodal values {U1,U2, . . . ,UNRB
},

URB := span
{
uh(1), uh(2), . . . , uh(NRB)

}
⊂ Uh (6)

Then, the solution of a new instance of (5) is seek in URB instead of in Uh as a linear
combination of the elements of the reduced basis:

URB =

NRB∑
i=1

aiUi = URB a (7)

where the matrix URB = [U1 U2 · · ·UNRB
] (with NFE rows and NRB columns) describes

the change of basis and aT = [a1 a2 · · · aNRB
] is the vector of unknowns.

The solution a can be found as the solution of a linear system :(
UT

RBK(θ)URB

)
a =

(
UT

RBF(θ)
)

readily rewritten as KRB(θ)a(θ) = FRB(θ) (8)
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4.2 Goal oriented error

At every instance θk of the Monte Carlo process, the error introduced in the reduced
basis phase is measured by

ERB := URB −U, (9)

This error vector, expressed in the standard FE basis, corresponds to the approximation
introduced by the reduced basis with respect to the complete FE solution. It does not
represent the error due to the Finite Element discretization, but the error uniquely do to
the reduced basis process.

The squared norm of the residual, RT
RBRRB is in fact a good error indicator for the

energy norm of the error with
RRB := KURB − F (10)

If interested by a QoI denoted QRB associated with the reduced basis solution URB,

QRB = GTURB (11)

it is classical to introduce a dual problem and its solution V and where G defines the
quantity of interest. Using the same spatial discretisation for dual problem as the direct
problem (5), it results a similar system for V

K(θ)V(θ) = G(θ), (12)

This dual solution V can be used to assess the error in the evaluation of the QoI
associated with the reduced basis. The error in the QoI associated with the reduced basis
approach writes:

eQRB := VTRRB. (13)

5 Adaptive Strategies

5.1 Algorithms

Note that if V is known, the error in the QoI associated with the reduced basis is
computed explicitly using the right-hand side term of (13), once the reduced basis solution
is available. The problem is that solving (12) leads to a similar computational cost that
for solving 5. The local error 13 can be used to control the enrichment of an adapted
reduced basis. Indeed, this allows assessing the error committed in every shot with a low
computational cost and decide on the fly if the reduced basis is rich enough or if it has to
be enriched further.

Two adaptation strategies, corresponding to different level of randomness are proposed.
� Algo 1: Dual unique resolution

From the practical viewpoint it is assumed that the variation of V with the randomness
is small in such a way that V is kept constant in order to estimate the error in the QoI.
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Thus, the solution of the dual system (12) is performed just once and leads to V0. The
criterion used to estimate error is then:

eQRB1 = V0
TRRB (14)

This algorithm is presented in [6].
� Algo 2: Dual Reduced Basis Resolution

For problem with higher level of randomness, the solution V0 can be very different of
the actual value V. Then, the idea correspond to a resolution of the dual problem using
a reduced basis representation.

VRB =

NRBD∑
i=1

biVi = VRB b (15)

where the matrix VRB = [V1 V2 · · ·VNRB
] (with NFE rows and NRBD columns) describes

the change of basis and bT = [b1 b2 · · ·BNRBD
] is the vector of unknowns.

Then the solution b can be found as the solution of a linear system :(
VT

RBK(θ)VRB

)
b =

(
VT

RBG(θ)
)

readily rewritten as KRB(θ)b(θ) = GRB(θ) (16)

The criterion used to estimate error is then:

eQRB2 = (VRB b)TRRB (17)

Remark 1: The choice of a unique vector in the basis VRB = V0 correspond exactly to
algorithm 1. In this sense, this resolution correspond to a generalization of the algorithm 1.

Remark 2: A particular case correspond to the same reduced basis to obtain the
approximated solution of both primal an dual problem.

URB = VRB (18)

Remark 3: Different variants that correspond to the decision to enrich independently
URB and VRB or not can be performed. The decision to enrich VRB can be based on a
dual error criterion :

eQD
RB2 = (URB a)T (KVRB −G) (19)

5.2 Results

Results of algorithm 1 and algorithm 2 are compared to a full Monte Carlo simulation
which is considered as the reference. In [6] the results illustrates the capabilities of algo-
rithm 1 for a 2D mechanical problem. This work focuses on the different possibilities to
solve the problem using algorithm 2 which is an extension of the work presented in [6]
and the results illustrate the algorithm 2 developed here. Results are given in Table 1,
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Table 1: Results for algorithm 2

ε0 NRB NRB ε
102 1 1 1.3E+1
10 8 6 2.4E+0
1 18 16 2.0E-1

10−1 38 38 1.9E-2
10−2 93 79 2.5E-3
10−3 139 122 2.2E-4

for a given level of prescribed local error ε0 on the QoI, the actual error ε is given and is
to be compared to the prescribed one ε0. The size of the Reduced basis NRB and NRBD

is also given. The results are showing that the algorithm makes it possible to respect a
given level of error on the quantity of interest. The employed reduced basis for solving
primal and dual problems are automatically adapted by enrichment on the fly.

6 CONCLUSIONS

Next step is to implement this algorithm and its variant on 3D large scale examples
where the problem of computational costs are of primary importance.
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Abstract. A method is presented for automatically generating cross-fields from direction
constraints on arbitrary surfaces meshed with triangular elements. A cross-field describes
the directionality of a quad mesh and the developed solver produces a cross-field abid-
ing to prescribed target element sizes and directions. Additionally, a simple method of
generating a multi-block decomposition suitable for all-quad meshing by tracing critical
streamlines of the cross-field is explained and illustrated.

1 INTRODUCTION

1.1 Related work

Computer graphics visual effects methods such as anisotropic shading, morphing, tex-
ture synthesis, and global parametrisation of surfaces have been the driving force for the
development of many vector field design methods [1, 2, 3, 4]. The vector field purpose is
to control a bijective mapping onto the surface and the design objective is to minimise
the angular distortion and/or stretching of the mapping. Vector fields with four-way
symmetry have been found to be particularly useful for these applications. The concept
has been described by many authors with different terminology, such as cross-field [5, 6],
4-way symmetry field (4-RoSy field) [7, 8], and frame field [9]. Quad mesh generation
is a somewhat equivalent problem where the mapping of an isotropic square mesh onto
the surface is sought. In recent years cross-fields have begun to emerge as an important
common feature to many new advanced mesh generation methods.

The QuadCover algorithm [9] produces a globally continuous parametrisation whose
isoparametric curves describe a global closed quadrilateral mesh from a provided cross
field. It was strongly inspired by Ray et al. [10] whose Periodic Global Parametrisa-
tion method produces comparable results by similar means. The global parametrisa-
tion method for generating quad meshes from input cross-fields has been used in other
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works [5, 11] with modifications. Progress has also been made on the 3-D equivalent
problem [12, 13, 14].

Various approaches have been taken for the construction of smooth cross-fields on
surfaces. The curvature orientated cross-field is a popular option and used in [15, 16, 9].
It produces appealing cross-fields coupled to inherent surface properties and a piece-wise
linear approximation aligned with the principal directions is an optimal representation of
the smooth underlying surface [17, 18] (as cited in [16]). However, where curvature tensors
are symmetrical the principal directions are ill-defined which results in a discontinuous
cross-field. Smoothing or optimisation schemes are needed to put order on the randomly
orientated crosses in these regions.

For other approaches, a typical first step is to define a measure of the smoothness of a
cross-field based on the angular deviations, variably called the smoothness energy, error
or energy functional, and then set about minimising its integral over the surface area.
Wei [2] and Turk [3] took a pragmatic approach and developed mixtures of relaxation and
interpolation procedures to numerically converge to a vector field result.

Bunin’s continuum theory of unstructured mesh generation [6] clarifies how singularities
are the crucial characteristic features of cross-fields and quad meshes. A rigorous theory
is presented that relates the size variation of an infinitesimal quad mesh to the directional
variation of a cross-field. The scalar size field, acting as the continuum description of
the mesh, is governed by a stationary heat equation where singularities appear as point
sources and sinks. A quad mesh singularity corresponds to a node which is not attached
to a regular array of quad elements, e.g. where three or five quad elements are attached
to a given node in the interior of the mesh. Singularities necessarily occur from particular
combinations of mesh alignment constraints or significant total Gaussian curvature of the
surfaces. Once a valid arrangement of singularities has been identified, the scalar field can
be easily solved numerically. In a follow-up paper [19], Bunin describes a method to tackle
the inverse Poisson type problem of placing mesh singularities on planar surfaces. Ben-
Chen et al. [20] proposed a method for identifying suitable locations for cone singularities
of a conformally related metric to the surface by considering the Gaussian curvatures.

Palacios et al. [8], describe a design system in which cross-fields can be created and
modified on surfaces from a set of prescribed singularities using interpolation and re-
laxation algorithms. A vector-based representation of an N-RoSy field is used which is
globally continuous over planar surfaces but not for curved surfaces. A parallel transport
scheme similar to that described by Zhang [4] is proposed to describe the field continuously
over local regions.

The same vector-based representation of a cross-field is used in the recent work by
Kowalski et al. [21] for decomposing planar surfaces for quad meshing. Boundary align-
ment constraints are applied to the cross-field and it is solved in the interior by a two
stage algorithm: The first solves a stationary heat equation for the coordinates of the rep-
resentation vector. The second normalises the vector solution of the previous step by an
optimisation routine. The final cross-field is smooth with a small number of singularities
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appearing where the neighbourhood boundary alignment constraints are incompatible.
A method for constructing a smooth cross-field from a sparse set of directional con-

straints is described by Bommes et al. [5]. Direction constraints are extracted from the
triangulated surface representation along curves where the estimated principal curvatures
are significantly anisotropic. An involved optimisation algorithm called a greedy mixed-
integer solver is designed for minimising the smoothness energy of a cross-field that is
locally constant on each tri element. It iteratively solves for a smooth cross-field contain-
ing well-positioned singularities between the constrained directions.

With a similar discretised cross-field representation and smoothness energy functional,
Liu et al. [11] use a non-linear optimisation method to solve for a cross-field from direction
constraints along user-specified strokes. A properly initialised cross-field is imperative for
the procedure. A simple method is used to propagate the cross-field from the crosses at
specified elements to unspecified ones by iterating over an unordered queue of elements.
Crosses for elements without specified crosses that neighbour elements with specified
crosses are computed by a method mimicking a parallel-transport operation and then
they are removed from the queue. This is repeated until the queue is empty. Liu com-
ments that by using a randomly generated initialisation instead of the propagation based
initialisation, an optimised cross-field contains many spurious features and singularities
are effectively determined by the specifics of the arbitrary initialisation.

The problem of generating smooth 3-D cross-frame fields for hexahedral mesh gener-
ation has been addressed in recent works. As for 2-D, the proposed 3-D methods involve
using optimisation schemes to minimise the smoothness energy of a cross-frame field.
Huang et al. [22, 13] proposed the use of a spherical harmonic functions to describe cross-
frames which have convenient properties for measuring field smoothness and for specifying
alignments to cross-frames. Before the non-linear optimisation solver is used to minimise
the discretised smoothness energy integral, the system is initialised by solving a station-
ary heat type problem for the spherical harmonic coefficients. The fundamentals of the
procedure are like those used by Kowalski [21] to calculate cross-fields in 2-D. Li et al. [14]
describe an equivalent method to measure the smoothness energy of a cross-frame field.
A boundary aligned cross-frame field is solved for by non-linear optimisation similarly.
Their initialisation procedure is summarised as propagating the boundary frames into the
interior of the tetrahedral mesh of the volume so that for any interior tet, its frame is
assigned to be the same as that of its nearest boundary tet.

1.2 Contributions

The work presented in this paper makes the following contributions:

• A methodology is developed for generating smooth cross-fields on triangulated sur-
faces from an arbitrary number of alignment constraints using an efficient fast-
marching algorithm to propagate the field into regions between constraints. It
improves on the initialisation process described by Liu [11]. A similar fast marching
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algorithm is used by Lai [23] to parallel-transport a vector over a surface.

• The method is reasoned in the terms of Bunin’s continuum theory and a smooth-
ness energy functional is developed which is minimised locally in each propagation
step. Additional terms for penalising deviations from target element sizes and direc-
tions are included in the functional so that the generated cross-fields have improved
suitability with respect to prescribed size fields.

• A simple method is described for generating multi-block decompositions of surfaces
by tracing critical streamlines of the cross-fields similar to that shown in [21].

2 THEORY

2.1 Continuum theory of unstructured mesh generation

In Bunin’s theory [6] a conformal (angle-preserving) transformation from an arbitrary
surface of interest, S, to a locally flat or developable surface, S̃, is searched for. A field
of equally spaced parallel geodesics and their orthogonal trajectories represent a uniform
mesh on S̃ and its image on S describes the quad mesh solution. The elements are ideally
shaped squares on S̃ and as the spacing reduces to zero the elements are also squares on
S. The key results of Bunin’s paper are:

1. The scalar variable φ involved in the conformal factor between the metric tensors
of S and S̃,

g̃ij = e2φgij , φ ∈ R, (1)

obeys the Poisson equation,

∆Sφ = K +
N∑
i=1

ki
π

2
δPi

, ki ∈ Z ≥ −4, (2)

where ∆S is the Laplace-Beltrami operator, K is the Gaussian curvature of S and
the δPi

terms are weighted delta Dirac functions describing discrete cone points of S̃
where a discrete total curvature of multiples of π/2 occurs at the cone vertex. The
cone points correspond to singularities in the quad mesh with their characteristic
types given by the integers ki. From the metric scaling relationship (Eqn. (1)), it
follows that

φ = − lnh, (3)

where h is the element size.

2. The geodesic curvature, κg, of a mesh edge is directly related to local variation of
the φ-field by

∂φ

∂e
= κg ≡

∂θ

∂t
. (4)
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The tangent vector t, intrinsic normal e, and surface normal n make a right hand
orthonormal basis. The directional derivatives in the directions of t and e are
represented by ∂

∂t
and ∂

∂e
. θ is defined as the angle of the tangent vector from a

reference direction on the tangent plane that is parallel transported over the surface
(see [6, Section 2]). It follows that

∇θ = R(−π
2
n)∇φ, (5)

where R(−π
2
n) represents a −π/2 rotation about n. Hence, ∇θ is also governed by

Eqn. (2).

3. For boundary conforming solutions, boundary conditions are applied to curved
boundary edges and corners with angles not multiples of π/2. Neumann bound-
ary conditions are applied to curved boundary edges according to Eqn. (4). Point
sources with strengths dependent on the corner angle are applied at boundary cor-
ners.

These concepts are illustrated by the example shown in Figure 1.

Figure 1: Example of Bunin’s continuum theory
for a flat triangular surface S. The conformally re-
lated surface S̃ is conical. The −φ-field describing
the logarithm of the element size on S is solved
as a temperature field in a FEA heat conduction
analysis.

Figure 2: Optimising cross angle at node i adjacent
to nodes j considering the target size gradients and
orientations in the connected elements 1 to n.

2.2 Energy Functional

For the purpose of designing a cross-field solver, an energy functional is developed for
minimisation. Rapid variation in cross-field directions, and hence element size variation,
should be penalised. An obvious choice is to use the Dirichlet energy of the φ/θ-field,

Esmoo =

∫
‖∇φ‖2dA =

∫
‖∇θ‖2dA. (6)
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It is straightforward to prove that its value equals both the sum of the squared local
geodesic curvatures of orthogonal mesh edges, and also the square of the norm of the
element size gradient normalised by the local size. It is worth noting that that the Laplace
equation (Eqn. (2) without source terms) is equivalent to minimising the Dirichlet energy
in 2-D.

Given a target element size field for the mesh, a cross-field that accommodates those
sizes will change direction according to the gradients of the prescribed size field as by
Eqn. (4). Thus another penalty term to account for this is

Egrad =

∫
‖∇θ −∇θtar‖2dA, (7)

where∇θtar is the target gradient of the local angle of the cross-field that can be computed
from the target size field using Eqn. (3) and Eqn. (5). Similarly, a penalty term for the
deviation of the field from prescribed directions is

Edirec =

∫
(θ − θtar)2

Atotal
dA. (8)

(Note: The total area divisor is included so that the expression yields a dimensionless
value)

The overall energy functional is the combination of the individual energy functionals:

E = Esmoo + w1Egrad + w2Edirec , w1, w2 ∈ R > 0, (9)

where w1 and w2 are arbitrary weighting factors.

3 CROSS-FIELD GENERATION

3.1 Discretisation

A piece-wise linear description of a cross-field on a tri mesh is used in this work. This
allows finite-element theory to be utilised to formulate the problem locally as a directly
solvable linear system. On a tri element, e, an example of which can be shown in Figure 2,
the angle of a cross relative to a local frame is approximated by a bilinear function, or
equivalently by blends of the node angle values using linear shape functions:

θ(e)(x, y) = α
(e)
0 + α

(e)
1 x+ α

(e)
2 y,

=
3∑
i=1

L
(e)
i (x, y)θ

(e)
i . (10)

A target element size field can be discretised in the same way on the tri mesh.
Considering the problem of minimising E by adjusting the cross at a node i while

keeping the crosses at surrounding nodes j fixed, of elements 1 to n, the solution satisfies
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the equation

∂E

∂θi
= 0

=
n∑
e=1

∂

∂θi

∥∥∥∇θ(e)
∥∥∥2
A(e) + w1

n∑
e=1

∂

∂θi

∥∥∥∇θ(e) −∇θ(e)
tar

∥∥∥2
A(e) + w2

n∑
e=1

∫
e

(θ(e) − θ(e)
tar)

2

Atotal
dA. (11)

Using the local linear approximations of θ(e) and θ
(e)
tar in Eqn (10), Eqn. (11) can be

reduced and re-expressed with θi as a function of L
(e)
i , L

(e)
j , A(e), θ

(e)
j , and θ

(e)
tar. In this

way a formula is constructed for calculating the optimum cross at a node.1 Figure 2 shows
the set-up for one of the n elements. In a propagation advancement step (Section 3.2)
θi is optimised from the point of view of a single element. For a smoothing process all n
elements would be taken into account.

3.1.1 Measuring angles

The local frame, F , is located at one of the nodes, call it Nf , with its x- and z-
axes aligned with a cross direction and the local surface normal, nf . Angles θi and θj
of crosses crossi and crossj are taken with respect to F , as shown in Figure 2. For an
arbitrary node Nx, crossx on tangent plane Ex, is rotated onto tangent plane Ef to give
crossx

′. This is effected by the rotation matrix R(µu), where µ = cos−1(nx · nf ) and
u = (nx × nf ) / |nx × nf |. This corresponds to a discrete parallel transport operation
performed on a cross between the nodes (See [6, Section 2]). The rotation about nf that
moves crossx

′ onto crossf through the smallest angle (in the range (−π/4, π/4]) is used
to describe the change in the cross-field orientation. It corresponds to the integral of the
geodesic curvature of the cross-field.

3.2 Cross-field propagation

With the definition of the functional to be minimised and the discretisation of the
problem, one route to generating the cross-field is to set-up an optimisation process à
la Bommes [5] or Liu [11]. However computationally expensive non-linear solvers are
used and an effective initialisation phase is required. Such an initialisation algorithm is
proposed here. Although, the results show that the stand-alone generated cross-fields are
of high quality without optimisation.

To produce boundary conforming meshes the cross-field is set as aligned with the
tangent vectors of boundary edges. At a boundary corner, either the bisector direction or
an offset direction of π/4 from the bisector is used. The decision is based on minimising
the corresponding point source strength in Bunin’s continuum theory and depends on the
corner angle and the choices are fairly intuitive.

1The expression and its derivation are uncomplicated and are omitted here due to space limitations.
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Figure 3: A 2-D test case surface with curved boundaries, sharp indents and hole features. (Left) Tri
mesh on surface. (Centre) Distance field of Eikonal equation solved as part of the propagation algorithm.
(Right) Propagation of cross-field from boundaries inwards.

The fast marching alorithm, introduced by Sethian [24], is used to propagate the cross-
field from direction constraints in concordance with the distance field of the Eikonal
equation. The algorithm developed in this work is similar to the finite-element based
algorithm presented in [25]. A summary is given in Algorithms 1 and 2.

Algorithm 1 Cross-field propagation
B Initilisation
narrow band list ← {}
alive list ← {}
for each Node, N do

if N.cross 6= None then
N.d ← 0
N.alive ← True

alive list.append(N)
else

N.alive ← False

end if
end for
for N in alive list do

N.method*(narrow band list)
end for
narrow band list.sort() B wrt d
B Remove first node and advance narrow band to include
its neighbouring nodes
while narrow band list 6= {} do

trialN ← narrow band list.pop(0)
narrow band list.remove(0)
trialN.alive ← True

trialN.method*(narrow band list)
narrow band list.sort() B wrt d

end while

Algorithm 2 Node method*

function Method*(narrow band list)
B Description: For all neighbouring nodes, if not alive

and not in narrow band list compute d and cross members
and add to narrow band list.

for N1 in Node.neighbour Ns do
dN2N3 list ← {}
for Element, E, in N1.neighbour Es do
{N2,N3} ← E.nodes.remove(N1)
if N2.alive and N3.alive then

d← compute d(N1.pos,N2.pos,N3.pos,
N2.d2,N3.d3)

dN2N3 list.append({d,N2,N3})
end if

end for
if dN2N3 list={} then

pass
else
{d’,N2’,N3’} ← entry in dN2N3 list with small-

est d entry
N1.d ← d’
N1.cross← compute cross (N1.pos, N2’.pos,

N3’.pos,N2’.cross, N3’.cross)
narrow band list.append(N1)

end if
end for

end function

The compute cross function is based on the formula suggested in Section 3.1 and the
compute d function is described in Appendix A.1. The process is illustrated in Figure 3.
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Figure 4: Examples of cross-fields and decompositions generated for three different target size fields. Blue
and red dots indicate the occurrence of k = 1 and k = −1 type singularities respectively. (First row) The
default unit target size field is used which results in a simple and aesthetically pleasing solution. (Sec-
ond row) The target size field is isotropic and increases from right to left. The consequence is that edges
tend to curve along paths running vertically which causes the occurrence of numerous extra singularities.
(Third row) A constant anisotropic target element size field is used. The edges are to be aligned with
the principal axes of the size tensor. Hence the Edirec term comes into play with a weighting factor
proportional to the ratio of the principal axes lengths. Edges tend to travel diagonally across the surface
which causes a different arrangement of singularities.
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3.3 Cross-field singularities

Singularities occur in the cross-field in tri elements where the angle of a cross cannot
be interpolated continuously between the crosses of its nodes.

From Bunin’s continuum theory,

−kπ
2

=
n∑
i=0

]
(
PTpi→pi+1

c(pi), c(pi+1)
)

+

∫∫
enclosed-area

KdA, (12)

where a closed-path is composed of segments between the points p0, p1, ...pn (pn=p0). PT
is the parallel transport operator, c is a cross vector and k ∈ Z is the index of the enclosed
singularity.

The total Gaussian curvature term can be calculated in the discretised representation
of the surface from the three surface normals at the nodes using the standard angular
deficit scheme (see e.g. [26]). Rotation angles for each edge in the tri mesh are calculated
from the propagated cross-field by the method described in Section 3.1.1.

Hence, adding the rotation angles associated with each edge of a tri element with signs
according to an anti-clockwise traversal and including the total curvature of the surface
over the element (which is mostly negligible) gives a value equal to 0, −π/2 or π/2. These
values correspond to cases of no singularity (k = 0), a positive singularity (k = 1) or a
negative singularity (k = −1). It is certain that higher order singularities cannot occur
because all edge rotation angles are in the range (−π/4, π/4].

By virtue of the propagation method, singularities only occur in tri elements of inner-
regions near the medial axis of the surface. For convex geometries with a high degree
of symmetry, such as regular hexagons and circles, singularities occur in side-by-side tri
elements. Possibly ideally they should be combined into a single higher order singularity.
An additional routine would need to be incorporated for this task.

3.4 Tracing decomposition edges

With a cross assigned to every node and elements containing singularities identified, a
piece-wise linear C0 smooth cross-field can be defined. For a tri element not containing a
singularity with nodes N1, N2 and N3, a bilinear function describing the change in cross
angle over the element with respect to cross1 is determined. Referring to Eqn. (10), θ1=0,
θ2 = ∆θ12 and θ3 = ∆θ13 where ∆θ12 and ∆θ13 are the rotations stored for the respective
edges, as discussed in Section 3.2. θ(x, y) is taken to mean the rotation about the element
normal. However, θ3 − θ2 6= ∆θ23(= −∆θ12 + ∆θ13 +

∫∫
KdA) if

∫∫
KdA 6= 0. This

complication is ignored – a simplification that is not prone to cause problems because the
total Gaussian curvature over an element is small.

Singularity elements are divided into three new elements by edges running from a new
node at the centroid to the corner nodes. For a new element with nodes N1, N2, Nc where
Nc is the new node, the singularity is placed at Nc. Thus, θ is set as a function of polar
coordinates r, ϕ with the origin at Nc so that θ(r, ϑ2)− θ(r, ϑ1) = ∆θ12.
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Figure 5: Cross-fields and decompositions generated on two curved surfaces with unit target size fields.
In both cases the geodesic curvatures of the boundary edges are zero and the corner angles are π/2,
therefore the singularities emerge as a consequence of the Gaussian curvatures of the surfaces.

Figure 6: Multi-element aerofoil with flap and spoiler. (Left) Cross-field solution and close-up of the
complex cove region. It is evident that the cross-field singularities occur on or near the medial axis
represented by the orange lines. (Right) Intricate decomposition created by traced critical streamlines.

A simple numerical procedure is used for completing the task of tracing a cross-field
streamline through an element given a curve tangent vector d1 and a position p0 on element
edge. First d1 is rotated onto the element plane to give d′1. Secondly, the reference vector
is chosen from one of the four cross vectors at N1 so that θ(p0) best fits the angle that d′1
makes with the reference vector. Then Heun’s method, a basic variation of the Runge-
Kutta method, is used to integrate the streamline to another element edge according to
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θ(x, y). The implemented method is an adaption of that described in [21, Section 3.2].
The critical streamlines radiating from singularities and boundary corners partition

the surface into quadrilateral blocks, thus forming a multi-block decomposition suitable
for all-quad meshing. The cross-field is evenly distorted around singularities and it is a
straightforward matter to determine the starting star geodesic tangent vectors. The de-
composition streamlines are traced until they meet the boundaries or until a pre-decided
threshold distance or turn angle is exceeded.

Examples of cross-fields, singularities and multi-block decompositions are shown in Fig-
ures 4, 5 and 6.

4 DISCUSSION AND CONCLUSIONS

A novel method has been presented for generating a cross-field on a surface of arbitrary
shape and genus with a provided tri mesh. Bunin’s continuum theory is relied on as a
basis for teasing out the best approach and for arguing the rationality of the approach
taken. A set of specified direction constraints fix the crosses at certain nodes initially
and the cross-field is propagated to the rest of the mesh by a fast marching method.
The boundaries are selected automatically as the direction constraints unless alternatives
are given, so that the result is boundary conforming. At each advancement step a new
cross at a node is calculated by a simple formula derived by locally minimising an energy
functional. The energy functional is designed to describe the composition of the cross-
field smoothness and deviations from target element size changes and target directions
over a region. Singularities of the propagated cross-field occur at isolated locations on the
medial axis and are identified in elements of the tri mesh by a simple check.

The cross-field solver is the most important contribution of this work. The fast march-
ing algorithm is efficient and solves the non-linear problem simply and quickly with an
asymptotic complexity of O(N logN) [24]. For the example shown in Figure 6 with the
tri mesh containing ∼6k nodes, the time taken for the entire process to finish was under a
minute. The produced cross-fields can be tailored to suit a prescribed size field of a quad
mesh. A potential application of the presented technology is as an effective cross-field
initialisation method for global optimisation based solvers.

A basic streamline tracing algorithm is used to create the decomposition edges starting
from singularities and boundary corners. Thus, multi-block decompositions of surfaces
can be automatically constructed on which it is possible to generate all-quad meshes using
widely-used algebraic mapping algorithms. Bunin’s continuum theory deals only with the
properties of a mesh with infinitesimal elements, hence it lacks guidelines for constructing
a discrete mesh. For complex decompositions, such as that shown in Figure 6(right),
long thin blocks are created by the simple streamline tracing algorithm. This does not
cause an issue if the target element sizes are very small but a difficulty arises when the
target sizes are greater than the block height. A post processing block simplification
method could be used to overcome this problem by removing thin block rows with heights
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much smaller than the target element sizes, with care needed to avoid violating the block
topology. Depending on requirements, perhaps recently developed global parametrisation
based algorithms, such as [5, 11, 9], might be a preferable way to generate the quad mesh
rather than by decomposition.
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A Appendix

A.1 Calculate distance function in
tri element

The Eikonal equation states

‖∇d‖ = 1, d ∈ R > 0, (13)

where d is the distance function. In a tri element with the
distance set at two nodes, N2 and N3, the distance at the
remaining node, N1, is calculated as follows.
The distances relative to d2 are:

u1 = d1 − d2,
u2 = 0,

u3 = d3 − d1. (14)

A local Cartesian coordinate frame, F , on the element plane
with its origin at N2 is used and u is approximated by a
bilinear function,

u(x, y) = αx+ βy, α, β ∈ R, (15)

where F is chosen such that its x-axis is along edge-12 and
the y-axis points into the element, so that β > 0. By
Eqn. (13),

‖∇u‖ = α2 + β2 = 1,

⇒ β =
√

1− α2. (16)

Substituting known values in Eqn (15) gives

u3 = αx3 +
√

1− α2��*
0

y3,

⇒ α =
u3

x3
(17)

Therefore,

u1 =
u3

x3
x1 +

√
1−

u3

x3

2
y1, (18)

and finally,

d1 = d2 +
u3

x3
x1 +

√
1−

u3

x3

2
y1. (19)
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Abstract. In this paper we present an error estimator for unilateral contact problem
solved by a Neumann-Neumann domain decomposition algorithm. We also propose er-
rors indicators that take into account the different approximation errors introduced by
the computation: the finite element spatial discretisation and the domain decomposition
algorithm.

1 INTRODUCTION

Contact problems are frequent in structural analysis. They are characterized by in-
equality constraints such as non-interpenetration conditions, sign condition on the normal
constraints, and an active contact, an area that is a priori unknown. Several approaches
exist for solving the non linear equations issued from the finite element discretization of
frictionless contact problems. In this work, we consider a natural Neuman-Neumann do-
main decomposition algorithm, in which each iterative step consists of a Dirichlet problem
for the one body, a contact problem for the other one and two Neumann problems to coor-
dinate contact stresses. Two main approximation errors are introduced by this algorithm:
a discretization error due to the finite element method (FEM) and an algebraic error due
to the Neuman-Neuman domain decomposition algorithm (NNDD).

The objective of this paper is to present an a posteriori global error estimator for a
frictionless contact problem, solved by a NNDD algorithm and two errors indicators which
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allow to estimate the part of the error due to the spatial discretization and the part of
the error due to the domain decomposition algorithm. We show how to extend the error
measure in the constitutive relation developed in [4] for contact problems solved by a
Neumann-Dirichlet domain decomposition algorithm and how to modify the construction
of the admissible fields. The proposed errors estimators and indicators are studied on
2D-examples.

2 CONTACT PROBLEM

We consider the problem of two elastic bodies Ω1 and Ω2 in unilateral contact along
an interface Γc as shown on Figure (1). We choose the orientation of the contact zone Γc
by setting: nc = n1. Then, we introduce on the interface ΓC the functions w1, w2, repre-
senting two displacement fields (one on each side of the interface), t1, t2, representing two
fields of surface density forces (stresses transmitted to Ω1 and Ω2) and tc an interior field
of surface density forces. The problem of unilateral contact consists of finding (uα,σα) de-
fined on Ωα (α = 1, 2) and (w1,w2, t1, t2, tc) defined on ΓC such that (uα,wα,wc) satisfy
the kinematic conditions (1), (σα, tα, tc) satisfy the equilibrium equations (2), (uα,σα)
satisfy the elastic constitutive relation (3), (wc, tc) satisfy the contact constitutive relation
(4) (for the sake of simplicity we do not consider volumic forces).

Figure 1: Notations

u ∈ Vα, uα −wα = 0 and wc = w1 −w2 on Γc (1)

∀v ∈ Vα0 , −
∫

Ωα
σαε(v) dV +

∫
ΓαN

Fαv dS +

∫
Γc

tαv dS = 0 (2)

tc − t1 = 0 and tc + t2 = 0 on Γc

σα = Kαε(uα) in Ωα, (3)

2
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φ(−wc) + φ∗(tc) + tc.wc = 0 on Γc, (4)

where Vα = {v ∈ H1(Ωα); u = uαD on ΓαD}, Vα0 = {v ∈ H1(Ωα); v = 0 on ΓαD}, and
for any vector v, the normal and the tangential components are defined according to
vn = v.nc and vt = v − vn nc and the convex potentials φ and φ∗ are defined by

φ(v) =

{
0 if vn ≥ 0
+∞ otherwise

and φ∗(g) =

{
0 if gn ≤ 0 and gt = 0
+∞ otherwise

(5)

moreover for any pair (w, t) defined on Γc, the Legendre-Fenchel inequality leads to

φ(−wc) + φ∗(tc) + tc.wc ≥ 0 (6)

Remark: Following [2], the relation defined by equation (4) is equivalent to the Coulomb’s
constitutive law (7) in a frictionless case.

wc
n ≤ 0, tcn ≤ 0, tcnw

c
n = 0 and tct = 0 on Γc, (7)

3 DOMAIN DECOMPOSITION ALGORITHM

In this section we briefly recall the Neumann-Neumann domain decomposition algo-
rithm used to solve the unilareral contact problem defined by equations (1)–(4). Given a
non-negative parameter θ and an initial arbitrary normal displacement λ1 defined on Γc,
we define two sequences of displacements uαp on each solid Ωα, α = 1, 2. Each iteration p
of the NNDD algorithm is divided in two successive steps.

• Step 1 – Two independent elasticity problems are solved on Ω1 and Ω2:

1. In Ω1, the variational problem writes: Find (u1
p,σ

1
p) defined on Ω1 and (w1

p, t
1
p)

defined on Γc such that

u1
p = u1

D on Γ1
D, u1

p −w1
p = 0 and w1

pn
1 = λp on Γc (8)

∀v ∈ V1
0 , −

∫
Ω1

σ1
p : ε(v) dV +

∫
Γ1
N

F1v dS = 0 (9)

t1
p = σ1

pn
1 on Γc

σ1
p = K1ε(u1

p) in Ω1, (10)

2. In Ω2, with the given λp normal displacement defined on Γc, we solve the
following variational problem corresponding to a unilateral frictionless contact
problem on Γc :

u2
p = u2

D on Γ2
D, u2

p −w2
p = 0 and wc

p = λpn
1 −w2

p on Γc (11)
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∀v ∈ V2
0 , −

∫
Ω2

σ2
p : ε(v) dV +

∫
Γ2
N

F2v dS +

∫
Γc

t2
pv dS = 0 (12)

tcp + t2
p = 0 on Γc

σ2
p = K2ε(u2

p) in Ω2, (13)

φ(−wc
p) + φ∗(tcp) + tcp.w

c
p = 0 on Γc, (14)

• Step 2 – With t1
p and t2

p obtained in step 1, we solve two independent “Neumann
type” problems:

In Ω1, we solve{
Find w1 ∈ V1 such that
−
∫

Ω1 K
1ε(w1) : ε(v) dV = −

∫
Γc

1
2
(t1
p + t2

p).(u
∗ −w1) ∀u∗ ∈ V1.

(15)

In Ω2, we solve{
Find w2 ∈ V2 such that
−
∫

Ω2 K
2ε(w2) : ε(v) dV =

∫
Γc

1
2
(t1
p + t2

p).(u
∗ −w2) ∀u∗ ∈ V2.

(16)

Let εt be the precision of the algorithm, we have the alternative :

1. If ετ is small enough, the algorithm stops.

2. Else, the normal displacement λp is updated :

λp+1 := λp + θ(w1 −w2).n

and we return to step 1 for iteration p+ 1.

If t1
p + t2

p = 0, it means that the equilibrium is satisfied on the contact interface, in other
words the solutions u1 and u2 of step 1 constitute the unique solution of the reference
problem (1)– (4).

The convergence is obtained when |w1 −w2| −→ 0. The proof of convergence of the
NNDD algorithm (1)-(16) is given in [5] for any sufficiently small θ > 0: There is a θ0 > 0
such that for any 0 < θ ≤ θ0, the NNDD algorithm for unilateral frictionless contact
converges.

At each step p, the approximate solution of problems (8-10) and (11-14) are computed
using a classical F.E. method. The finite element spaces are denoted Vαh (⊂ Vα) and
the approximate solution (dp,h, sp,h) with dp,h = (u1

p,h,w
1
p,h,u

2
p,h,w

2
p,h,w

c
p,h) and sp,h =

(σ1
p,h, t

1
p,h,σ

2
p,h, t

2
p,h, t

c
p,h).
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4 ERROR ESTIMATION

4.1 Error in the constitutive relation

To develop an error estimation for a contact problem we use a method based on the
constitutive relation error [6]. We recall here the error measure proposed in [1] for a global
unilateral contact problem. Let us consider an approximate solution of problem defined
by equations (1-4), denoted (û, ĉ). The pair (d̂, ŝ) is said to be an admissible solution if
(d̂, ŝ) ∈ Uad × Sad with

• Uad = {d̂ = (û1, û2, ŵ1, ŵ2, ŵc) such that d̂ satisfy Eq. (1) and φ(−ŵc) = 0}

• Sad = {ŝ = (σ̂1, σ̂2, t̂1, t̂2, t̂c) such that ŝ satisfy Eq. (2) and φ∗(t̂c) = 0}

The constitutive relation error on the pair (û, ĉ) is defined by

eCRE(d̂, ŝ) =

[
2∑

α=1

‖σ̂α −Kαε(ûα)‖2
σ,Ωα + 2

∫
Γc

t̂c ŵc dS

]1/2

, (17)

As an extension of the Prager-Synge theorem it was shown in [1] that

eCRE(d̂, ŝ) ≥

[
2∑

α=1

‖σ̂α − σα‖2
σ,Ωα + ‖ûα − uα‖2

u,Ωα

]1/2

(18)

4.2 An a posteriori error estimator for a discretized Neumann-Neumann
domain decomposition algorithm

When the formulation of the contact problem is obtained by a domain decomposition
method the global error depends not only on the FE discretization error but also on the
convergence of the iterative algorithm used (i.e. an algebraic error). Here, we develop an
error measure based on the constitutive relation error for an unilateral contact problem
solved by a Neumann-Neumann domain decomposition algorithm. Let us introduce new
admissible spaces defined at each iteration p of the NNDD algorithm by

• U1
ad(λp) = {d̂1 = (û1, ŵ1) such that d̂1 satisfy Eq. (8)},

• S1
ad = {ŝ1 = (σ̂1, t̂1) such that ŝ1 satisfy Eq. (9)},

• U2
ad(λp) = {d̂2 = (û2, ŵ2, ŵc) such that d̂2 satisfy Eq. (11) and φ(−ŵc) = 0},

• S2
ad(λp) = {ŝ2 = (σ̂2, t̂2, t̂c) such that ŝ2 satisfy Eq. (12) and φ∗(t̂c) = 0}.

The pair (d̂1
p, ŝ

1
p) ∈ U1

ad(λp)× S1
ad is the solution of problem (8-10) if

e1
CRE(d̂1

p, σ̂
1
p) =

[
‖σ̂1

p −K2ε(û1
p)‖2

σ,Ω1

]1/2
= 0 (19)
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The pair (d̂2
p, σ̂

2
p) ∈ U2

ad(λp)× S2
ad(λp) is the solution of problem (11-14) if

e2
CRE(d̂2

p, ŝ
2
p) =

[
‖σ̂2

p −K2ε(û2
p)‖2

σ,Ω2 + 2

∫
Γc

t̂cp ŵ
c
p dS

]1/2

= 0 (20)

However, the pair (d̂p = (d̂1
p, d̂

2
p), ŝp = (ŝ1

p, ŝ
2
p)), is not an admissible solution for the

unilateral contact problem (i.e. /∈ Uad × Sad) because the equilibrium equation (2) is not
necessarily satisfied as t̂cp − t̂1

p = 0 has not been imposed. The quantity eCRE defined by
equation (21) is an error estimator for the problem defined by equations (8-14), when

eCRE(d̂1
p, ŝ

1
p, d̂

2
p, ŝ

2
p) =

[(
e1
CRE(d̂1

p, ŝ
1
p)
)2

+
(
e2
CRE(d̂2

p, ŝ
2
p)
)2
] 1

2

(21)

We have the following property

eCRE(d̂1
p, ŝ

1
p, d̂

2
p, ŝ

2
p) = 0⇔ (d̂1

p, ŝ
1
p, d̂

2
p, ŝ

2
p) is the exact solution of (8-14) for a fixed λp.

This error measure quantify the error due to the Finite Element discretization at each
step of the algorithm. In order to obtain a global error estimator for the contact problem,

let us define an admissible solution for the unilateral contact problem (
ˆ̂
dp = (

ˆ̂
d1
p,

ˆ̂
d2
p),

ˆ̂sp =

(ˆ̂s1
p,

ˆ̂s2
p)) such that

(
ˆ̂
d1
p,

ˆ̂s1
p) ∈ U1

ad(λp)× S1
ad, (

ˆ̂
d2
p,

ˆ̂s2
p) ∈ U2

ad(λp)× S2
ad(λp) and ˆ̂tcp −

ˆ̂t1
p = 0

The global error estimator for the contact problem is defined by

ηglo = eCRE(
ˆ̂
d1
p,

ˆ̂s1
p,

ˆ̂
d2
p,

ˆ̂s2
p) =

[(
e1
CRE(

ˆ̂
d1
p,

ˆ̂s1
p)
)2

+
(
e2
CRE(

ˆ̂
d2
p,

ˆ̂s2
p)
)2
] 1

2

(22)

We have the following property

eCRE(
ˆ̂
d1
p,

ˆ̂s1
p,

ˆ̂
d2
p,

ˆ̂s2
p) = 0⇔ (

ˆ̂
d1
p,

ˆ̂s1
p,

ˆ̂
d2
p,

ˆ̂s2
p) is the exact solution of the global unilateral contact problem defined by (1-4).

The admissible displacement fields are easily recovered, since the finite element fields
satisfy the kinematic constraints and φ(wc

p,h) = 0.

ˆ̂
d1
p = (u1

p,h,w
1
p,h) and

ˆ̂
d2
p = (u2

p,h,w
2
p,h,w

c
p,h)

However, the stress fields and the traction forces sp,h computed by the algorithm do not

satisfy the equilibrium equations. The pair (ˆ̂s1
p,

ˆ̂s2
p) is recovered from the finite element

solution and the data in 3 steps

6
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• The first step, consist in recovering admissible traction fields (ˆ̂t1, ˆ̂t2, ˆ̂tc). We built a

traction ˆ̂tc such that φ∗(ˆ̂tc) = 0 and which minimize in the least square sense J(ˆ̂tc)

J(ˆ̂tc) =

∫
Γc

(
ˆ̂tc − 1

2

(
t1
h,p − t2

h,p

))2

dS

• The second step, consist in recovering stress fields σ̃αh,p that satify the FE-equilibrium
equations on each solid Ωα. Let ũαh,p ∈ Vαh such that σ̃αh,p = Kαε(ũαh,p) and

∀v ∈ Vαh,0, −
∫

Ωα
Kαε(ũαh,p) : ε(v) dV +

∫
ΓαN

Fαv dS +

∫
Γc

ˆ̂tαv dS = 0

• The recovery of equilibrated stress fields ˆ̂σα from σ̃αh,p in each subdomain Ωα is the
most technical point. This step is performed with a traction-free recovery technique
developed in [4].

4.3 Error indicators for the NNDD algorithm and for the FE discretization

Following the method proposed in [7, 8], we propose here two error indicators that
allow us to estimate separately the part of the error due to the FE discretization from
the part due to the NNDD algorithm. The discretization error is defined as the limit of
the global error when the convergence criterion of the iterative algorithm tends to zero.
The NNDD algorithm error is defined as the limit of the global error as the mesh size h
tends to zero.

To define FE discretization error indicator ηFE, let us consider the reference prob-
lem defined by the step p of the NNDD algorithm: Find dp = (u1

p,w
1
p,u

2
p,w

2
p,w

c
p) and

sp = (σ1
p, t

1
p,σ

2
p, t

2
p, t

c
p) that satisfy equations (8-14). The only approximation introduced

between (dp, sp) and the finite element solution (dp,h, sp,h) is the FE discretization. We

have shown in section (4.2) that the error in the constitutive relation eCRE(d̂1
p, ŝ

1
p, d̂

2
p, ŝ

2
p)

defined in equation (21) is an error estimator for this reference problem. The quantity
eCRE(d̂1

p, ŝ
1
p, d̂

2
p, ŝ

2
p) is used to define a FE discretization error indicator for the unilateral

contact problem
ηFE = eCRE(d̂1

p, ŝ
1
p, d̂

2
p, ŝ

2
p) (23)

To define NNDD algorithm error indicator ηNNDD, let us consider the reference problem
defined by finite element discretization of the unilateral contact problem (Eq. (1)–(4)).
The only approximation introduced between the solution of this discretized problem and
the finite element solution (dp,h, sp,h) is the approximation introduced by the NNDD

algorithm. Let (d̂h, ŝh) and admissible solution for this problem (i.e. that satisfy the
discretized version of Eq. (1)–(2)). The error in the constitutive relation eCRE(d̂h, ŝh)
defined by equation (17) is an error estimator for this reference problem, and is used to
define NNDD algorithm error indicator for the unilateral contact problem

ηNNDD = eCRE(d̂h, ŝh) (24)

7
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5 Numerical results

The considered example is shown on figure (2). The lower boundary of structure Ω1

is clamped, on structure Ω2 the applied force F 2 has a linear distribution (F 2
max = 107)

and the applied displacement is u2
D = −10−4. The Young’s modulus for both structures

is E = 210GPa and the Poisson’s ratio is ν = 0.27. The coefficient θ of the NNDD
algorithm is set to 0.25.

Figure 2: Unilateral contact reference model (left) - distorted structures (right)

We first study the evolution of the global error estimator ηglo, of the FE error indicator
ηFE, and of the NNDD error indicator ηNNDD as a function of the number nDoF of the
degree of freedom (DoF), for a fixed number iterations of the NDDD algorithm nite = 6.
The results are presented on figure (3). The global error ηglo tends to an horizontal
asymptote which is the NNDD error indicator ηNNDD, whereas the convergence of FE
error indicator ηFE as a function of the number of DoF is shown. The ηglo can be
numerically related to ηNNDD and ηFE by relation (25).(

ηglo
)2 ≈

(
ηFE

)2
+
(
ηNNDD

)2
(25)

To evaluate the computed global error, we compute a reference solution denoted by uref
and we define the reference error eref and the effectivity index γ by

eref =

[
2∑

α=1

‖uαref − uαh,p‖2
u,Ωα

]1/2

and γ =
ηglo

eref
(26)

To obtain a reliable reference solution we choose a mesh size href = 1/8h and we set
the convergence criteria of the NNDD algorithm to 10−8. The results are reported on
figure (4). We first study the evolution of the global error estimator ηglo, of the FE error

8
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Figure 3: Computed errors as a function of the number of DoF

Figure 4: Effectivity index as a function of the number of DoF

indicator ηFE, and of the NNDD error indicator ηNNDD as a function of the number of nite
the number of iterations of the NDDD algorithm for a fixed number of DoF nDoF = 1002.
The results are presented on figure (5). The global error ηglo tends to an horizontal
asymptote which is the FE error indicator ηFE, whereas the convergence of NNDD error
indicator ηNDDD as a function of the number of iterations is shown.

6 CONCLUSION

A global error estimator based on the constitutive relation has been introduced to verify
an approximate computation of an unilateral contact problem based on a Finite Element
discretization associated with a Neumann-Neumann domain decomposition algorithm.
This global error is an upper bound of the exact error and the effectivity index is 1.2
on the studied examples. This error measure takes into account all the errors due to
discretization, i.e. both the errors due to the spatial discretization and those due to the
domain decomposition algorithm. Two error indicators are developed to estimate the

9
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Figure 5: Computed errors as a function of the number iterations of the NNDD algorithm

contributions of each source of error. They are defined in the same way as the error,
except that the reference problem is different. On the first tests, these indicators seem to
behave well.
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Abstract. The present work describes the design optimization of a low Reynolds number high 

lift airfoil where the objective function is that curve defined by the lift coefficient variation 

with the boundary layer transition position along the upper and lower surfaces of the airfoil. 

An aerodynamic shape optimization program using XFOIL as the solver, a viscous/inviscid 

two-dimensional panel method formulation code, and a sequential quadratic programming 

optimization routine, solves a minimization problem to determine the optimal airfoil geometry 

which minimizes the difference between its lift coefficient versus transition position curves 

and the specified objective curves while subject to geometric constraints and constant product 

of Reynolds number with the square root of lift coefficient for a given interval of lift 

coefficient values. The airfoil design variables are B-spline control points which define the 

airfoil camber line and the airfoil thickness distribution. A case study is presented for an 

airfoil design suitable for a long endurance UAV demonstrating the capability of the approach 

in producing an optimized design. Comparisons with other objective functions are also 

shown. 
 

 

1 INTRODUCTION 

In all conventional subsonic aircraft with medium/high aspect ratio wings (>6) the major 

single contribution to the overall aerodynamic performance of the vehicle comes from the 

wing airfoil and therefore its careful design is paramount. In the case of the fast growing 

market of unmanned aerial vehicle (UAV) applications, the need for cost reduction and the 

miniaturization of the sensors payload is driving the designs to smaller scale and lower 

airspeeds. This brings the low Reynolds (60,000<Re<500,000) airfoil aerodynamic problem, 

where the boundary layer laminar separation bubble and consequent transition influences 

decisively the drag coefficient [1]. Most formal approaches in the design of airfoils try to 

change the airfoil geometry in order to directly minimize the drag coefficient for a given flight 

condition or angle of attack range or to match a given pressure distribution known to be 

favourable for a given application. Many researchers have concentrated their efforts on 

optimizing the turbulent boundary layer pressure recovery strategy to maximize the value and 
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extension of the low pressure region in the upper surface or to delay the transition further aft 

thus obtaining higher lift coefficient and/or smaller drag due to extensive laminar flow at 

moderate/high Reynolds number [2-4]. These concepts lead to laminar separation in airfoils 

designed in such a way at low Reynolds numbers due to laminar bubbles that protrude 

massively from the airfoil contour before the transition is triggered and the flow reattaches 

with a high local velocity, Ue, drop and loss of momentum, leading to an unbearable drag 

coefficient increase taking place. The concept of surface transition ramp is a result of the later 

airfoil design philosophy to low Reynolds number when the presence of a strategically placed 

laminar boundary layer adverse pressure gradient ramp in the airfoil pressure distribution at a 

given angle of attack can result in a condition of near minimum drag coefficient increase due 

laminar separation and detached boundary layer transition. The idea is that when the 

separation does occur, the transition and reattachment follows shortly after. Selig [5] 

pioneered the application of the work previously done by Eppler [6] where, based in an 

inverse design by conformal mapping to reach a prescribed inviscid pressure distribution, 

where segments of constant velocity along the airfoil velocity distribution are prescribed for 

given angles of attack. Each discrete segment turns into a transition ramp when the angle of 

attack increases a certain amount above the value prescribed for constant velocity. So, this 

prescription of angles of attack along the contour, where the higher the prescribed angle of 

attack the closer the constant velocity segment is from the near leading edge stagnation point 

in the upper surface and the opposite for the airfoil’s lower surface, correlates strongly with 

the curve of laminar separation/transition position (non-dimensional position along airfoil 

chord, Xtr/c) versus angle of attack/lift coefficient (the transition curve). In practice, one can 

realize the correlation of these transition curves with the airfoil’s drag polar (see Fig. 1 

showing drag polars and transition curves for the Selig’s SG604x airfoil series). 

One problem in the inviscid inverse design formulation in PROFOIL, as devised by Selig, 

to manipulate the transition curves [7] is that it does not constitute a direct control of the 

transition curve position for a given Reynolds number operating condition since the inviscid 

velocity distribution is not the actual velocity distribution because of the real flow viscosity: it 

would need some iteration to arrive at a desired objective transition curve. Another issue is 

that rather than defining the airfoil’s velocity distribution with a constant velocity segment it 

would make more sense to define it with a constant velocity position such that the velocity 

distribution can be defined in a continuous way rather than in a discrete way. 

One can observe in Fig. 1, and in general, that for a given lift coefficient, as long as no 

significant turbulent separation takes place, the further aft the separation/transition occurs, the 

smaller the drag coefficient. The desired objective for good airfoil performance seems to be 

delaying as further aft as possible the transition position for a given design Reynolds number 

without incurring in significant turbulent separation. So, this furthest aft transition position is 

imposed by the turbulent pressure recovery method. The Stratford turbulent recovery [8] is 

the choice that would allow the most aft transition to be implemented at a given angle of 

attack or lift coefficient. For the same position of transition, in the airfoil’s upper and lower 

surfaces, the drag coefficient will be smaller if the transition curve has a shallower slope 

along Xtr. The later observation allows the SG6041 airfoil to have peak efficiency at a smaller 

lift coefficient than the others. But the consequence of using a shallow slope to increase the 

efficiency in a given design lift coefficient is that the turbulent pressure recovery strategy gets 

compromised around that design condition when pursuing a high maximum lift coefficients. 
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Figure 1: Performance and transition curves predictions of Selig’s SG604x series airfoils using XFOIL [5] 

Having this in mind, it is observed that the steepest transition curve could produce the 

highest lift airfoil for a given fixed wing aircraft application (with constant lCRe ). An 

example application is to further improve the performance of the airfoil most used in high 

payload fractions design-build-fly competitions, the Selig S1223 airfoil, while using an 

optimization algorithm coupled to a viscous/inviscid formulation to pursue the desired 

transition curves. 

2 AIRFOIL OPTIMIZATION 

Formal numerical airfoil optimization has received increased attention from the scientific 

and engineering community because its performance is of utmost importance to the overall 

efficiency of aircraft. Both aerodynamic analysis tools and optimization algorithms have been 

used to optimize airfoils for specific applications, being the most common the high subsonic 

speed commercial transport [9-12]. The most utilized optimization algorithms applied to 

airfoil design range from gradient-based [9,12,13] to stochastic algorithms [10] and adjoint-

methods. Some optimization work has also been produced for low Re applications [13,14], 

particularly in the design of UAV airfoils, where gradient-based algorithms are adopted even 

though the preferred approach still appears to be the inverse design method [15] rather than 

numerical aerodynamic shape optimization. 

Several steps are required in order to solve an airfoil shape gradient based optimization 

problem: the airfoil must be mathematically defined in such a way that it is possible to change 

its shape; a method must be implemented to account for the deformation of the airfoil; an 

aerodynamic solver must be selected to obtain the necessary values to compute the objective 
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function and constraints; a method must be chosen to compute the gradients, and finally; an 

optimization algorithm must be used. In the following paragraphs, the different methods 

selected for each step are described. 

An in-house low speed airfoil optimization code [13,16], designed for aerodynamic shape 

optimization of airfoils subject to operational and geometric constraints, is modified and used 

in this work. 

2.1 Airfoil Geometry Parameterization 

Two uniform cubic B-splines are used to discretize the airfoil: one for the thickness 

distribution and one for the camber line. The airfoil section is obtained by combining the 

camber line and the thickness. The coordinates of the points on the surface of the airfoil are 

obtained from the following expressions for all longitudinal x coordinates 









)()()(

)()()(

xzxzxz

xzxzxz

thcl

thcu
 

(1) 

where (x,zu) and (x,zl) are points on the upper and lower surfaces, respectively and zth and zc 

are the abscissas of the thickness distribution and the camber line, respectively, for the given x 

ordinate. 

In this optimization the vertical location (z-coordinate) of the control points of the uniform 

cubic B-splines are used as the design variables. The airfoils are represented using one B-

spline with 8 control points for the thickness distribution and another B-spline with 7 control 

points for the camber line. From the total of 15 control points, 12 are used as design variables. 

In particular, the control points numbered from 1 to 7 are used in the thickness distribution 

and those from 10 to 14 are used in the camber line, as shown in Fig. 2(a), are used as design 

variables. The two control points, representing the thickness distribution, aligned at the x = 0, 

one at the fixed point (0,0) and the other placed in the positive z direction, are used to force 

the different airfoils to have the same leading edge point. Furthermore, the z position of the 

moving control point (point 7) at the leading edge is also used as a design variable. This 

variable is used to control the sharpness of the leading edge during optimization. 

In Fig. 2(b) the B-splines are used to represent the Selig S1223 airfoil [1c]. It can be 

observed that the two B-spline representation accurately defines the Selig S1223 airfoil shape. 

The leading edge and trailing edge areas are the regions that show some deviation from the 

original geometry due to the large curvature of the airfoil surface in the region and the small 

number of spline control points used. The distribution of the B-spline control points along the 

airfoil chord is chosen in such a way as to give a good representation of the airfoil geometry. 

In most cases involving thick airfoils, a denser panelling is used near the leading and 

trailing edges, where the radius of curvature is smaller and/or the rate of change of the flow 

state variables is higher. A frequently used method for dividing the chord into panels with 

larger density near the edges is the full cosine method. In this method, a half-circle is divided 

into equally spaced angles, , as shown in Fig. 3, and the x coordinate is obtained from 

 cos1
2


c

x  
(2) 

If n chordwise panels are needed, then  = /n and the angle for the panel corner points xi 
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is given by 

  1,1for1  niii   (3) 
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  (a) (b) 

Figure 2: (a) Control points representing the B-splines used for camber line and thickness distribution of the 

airfoils and corresponding airfoil geometry; (b) Comparison of Selig S1223 airfoil and its B-spline 

representation 

 

 
Figure 3: Airfoil surface panel distribution 

Given the number of panels required for the airfoil surface, the panel distribution is 

obtained from Eqs. (2) and (3). Then, knowing the B-spline representations of both the 

thickness distribution and camber line by having their control points, Eq. (1) can be used to 

calculate the panel corner points for the upper and lower surfaces of the airfoil. 
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2.2 Aerodynamic Analysis 

The 2-dimensional (2D) aerodynamic coefficients and aerodynamic properties of the 

airfoil as functions of angle of attack (AOA) and Reynolds number (Re) are obtained using 

the solver of the XFOIL code [17]. In XFOIL, the steady Euler equations in integral form are 

used to represent the inviscid flow, and a compressible lag-dissipation integral method is used 

to represent the boundary layers and wake. The entire viscous solution (boundary layers and 

wake) is strongly interacted with the incompressible potential flow via the surface 

transpiration model which permits proper calculation of limited separation regions. Results 

from XFOIL have been compared against experimental data with good agreement [16]. 

2.3 Optimization Approach 

The general optimization problem can be stated as 

minimize:  )(vf  (4) 

subject to:  
0)(

0)(





vg

vh
 

(5) 

where the design variables, v, may be flight and/or geometric parameters and the equality, 

h(v), and inequality, g(v), constraints may be lift coefficient and/or geometric parameters, for 

example. 

The aerodynamic shape optimization is carried out with the sequential quadratic 

programming (SQP) constrained optimization algorithm of FFSQP3.7 [18]. The purpose of 

the FFSQP3.7 algorithm is the minimization of an (in general nonlinear) differentiable real 

function subject to (in general nonlinear) inequality and equality constraints. Numerical 

techniques, such as FFSQP3.7, generally assume that the design space is convex, continuous, 

and unimodal. Because of this, numerical techniques tend to converge quickly to a local 

optimum close to the initial design point. Thus, the effectiveness in finding a global optimum 

is highly dependent on the topology of the design space and the choice of the initial design 

point. Nonetheless, SQP has been shown to produce good results [19]. 

The gradients of the objective function and constraints are a requirement of any gradient-

based optimization algorithm. In this work, the gradients are computed using forward finite-

differences, which enables the problem of finding the gradients to be treated as a black box. 

Therefore it can be used with any fluid flow solver because it does not involve changes in the 

solver’s code. 

3.4 Aerodynamic Shape Optimization 

The objective of the airfoil design is to minimize a cost function that produces a good or a 

set of good airfoil characteristics. In order to achieve this, a tool that searches for the best 

airfoil geometry is used, which may take into account geometric constraints or performance 

constraints imposed by the user. Figure 4 shows a flow chart that illustrates the 

implementation of the aerodynamic shape optimization tool. The code can be summarized as 

follows: 
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1. Create the airfoil using the B-spline approach; 

2. Compute objective function, f(v), and constraints, h(v) and g(v), of the optimization 

problem using the aerodynamic solver XFOIL; 

3. Compute gradients of objective function and constraints using forward-differences; 

4. Solve the optimization problem using the SQP method; 

5. If the optimization problem has converged stop; if the optimization has not yet 

converged continue; 

6. Use the new design variables to create new airfoil geometry and go to step 2. 

 

 
Figure 4: Flow chart of the airfoil aerodynamic shape optimization design tool 

3 AIRFOIL DESIGN OPTIZATION CASE 

Design-build-fly competitions have become popular within aerospace sciences students. 

Usually the design goal is maximum payload and/or endurance with some constraining 

requirements. In this scenario as in general small UAV applications high maximum lift 

coefficient, Cl/Cd and Cl
3/2

/Cd values are a significant part of the airfoil design goal along with 

large relative thickness. From the authors experience one airfoil seems to be the most widely 

used: Selig’s S1223 [4]. An effort to improve this airfoil according to extensive laminar flow 

region and steep transition curve design philosophy was thus pursued by setting the desired 

transition curves by the transition positions in the upper surface and lower surface in 5 Cl 

values within the useful operation envelope of the initial S1223 airfoil for a 

000,200lCRe , which is a representative value for a typical design-build-fly application 

(see Fig. 6). 

3.1 Problem Definition 

Finding the airfoil geometry that gives the desired transition curves, which are essentially 

the transition position, Xtr, as a function of Cl, on the upper and lower surfaces of the airfoil, 

is implemented by minimizing the square difference between the desired curves and those 

produced by the current airfoil geometry. 
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The optimization problem statement for the study is written as 

minimize:       




n

j

jljl

n

j

juju XtrobjXtrwXtrobjXtrwvf
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2
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1

2
,, 1)(  

(6) 

subject to:  
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,1;102 5
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jl

ct

kv

njCRe

 

(7) 

where Xtrj is the obtained transition position and Xtrobj the objective transition position 

corresponding to Cl,j. The indices u and l indicate the upper and lower airfoil surfaces, 

respectively, and the index j denotes the jth analysis Cl point. The parameter w is a weighing 

factor which, in this study, is taken as 0.5 to give the same importance to the upper surface 

and lower surface transition curves. 

The use of a constant value of lCRe  is representative of a set of flight conditions where 

the lift coefficient is adjusted as speed varies so that total lift is maintained unchanged. In this 

study a total of five (n=5) lift coefficient values ranging from 1.1 to 2.1 are chosen to be 

representative of the flight envelope required for the airfoil to be designed. From Eq. (7) it 

follows that the Re for these Cl values range from 138,000 to 190,700. A minimum relative 

thickness of 1% at the trailing edge, (t/c)TE, is set to avoid too thin a trailing edge which is 

difficult to build and prone to breakage during ground handling. 

The initial airfoil selected is the S1223 which is known to have good performance for the 

given application and is widely used in high lift radio controlled aircraft wings with low 

speed, heavy payload requirements. The airfoil representation using the two B-spline 

approach described above is shown in Fig. 5. 

3.2 Results 

The resulting airfoil from the optimization is shown in Fig. 5 along with the initial S1223 

in the two B-spline representation. The final maximum relative thickness is 11.71% compared 

with the initial 12.04%, a negligible change for practical applications but the corresponding 

position is significantly shifted aft from 20.6% to 24.5% of the chord. This results in an 

important improvement for the main spar position which can be placed closer to the center of 

pressure and leaving more room in case a D leading edge structural configuration is used. The 

maximum camber position decreased from 8.72% to 8.49% and the corresponding position 

was displaced slightly back from the initial 48.4% to 50.0%. 

The final airfoil transition curves, lift curve and drag polar are displayed in Fig. 6 with 

solid lines. In the same figure, the curves from the initial airfoil are drawn with dashed lines. 

The objective transition points versus lift coefficient that defined the objective transition 

curves are also shown. It is seen that the maximum lift coefficient of 2.18 from the initial 

airfoil S1223 is not reached. The maximum final airfoil lift coefficient is 2.12, a difference 

smaller than 3% although the stall seems more abrupt. The reason can be related to the 

difference between the objective transition point of the upper surface and the actual transition 

point reached in the final airfoil design. With the current algorithm a transition curve cannot 

be described on the upper surface for positive dXtr/dCl values while convergence between the 
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final airfoil transition curve in the upper surface and the objective is weak even at slightly 

negative dXtr/dCl near the maximum lift coefficient. This can be explained by the large 

sensitivity of the Cl curve to small perturbations in the leading edge geometry and the limited 

number of design parameters at the leading edge prevent the required geometric resolution 

from being achieved. On the other hand, the final airfoil drag polar shows a significant 

improvement below a lift coefficient of 1.75. 
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z
/c
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-0.05
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0.1

0.15
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final airfoil

 

Figure 5: Airfoil optimization results for 5102lCRe : initial airfoil (Selig S1223 B-spline representation) 

and final airfoil geometries 

 

Figure 6: Airfoil optimization results for 5102lCRe : drag polar, lift and pitching moment coefficients and 

transition curves 
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The improvements in performance can be observed in Fig. 7. The final airfoil aerodynamic 

efficiency, Cl/Cd, is significantly higher and it extends over a wider Cl envelope. The 

maximum value of Cl
3/2

/Cd is not improved but the range of high values is extended to much 

lower lift coefficients. This is beneficial in actual flight because it is important to have a good 

margin below the maximum lift coefficient to prevent an unintentional stall. 

 

 

Figure 7: Airfoil optimization results for 5102lCRe : lift-to-drag ratio and lift
3/2

-to-drag ratio 

 

Figure 8: Airfoil results for 5105.1 lCRe : drag polar, lift and pitching moment coefficients and transition 

curves 
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In order to assess the performance of the optimized airfoil at a lower Reynolds number, 

aerodynamic curves were obtained with XFOIL for 5105.1 lCRe . Figures 8 and 9 show the 

results obtained. These clearly indicate that the new design is overall superior to the initial 

airfoil. One particular aspect is that the stall behavior is smooth, an important requirement for 

good flight handling qualities at low speed. 

 

 

Figure 9: Airfoil results for 5105.1 lCRe : lift-to-drag ratio and lift
3/2

-to-drag ratio 

4 CONCLUSIONS 

- Aerodynamic shape optimization using a gradient-based algorithm was performed to 

design a low Reynolds airfoil to match a set of transition curves. The method 

implemented produced a good performing airfoil but revealed some convergence 

difficulties near the higher lift coefficients, which were attributed to the airfoil 

parameterization in the leading edge region. 

- The approach of using the transition curves as objective functions proved useful in 

producing a good airfoil design. 

- This work is a preliminary investigation on this type of airfoil design approach and 

requires further improvements on the optimization algorithm as well as on the airfoil 

parameterization scheme. 
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Abstract. This article describes the use of Gaussian Processes in model reduction tech-
niques with application to inverse problems. The work is focused on the proper construc-
tion of the model approximation, namely on training process based on limited number
of learning samples. By making use of Active Learning criterion employed in training
process a significant improvement in model prediction can be observed. An example of
application of stochastic surrogate model for the paperboard characterization through
biaxial tensile test and Digital Image Correlation measurements is also presented.

1 INTRODUCTION

The inverse analysis is a technique widely used for structure or material characteri-
zation, especially when unknown or uncertain parameters embedded in the model have
to be determined. Knowing the structure responses such as displacements, accelerations,
eigenmodes, etc. the backward computations can be performed to identify causes, e.g.
constitutive constants, structural parameters. In the literature there are many examples
of application of inverse analysis for material characterization [1, 2, 3], damage detection
[4, 5], estimation of residual stresses [6, 7], to list just a few.

The inverse analysis often uses a numerical model (e.g. finite element or boundary
element model, analytical model) for test simulation, which computes selected quantities
to be compared to experientially measured ones. The inverse procedure, through iterative
optimization algorithms, minimizes the discrepancy between experimentally measured
UEXP and numerically computed UNUM quantities, so the minimization problem reads:

arg min
x∈Rn
‖UNUM (x)−UEXP‖2

2 (1)

where x is a set of sought parameters.
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If the numerical model is complex and/or has to be computed many times, the iterative
minimization procedure becomes very expensive, therefore, not attractive from practical
point of view especially when the test has to be performed routinely ‘in situ’ (i.e. without
a computer which can handle heavy computations). The alternative is to use a surrogate
which approximates the behavior of the numerical model but is much simpler, thus less
expensive. The surrogate is usually constructed as a ’black box’ where for the approxima-
tion the following methods, among others, are commonly used: Radial Basis Functions
(RBFs), Polynomials, Proper Orthogonal Decomposition (POD) combined with RBFs
[8, 9], Artificial Neural Networks (ANNs) [10] or Gaussian Processes (GP) [11, 12].

2 MODEL REDUCTION THROUGH GAUSSIAN PROCESSES

2.1 Model approximation

In order to build a smooth and accurate analytical approximation one needs to con-
struct a forward model to generate responses (i.e. training samples):

xn ⇒
{

Forward
Model

}
⇒ u (xn) (2)

where xn = [x1, x2, . . . , xM ]Tn is an input vector (i.e. vector of sought parameters) and

u (xn) = un = [u1 (xn) , u2 (xn) , . . . , uk (xn)]T is an output vector (i.e. vector of mea-
surable quantities) for n = 1, . . . , N . Both vectors {xn,un} represents a single training
sample and form n-th column of (M×N) parameter matrix X and (K×N) snapshot
matrix U:

X =

 x11 · · · x1N
...

. . .
...

xM1 · · · xMN

 , U =

u11 · · · u1N
...

. . .
...

uK1 · · · uKN

 , (3)

Ideally would be to find method which needs the smallest possible number of ‘training
samples’ and in the same time is precise and robust. The approximation method based
on Gaussian Processes satisfies all these requirements: it gives very good results when the
number of training examples is limited. Another important feature of GP is that it gives
not only the approximation of the mean value of sought solution but also its standard
deviation. This feature gives a possibility of automatic and systematic improvement of
the solution, because in the locations with high values of standard deviation one can
expect a weak approximation and therefore, it points out where, in the parameter space,
an additional experimental or numerical data is necessary to improve the solution.

The GP employed for stochastic approximation is usually formulated within Bayesian
framework, thus provides additional information about the magnitude of correlation be-
tween state variables and control variables. It is very important to know the relevance
of input-output correlation because based on it one can exclude from the model the
parameters which do not influence the measurable quantities. The reduction saves the
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experimental efforts of finding parameters which appear to be irrelevant in particular sim-
ulation. Such information obtained ’for free’ during the training process is similar to the
results from sensitivity analysis often performed for model check.

The stochastic model reduction techniques based on GP have, however, one signifi-
cant disadvantage, namely the Gaussian Processes are usually parameterized in terms of
their covariance functions. This makes it difficult to deal with multiple outputs, because
ensuring that the covariance matrix is positive definite is problematic. An alternative for-
mulation is to treat Gaussian processes as white noise sources convolved with smoothing
kernels, and to parameterize the kernel instead (see [13]). Using this approach, one can
extend Gaussian Processes to handle multiple, coupled outputs.

When GP are applied for model reduction (here for the forward model approximation)
within the inverse problem, the number of measurable quantities (e.g. measured displace-
ment fields, velocities or accelerations in different moments of time and in various space
locations) is often very large. In such situation the probable correlations between the
state variables can be computed, and consequently used to reduce the number of model
outputs by the application of POD, i.e.:

U⇒
{

POD
}
⇒ Ū (4)

where

Ū =

u11 · · · u1N
...

. . .
...

uL1 · · · uLN

 , (5)

with L � K. However, the problem size, even when reduced, does not necessarily make
possible an efficient application of multi-output GP. An alternative is to formulate the
GP approximation on modified training samples, which instead of output consisting of
truncated measurable quantities {xn, ūn}, have an output containing a particular scalars
{xn, tn}. The scalar value output can be chosen for example as a ‘squared distance’ from
the experimental measurements to their numerically computed counterparts, namely:

tn = ‖un − uEXP‖2
2 . (6)

By adopting a latter method the GP approximation can be constructed in two stages.
First N training samples {xn,un} are computed through forward model (2). Later for
each particular identification procedure an experimental data uEXP are used for output
truncation through (6) to a single scalar (so the training data is now {X,T}, where
T = [t1, t2, . . . , tN ]). Having a scalar output in each training sample the single-output
GP approximation can be easily constructed. On this stage an additional retraining
by an active learning method (see e.g. [11]) can be performed in order to improve the
surrogate. Once the GP approximation is designed, any optimization algorithm can be
used to find a function minimum according to formula (1). Because the surrogate in
general approximates a multi-modal function (i.e. function with many local minima)
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it seems reasonable to employ for function minimization some global search techniques
such as genetic algorithms [14] or particle swarm methods [15]. Such algorithms require
usually a big number of iterations in order to find a global minimum, however, when used
on reduced model the computing time is not an issue anymore.

2.2 Linear regression model

In order to explain how to construct a model approximation by Gaussian Processes,
first a Linear Regression (LR) model should be considered. LR is a linear function of
model parameters w and nonlinear function of the input vector x, and usually is defined
as:

y (x,w) =
M∑
j=1

wjφj (x) , (7)

which simply is a linear combination of fixed, nonlinear basis functions φj(x) of the input
variables (e.g. polynomial basis functions).

If we now take N given training patterns (xn, tn), xn being the input vector, tn the
response for n = 1 . . . N , then the parameters w of the linear model can be computed by,
for example, penalized least squares method:

w =
(
ΦTΦ + λI

)−1
ΦT t, (8)

where Φ is N×M design matrix with elements defined as φm(xn). The regularization
parameter λ is called hyper-parameter and can be estimated using validation set or by
applying Bayesian inference and maximizing evidence of dataset p(t|λ) w.r.t. λ (details
are given in [12]).

2.3 Gaussian Process

Gaussian process model can be obtained by reformulation of the linear model in terms of
dual representation. In this approach, linear model is trained by minimizing a regularized
error, which is defined using N×N symmetric Gram matrix:

K = ΦΦT = φ(x)Tφ(x′) = k(x,x′), (9)

where k(x,x′) is a kernel function. The vector kn = k(xn,x) represents n-th row or
column of K matrix.

The prediction for a new input x∗ can be computed by the formula:

GP (x∗|x, t, λ) = k(x,x∗)T (K + λI)−1t, (10)

where k(x,x∗) is a covariance between a new input x∗ and the other inputs, t = (t1 . . . tN)T

is a vector of training target values.
From the Bayesian point of view the dual representation of linear model leads to the

Gaussian process, where the kernel function is interpreted as a covariance function of the
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GP. Application of such regression model for prediction allows to compute the predictive
distribution of the target variable y(x∗) for a new input vector x∗. This requires evalu-
ation of conditional distribution p(y|t), which for the Gaussian processes is a Gaussian
distribution with mean and covariance respectively given by:

mean (x∗) = kTC−1t, (11)

σ2(x∗) = c− kTC−1k, (12)

where C is the N×N covariance matrix given by:

C(x,x′) = k(x,x′) + β−1I, (13)

where β is the variance of the target distribution and I is an identity matrix. The covari-
ance function C(x,x′) defines the property that vectors x and x′, which are close in input
space, should give rise to highly correlated outputs y(x) and y(x′).

2.4 Covariance function

The covariance function can be any function that will generate a non-negative definite
covariance matrix for any ordered set of (input) vectors (x1, . . .xN). A stationary, non-
isotropic squared exponential covariance function k (x,x′) is chosen here, and given by:

k (x,x′) = ν exp

(
−1

2

M∑
i=1

wi (xi − x′i)
2

)
+ b, (14)

where the term b represents a bias that controls the vertical offset of the Gaussian process,
while ν controls the vertical scale of the process. The wi parameters allow a different dis-
tance measure for each dimension. If wi is small then the i-th input is down-weighted and
have little effect on the input. These hyper-parameters play vary important role mainly
because they have a direct link to model sensitivities with respect to input parameters
thus provide a measure of importance of input parameters.

After defining the covariance function we can make predictions of the new input vectors
but first it is necessary to learn the hyper-parameters

θ = [ν, ω1, . . . , ωM , b, β] . (15)

In order to find those parameters one can search for the most probable set by maximizing
the log likelihood function given by:

ln p(t|θ) =
1

2
ln |C| − 1

2
tC−1t− N

2
ln 2π, (16)

using gradient-based optimization algorithms, such as a first-order batch Levenberg-
Marquardt Algorithm (LMA) or Trust Region Algorithm (TRA), which provides fast
convergence (see details in [16]).
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2.5 Application of GP to inverse problems

Once the N training samples {X,U} is generated through forward model (2) and later
adjusted to the particular experimental data uEXP by the formula (6) so the training set
becomes {X,T} one can learn hyper-parameters θ of covariance matrix C (x,x′), thus
construct GP approximation GP (X,T,θ) of forward model.

From this point, by making use of equations (11) and (12), the prediction of GP output
t∗ for a new parameter vector x∗ can be computed through conditional distribution

GP (x∗|X,T,θ) =
{

mean(t∗) = kTC−1T, covariance(t∗) = c− kTC−1k
}
. (17)

The mean value and covariance of model prediction are computed by simple matrix mul-
tiplications, however, if number of sampling points is large, the construction and inversion
of covariance matrix have to be carefully designed in order to retain an efficiency.

2.6 Active learning

If one would like to improve an approximation adding new training samples, the specific
training process, which automatically finds new locations of sampling points has to be
employed. In order to optimize the retraining procedure of GP based surrogate model,
the active learning criterion, that improve the global model fit, can be implemented. A
new training points are sequentially added in the zones where the model predictions are
poor and/or in the vicinity of the minimum of the approximated solution, meaning that
the iterative retraining of the surrogate model is performed by adding a new training
patterns, sampled in the new locations in the parameter space (selected by the algorithm
itself).

a) b)

reference function

mean prediction

training sample

standard deviation

of prediction

Figure 1: An example of 1D function approximation by GP and active learning algorithm: (a) 15 samples
approximation, (b) 28 samples approximation

This approach is very efficient when the number of training samples is limited, so the
algorithm starts building approximation with small selection of patterns (randomly or
uniformly distributed) and improves the approximation by sampling the parameter space
in a clever way (based on its confidence about the quality of the approximation). It stops
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when the selected number of retraining samples is reached. In Fig. 1 the active training
process is shown.

3 EXAMPLE

An example of a model characterization is used here to illustrate the application of
above described model reduction techniques. The examples show the use of GP as numer-
ical model’s surrogate for characterization of paperboard parameters [17] through biaxial
test and DIC measurements techniques combined with inverse analysis. From such test
one can identify most of the in-plane parameters of paperboard (for the details see [10]).
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Figure 2: Performance of the GP designed for identification of 12 parameters in Xia et al. model with
measurement noise ±0.5 µm: percentage of relative error in abscissae; in ordinates, percentages of results
within each abscissae interval

Figure 2 shows the performance of GP trained and later retrained by Active Learning
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algorithm for each (over one hundred) pseudo-experimental testing sample.
In the above examples the GP based approximation serves as a surrogate of complete

Finite Element (FE) model, which in combination with iterative minimization routine,
namely trust-region algorithm (TRA) and evolutionary-based techniques, i.e. particle
swarm algorithm (PSA) gives very accurate results of model parameters identification.
The results are compared to those obtained by making use of Artificial Neural Networks
(details on application of ANNs are given in [10]). Both ANNs and GP approximations are
constructed on 10.000 numerically generated samples additionally noised and truncated to
DIC measurements precision. The sampling points are distributed in the 12-dimensional
parameter space according to Optimal Latin Hypercube technique [18].

The GP model is further retrained by making use of 100 new testing data. Each test-
ing sample is used to truncate the output matrix U through formula (6) to the vector T.
Active Learning criterion inserted in training algorithm automatically adds new training
points (totally 1.000) in the argument space according to rules specified in previous sec-
tion. In Tab. 1 the comparison of ANNs performance with GP trained by TRA and GP
trained by PSA with active learning criterion is presented.

Table 1: Relative approximation error on 100 testing samples by (a) Artificial Neural Networks; (b) Gaus-
sian Processes and Trust Region Algorithm and (c) GP combined with Active Learning and Particle
Swarm Algorithm

Parameter ANN GP (TRA) GP+AL (PSA)

E1 1.29 1.49 1.11
E2 1.55 1.61 1.25
G12 1.66 1.81 1.15
Q1 4.22 4.10 2.63
Q2 4.05 3.92 2.89
Q3 14.3 15.1 12.0
n1 3.74 3.70 2.16
n2 4.66 4.32 2.62
n3 15.9 14.7 9.86
k 7.28 7.41 5.38
T1 3.20 4.04 2.40
T2 3.50 4.07 2.23

4 SUMMARY

The model reduction approach has the following important advantages w.r.t. the pro-
cedure based on evaluation of full numerical model: (a) it is much faster (the compu-
tational burden is moved to training phase) and (b) it does not require to use powerful
computers for heavy and repetitive computations of numerical model, so once the model
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is constructed it can be used ‘in situ’ on the portable computer.
The GP approximation model, which serves as a numerical model reduction, was used

here in combination with inverse analysis to solve practical engineering identification
problems. In the work the proper construction of the GP model was discussed, namely:
(a) training process based on minimal number of training data, by making use of auto-
matic samples selection through computed standard deviation of model prediction; (b)
control parameters reduction based on input-output correlation (sensitivity-like analysis)
and (c) state variables ‘compaction’ for single-output GP implementation. The successful
application of stochastic model reduction techniques for the material model characteriza-
tion problems was also presented and compared to other approximation method based on
Artificial Neural Networks.
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Abstract. We present a technique to extend Jacobian-based distortion (quality) mea-
sures for planar triangles to high-order isoparametric elements of any interpolation degree
on CAD parameterized surfaces. The resulting distortion (quality) measures are expressed
in terms of the parametric coordinates of the nodes. These extended distortion (quality)
measures can be used to check the quality and validity of a high-order surface mesh. We
also apply them to simultaneously smooth and untangle high-order surface meshes by min-
imizing the extended distortion measure. The minimization is performed in terms of the
parametric coordinates of the nodes. Thus, the nodes always lie on the surface. Finally,
we include several examples to illustrate the application of the proposed technique.

1 Introduction

It is well known that computational methods for solving partial differential equations
require domain discretizations composed by valid and high-quality elements [1, 2, 3].
If the mesh contains inverted elements, it can not be used for computational purposes.
Moreover, if the mesh does not have a minimum quality, the accuracy of the finite element
computation is degraded.

In order to improve the quality of a mesh the nodes can be relocated (smoothing)
[4, 5, 6]. Note that in 3D applications, it is of the major importance to ensure a high-
quality surface mesh. If a boundary mesh face is inverted, the corresponding mesh element
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is inverted and cannot be recovered once the surface mesh is fixed. Therefore, in this
work we present a technique to extend any Jacobian-based distortion (quality) for planar
elements to high-order elements with the nodes on CAD surfaces. The resulting measures
are expressed in terms of the parametric coordinates of the surface. We use these measures
in order to develop a simultaneous smoothing and untangling technique for high-order
meshes with the nodes on a parameterized surface. The resulting meshes are composed
by valid and high-quality elements with the nodes on the surface. It is important to
highlight that we can ensure that the optimized nodes lie on the original CAD surface
and not on an approximation, since the optimization process is written in terms of the
parametric coordinates of the mesh nodes.

The proposed technique relies on the framework of algebraic quality measures intro-
duced in [2]. In order to improve the quality of a valid mesh, an optimization approach
based on Jacobian-based measures is proposed in [6]. These optimization approaches
can also be used to untangle inverted elements. On the one hand, references [7, 8] pro-
pose a two-step procedures that first untangle the elements and second smooth the node
location. On the other hand, in Reference [9] a simultaneous smoothing and untan-
gling technique for triangular planar meshes is proposed by means of a modification of a
Jacobian-based distortion measure. It is worth to notice that this technique has been ex-
tended to quadrilateral and hexahedral meshes [10] and to non-planar triangular meshes
[11]. The simulatneous smoothing-untangling is the approach selected in this work.

Several techniques have been developed to optimize meshes on surfaces, generally de-
fined by discrete representations, see [11, 12, 13, 14, 15]. However, in our work we consider
parameterized CAD geometries and our objective is to ensure that during the optimiza-
tion process the nodes are always located on the surface. In [16] we already proposed to
quantify the distortion (quality) of a linear surface element in terms of the coordinates
on the parametric space of the CAD surface. An optimization approach based on the
proposed distortion measure ensures that the nodes always lie on the surface, since the
whole process is developed in the parametric space of the original surface.

Several methods have been proposed to generate high-order planar or 3D meshes,
see [17, 18, 19, 20, 21]. The standard approach to generate a high-order mesh consists
on an a-posteriori procedure composed by three steps: (1) generate a linear mesh; (2)
increase the order of the elements and curve them to fit the boundary; and (3) optimize
the node locations so that the mesh is valid and is composed by high-quality elements.
The method proposed in this paper relies on the work developed for planar high-order
elements presented in [18]. Specifically, we propose to extend the measures for planar high-
order elements presented in [18] to high-order meshes on parametrized surfaces using the
framework presented in [16], where planar measures for linear elements are extended to
surfaces.

The outline of the paper is as follows. First, in Section 2, we review the definition of
distortion measure for planar elements presented in [18]. Next in Section 3, we present the
formulation to extend any Jacobian distortion measure for linear triangles to high-order
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Figure 1: Mappings between the reference, the ideal and the physical elements.

elements with the nodes on parameterized surfaces. Afterwards, in Section 4, we detail
the optimization procedure in terms of the parametric coordinates. We develop a non-
linear least-squares problem in order to enforce the ideal configuration for the elements
of the surface mesh. Finally, we present several examples to show the applications of the
proposed method, Section 5.

2 Preliminaries

In this section, we first review the family of Jacobian-based distortion measures, pre-
sented in [2]. Second, we summarize the definition of distortion measure for planar high-
order elements presented in [18], in which it is shown how to extend the Jacobian-based
measures for linear triangles to planar high-order elements.

Let η be a Jacobian-based distortion measure for planar elements [2], with image
[1,∞), taking value 1 for an ideal configuration of the element, and value ∞ when it is
degenerated or tangled. Let q be the corresponding quality measure, defined as

q =
1

η
. (1)

The image of the quality measure q is [0, 1], taking value 1 for ideal configurations and 0
for degenerated ones. Our goal is to extend these measures to qualify high-order elements
on parameterized surfaces.

2.1 Jacobian-based distortion measures for planar linear triangle elements

In order to determine the quality of a high-order element t on a parameterized surface,
we generalize the Jacobian based quality measures for linear elements [2]. To this end, we
consider a mapping φ from the ideal element tI to the physical element t, see Figure 1. To
determine this mapping, we consider the isoparametric mappings ϕR (from the reference
element tR to t) and ϕI (from tR to tI). For linear triangles, these mappings are affine.
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A. Gargallo-Peiró, X. Roca, J. Peraire and J. Sarrate

Name Distortion measure η(S)

Shape measure η(S) =
||S||2

d · σ(S)2/d

Oddy et al. measure η(S) =
3

d
σ−4/d(S)

(
||STS||2 − 1

3
||S||4

)
Table 1: Algebraic distortion measures for linear elements

The mapping between the ideal and the physical element is determined by

φ = ϕR ◦ϕ−1
I . (2)

Note that φ is also an affine mapping, since ϕ−1
I and ϕR are so. For linear elements it

is usual to define a distortion measure in terms of the Jacobian matrix S := Dφ. These
distortion measures, herein denoted by η(S), quantify a specific type of distortion of the
physical element in a range scale [1,∞). Several distortion measures for linear triangles
have been proposed in literature, see [2]. In Table 1 we present two distortion measures
that we use to test the proposed high-order quality. Parameter d is the number of spatial
dimensions, σ(S) is the determinant of S, and ||S|| =

√
tr(StS) is its Frobenius norm.

2.2 Distortion measure for planar high-order elements

Let t be a nodal high-order element of order p determined by np nodes with coordinates
xi ∈ Rdx , for i = 1, . . . , np and being dx the physical space dimension. Given a reference
element tR with nodes ξj ∈ Rdξ , being j = 1, . . . , np and dξ the reference space dimension,
we consider the basis {Ni}i=1,...,np of nodal shape functions (Lagrange interpolation) of
order p. In this basis, the high-order isoparametric mapping from tR to t can be expressed
as:

ϕR : tR ⊂ Rd −→ t ⊂ Rd

ξ 7−→ x = ϕR(ξ; x1, . . . ,xnp) =

np∑
i=1

xiNi(ξ),
(3)

where ξ = (ξ1, . . . , ξdξ)T and x = (x1, . . . , xdx)T . Note that the shape functions {Ni}i=1,...,np

depend on the selection of ξj, for j = 1, . . . , np. In addition, they form a partition of the
unity on tR , and hold that Ni(ξj) = δij, for i, j = 1, . . . , np. In this paper we focus
on nodal high-order triangular elements of order p, but the same approach is valid for
quadrilaterals. Hence, the number of nodes np is 1

2
(p+1)(p+2), and the space dimensions

for planar meshes are dξ = dx = 2. Therefore, the Jacobian of the isoparametric mapping
(3) is a dx × dξ = 2× 2 matrix.

To define the high-order distortion measure of the physical element, we have to select
first the ideal element tI and a distribution of points. Herein, we choose a straight-sided
equilateral triangle as the ideal element. In addition, we select the desired distribution
of the nodes on the ideal element (e.g. equi-distributed or Fekete points). In general the
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mappings ϕI and ϕR, see Equation (3), are not affine. Hence, φ = ϕR ◦ ϕ−1
I is also not

affine, and the Jacobian matrix is not constant. The expression of the Jacobian is:

Dφ(x̃; x1, . . . ,xnp) = DϕR(ϕ−1
I (x̃); x1, . . . ,xnp) ·Dϕ

−1
I (x̃) (4)

where x̃ is a point on the ideal element.
Similar to the linear element case, we define a distortion measure based on the Jaco-

bian matrix of φ. However, the Jacobian of the elements is not constant. Nevertheless,
the Jacobian on a point allows measuring the local deviation between the ideal and the
physical element. Thus, we can obtain an elemental distortion measure by integrating the
Jacobian based distortion measure on the whole ideal element.

Definition 1 The high-order distortion measure for a high-order planar element with
nodes x1, . . . ,xnp is

ηφ(x1, . . . ,xnp) :=

(
1

|tI|

∫
tI

η2(Dφ(x̃; x1, . . . ,xnp)) dx

) 1
2

, (5)

where η is a distortion measure for linear elements based on the Jacobian matrix of the
representation of the element, and |tI| is the area of the element element.

The high-order quality measure for a high-order planar element is qφ := 1/ηφ, see [18]
for an extended analysis for planar elements.

3 Distortion measure for high-order elements on parameterized surfaces

In this section, we first develop an analytical formulation to extend any Jacobian-based
distortion measure for planar triangles ηφ, see Equation (5), to high-order elements with
nodes on a parameterized surface Σ. As a result, we obtain a quality measure expressed
in terms of the coordinates of the nodes in the parametric space of the surface.

3.1 Definitions

Assume that the surface Σ is parameterized by a continuously differentiable and in-
vertible mapping

ϕ : U ⊂ R2 −→ Σ ⊂ R3

u = (u, v) 7−→ x = ϕ(u),
(6)

where U is the parametric space of the surface. In this work, we use OpenCASCADE
library [22] to retrieve the parameterization of the surfaces from the CAD model.

Similarly to the planar case, Equation (5), our objective is to quantify the distortion
of the tangent vectors in each point of the surface elements. However, the tangent vectors
on a point of the surface element live in the tangent plane, that is immersed in R3.
Specifically, the Jacobian of the isoparametric mapping is a dx × dξ = 3 × 2 not square
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Figure 2: Diagram of mappings involved in the definition of the quality measure.

matrix. Therefore, we propose to define an embedding T from the tangent space on a
point x = φ(x̃) of the surface element to R2, see Figure 2. Specifically, we define T as:

T : R3 × R2 −→ R2 × R2

Dφ(x̃) −→ M ·Dφ(x̃),
(7)

where M is a matrix composed by the two vectors corresponding to the basis derived
from the Gram-Schmidt process applied to vectors e1 := ∂φ

∂x̃1
and e2 := ∂φ

∂x̃2
. Hence,

M = [ẽ1 γẽ2]T , where ẽi, i = 1, 2 are the Gram-Schmidt orthonormal vectors, and
γ = ±1 is determined to ensure a well oriented basis. Note that T(Dφ) is a 2× 2 matrix
to which we can apply the Jacobian-based distortion measures presented in Section 2.1.

Finally, using the embedding (7) we can express the distortion and quality measures
of the surface elements in terms of the parametric coordinates of the nodes, see Figure 2:

Definition 2 The distortion measure for a high-order element on parametric coordinates
with nodes u1, . . . ,unp ∈ U is

ηU (u1, . . . ,unp) :=

(
1

|tI|

∫
tI

η2
(
T
(
Dφ

(
x̃;ϕ(u1), . . . ,ϕ(unp)

)))
dx

) 1
2

. (8)

Analogously, the quality measure for a high-order element on parametric coordinates is
qU := 1/ηU .

4 Application to high-order mesh optimization

In this section, we present an algorithm to optimize the distortion (quality) measure of
triangular high-order meshes. It is important to point out that we want to ensure that the
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nodes lie always on the surface. Therefore, the optimization approach is developed in the
parametric space and the result is mapped to the surface by means of the parameterization.

The main goal of a simultaneous smoothing and untangling method is to obtain high-
quality meshes composed by valid (non-inverted) elements. Note that the best possible
result, can be characterized in terms of the distortion measure. That is, given a distortion
measure η and a mesh M composed by nN nodes and nE elements, the node location is
ideal if

η(T(Dφj(x̃;ϕ(uj1), . . . ,ϕ(ujnp )))) = 1, ∀x̃ ∈ tIj , j = 1, . . . , nE, (9)

where ej = (ϕ(uj1), . . . ,ϕ(ujnp )) is the jth element, tIj is the ideal element corresponding
to ej, and φj is the mapping between the jth ideal and physical elements. However,
for a fixed mesh topology and a given surface the node location that leads to an ideal
mesh distortion is not in general achievable. That is, the constrains in Equation (9)
cannot be imposed strongly and therefore, we just enforce the ideal mesh distortion in
the least-squares sense.

For a given mesh topology and a set of fixed nodes (nodes on the boundary of the
domain), we formulate the least-squares problem in terms of the coordinates of a set
of free nodes (nodes in the interior of the domain). To this end, and without loss of
generality, we reorder the coordinates of the nodes, ui, in such a way that i = 1, . . . , nF
are the indices corresponding to the free nodes, and i = nF + 1, . . . , nN correspond to the
fixed nodes. Thus, we can formulate the mesh optimization problem as

min
u1,...,unF

f(u1, . . . ,unF ; unF+1, . . . ,unN ), (10)

where f is the objective function, defined as:

f(u1, . . . ,unF ; unF+1, . . . ,unN ) :=

nE∑
j=1

∫
tIj

(η(T(Dφj(x̃;ϕ(uj1), . . . ,ϕ(ujnp ))))− 1)2dx̃.

In this work we illustrate the distortion and quality measures for high-order elements
using the shape distortion measure presented Table 1. In order to untangle invalid meshes
in a continuous optimization procedure, we use the modification of the Jacobian-based
distortion measure presented in [9, 18].

5 Examples: mesh generation on CAD geometries

In this section we illustrate the overall process to generate a high-order mesh on a CAD
geometry. Specifically, we select two different CAD geometries: a Falcon aircraft, Figure
3, and a component of a gear box, Figure 4. For each example geometry we show the
complete sequence of steps of the a posteriori procedure to generate a valid high-order
mesh:
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Fig. Min.Q. Max.Q. Mean Q. Std.Dev. Tang.
3(a) 0.21 1.00 0.93 0.09 0
3(c) 0.00 1.00 0.92 0.10 5
3(e) 0.25 1.00 0.97 0.06 0
4(a) 0.53 1.00 0.84 0.16 0
4(b) 0.00 1.00 0.73 0.34 130
4(c) 0.52 1.00 0.84 0.16 0

Table 2: Shape quality statistics of the meshes presented in Figure 3.

1. A linear mesh is generated on the geometry: Figure 3(a) shows the initial
mesh generated on the Falcon aircraft, and Figure 4(a) the mesh generated on the
gear box.

2. The order of the mesh elements is increased: We define a high-order node
distribution for each element on the parametric space, and we map it to the surface.
Note that for each geometry we have selected a different order. For instance, we
use elements of order 3 for the Falcon aircraft, and elements of order 10 for the
component of the gear box. In this step, tangled elements can be generated due to
two main reasons:

• The boundary elements can have auto-intersections due to the fact that in
the parametric space the boundary edges are curved to fit the geometry, but
the inner edges are maintained straight. This phenomena can be observed in
Figure 4(b), .

• If the quality of the parameterization is low, the composition of the high-order
distribution on the parametric space together with the parameterization can
lead to an invalid node distribution on the parametric space. This issue appears
in the nose of the aircraft in Figure 3(d).

3. The high-order mesh is optimized: We apply the smoothing-untangling ap-
proach presented in Section 4 to the meshes. Figures 3(e) and 4(c) show the resulting
meshes for each geometry.

The distortion measure selected in the presented examples is the shape distortion mea-
sure, detailed in Table 1. Table 2 details the quality statistics for each one of the presented
meshes. Note that the obtained meshes are composed of high-quality elements. In all the
cases we have untangled the initial inverted elements, and achieved a final high-quality
configuration.

6 Concluding remarks

In this paper, we first detail a new technique to extend any distortion (quality) measure
defined for planar elements to parameterized surfaces. Next, we develop an optimization
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Order 3 mesh for a Falcon aircraft. The elements are colored according to the shape quality
measure. (a,b) Initial linear mesh. (c,d) Initial order 3 mesh obtained after increase the order of the
initial linear mesh. (e,f) Optimized order 3 mesh.

procedure to smooth and untangle meshes on parameterized surfaces. It is important to
point out that the proposed measure expresses the quality of the elements on the surface
in terms of the parametric coordinates of its nodes. Therefore, the optimization procedure
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(a) (b)

(c)

Figure 4: Order 10 mesh for a component of a gear box. The elements are colored according to the shape
quality measure. (a,b) Initial linear mesh. (c,d) Initial order 10 mesh obtained after increase the order
of the initial linear mesh. (e,f) Optimized order 10 mesh.
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is also written in terms of the parametric coordinates. Hence, it ensures that the nodes
are always placed on the surface. Finally, in the presented examples we have illustrated
the mesh generation procedure with two different CAD geometries and with two different
orders.
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A. Gargallo-Peiró, X. Roca, J. Peraire and J. Sarrate

[11] Escobar JM, Montero G, Montenegro R, Rodŕıguez E. An algebraic method for
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As a result, the method here proposed provides with a meta-model or surface response of the 
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Abstract. Problems that require dynamic adaptation of an unstructured mesh are par-
ticularly challenging for multicore architectures. This work tackles concurrency control,
memory management and locality in the context of adaptive mesh finite element simula-
tions. We present experimental analysis of a range of implementation alternatives, and we
demonstrate that good performance and parallel speedup are achievable. We study both
OpenMP intra-node parallelisation and MPI internode parallel execution, with particular
attention to memory hierarchy and NUMA issues.
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Abstract. The implementation of Adaptive Mesh Refinement (AMR) within the geotech-
nical software package PLAXIS 2D is described in this paper. A recovery-based algorithm
is used which aims to reduce the discretisation error by refining the mesh during the so-
lution process. The error is estimated with a Zienkiewicz-Zhu-type error estimator but
based on the incremental deviatoric strain instead of stress. The deviatoric strain field is
compared with an improved field calculated by superconvergent patch recovery. Once el-
ements with large errors have been detected, mesh refinement takes place. A combination
of regular subdivision and longest-edge bisection is employed. Mapping history variables
from the old mesh to the new mesh is accomplished by using the recovered solutions and
the shape functions. The AMR algorithm is demonstrated for a biaxial compression test.
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1 INTRODUCTION

Adaptive Mesh Refinement (AMR) is a technique which refines a mesh as part of the
solution procedure of a boundary value problem. The aim is to achieve the best mesh
possible (within certain constraints) for each load level. AMR is applied to problems
which have features developing on different scales. In geotechnics, a retaining wall is one
such an example. The boundary condition will be applied along the wall which may have
a height of the order of metres. Should the load be large enough, a shear band or failure
surface may develop in the soil behind the wall with a width of millimetres. In order to
properly model the shear band, the elements need to be sufficiently small. For most of
the domain this would be a waste of computational effort, and, as the location of the
shear band is not known a priori, AMR presents as an obvious solution by automatically
generating small elements where they are most needed.

AMR works by quantifying the discretisation error in the finite element (FE) solution,
and, when the global error norm exceeds a specified tolerance, certain elements are marked
for refinement. Once the mesh has been refined and the solution has been mapped to the
new mesh, the loading is resumed. This allows the mesh to be refined in regions where
the error is high (eg. due to the large strain gradients) resulting in a more accurate
description of the shear band.

It has recently been suggested that AMR is not widely used, either in industry (for
structural mechanics applications) [1, 2] or in the field of geotechnics [3]. Noteworthy
exceptions in geotechnics are [4, 5, 6, 3]. This paper aims to implement a straightforward
AMR algorithm which progressively refines the mesh when the global error exceeds a
given tolerance.

2 FORMULATION

AMR has been implemented within Plaxis’s 2D displacement-based FE solver [7].
Throughout this paper 6-noded triangular elements are used within unstructured meshes.
The approximation of the displacements is therefore quadratic. Load or displacement
boundary conditions are applied in increments as is usual for materials that behave non-
linearly. Once an increment has converged, the AMR algorithm recovers nodal fields and
then calculates the error. If the error exceeds the user-defined tolerance, the refinement
and mapping algorithms are called. The FE solver then applies the next increment. The
four stages of the algorithm are now briefly discussed. A more detailed description can
be found in [8].

2.1 Recovery

Variables defined at integration points are recovered at the nodes in order to estimate
the error and to facilitate the mapping process. For this purpose, Superconvergent Patch
Recovery (SPR) is used [9]. It is an efficient, local method involving the inversion of a
relatively small matrix (small when compared to the size of the global stiffness matrix).
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The implementation of SPR involves two stages: first, assembling the patches (groups
of neighbouring elements) and second, fitting least squares surfaces to the integration
point values in each patch. Node-based patches are implemented here, which are formed
around each interior vertex node (often referred to as an “assembly node”). The patch is
composed of all those elements which contain the assembly node. To recover the solution
at nodes on or near the boundary, the standard node-based patches containing elements in
contact with the boundary can be extended to include the boundary nodes (as suggested
in [10]).

In each patch, a least squares fit is carried out to the data at integration points. In SPR
the least squares fit is of the same degree as the displacement shape functions, which are
quadratic in this case. Each patch is mapped onto the domain [−1, 1] × [−1, 1] to avoid
ill-conditioning of the matrix which is inverted to obtain the least squares coefficients.

2.2 Error estimation

Zienkiewicz et. al. [11] prove that their error estimator (described in [12]) is asymptot-
ically exact for linear elastic problems. For elastoplastic problems Boroomand et. al. [13]
introduce an error estimator based on incremental energy. More recently Hicks [6] em-
ployed an error estimator based upon a measure of incremental deviatoric strain. The
incremental shear strain invariant, ∆γ, is defined as

∆γ =
√

∆εdev
ij ∆εdev

ij , (1)

where ∆εdev
ij is the ij

th component of the incremental deviatoric strain tensor. The error
in this quantity with respect to the L2 norm is given by

||e||∆γ =

√∫

Ω

(∆γ∗ −∆γ)2 dΩ , (2)

where ∆γ∗ is the recovered field based on the recovered incremental strains. This estimator
should be especially suitable for geomechanical problems which exhibit large changes in
strain.

The error estimator for element iEl is given by

||e||iEl∆γ =

√∫

ΩiEl

(∆γ∗ −∆γ)2 dΩ , (3)

and from this, the global error norm can then be calculated:

||e||∆γ =

√√√√
nEl∑

iEl=1

(||e||iEl∆γ

)2
. (4)
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Either of the above error measures can be made relative by dividing by

||∆γ∗|| =
√∫

Ω

(∆γ∗)2 dΩ . (5)

Both local and global errors are used in this implementation of AMR. The global
estimate is compared against a user-defined tolerance, and, if it exceeds the tolerance,
mesh refinement is triggered. The local (or element) error indicates which elements should
be refined. The approach followed here is to link the user-defined global tolerance with the
local, element scale to provide a local tolerance. This method relies on the concept of an
optimal mesh where the error is equally distributed over the elements (for example [14]).
Given a user-defined global tolerance η (which is a relative measure), the condition for
triggering refinement is

||e||∆γ

||∆γ∗|| > η . (6)

Introducing the assumption that the local errors are equally distributed over the mesh
gives

||e||local
∆γ > η ||∆γ∗||√

nEl
, (7)

where nEl is the total number of elements. So, once the global error exceeds the user-
defined (global) tolerance, then all elements whose error exceeds η ||∆γ∗||√

nEl
will be marked

for refinement.

2.3 Mesh Refinement

There are two ways of refining a mesh in h−adaptivity: by regeneration or by subdivi-
sion. Regeneration is often used and produces elegant-looking meshes directly indicative
of the underlying physical mechanism. However, once the mesh has been regenerated,
the solution must be mapped from the old mesh to the new mesh throughout the entire
domain. In order to limit the numerical diffusion which may occur as a result of trans-
ferring the solution between meshes, and to be more efficient, subdivision is used. Here
the transfer of the solution is carried out only within elements which have been refined.
One way to subdivide elements is to use regular bisection. This refers to the splitting
of an element into four elements by joining the midpoints of the triangle’s edges [15].
Between a regularly-refined element and a non-refined element will be a non-conforming
edge with hanging nodes. A straightforward solution to this is adopted here based on
Rivara’s longest-edge bisection method [16]. It is applied to any elements which, after
being regularly refined, have non-conforming edges. This procedure is repeated until the
mesh is conforming.
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2.4 Mapping

New elements require values of displacement and stress, and also any state variables
which are associated with the constitutive model. Displacements can be mapped using
the shape functions and the nodal values of displacement. In order to map the stresses,
they are first recovered at the nodes using SPR. Then they can be mapped to the new
mesh just as the displacements were. Any integration-point values can be mapped using
this method. After mapping, the stress field will no longer be in equilibrium with the
applied force. A zero-load increment can be applied in order to resolve this, if necessary.

3 RESULTS

A drained biaxial compression test was simulated to demonstrate the performance of
the AMR algorithm. The geometry and boundary conditions can be seen in Figure 1,
where L, the width of the sample, is used to normalise the computed displacements. The
constitutive model is linear elastic, perfectly plastic with a Mohr-Coulomb yield criterion
and associated flow. The parameters are Young’s Modulus E = 10 MPa, Poisson’s ratio
ν = 0.2, friction angle φ = 30◦ and cohesion c = 5.5 kPa. Vertical displacement increments
are applied to the top boundary along which horizontal displacement is prevented. The
base is fully fixed.

Figure 1: The biaxial test modelled in plane strain, with a fully fixed base and a displacement control
through a rough and rigid end plateau.

First, the biaxial problem was simulated with the standard FE method using a fixed
mesh (ie. with no adaptivity). Six-noded triangular elements were used. The global
error norm was calculated based on the incremental deviatoric strain estimator defined in
Section 2.2. The behaviour of the estimator can be seen in Figure 2 for a fixed mesh of
270 elements of approximately equal size. The error increases extremely rapidly during
steps 4 to 7. As can be seen from Figure 4, this corresponds to the approach to the peak
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of the load-displacement curve as the solution becomes non-homogeneous. The global
error norm then reduces until around step 20, after which it remains constant. The
global error norm controls when adaptive remeshing is triggered and is therefore crucial
to the refinement process. This plot would suggest that the incremental deviatoric strain
estimator is a suitable measure as it is able to identify the onset of localisation which
occurs as the peak in the load-displacement curve is approached.

An AMR simulation was then carried out, starting from a mesh of 270 elements with a
global error tolerance of 2.5%. Figure 3 shows the global error norm in this case, with the
broken horizontal line representing the global error tolerance. The filled circles indicate a
step which ends with refinement. It can be seen that refinement is initiated four times in
the vicinity of the peak of the load-displacement curve, at step numbers 4, 5, 6 and 10.
(At the end of the simulation, the error exceeds the tolerance; however, as over 95% of
the displacements have already been applied, refinement is not allowed.)
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Figure 2: The global error norm using the error estimator based on the incremental deviatoric strain
plotted against the normalised displacement boundary condition.

Load-displacement curves are plotted in Figure 4. Curves from two fixed-mesh simu-
lations are shown for comparison, these using 142 and 4162 elements. The AMR results
agree extremely well with the results from the finest fixed mesh, the load-displacement
curves being almost coincident. The steps which trigger refinement are indicated by hol-
low circles. The load-displacement curve for the AMR simulation remains smooth despite
the mesh refinement.
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Figure 3: The global error norm plotted against the number of (load) steps during adaptive mesh refine-
ment. Filled circles indicate when refinement is triggered.
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Figure 4: Load-displacement curves for the AMR simulation and for two standard FE simulations with
fixed meshes.
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Finally, Figure 5 shows plots of the incremental shear strain invariant (∆γ) at the end
of the simulation. The results agree well with the analytical prediction for the inclination
of the shear band (ϑ). According to Roscoe [17], this is given by ϑ = π/4 + ψ/2 where ψ
is the dilation angle (in radians).

 0
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 0.0004

 0.0006

 0.0008

 0.001

 0.0012

Figure 5: A contour map of the incremental deviatoric strain (∆γ) at the final step for the AMR algorithm.
The black lines indicate the inclination of the shear band as predicted by Roscoe.

4 CONCLUSIONS

An AMR algorithm has been implemented in Plaxis 2D. Results are shown for a biaxial
compression test. The implementation is recovery based and uses element subdivision
rather than mesh regeneration when refinement is required. The adaptive algorithm
triggers relatively few refinement steps but is nevertheless effective due to the success
of the incremental error estimator in pinpointing the onset of localisation. The load-
displacement curve is smooth despite the mesh refinement. This would suggest that the
transfer of data from the old to the new mesh is carried out effectively. The inclination of
the shear band from the numerical results agrees very well with the analytical prediction
given by Roscoe.
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Abstract. We investigate reduced-space Newton-Krylov (NK) algorithms for engineer-
ing parameter optimization problems constrained by partial-differential equations. We
review reduced-space and full-space optimization algorithms, and we show that the effi-
ciency of the reduced-space strategy can be improved significantly with inexact-Hessian-
vector products computed using approximate second-order adjoints. Results demonstrate
that the proposed reduced-space NK algorithm has excellent scaling that makes it suitable
for large-scale optimization problems. Moreover, reduced-space NK combines the attrac-
tive attributes of both reduced-space quasi-Newton methods and full-space approaches —
namely, modularity, robustness, and scalibilty.

1 Introduction

Partial differential equation (PDE) constrained optimization problems can be posed in
the full-space or the reduced-space. In full-space formulations the PDE state variables
— e.g. pressure and velocity for incompressible flows — are included as optimization
variables, and the PDE becomes an explicit constraint in the optimization. In contrast,
reduced-space formulations treat the state variables as implicit functions of the design
variables: for a given set of design variables the PDE is solved for the states.

In practice, engineers often prefer reduced-space formulations. Reduced-space methods
lend themselves to modularity, so implementation is typically easier than full-space meth-
ods. Unfortunately, conventional reduced-space optimization algorithms exhibit poor al-
gorithmic scaling. For example, the computational cost of limited-memory quasi-Newton
methods is often proportional to the number of design variables. This scaling limits the
number of design variables that can be considered.
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Motivated by the above observations, we consider reduced-space inexact-Newton-Krylov
(INK) algorithms, which offer the potential for design-dimension-independent algorithmic
scaling. One of the challenges with reduced-space INK methods for PDE-constrained op-
timization is the efficient computation of Hessian-vector products needed by the Krylov
solver. In particular, it is widely believed that these products must computed with high
accuracy to avoid convergence difficulties. This accuracy requirement can render reduced-
space INK methods orders of magnitude more expensive than full-space methods [11]. In
this paper, we argue that the Hessian-vector products can be computed inexactly, and
numerical examples demonstrate that the resulting reduced-space INK algorithm offers
an attractive alternative to its full-space counterpart.

2 PDE-constrained Optimization: Formulations and Algorithms

In this section we briefly review the generic PDE-constrained optimization problem
and highlight commonly used formulations and solution strategies. For a comprehensive
review of solution methods see, for example, [1].

2.1 Problem and Notation

We are interested in solving the following PDE-constrained optimization problem:

minimize J (x,u), x ∈ Rm, u ∈ Rn,

subject to R(x,u) = 0.
(1)

The objective functional is J , which we will assume is C2 continuous on its domain. The
variables x and u denote the finite-dimensional control and state variables, respectively.
In the context of PDE-constrained optimization, the state variables arise from the chosen
discretization of the PDE; u may represent function values at nodes in a mesh or coeffi-
cients in a basis expansion. The control variables can be given a similar interpretation.
The PDE itself, together with appropriate boundary and initial conditions, is represented
by the equation R(x,u) = 0.

A local solution of (1) must satisfy the first-order optimality conditions, which can be
found by differentiating the Lagrangian. In order to define the Lagrangian of (1), we first
introduce the symmetric positive definite matrix P ∈ Rn×n that defines a discrete inner
product appropriate to the chosen discretization of the PDE. Then, the Lagrangian is
given by

L(x,u,ψ) ≡ J (x,u) +ψTPR(x,u), (2)

where ψ ∈ Rn are the Lagrange multipliers, also called the adjoint or costate variables in
the context of PDE-constrained optimization.
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Thus, the first-order optimality conditions for a solution to (1) are [20]:

Lψ = 0 ⇒ PR(x,u) = 0, (3a)

Lu = 0 ⇒ Ju(x,u) +ψTPRu(x,u) = 0, (3b)

Lx = 0 ⇒ Jx(x,u) +ψTPRx(x,u) = 0. (3c)

Subscripted variables indicate differentiation with respect to that variable, e.g. Ju ≡
∂J /∂u. The first-order conditions (3) are also called the Karush-Kuhn-Tucker, or KKT,
conditions.

2.2 Full-space Approach

The KKT conditions are a set of nonlinear algebraic equations, so a natural solution
strategy is Newton’s method with an appropriate globalization. As usual, the potential
for rapid convergence makes Newton’s method attractive. The full-space approach that
we adopt here is based on the Lagrange-Newton-Krylov-Schur (LNKS) method of Biros
and Ghattas [2, 3]. One difference between their method and the present scheme is the
parameter continuation used for globalization; more details on this globalization can be
found in [13].

The Newton update equation corresponding to (3) is 0 Lψ,u Lψ,x
Lu,ψ Lu,u Lu,x

Lx,ψ Lx,u Lx,x

∆ψk

∆uk
∆xk

 = −

LψLu

Lx

 , (4)

where the subscript k denotes the current Newton iteration. Solving (4) with a direct
method is usually impractical for large-scale PDE-constrained optimization problems;
therefore, the approach adopted in LNKS is to use an inexact-Newton-Krylov approach.
An advantage of using an inexact-Newton method [7] is that the KTT system can be
solved approximately and inexpensively during the early Newton iterations

A Krylov-based approach avoids the need to form the KKT matrix explicitly, since
Krylov methods use matrix-vector products. However, to be effective, Krylov-iterative
solvers must be preconditioned. We adopt the preconditioner P̃2 from [2], which was
found to be efficient in terms of CPU time. This preconditioner approximates the full-
space Hessian by dropping second-order derivatives, with the exception of Lx,x, which is
replaced with a L-BFGS quasi-Newton approximation. In addition, the Jacobian Ru is
replaced with a suitable preconditioner A.

2.3 Reduced-space Approaches

Full-space methods for PDE-constrained optimization are efficient [11, 2, 12], often
requiring only a few multiples, typically O(10), of the PDE solution cost. Neverthe-
less, full-space methods have significant disadvantages: lack of appropriate optimization
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libraries; inability to leverage specialized globalization strategies, and; potentially pro-
hibitive memory requirements. These disadvantages motivate reduced-space methods,
which we review in this section.

For a valid set of control variables, the state equations will be invertible. Thus, we can
invoke the implicit function theorem and define the state variables in terms of the control
variables: u = u(x). Consequently, the optimization problem (1) reduces to

minimize J (x,u(x)), x ∈ Rm. (5)

The first-order optimality conditions for a solution of (5) are the same as (1); after all,
they solve the same problem. The difference is, in the reduced formulation, the primal and
adjoint PDEs (equations (3a) and (3b)) must be solved at each optimization iteration.

In other words: in reduced-space formulations the optimization algorithm is responsible
for satisfying (3c), while the user must satisfy (3a) and (3b). The advantage of this
approach is that efficient software libraries are usually available to solve the primal and
adjoint PDEs; typically, these libraries are parallel and have specialized globalizations
tuned to their discipline. The disadvantage is the added cost of accurately solving the
state and adjoint equations early in the optimization process.

We now turn to the problem of solving the first-order condition (3c) for x. As in the
full-space, we begin with Newton’s method. Linearizing about the current design, xk, we
find the Newton-update equation

Hk∆xk = −gk, (6)

where Hk ≡ (∂g/∂x)k is the reduced Hessian evaluated at xk, and gk is the reduced
gradient evaluated at xk. One of the challenges for reduced-space formulations is capturing
the second-order information contained in Hk. This is because the reduced Hessian is the
total derivative of the gradient with respect to x, so variations in u and ψ must be
accounted for

Quasi-Newton methods are a popular and successful class of algorithms that approxi-
mate the Hessian, thereby circumventing the need to compute the total derivative of g.
For quasi-Newton methods the Newton-update equation is replaced with

Bk∆xk = −gk, (7)

where Bk is a quasi-Newton approximation to Hk. In this work, we consider the limited-
memory BFGS quasi-Newton method [17] globalized with a strong-Wolfe-type line search
algorithm [8]. For the Armijo sufficient-decrease condition we use the parameter c1 =
10−6, and for the curvature condition we use c2 = 0.999; see [20] for the definition of these
parameters.

Quasi-Newton methods are simple and effective for many problems; however, they are
not necessarily suited to large-scale design spaces. For large problems, we must often resort
to limited-memory quasi-Newton methods; while BFGS has a superlinear asymptotic
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convergence rate [20], its limited-memory variant has only a linear rate of convergence [17].
In addition, during the early stages of optimization the quasi-Newton approximation may
not capture curvature accurately, and this can lead to many subiterations in the line
search or many trust-region radius updates. For these reasons, the computational cost of
quasi-Newton methods typically grows with problem size; linear scaling is not unusual.

We want to retain the modularity of the reduced-space approach, but with algorithmic
scaling that does not grow with problem size. The solution pursued here is to apply
an inexact-Newton-Krylov strategy in the reduced-space [14, 4]. The inexact-Newton
approach replaces the solution of (6) with the condition that ∆xk must satisfy

‖Hk∆xk + gk‖ ≤ ηk‖gk‖, (8)

where ηk is the so-called forcing parameter and ‖ · ‖ denotes the L2 norm. To achieve

superlinear convergence, we use ηk = 0.1 min [1, (‖gk‖/‖g0‖)
1
2 ] [7]. To avoid oversolving

the linear problem when the iterates are near the desired nonlinear tolerance, we set
ηk ← max (ηk, τ‖g0‖/‖gk‖), where τ is the nonlinear tolerance.

Similar to the full-space approach, using a Krylov method avoids the need to form the
Hessian explicitly; only Hessian-vector products are required. The computation of the
Hessian-vector products plays an important role in the efficiency of reduced-space INK
and is discussed in detail in the following section.

To globalize the reduced-space INK algorithm, we use the Steihaug-Toint variant of
the conjugate-gradient method [24, 25] in a standard trust-region framework [6]. In the
context of optimization, limited-memory BFGS has been shown to be an effective precon-
ditioner for Krylov iterative methods [19], and this is the preconditioner adopted here.

3 Inexact Hessian-vector Products & Second-order Adjoints

The Hessian-vector products needed in reduced-space INK methods can be computed
using second-order adjoints [26]. By defining a new functional, gTw, where w ∈ Rm is
an arbitrary vector, and including both the state and (first-order) adjoint equations as
constraints, one can show that the Hessian-vector product is given by [2, 14, 13]

Hw = gTxw + λTPRx(x,u) + vTSx(x,u,ψ), (9)

where S denotes the first-order adjoint residual

S(x,u,ψ) ≡RT
uPψ + J T

u . (3b)

Note that the partial derivatives with respect to x in (9) treat u, ψ, λ, and v as constants
(i.e. these are not total derivatives).

The variables v ∈ Rn and λ ∈ Rn are the second-order adjoint variables of the func-
tional gTw corresponding to the primal and adjoint equations, respectively. The second-
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order adjoints satisfy the equations (see, for example, [13])

PRuv = −gTψw, (10)

RT
uPλ = −gTuw − ST

uv. (11)

The assembly and solution of the second-order adjoint equations (10) and (11) deserve
some remarks.

• The system matrix of (10) is the Jacobian of the primal equations, and the sys-
tem matrix of (11) is the transposed Jacobian. Most adjoint-based optimization
algorithms are capable of solving for systems involving RT

u , and adapting these
algorithms to solve systems involving Ru is straightforward.

• The right-hand side of the first adjoint system simplifies to

−gTψw = −RT
xPw.

This term can be computed in the same way as the second term in the reduced
gradient (3c).

• The right-hand side vector of the adjoint system for λ involves second derivatives.
These terms amount to direction derivatives and can easily be computed using finite-
difference approximations, the complex-step method, or algorithmic differentiation.
See the appendix of [13] for details.

The Hessian-vector product involves the solution of the two second-order adjoint equa-
tions (10) and (11). These equations are typically solved using iterative methods, which
suggests that we might reduce computational cost by sacrificing accuracy. In other words,
can we compute inexact Hessian-vector products rather than exact products?

The use of inexact Hessian-vector products is entirely appropriate in the context of an
inexact-Newton method: why compute accurate products when we only want an approx-
imate solution anyway? Indeed, the analysis of Simoncini and Szyld [23] indicates that
the accuracy of matrix-vector products can be relaxed provided the Krylov basis remains
orthogonal, which is the case for methods like GMRES [22] and FGMRES [21]. On the
other hand, inexact products can pose convergence problems when the Krylov basis is
not explicitly orthogonalized, e.g. in the CG method [10, 23], although no such problems
were observed in the present study.

Let H̃kw be the inexact Hessian-vector product (9) computed using the iteratively-
solved second-order adjoints ṽ and λ̃. Then the error in the Hessian-vector product
satisfies

‖Hkw − H̃kw‖ ≤ δλ‖R−1
u Rx‖+ δv‖P−1R−T

u (Sx + SuR−1
u Rx)‖,
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where δλ and δv are bounds on the second-order adjoint residuals for λ̃ and ṽ, respectively,
and are defined by

‖PRuṽ + gTψw‖ ≤ δv =
1

2
ηk‖gk‖, (12)

‖RT
uP λ̃+ gTuw + ST

u ṽ‖ ≤ δλ =
1

2
ηk‖gk‖. (13)

Bounds for ‖R−1
u Rx‖ and ‖P−1R−T

u (Sx − SuR−1
u Rx)‖ are also required and are more

difficult to estimate. For this preliminary work, trial-and-error was used to determine
that these terms are O(1) for the problem considered below; future work will investigate
a priori methods of bounding these terms.

Based on the bounds δv and δλ, as well as the O(1) estimates for the remaining terms,
we have

‖Hkw − H̃kw‖ / ηk‖gk‖.
Thus, the approximate solution of the second-order adjoints, based on (12) and (13),
is such that the accuracy of the inexact Hessian-vector products is comparable to the
accuracy of the linear solve.

4 Results

In this section we investigate the performance of the reduced-space INK algorithm and
compare its performance with that of the reduced-space quasi-Newton (QN) method and
the full-space LNKS algorithm.

Our model problem for the investigations will be the inverse design of an inviscid nozzle
flow. The PDE constraint for this problem is the quasi-one-dimensional Euler equations,
given by

∂F
∂x
− G = 0, ∀ x ∈ [0, 1], (14)

where the flux and source are

F =
(
ρuA, (ρu2 + p)A, u(e+ p)A

)T
, and G =

(
0, pdA

dx
, 0

)T
,

respectively. The state variables are density (ρ), momentum per unit volume (ρu), and
energy per unit volume (e). Pressure, which also appears in the Euler equations, is
determined using the ideal-gas equation of state: p = (γ−1)(e− 1

2
ρu2). Finally, A = A(x)

denotes the spatially varying nozzle area, which, when discretized, will become our control
variable. The boundary values are provided by the exact solution, which is determined
using the Mach relations. The exact solution is based on a stagnation temperature of
300K and stagnation pressure of 100 kPa. The critical nozzle area is A∗ = 0.8 and the gas
constant is 287 J/(kg K). In the implementation, the equations and variables have been
nondimensionalized using the density and sound speed at the inlet, x = 0.
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The Euler equations (14) are discretized using a summation-by-parts finite-difference
scheme [16]. In particular, the derivatives are approximated using a third-order accurate
diagonal-norm operator, and the boundary conditions are imposed weakly using SAT
penalty terms [9, 5]. To stabilize the discrete equations, we add scalar third-order accurate
artificial dissipation [18].

For the reduced-space formulations, the discretized Euler equations are solved using
a Newton-GMRES algorithm [15]. The GMRES [22] Krylov solver is preconditioned
using an LU factorization of a first-order accurate discretization that is based on nearest-
neighbours and first-order scalar dissipation. The linearized forward problem (10) is also
solved using GMRES and the same preconditioner. The adjoint problems are solved
using GMRES with the Jacobian-vector products and preconditioners replaced with their
transposed versions.

The nozzle area A(x) is discretized using cubic B-splines with open uniform knot vec-
tors. The area is fixed at the ends of the nozzle such that A(0) = 2 and A(1) = 1.5.
The control variables consist of the interior B-spline control points. To avoid confusion
between the design variables and the x-coordinate, we will use A to denote the vector of
(interior) B-spline control points. In all cases, the initial design A0 corresponds to the
set of control points that produce the linearly varying area A(x) = 2− 0.5x. The target
nozzle area is a cubic function of x that passes through the fixed inlet and outlet areas
and has a local minimum at x = 0.5 given by A(0.5) = 1.

In summary, the optimization problem is

minimize J (A,u) =

∫ 1

0

1

2
(p(u)− ptarg)2 dx, A ∈ Rm, u ∈ R3n,

subject to R(A,u) = 0,

(15)

where u denotes the vector of state variables (ρ, ρu, and e) at each of the n nodes, and
R(A,u) = 0 denotes the discretized Euler equations. The target pressure ptarg is found
by solving for u using the target nozzle area in the Euler equations.

4.1 Dynamic versus fixed tolerance for the inexact-Hessian-vector products

To demonstrate the impact of inexact Hessians on the reduced-space INK algorithm,
we solve (15) with the second-order adjoint equations satisfying either 1) a fixed (relative)
tolerance of 10−6 or 2) the dynamic tolerances (12) and (13).

Table 1 lists the computational cost for these two approaches over a range of design-
variable dimensions. The cost is measured in terms of equivalent PDE solutions required
to satisfy ‖g(xk)‖ ≤ τ‖g(x0)‖, where τ = 10−3. Specifically, the total number of PDE
preconditioner calls (i.e. applications of (LU)−1) used during the optimization is divided
by the number of preconditioner calls to solve the PDE on the initial geometry.

The results show that, on average, the dynamic tolerance reduces the computational
cost by 40.5% relative to the fixed tolerance. This illustrates the importance of using
inexact Hessians in reduced-space INK algorithms.
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Table 1: Number of equivalent PDE solutions required when using dynamic and static tolerances
in second-order adjoint solves.

number of design variables
20 30 40 50 60

fixed tolerance 102.7 103.5 107.5 113.8 108.3
dynamic tolerance 67.4 58.5 60.5 65.5 66.8

improvement (%) 34.3 43.5 43.8 42.5 38.4

4.2 Comparison of Optimization Methods

We now compare the reduced-space INK algorithm with the full-space LNKS algorithm
and the reduced-space quasi-Newton algorithm. Figure 1 plots the computational cost of
the three algorithms versus the design-variable dimension. Computational cost is mea-
sured using the number of equivalent PDE solves, as defined earlier. The optimizations
are terminated when the relative reduced-gradient norm is below τ = 10−3. In the case
of LNKS, the PDE and adjoint residual norms must be below 10−6 their initial values.

As expected, the quasi-Newton algorithm has a strong dependence on the number
of design variables. In contrast, the two Newton-based algorithms have much weaker
dependence on the dimension of A. Moreover, even for this relatively small problem, there
is a clear advantage to using inexact-Newton rather than quasi-Newton optimization; the
computational cost is between 4 and 6 times lower using INK, and between 15 and 17
times lower using LNKS.

Comparing reduced-space INK with LNKS, we observe a factor of 3 to 4 reduction
in cost using the full-space algorithm. What is not shown in the plot is the robustness
issues associated with LNKS. Considerable parameter tuning was necessary to obtain
convergence with LNKS, so there is trade-off between robustness and speed when moving
from the reduced-space to the full-space. We argue that a factor of 3 to 4 is compensated
for by the time needed to find suitable parameters in the full-space approach.

5 Summary and Discussion

We have shown that reduced-space inexact-Newton-Krylov (INK) algorithms offer an
attractive compromise between reduced-space quasi-Newton and full-space Newton-type
methods. For the nozzle-flow inverse design problem, reduced-space INK was 4 to 6
times faster than the quasi-Newton algorithm and was much less sensitive to the number
of design variables. The LNKS full-space algorithm was found to be the most efficient
scalable algorithm, but this efficiency comes at the price of robustness.

In general, engineers have focused on reduced-space quasi-Newton and full-space New-
ton methods. The results presented here indicate that reduced-space INK algorithms
should be investigated more broadly, since they offer a scalable route to solving large-

9
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Figure 1: Cost of the nozzle-area optimization based on number of equivalent flow solutions.

scale optimization problems. Moreover, they require limited intrusion into existing PDE
solvers and provide increased robustness relative to full-space algorithms.

Inexact-Hessian-vector products play an important role in the reduced-space INK al-
gorithm presented here. The products are computed using second-order adjoints with
dynamic tolerances. The use of dynamic tolerances was shown to reduce computational
cost by approximately 40% relative to a fixed tolerance. We note that inexact-Hessian-
vector products may pose challenges for traditional optimization algorithms that assume
symmetry of the Hessian. Our current work is focused on developing optimization algo-
rithms that are robust in the presence of inexactness in the Hessian.
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Abstract. We present recent advances on a posteriori error estimation and adaptiv-
ity for turbulent flow, including deforming domains, fluid-structure interaction and high
performance computing implementation in the open source software Unicorn [1]. Fluid-
structure interaction is formulated in a Unified Continuum framework [2], and turbulent
fluid flow is modeled by G2 implicit large eddy simulation with residual based stabiliza-
tion modeling the effect of subgrid scales, and with skin friction boundary conditions
modeling turbulent boundary layers. Examples are presented, including applications to
aerodynamics, aeroacoustics and biomedicine.
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Abstract. Composite slabs of trapezoidal steel sheeting and concrete are widely used for 

ceiling structures in all types of buildings. Prestressed embossments can serve as a meaning to 

ensure the composite action without need of other load bearing reinforcement. Design of the 

composite slab according to valid codes is governed by semi-empirical methods using 

bending tests to obtain unique parameters for each type of sheeting. Smaller and less 

expensive shear slip-block tests are considered as a meaning to obtain shear characteristics of 

the sheeting, which could be used for design of the sheeting. In our laboratory bending tests 

with different load arrangements and shear test were performed. The key role in load bearing 

capacity of the slab has the shear connection between steel sheeting and concrete. The FE 

(Finite Element) modelling of the connection must deal with a complicated geometry of the 

embossments and several possible failure mechanisms. Three types of numerical models are 

being created using Atena software. 2D and 3D models of shear test serves to describe the 

failure mechanism of embossments. Bending model of one rib over the whole span serves to 

include effects curvature due to bending. Influence of elevated temperature on shear bearing 

capacity is observed as well. The models are being set, calibrated and compared regarding 

data from the experiments performed in our laboratory.  

1 INTRODUCTION 

Composite slab with prestressed embossments presents a suitable solution for horizontal 

structures. Its load bearing capacity is mainly determined by its horizontal shear bearing 

capacity. The bearing capacity is determined using four-point bending tests. Research works 

are carried out on possibilities of determination of shear characteristics using small-scale slip-

block tests, which present a less-expensive alternative to the bending tests [1]. Unfortunatelly 

final load bearing capacity of the sheeting is influenced by bending effects and loading 

arrangenent, which cannot be covered by shear tests.   

Numerical models presented in this paper has its aim in both, modelling the behaviour of 

sheeting in small-scale shear tests and modelling of the bending effects in bending. Models 

are being set and calibrated regarding data from the tests performed in our laboratory. The 

simulation is realized using Atena software for computing because of its advanced nonlinear 
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concrete analysis possibilities. GiD is used for pre/post processing, because of the 

complicated geometry of the sheeting with embossments. 2D model is used for correct setting 

of shear parameters of the task and observe the effect of local bending of the sheeting. 3D 

model of one embossment is set to observe spacial deformation of sheeting. Finally a bending 

model of one rib of the slab is modelled to include effects of curvature.  

The tests performed in our laboratory consists of small-scale shear test and bending tests 

using vacuum loading developed by prof. Melcher [2]. Finally an effect of elevated 

temperature on the shear bearing capacity is modelled.  

All the tests and models mentioned in this paper are related to the type of sheeting 

Cofraplus 60 (galvanized surface, 1 mm thickness) and the thickness of the slab 110 mm.  

2 SHEAR TEST  

2.1 Tests performed in laboratory 

A special loading device has been constructed in our laboratory to perform shear slip-block 

tests. The specimens are bolted to a base plate in the overlapping part of the sheeting. Two 

jacks are installed to apply loads. One of them is placed vertically to produce a clamping force 

and the second is placed horizontally to push the concrete block out of the sheeting. A roller 

bearing is placed between the vertical jack and concrete block to allow sufficiently horizontal 

movement of the block. The specimens have width of two waves of the sheeting, which 

allows placing the horizontal load into the centroid of the sheeting cross-section. Mutual slip 

between steel sheeting and concrete block is measured. 

When the slip occurs the sheeting starts to deform and bends in the area of the 

embossments. The concrete stays almost unimpaired; there is only small abbrasion around the 

indentations and longitudinal edges of sheeting.  

 

(a)                                                                                      (b) 

Figure 1: (a) Specimens dimensions (b) roller bearing placed on the top of the concrete block [3]. 
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2.2 Numerical modelling 

2.2.1 2D model 

2D model of one embossment was created. The embossments resist to mutual slip by its 

stiffness in bending in combination with contact properties of the interface between steel and 

concrete. The modelled problem is therefore a combination of contact and bending tasks.  

Length of the model is 102 mm, height of concrete is 50 mm and height of the embossment 

is 3 mm. The inner spacing between supports is 82 mm. Thickness of all the materials is 

10 mm. Mesh is refined over the area of steel sheeting to form enough layers of elements for 

calculation of bending (at least 6 over the hieght). A complementary line is created between 

steel and concrete and is bonded with the line of the concrete to enable turning on a moving 

gap function. The complementary line is also an advantage because of possibility of using 

larger elements for concrete surface.  

 
Figure 2: 2D model: deformed sheeting corresponding to slip 2 mm; displayed stress in longitudinal axes [kPa].  

 

Figure 3: Load-slip dependence of 2D model.  
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Newton-Rhapson method used to compute in shear test models [4]. The loading is applied 

in two intervals. In the first interval vertical displacement 1e-7 m is assigned to the top line of 

the concrete block. In the second interval longitudinal displacement is assigned to left line of 

the concrete block. Friction was estimated to be 0.2, cohesion 1.0 Mpa and tensile strength 

0.4 Mpa [5]. 

2.2.2 3D model of shear test 

Because of the complexity of the embossment action one cannot describe the behaviour of 

the embossment in real test by the 2D model idealisation. Therefore 3D model of the shear 

test is being created in the length of one embossment of concrete and overlapping steel 

sheeting. The final shear bearing capacity of the embossment is influenced by distance of its 

end from longitudinal edge of the sheeting [6], as show the peak values of stress around the 

ends of the embossment in fig. 5.  

 

  (a)  (b)  

Figure 4 (a) Deformed sheeting in 3D model with displayed displacement in horizontal axes  

(b) deformed sheeting in real test. 

 

Figure 5 Deformed shape of the steel sheeting with depicted peaks stresses around the ends of embossment. 
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In order to obtain correct results in bending perpendicular to the plane of the sheeting there 

is a need to use several layers over the thickness of the sheeting. Atena enables to use Ahmad 

element developed by reducing of quadratic 3D bricks elements with 20 nodes. These 

elements include layers inside; therefore its usage significantly reduces required number of 

elements and time for computation [7]. 

2.2.3 Combination of thermal and static analysis 

Design bearing capacity of the composite slab in fire according EC4 can be determined 

using theory of plasticity and reduced material properties without specifying the shear bearing 

capacity at elevated temperatures [8]. Moreover composite slabs behaviour in fire can be 

transformed to membrane action considering large deflections and proper supporting [9].  

Thermal and static analysis was combined on 2D model to observe the sheeting behaviour 

at high temperatures. At first the thermal analysis was performed to obtain stationary 

temperature field. The field was then applied to static analysis. The same boundary conditions 

and material properties were used as in the normal temperature analysis. The temperature 

loading leads to deformation of the sheeting and subsequently reducing of shear bearing 

capacity (Fig. 7) in compare to normal temperature analysis (Fig. 3).  

 

Figure 6 Deformed shape of the steel sheeting subjected to temperature load. 

 

Figure 7 Load-slip dependence of 2D model subjected with temperature load. 
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Figure 8: Uniformly distributed cracks in concrete after finishing the test and removing of steel sheeting.  

3 BENDING TESTS 

3.1 Tests performed in laboratory 

Ideally uniform area loading was produced using special vacuum loading device [2]. The 

specimens were simply supported with span 2 m and width 1.08 m. The concrete class was 

C20/25 and the yield strength of the steeting was 350 MPa. Slabs were loaded by almost 50 

kN/m
2
 using a common plastic foil. The uniformly distributed load results in uniformly 

distributed crack pattern over the length of the specimens. The cracks can be seen after 

finishing the test when the steel sheeting is removed. 

3.2 Numerical modelling of bending 

Model of one rib as a simply supported beam has been created. Shell elements are used for 

modelling the sheeting. The bending model is simplified because of the difficulties with 

detailed modelling of shear behaviour of embossments. The steel sheeting is plain and the 

effect of embossments is simulated by hardening/softening function of cohesion in Interface 

material. 

  

Figure 9 Stress in concrete in longitudinal axes [MPa] with crack pattern. 
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Figure 10 Mutual slip between steel and concrete at the end of the slab; longitudinal displacement [m]. 

Loading is realized by force applied on the top surface of concrete. Supports are realized 

by bricks from 3D elastic material. Arc-length method is used for computing.  

The resulting bending model crack distribution and end slip development show good 

accordance with the real results for uniformly distributed load.  

4 CONCLUSIONS 

The paper presents numerical modelling of composite action of composite slabs with 

prestressed embossments. Models simulate the real behaviour of sheeting and concrete in slip-

block test and bending test. The carried out research lead to the following conclusions: 

- Numerical modelling of the embossment shear behaviour can adequately describe the 

real test behaviour. Both the detailed models and bending models, respectively, can 

present an effective tool for parametrical studies of sheeting geometry of material 

properties. However its correct setting is influenced by many factors and must be 

compared with the tests results. 

- Prestressed embossments stiffen the plane parts of steel sheeting and thus present 

a sufficient tool for ensuring partial composite action. Distance of the ends of the 

embossments from sheeting longitudinal edges belongs to the most affecting factors 

of the final shear bearing capacity. 

- The thin layer of steel sheeting can be effectively modelled using shell elements. This 

approach reduces the number of elements needed for analysis and enables to perform 

bending test simulation. The bending test modelling is realized using plain sheeting 

and the effect of embossments is substituted by cohesion function. Future works on 

the models can lead to the inclusion of embossment effect to the bending task. 

- Determination of changes in stress state and shear bearing capacity at elevated 

temperature can be estimated using the FE analysis. Detailed model boundary 

conditions can be different from those in the real slab; this must be taken into account 

when interpreting the results.  
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Abstract.  
Despite the impressive progress attained in the last decades by simulation-based engineering 
sciences, decision-making in engineering design, optimization and control, remains sub-
optimal in many fields. Aerospace industry is probably one area where these limitations are 
more obvious. 
On one hand, in a multitude of real engineering design problems a large number of scenarios 
must be considered and carefully analyzed. This task is very expensive both in specialized 
man-hours to prepare and analyze data and from a computational point of view. The space of 
design parameters is, in these cases, too large for an exhaustive exploration. In general, only a 
small sample of the parametric space is studied. Consequently, these models must be 
complemented with security coefficients conceived to cover the rest of the parametric space 
and to include unknown information, the inevitable uncertainty. Thus, in practice, designs 
remain suboptimal because of the computational complexity related to very rich descriptions 
of external actions, geometry, materials, processes, etc. In fact, even for cutting edge 
engineering, real practice imposes methodologies devised more than 30 years ago. 
On the other hand, two contradictory goals are nowadays present in every challenging 
simulation based engineering problem: real-time and high fidelity. In order to speed-up 
engineering design or to assist decision-making strategies in engineering processes, faster 
simulations are required. Moreover, in many cases, there is the added restriction: such 
decision-making tools should run in light computing devices to increase portability, on-site 
evaluation, or democratize accessibility. Real-time is easier to attain with coarse models or 
meta-models involving few number of parameters. These requirements usually are 
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contradictory with high-fidelity simulations. Moreover, users are more demanding and 
prescribe error bounds on quantities of interest to minimize uncertainty in models and 
simulations. 
These apparently incompatible goals can be integrated by means of a computational 
vademecum. A high-fidelity error-controlled off-line computation produces a solution of the 
model under consideration for all the possible design scenarios. Then, an on-line post-process, 
able to run on light computational devices if necessary, is used for fast decision-making 
purposes. 
The Proper Generalized Decomposition (PGD), which relies in the assumption of separated 
approximations of the solution, has demonstrated its capabilities in dealing with high-
dimensional problems. The multidimensional capabilities of this approach opens new 
possibilities to solve, for instance, problems where material or external parameters are set as 
additional extra-coordinates of the model. In this framework a general solution is obtained 
encompassing every solution for any possible value of the parameters, thus, a computational 
vademecum is produced. Under this rationale, parametric design, optimization of complex 
problems, uncertainty quantification, simulation-based control, and real-time simulation are 
seen as a post-process once the off-line strategy has produced the vademecum. 
To illustrate the advantages of such an approach a simple shape optimization example will be 
shown before discussing a practical engineering problem governed by the Helmholtz equation 
with variable coefficients in an unbounded domain. This problem models harbor wave 
agitation, which is a primary engineering design challenge. Two major issues are discussed: 
1. Efficient and accurate computations. This implies a large number of simulation 

challenges, which include, among others, reproducing the exact geometry to capture the 
small features that are influential, efficient adaptive approximations, precise high-
gradients (shock-capturing) approximations, etc. 

2. Large number of external forcing conditions. A general solution for the agitation in the 
harbor is obtained with the incident wavelength and its direction as extra coordinates 
covering an exhaustive evaluation of all possible scenarios and enabling on-line 
computations on tablets. 
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Abstract. A geometrically exact shell model based on the Kirchhoff-Love theory, where 
shear deformation is not accounted for, has been developed in the present contribution. 
Energetically conjugated cross sectional stresses (first Piola-Kirchhoff tensor) and strains 
(deformation gradient) are defined. Elastic constitutive equations are consistently derived 
from fully three-dimensional finite strain constitutive models. A genuine plane-stress 
condition is enforced by vanishing the true mid-surface normal stress. Since only the bending 
deformation is included in this model no special technique has to be taken into account in 
order to avoid shear-locking. 
Since the variational basis of the formulation requires the use of C1 approximations, the 
generation of compatible finite elements is not trivial in the present case. In order to overcome 
this inconvenience, meshless approximations are used. The first-order Generalized Moving-
Least Squares Approximation has been proposed. Although it increases the number of 
degrees-of-freedom per node, its performance and quality of results are clearly superior to the 
conventional Moving-Least Squares Approximation in this specific class of problems. 
Since the approximation does not possess the Kronecker-delta property, the essential 
boundary conditions are enforced using a hybrid-displacement version of the shell 
formulation, by means Lagrange multipliers. The corner reactions which naturally arise from 
the boundary integrals are carefully treated. This issue requires introduction of extra pointwise 
Lagrange multipliers. Its significant influence on the accuracy of results is demonstrated in 
some linear examples. 
Imposition of the kinematic boundary conditions along the line also requires extra discussion. 
The proposed theory has no explicit expression for the boundary rotation angle arising on 
such boundaries and, moreover, this specific quantity may lead to nonsymmetric tangent 
matrix. Stitching domains along the line by means of Lagrange multipliers makes it possible 
to apply the proposed theory not only to smooth continuous shells but also to the folded ones. 
Initially curved shells are regarded as a stress-free deformed state from a chosen plane 
reference configuration. The mapping between both configurations allows the exact 
consideration of the initial configuration. 
The complete linearization of the weak form is presented. For hyperelastic materials, 
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conservative loadings and most cases of the kinematic boundary conditions the generalized 
stiffness matrix is symmetric even in points far from the generalized equilibrium positions. 
Nonconservative loads and some specific essential boundary conditions (as was mentioned 
above) lead to a nonsymmetric contribution to the resultant tangent stiffness. The latter is 
derived for several load types. 
Results of numerical examples for both linear and nonlinear cases are presented, 
demonstrating the robustness and efficiency of the approach.  
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Abstract. This paper presents a novel method for building unstructured meshes for time-
dependent problems. We start by introducing the classical anisotropic mesh adaptation
technique proposed in [1, 2]. The latter is developed based on the length distribution
tensor approach and the associated a posteriori edge based error analysis. Then we
extend the mesh adaptation technique to contain adaptive time advancing. A newly
developed time error estimator is constructed and intends to homogenize the global error
over space and time. The main purpose of this work is the development of a novel meshing
algorithm, the paradoxical meshing, that provides optimal space and time meshes suitable
for several simulation time subintervals. The advantage of the proposed method relies in
its conceptual and computational simplicity as it only requires from the user a number of
nodes and a frequency of adaptation according to which the mesh and the time-steps are
automatically adapted. Numerical solutions on time-dependent problems demonstrate
the accuracy and efficiency of the proposed space-time error estimator.

1 INTRODUCTION

Despite the increasing computer performances and the progress of computational fluid
dynamics in modelling and simulating time dependent PDEs, numerical restrictions are
still present and caused by the complexity of the numerical simulations.

Anisotropic mesh adaptation has proved to be a powerful strategy to improve the ac-
curacy and efficiency of finite element methods. It enables the capture of multi-scaled
physical or mechanical phenomena. The method, as developed in [1], allows the creation
of highly stretched and highly directional elements leading to very good capture of the
gradients of the solution and the internal and boundary layers. Moreover, it provides a
good level of accuracy within a reasonable degree of freedom. Another extension was pro-
posed in [2], and accounts for time-step adaptation. Based on the derived error estimator

1
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in space and the solutions at the previous times, the proposed algorithm automatically
computes an appropriate time-step for the following computations.

The above described mesh adaptation is optimal for steady problems. It is theoret-
ically valid for transient CFD applications only when applied, together with the time
adaptation method, at every solver iteration. Nevertheless this would excessively increase
the computational cost and lead to an accumulation of interpolation errors. Fixing a low
frequency of adaptation can help solving these issues but this might lead to a time lag
between the mesh and the solution. To overcome these problems, a new fully adaptive
method is proposed in this paper: the paradoxical meshing. It intends to predict the
solution’s evolution over a period of time and to automatically generate corresponding
mesh and set of time-step sizes.

This paper is structured as follows: we start section 2 with a brief description of
the classical anisotropic mesh adaptation. Section 3 is dedicated to the time adaptive
technique. The good performance of these methods is evaluated on a 3D example with
complex geometry. The extension of these two methods into the paradoxical meshing
algorithm is described in Section 4. Finally, in section 5, we test the efficiency and
accuracy of the space-time adaptive algorithm on time-dependent problems.

2 Construction of an anisotropic mesh for stationary problems

In [1], we have developed an a posteriori edge based spatial error estimator relying on
the length distribution tensor approach. Working on a nodal based metric, an anisotropic
mesh adaptation procedure is obtained under the constraint of a fixed number of nodes.

2.1 Edge based error estimation

We consider u ∈ C2(Ω) = V and Vh a simple P 1 finite element approximation space:

Vh =
{
wh ∈ C0(Ω), wh|K ∈ P 1(K), K ∈ K

}
where Ω =

⋃
K∈K

K and K is a simplex (segment, triangle, tetrahedron, ... ).

We define X =
{
Xi ∈ Rd, i = 1, · · · , N

}
as the set of nodes of the mesh and we denote

by U i the nodal value of u at Xi and we let Πh be the Lagrange interpolation operator
from V to Vh such that:

Πhu(Xi) = u(Xi) = U i , ∀i = 1, · · · , N

As shown in figure 1, we define the set of nodes connected to node i by

Γ(i) =
{
j , ∃iK ∈ K , Xi,Xj are nodes of K

}
By introducing the following notation: Xij = Xj −Xi and using the analysis carried in
[1], we can set the following results:

∇uh ·Xij = U ij , (1)

2
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Figure 1: length Xij of the edge joining nodes i and j (left). Varying the edge in its own direction (right).

|| ∇uh ·Xij︸ ︷︷ ︸
U ij

−∇u(X i) ·Xij|| ≤ max
Y ∈[Xi,Xj ]

|H(u)(Y )Xij ·Xij| , (2)

where H(u) = ∇(2)u is the associated Hessian of u. A definition of the projected second
derivative of u is obtained using (1) and the interpolation operator on ∇u :

∇ghXij ·Xij = gij ·Xij (3)

where ∇gh = Πh∇u, gi = ∇u(Xi) and gij = gj − gi.
Using a mean value argument, we set that:

∃y ∈ [xi, xj]|gij ·Xij = H(u)(Y )Xij ·Xij .

This projection is considered as an expression of the error along the edge:

eij = gij ·Xij (4)

However a gradient recovery procedure is needed as the gradient of u is not known and is
not necessarily continuous at the nodes of the mesh.

2.2 Gradient Recovery

Based on an optimization analysis, the author in [1, 2] proposes a recovery gradient
operator defined by:

Gi = (Xi)−1
∑
j∈Γ(i)

U ijXij (5)

where Xi = d
|Γ(i)|

∑
j∈Γ(i)

Xij ⊗Xij is the length distribution tensor at node Xi. Note that

this construction preserves the second order:∣∣(Gi − gi
)
·Xij

∣∣ ∼ (H(u)Xij ·Xij
)

where Gi is the recovery gradient at node i (given by (5)) and gi being the exact value of
the gradient at node i. The error is evaluated by substituting g by G in (4):

eij = Gij ·Xij

3
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2.3 Metric construction from the edge distribution tensor

Taking into account this error analysis, we construct the metric for the unit mesh as
follows:

Mi =

 d

|Γ(i)|
∑
j∈Γ(i)

Xij ⊗Xij

−1

For a complete justification of this result, the reader is referred to [1, 2].

2.4 Error behavior due to varying the edge length

We examine now how the error behaves when we change the length of the edges by
stretching coefficients

S =
{
sij ∈ R+ , i = 1, · · · , N , j = 1, · · · , N , Γ(i) ∩ Γ(j) 6= φ

}
Stretching factors s ∈ R are employed to link the error variations to the changes in edge
lengths: {

X̃ij = sXij

||ẽij|| = s2||eij|| = s2||Gij ·Xij||
(6)

where ẽij and X̃ij are the target error at edge ij and its associated edge length.
The metric associated with S can be redefined as:

M̃i =
|Γ(i)|
d

(
X̃i
)−1

with X̃i =
d

|Γ(i)|
∑
j∈Γ(i)

s2
ijX

ij ⊗Xij (7)

being is the length distribution tensor. Let nij be the number of created nodes in relation
with the stretching factor sij and along the edge ij. When scaling the edges by a factor
sij, the error changes quadratically so that the number of created nodes along the edge
ij is given by:

nij =

(
ẽij
eij

)− 1
2

= s−1
ij

Recall that ẽij denotes the induced error for edge X̃ ij. As per node i, the number of
created nodes along the different edges’ directions is given by the following tensor:

N i =
(
Xi
)−1

 d

|Γ(i)|
∑
j∈Γ(i)

nij
2Xij ⊗Xij


So that the total number of created nodes per node i is:

ni =

√√√√√det

(Xi)−1

 d

|Γ(i)|
∑
j∈Γ(i)

nij2Xij ⊗Xij


4

353

lacan
Rectangle



G. JANNOUN, E. HACHEM, J. VEYSSET, J-F. ZARAGOCI, AND T. COUPEZ

Assuming a uniform totally balanced error along the edge ẽij = e = cst, we get a direct
relation between N and e as follows:

nij(e) = s−1
ij (e) =

(
e

eij

)− 1
2

Hence for a node i we have

ni(e) =

√√√√√det

(Xi)−1

 d

|Γ(i)|
∑
j∈Γ(i)

nij(e)
2Xij ⊗Xij


Replacing nij(e) by its expression,

ni(e) = e−
d
2

√√√√√det

(Xi)−1

 d

|Γ(i)|
∑
j∈Γ(i)

eijX
ij ⊗Xij


and this is equivalent to:

ni(e) = e−
d
2ni(1)

so that the total number of nodes in the adapted mesh is: N = e−
d
2

∑
i

ni(1).

Hence, the global induced error for N nodes can be determined by:

e(N) =

 N∑
i

ni(1)

− 2
d

Therefore the corresponding stretching factors under the constraint of a fixed number of
nodes N are given by:

sij =

(
e

e(N)

)− 1
2

=


∑
i

ni(1)

N


2
d

e
−1/2
ij

Note that the mesh does not change during time advancing but at a certain time level tn.
Hence, an optimal mesh at a time level tn need not be an optimal one at tn+1 which is
the case when propagating a discontinuity. This raises the question about the frequency
of remeshing.

As time-dependent problems exhibit arbitrary progression with time, the duration of
applicability of a mesh cannot be known apriori. When the time-step size is greater
than the length of the mesh’s time interval, the solution may propagate into a non pre-
adapted region of the domain resulting in a mesh/solution lag. Adapting the mesh at
every solver iteration guarantees that the spatial error remains bounded. Nevertheless,
this approach increases significantly the computational cost and leads to the accumulation
of interpolation errors polluting the solution.

5
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3 Time adaptation procedure

The focus now can be waived to the choice of the time-step size computed at each
solver iteration. The main objective is to produce a time-step that preserves the accuracy
of the mesh adapted solution and avoids unnecessarily small time-step sizes. This method
was first introduced and validated in [2]. In this work, we revisit the developed method
with the intention of extending it to a fully space-time adaptivity.

We apply the above described analysis in 1D where the only variable is time. Denote
by T = {t0, · · · , tn−1, tn, tn+1, · · · } and let tnk = |tn− tk| , n, k ∈ T be the temporal nodes
and ∆tn = tnn+1 the time increments as shown in figure 2. Assume that the solution is
already computed on the whole domain up to time tn. The aim is to choose an appropriate
time-step ∆tn.

Without loss of generality, the analysis will be carried on an arbitrary spatial node
i. Note that at a spatial node i, we only have one time edge to be determined (tntn+1).

Figure 2: Temporal discretization at the spatial node i.

Define {τnn+1} to be the temporal edge scaling (stretching) factor such that:

ẽn+1,n = τ 2
n+1,nen+1,n∣∣∣̃tn+1,n

∣∣∣ = τn+1,n |tn+1,n| (8)

where en+1,n is an approximation of the interpolation error from tn to tn+1, ẽ and
∣∣̃t∣∣ are

the target error at the temporal edge tntn+1 and its associated edge length.
Let uin−1, uin and uin+1 be the solutions at node i and times n − 1, n, and n + 1,

respectively. Using a forward difference approximation, we have that un+1 − un = u̇n∆tn
and un−1 − un = −u̇n−1∆tn−1. Then applying the recovery gradient in 1D, we get:

u̇n =
uin,n+1∆tn + uin,n−1∆tn−1

∆t2n + ∆t2n−1

6
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and the quadratic interpolation error:

ein,n−1 = u̇in,n−1∆tn−1

and
ẽin,n−1 = τ in−1

2
u̇in,n−1∆tn−1

where u̇in,n−1 = u̇in − u̇in−1. Now using the equidistribution error argument, we write

ẽin,n−1 = en(N)

with en(N) being the maximal error in space for a total number of nodes N . Hence the
stretching factor of the time-step size is given by:

τ in−1 =

(
e(N, tn)

ein,n−1

) 1
2

and the optimal time-step is determined by:

∆̃tn = min
i
τ in−1∆tn (9)

Looking closely at this formula, we notice that it requires the solution at time tn+1 which is
not yet computed. Therefore instead of computing the optimal time-step ∆̃tn we calculate

∆̃tn−1 and we let ∆tn = ∆̃tn−1.

3.1 Application to 3D heat transfer and turbulent flow inside an industrial
furnace

In this section, we will apply the classical space and time-adaptive methods to simulate
the heat transfer and fluid flows inside an industrial furnace with complex geometry. The
objective of this test case is to show the applicability and the potential of the developed
algorithm in simulating long time heating inside large scale furnaces.

The furnace is modelled as a hexagonal section duct of 2.7× 8.1× 5.3m3 forming one
heat transfer zone. All computations have been conducted by starting with a gas at rest
with a constant temperature of 1463◦C. Adiabatic temperature is considered at all other
boundaries for sake of simplicity. The heated air is pumped into the furnace at a velocity
14.3m/s by a circular burner with 6m diameter and located at the left vertical wall. The
air is vented out of the furnace through two outlets positioned at the bottom of the left
vertical wall. The 3D computations aim at simulating an hour of heating and have been
conducted in parallel on 16, 2.4Ghz Opteron cores.

Figure 3 (top) shows the isothermal distribution at different time-steps. When the hot
fluid spreads along the volume of the furnace, it induces a turbulent motion within the
geometry. This forced convection is caused by the interaction of the moving stream and the

7
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Figure 3: Isotherms (Top) and corresponding adapted meshes (bottom) at three different time-steps.

CPU Time (s)
Non-Adaptive ∆t = 0.005s 8,640,000

Adaptive ∆t 172,800
Ratio 50

Table 1: CPU time for computing the solution with non-adaptive and a space/time adaptive methods

stationary fluid inside the furnace. The numerically obtained temperature distribution
(fig. 3) clearly reflects the expected flow pattern. A number of small vortices inside
different buffer zones can be observed. The latter are due to the turbulence dissipation
and mixing of the hot and cold air. The numerical results obtained with our space and
time adaptive algorithm reflect well the efficiency and potential of the methods. Figure
3 (bottom) highlights how well the mesh is adapted to sharply capture, with highly
stretched elements, the gradients of the solution, the boundary layers and the emerging
vortices. The algorithm builds up the mesh in a way to maximize the accuracy of the
numerical solution with a fixed number of nodes ( 100, 000). Note that the mesh is adapted
according to the velocity components and its norm as in this test case it is the motor of
the induced airflow and spread of the temperature. The results describing only one hour
of the heating process required 100 days of computations with a fixed time-step equal to
0.005s. Significant CPU time and computational cost were saved by applying our time
adaptive procedure as it required only 2 days of calculations (see table 1). Figure 4 shows
the evolution of the time-step sizes allowing at the same time a certain level of accuracy
and an acceleration of the computations.

8
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Figure 4: Time-step evolution for the simulation of an hour of heating inside an industrial furnace.

4 paradoxical meshing: Full adaptivity algorithm

When dealing with steady state problems, the classical mesh adaptation technique,
presented in section 2, performs pretty well for converging the mesh-solution couple.
Nevertheless, this method is no more optimal when applied to unsteady problems as the
physical solution evolves in time. Together with the time-adaptive method introduced
in section 3, the classical mesh adaptation can be efficiently adapted to time dependent
problems.

In this paper we are interested in developing a space and time fully adaptive algorithm.
The latter aims at anticipating the solution progress over a period of time and generating
the optimal mesh that is adequately adapted, for a fixed number of nodes, to the evolving
solution along that time interval. The analysis is carried out on a (3D+1D) mesh, i.e.
the computations are performed synchronously on a 3D spatial mesh and a 1D temporal
mesh. We aim at generating a mesh that holds for several solver iterations together with
the corresponding optimal set of time-step sizes. Note that the user can assign a frequency
of adaptation and the algorithm will accordingly adapt the meshes.

The principle consists of dividing the simulation time [0, T ] into nSI subintervals:

[0, T ] = [0, T 1] ∪ [T 1, T 2] ∪ · · · [T k−1, T k] ∪ [T k, T k+1] ∪ · · · ∪ [T nSI−2, T nSI−1]

that will in turn be divided into nfreq − 1 subintervals where nfreq is the frequency of
adaptation assigned by the user. We call the adaptation method a paradoxical meshing
as the resulting mesh is being adapted to nfreq time-steps while adapting every nfreq steps.

The mesh and the set of time-step sizes are computed through an iterative process
along which we try to converge both meshes (the spatial and the temporal one) to the
optimal configurations that give the most accurate solution for the corresponding interval
of time. At every iteration, we consider each of the nSI intervals at a time and divide it

9
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into subintervals

[T k, T k+1] = [T k = tk0, t
k
1] ∪ [tk1, t

k
2] ∪ · · · ∪ [tkl , t

k
l+1] ∪ · · · ∪ [tknfreq−2, t

k
nfreq−1 = T k+1]

such that tkl+1 = tkl + ∆k,l = T k + l ×∆k,l and ∆k,l = δk
nfreq

.

Figure 5: Temporal subintervals [T k−1, T k].

The solution is predicted at each of the {tkl } temporal nodes using the numerical scheme.
From these solutions we construct a vector field

V = {Uk,0, Uk,1, · · · , Uk,l, Uk,nfreq−1}
and we estimate the edge based spatial errors:

eij = max
0≤k≤nSI

Gk
ij ·Xij

We compute a global error e(N, Tk), as in the classical approach, for equidistributing the
error on the edges of the discrete domain. An optimal metric is deduced controlling the
spatial error over [T k, T k+1]. We also compute the temporal error at the nodes tkl as in
section 3. Once this is done we optimize the time-step sizes ∆tk,l by equidistributing the
error in space and time:

∆tk,l =

e(N, Tk)
max
i
ek,li

 1
2

×∆tk,l

An optimal size ˜δtk of the time interval [T k, T k+1] is recomputed as follows:

δ̃tk =
∑
l

∆tk,l

These δ̃tk are given to the 1D mesher that will generate a new discretization of the
interval [0, T ] as well as its corresponding temporal nodes T k. Notice that the number
of subintervals nSI will be automatically changed due to this remeshing. The above
described algorithm is repeated iteratively until convergence of the metrics and the set of
time-step sizes. Therefore, for each interval [T k, T k+1] a metric is computed accounting for
the solution’s transient evolution. At convergence, a mesh is generated from this metric
field. Computations are then resumed on the predicted optimal set of meshes with the
corresponding set of time-step sizes.

The novel method that we presented herein is perceived not only as a fully adaptive
technique but also as a space and time accurate way of solving time-dependent problems
within reasonable computational costs.
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Figure 6: Paradoxical meshing algorithm applied to a rotating circle for the interval [tn, tn+1].

Figure 7: Time-steps generated by the classical (left) and the paradoxical (right) meshing algorithm.

5 Numerical example: Rotating Circle

In this section, we assess the performance of the newly developed fully-adaptive algo-
rithm on a numerical test case and compare the result with the classical space and time
adaptive techniques. We consider a 2D circle of radius 0.3 located at (0.5, 0.5) in the
computational domain [−1.5, 1.5] × [−1.5, 1.5]. The simulation consists of rotating the
circle in the counterclockwise direction at the rate θ = 1rad/s. The objective is to test
the capability of the anisotropic paradoxical meshing technique to accurately capture the
dynamically evolving interface. Figure 6 shows the adapted mesh, made up of 10, 000
nodes, for the time interval [tn, tn+1] made up of 10 sub-intervals of time. We can clearly
see how refined the mesh is at the location of high gradients of the solution and how
accurate is the capture of the interface as it rotates from tn(left) to time tn+1(right). The
elements all along the interface are isotropic yielding a well respected curvature. The
time intervals’ lengths [tn, tn+1] = [tn0 , t

n
1 , · · · , tni , · · · tn+1

10 ] are automatically generated to
guarantee the validity of the mesh for 10 consecutive time-steps. Figure 7 presents the
time-step sizes for the first few iterations of the algorithm. The periodic variation of the
time-steps is in good agreement with the nature of the problem, as the circle rotates at a
constant rate and maintains the same behavior all over computations.

Using the classical mesh adaptation with the time adaptive technique and adapting the
mesh every 10 iterations, the generated time-step sizes will be too small, as seen in figure

11
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7(left), in order to reduce the temporal error, preventing the progress of the solution in
time so that it remains in phase with the adapted mesh. Recall that the method aims
at giving a better efficiency than the classical algorithm. This is exactly what we notice
when comparing figures 7(left) and 7(right); the paradoxical meshing technique produces
time-step sizes that are almost 200 times larger than those generated by the classical
algorithm. Hence, the resulting computations will be about 200 times faster reflecting the
high efficiency of the novel method. Note that the inner loop of the algorithm is repeated
only two times to get the optimal meshes and time-step size for which the solution remains
bounded.

6 CONCLUSIONS

In this paper, we have presented a classical anisotropic mesh adaptation that showed
very good performance when applied together with the new time adaptive technique for
resolving time dependent problems. An extension of these algorithms lead to a novel and
very powerful method for full adaptation known as the paradoxical meshing. This method
demonstrated its efficiency in generating meshes and time-step sizes that guarantee the
convergence of the solution all over computations for a limited number of nodes and a
fixed frequency of adaptation.

Acknowledgement: The authors gratefully acknowledge the support from the “ANR:
Agence nationale de la recherche”.
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Abstract. This contribution considers the steering of movements of a mechanical system
from an initial state to a target state (target control). Suitable FE-approximations for the
state and control variables are discussed along with a goal-oriented a posteriori estimate
of the discretization errors.

1 EXTENDED ABSTRACT

We shall in this contribution consider optimal control problems concerning the steer-
ing of motion of a mechanical system from an initial state to a target state (target or
trajectory control). The motion of the system depends on forces acting as controls and
is represented by a set of ordinary differential equations with load terms. By considering
the equations of motion and the relevant kinematic and control limitations, a constrained
optimization problem can be formulated where the control forces are sought to minimize a
chosen objective function, such as the energy consumption or the deviation from desired
trajectory, while reaching the defined target. As a numerical example we consider the
search for an optimal brake-turning strategy for a vehicle manoeuver [4].

A discretization of finite element type in time is introduced, whereby approximations
for the state (coordinates and velocities) and the control (external forces) variables are
introduced. The optimality conditions are expressed in weak form, in particular, the in-
equality constraints are enforced weakly, whereby to what extent the inequality constraints
are satisfied depend on the chosen discretization. The subject of the present work is to
determine the error in the approximate solution compared to the exact solution, in par-
ticular with respect to how well the discrete solution satisfies inequality constraints and
target conditions.

To this end, we employ a posteriori error estimates based on the pertinent dual prob-
lem (from linearization of the weak form) with some modification, whereby discretiza-
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tion errors in both state and control variables can be estimated in terms of chosen goal
quantities. The sources of errors can be traced to specific regions of the state and con-
trol time-meshes, which can be used in an adaptive mesh-refinement procedure since the
control and state variables are discretized separately. Earlier work on a posteriori error
estimation for optimal control problems have been based on the Heidelberg approach[1, 4],
whereas the present contribution will use our previous work in error control for parameter
identification problems based on a tangent form of the dual problem[2].

To illustrate the problem setting, consider the example[3] of a double pendulum rep-
resenting simple mechanical system. The pendulum is to be lifted from vertical hanging
to a horizontal straight position using minimal control force without violating anthropo-
morphic constraints (the opening angle of the middle joint must be between 0 and 135
degrees) and control constraints (the control variables are restricted by maximum and
minimum values). The solution algorithm is based on a nested format with a relaxation
of the constraints.

Target state

Initial state 0 0.1 0.2 0.3 0.4 0.5
−4

−2

0

2

4

 

 

0 0.1 0.2 0.3 0.4 0.5
−15

−10

−5

0

5

 

 

p1

p2

u1

u2

u3

u4

Figure 1: Left: Plot of the arm from vertical hanging to a horizontal straight position. Right: Comparison
of the solved state (u1-u4) and control (p1-p2) variables using fine (dashed line) and coarse discretization
(solid line).

The numerical example indicate that a discretization error in the control variable arises
in order to ”compensate” for discretization errors in the solution of the equations of motion
in order to reach the target state.
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Abstract. The Reduced Basis method is a means for model order reduction for parame-
trized partial differential equations. In the last decades it has found broad application for
problems with multi-query or real-time character. While the method has shown to be per-
forming well for numerous different fields of applications, problems with high parameter
dimension or high sensitivity with respect to the parameter still pose major challenges.
In our contribution, we present a new basis generation algorithm that is particularly fit to
these kinds of problems: Instead of building the reduced basis during the offline phase we
build a large dictionary of basis vector candidates and compute a small parameter-adapted
basis from that dictionary with a Greedy procedure during the online phase.

1 Introduction and Motivation

As numerical simulations find more and more use in real-world scenarios and industrial
applications, demands concerning efficiency and reliability increase as well. Especially sce-
narios that call for real-time simulations or multi-query evaluations of partial differential
equations (PDEs) often require means of model order reduction. Examples for such sce-
narios are optimal control and optimization settings.

The Reduced Basis (RB) method [6] provides model order reduction for a special class
of PDEs, so-called parametrized partial differential equations, (in the weak form) given
as

Bh(uh(µ), vh;µ) = Lh(vh;µ) ∀vh ∈ Xh, (1)

for uh(µ) ∈ Xh, µ ∈ P ⊂ Rp and a suitable given discrete function space Xh. Here,
Bh : Xh×Xh×P → R denotes a given parametrized bilinear form and Lh : Xh×P → R

1
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denotes a given parametrized linear form. We will assume Bh to be coercive and symmetric
in the sequel.

Such equations arise, for example, in the context of heat diffusion. In this case, the
parameter µ could model the diffusion coefficient. The RB method now reduces the
complexity of Equation 1 from N = dim(Xh) to N ∈ N, N � N , by introducing a low-
dimensional surrogate XN , dim(XN) = N of the high-dimensional discretization space
Xh. This space XN is the span of solutions of (1) for a given set of parameter values:

XN = 〈{uh(µ1), . . . , uh(µN)}〉 ,
µ1, . . . ,µN ∈ P .

Galerkin-projection of Equation 1 then leads to a reduced dimensional equation system

AN(µ) · uN(µ) = bN(µ), (2)

where uN(µ) ∈ RN , AN : P → RN×N , (AN(µ))i,j = Bh(ϕi, ϕj;µ), bN : P → RN ,
(bN(µ))i = Lh(ϕi;µ). Here, Φ = {ϕ1, . . . ϕN} denotes an orthonormal basis of the space
XN .

The main idea of the RB method is the so-called offline-online splitting of all compu-
tations: We introduce two phases of our computations:

Offline phase During this phase, all N -dependent computations are performed. This
phase may be very expensive as a certain amount of solutions uh(µi) needs to be
computed.

Online phase During this phase, the equation at hand is solved in the reduced space
XN for a given parameter µ. This phase is ideally totally independent of N , and
therefore usually very fast.

While the computation of XN can clearly be done during the offline phase, the assembly
of the equation system (2) needs to be done for every new given parameter µ during the
online phase. As this requires evaluations of Bh at the solutions uh(µi), the online phase
would hence depend on N . We thus make the assumption of parameter separability:

Assumption 1. Assume Bh, Lh to be parameter separable, that is

Bh(u, v;µ) =

QB∑
q=1

Θq
B(µ)Bq

h(u, v), Lh(u;µ) =

QL∑
q=1

Θq
L(µ)Lqh(u), ∀u, v ∈ Xh, (3)

for given numbers QB, QL ∈ N, parameter-dependent functions Θq
B,Θ

q
L : P → R and

parameter-independent bilinear and, respectively, linear forms Bq
h : Xh × Xh → R, Lqh :

Xh → R.
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Using Assumption 1, the assembly of the system (2) can be done in two steps: During
the offline phase, after computing the reduced basis space XN , project the parameter-
independent components of Bh and Lh to XN :

(Aq
N)i,j = Bq

h(ϕi, ϕj), 1 ≤ q ≤ QB, 1 ≤ i, j ≤ N,

(bqN)i = Lqh(ϕi), 1 ≤ q ≤ QL, 1 ≤ i ≤ N.

During the online phase, it then only remains to sum up the precomputed components:

AN(µ) =

QB∑
q=1

Θq
B(µ)Aq

N , bN(µ) =

QL∑
q=1

Θq
L(µ)bqN .

1.1 Error Estimation

One crucial ingredient of the reduced basis method is a posteriori error estimation.
Error estimation is used for basis construction during the offline phase and for certification
by approximation quality control during the online phase. In our work we use a residual-
based estimator shortly outlined in this paragraph. For more details we refer to [1, 6].

Definition 1.1. For Bh given from (1) we denote by ‖·‖µ : Xh → [0,∞) the parameter
dependent energy norm

‖u‖µ =
√
Bh(u, u;µ). (4)

We introduce the residual and its Riesz-representative.

Definition 1.2. For a given function u ∈ Xh let the residual rh[u] : Xh × P → R be
given by

rh[u](v;µ) := Lh(v;µ)−Bh(u, v;µ) ∀v ∈ Xh.

Its Riesz-representative ru(µ) ∈ Xh, given a parameter µ ∈ P , is defined as the solution
to

Bh(ru(µ), v;µ) = rh[u](v;µ) ∀v ∈ Xh.

Using the Riesz-representative we can now state our error estimator.

Theorem 1.1 (Residual based a posteriori error estimate). Given parameters µ,µ ∈ P,
the energy norm of the Riesz-representative to a given reduced approximation uN(µ) is an
efficient a posteriori error estimate in the sense that

1

γµ(µ)

∥∥ruN (µ)(µ)
∥∥
µ
≤ ‖uh(µ)− uN(µ)‖µ ≤ 1

αµ(µ)

∥∥ruN (µ)(µ)
∥∥
µ
.
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Here we used the constants αµ, γµ ∈ R,

αµ = inf
u∈Xh

Bh(u, u;µ)

‖u‖2
µ

, γµ = sup
u,v∈Xh

Bh(u, v;µ)

‖u‖µ ‖v‖µ

We define: ∆XN
(µ) = 1

αµ(µ)

∥∥ruN (µ)(µ)
∥∥
µ

.

Remark 1. The constants αµ,γµ can be bound by easily computable constants using the
Min-Theta approach [6].

Remark 2. In the following we will always assume the parameter µ ∈ P to be given and
will use it without further notice.

1.2 Efficient Evaluation of the Error Estimator

As a preparation of evaluations of the error estimator in a reduced space XN we com-
pute the components rqL ∈ Xh, q ∈ {1, . . . , QL}

Bh(r
q
L, v;µ) = Lqh(v) ∀v ∈ Xh, (5)

and the components rqB ∈ Xh, q ∈ {1, . . . , QB ·N} with

Bh(r
(j−1)·N+i
B , v;µ) = Bj

h(ϕi, v) ∀v ∈ Xh, (6)

where Φ = {ϕi|1 ≤ i ≤ N} is a basis of XN . For the sake of simplicity of the following
presentation, we collect the energy products of all Riesz-representatives in one matrix
G ∈ RQr×Qr , Qr = QL +QBN :

G =

(
G1 G2

G3 G4

)
, (7)

where

(G1)i,j = Bh(r
i
L, r

j
L,µ), (G2)i,j = Bh(r

i
L, r

j
B,µ),

(G3)i,j = Bh(r
i
B, r

j
L,µ), (G4)i,j = Bh(r

i
B, r

j
B,µ).

Finally, we define the parameter vector Θr(µ, uN) ∈ RQr for a given parameter µ ∈ P
and a given reduced function uN ∈ XN :

(Θr(µ, uN))k =

{
Θk
L(µ), k ≤ QL

−(uN)iΘ
j
B(µ), else

(8)

where i = ((k − QL) mod N), j = k−QL−i
N

+ 1. The evaluation ∆XN
(µ) of the error

estimator is then given as

∆XN
(µ) =

1

αµ(µ)

√
Θr(µ, uN) ·G ·Θr(µ, uN).

4
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1.3 Summary

Using the offline-online splitting, RB methods gain impressive complexity reductions for
a wide range of applications such as elliptic stationary problems [6], parabolic instationary
problems [3] and hyperbolic problems [4]. The Greedy-type algorithm used for basis
construction during the offline phase [6] usually yields small bases that at the same time
guarantee a small error ∆XN

(µ).
In this contribution, we investigate problems with very high sensitivity with respect to

the parameter µ that yield unfeasibly large reduced bases. For these kinds of problems, we
introduce a new method for model order reduction that uses a large dictionary of basis
vector candidates to build a small, parameter-adapted basis during the online phase.
Our method holds some similarity with the locally adaptive Greedy method introduced in
[5]. As a main difference, our method does not use proximity in parameter space as an
indicator for well-suited basis candidates in the basis construction but directly measures
function similarity via error estimation. This will always yield ideal basis sizes.

Further ideas about Greedy methods and dictionary approaches can be found in [7].
In Section 2 we present our dictionary construction algorithm. Section 3 is dedicated to

the online basis construction procedure. Finally we present some preliminary numerical
results in Section 4.

2 Dictionary Construction and Offline Data Computation

During the offline phase of our new method, we construct a “dictionary” D with size
D of basis vector candidates ϕi ∈ Xh:

D = {ϕi |1 ≤ i ≤ D} .

For the experiments presented in Section 4 we use a pretty straightforward algorithm
to construct the dictionary: We choose a finite subset S ⊂ P , referred to as the training
set in the sequel, and compute

D = {uh(µ) ∈ Xh |µ ∈ S } . (9)

This idea restricts the size of the training set to a certain extent as its size is directly linked
to the size of the dictionary. We will comment on more elaborate methods in Section 5.

Together with the dictionary we compute the matrices
{
Aq
D ∈ RD×D|1 ≤ q ≤ QB

}
and

the vectors
{
bqD ∈ RD|1 ≤ q ≤ QL

}
,

(Aq
D)i.j = Bq

h(ϕi, ϕj), ϕi, ϕj ∈ D,
(bqD)i = Lqh(ϕi), ϕi ∈ D

(10)

that will be needed for reduced simulation during the online phase. Furthermore, we
compute the matrix G ∈ R from Section 1.2 for Φ = D.

5
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3 Online Basis Construction

In this section we describe the Greedy algorithm that is used to construct a space
XN(µ) from the dictionary for a given parameter µ ∈ P . As a means to this end we
define a so-called indicator function η∆ : Xh × P → [0,∞) that indicates the reduction
of the error from Theorem 1.1 for a given Parameter µ∗ ∈ P in a given space XN if XN

is enlarged with ϕ ∈ Xh:

η∆(ϕ,µ∗;XN) = ∆XN
(µ∗)−∆XN⊕〈{ϕ}〉(µ

∗). (11)

Using this indicator for selection of basis extension candidates from the dictionary in an
iterative basis construction algorithm will yield ideal basis sizes.

Algorithm 1. Given a parameter µ∗ ∈ P, an error tolerance ε > 0, a desired basis size
N ∈ N, n = 0 and X0 = {0} we now repeat the following steps to construct a parameter-fit
reduced basis space XN(µ∗) from a precomputed dictionary D:

1. Evaluate the error estimator ∆Xn(µ∗). If ∆Xn(µ∗) < ε or n ≥ N set XN(µ∗) =
Xn(µ∗) and finish, else go on with Step 2.

2. Evaluate the indicator η∆(ϕ,µ∗;Xn) for all dictionary elements ϕ ∈ D.

3. Find the dictionary element that maximizes the indicator function:

ϕmax = arg max
ψ∈D

η∆(ψ,µ∗;Xn).

4. Set n = n+ 1 and enrich the reduced space: Xn = Xn−1 ⊕ 〈{ϕmax}〉.

Clearly, in a naive implementation, Step 2, which includes reduced simulation in the
space Xn⊕〈{ϕ}〉 and evaluation of the error estimator for all dictionary elements ϕ ∈ D,
will be too costly to be applicable, especially for large dictionaries D (O(DN4)). We
will therefore now point out how Algorithm 1 can be performed with a complexity of
O(|D| · N3) which will be favorable over the standard Greedy RB approach where the
complexity is also cubic in the basis size but bases are usually a lot larger than with our
method.

3.1 Simultaneous Reduced Simulation and Indicator Evaluation

As a first step for evaluation of the indicator η∆ (11) we need to compute all reduced
solutions un,ϕ ∈ Xn ⊕ 〈{ϕ}〉 for all dictionary elements ϕ ∈ D and a given space Xn.

Proposition 3.1. The solution un,ϕ(µ) of Equation (2) in the space Xn ⊕ 〈{ϕ}〉 for a
given parameter µ ∈ P is given by

un,ϕ(µ) =

(
un
0

)
+

σ(ϕ,µ)− β(ϕ,µ)un
γ(ϕ,µ)− β(ϕ,µ)A−1

n α(ϕ,µ)
·
(
−A−1

n α(ϕ,µ)
1

)
,

6
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with suitably chosen An ∈ Rn×n, un ∈ Rn and functions α : D×P → Rn×1, β : D×P →
R1×n, σ, γ : D × P → R.

Proof. We define the matrix An ∈ Rn×n and the vectors un,bn ∈ Rn for the space Xn as
in (2). Let

(α(ϕ))i = (α(ϕ,µ))i = Bh(ϕi, ϕ;µ), 1 ≤ i ≤ n,

(β(ϕ))i = (β(ϕ,µ))i = Bh(ϕ, ϕi;µ), 1 ≤ i ≤ n,

γ(ϕ) = γ(ϕ,µ) = Bh(ϕ, ϕ;µ),

σ(ϕ) = σ(ϕ,µ) = Lh(ϕ;µ).

for a given basis {ϕi|1 ≤ i ≤ n} ⊂ Xn of Xn. The projection of Equation (1) onto the
space Xn ⊕ 〈{ϕ}〉 for a given function ϕ ∈ D is then given by

An,ϕ · un,ϕ = bn,ϕ, (12)

where

An,ϕ =

(
An α(ϕ)
β(ϕ) γ(ϕ)

)
∈ R(n+1)×(n+1),

bn,ϕ =

(
bn

σ(ϕ)

)
∈ Rn+1.

Multiplication of Equation (12) with the invertible block diagonal matrix diag(A−1
n , 1)

then yields:

An,ϕ · un,ϕ = bn,ϕ,

⇔
(

A−1
n 0
0 1

)(
An α(ϕ)
β(ϕ) γ(ϕ)

)
· un,ϕ =

(
A−1
n 0
0 1

)(
bn

σ(ϕ)

)
⇔
(

Idn A−1
n α(ϕ)

β(ϕ) γ(ϕ)

)
· un,ϕ =

(
un
σ(ϕ)

)
⇔
(

Idn A−1
n α(ϕ)

0 γ(ϕ)− β(ϕ)A−1
n α(ϕ)

)
· un,ϕ =

(
un

σ(ϕ)− β(ϕ)un

)
,

where Idn ∈ Rn×n denotes the n by n identity matrix.
Using back substitution we find the solution un,ϕ :

(un,ϕ)n+1 =
σ(ϕ)− β(ϕ)un

γ(ϕ)− β(ϕ)A−1
n α(ϕ)

,

(un,ϕ)k = (un)k − (A−1
n α(ϕ))k(un,ϕ)n+1, k ∈ {1, . . . , n}.

Which can be rewritten in the form

un,ϕ =

(
un
0

)
+

σ(ϕ)− β(ϕ)un
γ(ϕ)− β(ϕ)A−1

n α(ϕ)
·
(
−A−1

n α(ϕ)
1

)
. (13)

7

371

lacan
Rectangle



Sven Kaulmann and Bernard Haasdonk

Using Proposition 3.1, only one matrix-vector multiplication and two vector-vector
multiplications are needed for the computation of one reduced solution in Step (2) in
Algorithm 1. Only once per loop iteration in Algorithm 1, the matrix An needs to be
inverted. The quantities α, β, γ, σ and An can be extracted from AD(µ),bD(µ) where

AD(µ) =

QB∑
q=1

Θq
B(µ)Aq

D ∈ RD×D, bqD(µ)=

QL∑
q=1

Θq
L(µ)bqD ∈ RD. (14)

Here {Aq
D|1 ≤ q ≤ QB} , {bqD|1 ≤ q ≤ QL} are the precomputed quantities from Section 2.

In the sequel, we will outline how to efficiently evaluate the indicator function η∆

for all possible extensions in Step (2) of Algorithm 1. When evaluating the indicator
η∆(ϕ, µ∗;Xn) for all dictionary elements ϕ we need to evaluate ∆Xn⊕〈{ϕ}〉(µ

∗) for all
ϕ ∈ D. The next proposition proofs that these values can be computed simultaneously
for the whole dictionary.

Proposition 3.2. For suitable choice of matrices g1 ∈ R(n+1)×D, g2 ∈ R1×D the vector
∆ ∈ RD with

∆ =
(
1, · · · , 1

)
·




1 · · · 1
−(un,ϕ1)1 · · · −(un,ϕD

)1
...

. . .
...

−(un,ϕ1)n+1 · · · −(un,ϕD
)n+1

 ◦
(

g1

g2

)
contains the squared error estimators for all possible basis extensions:

∆ =
(
∆Xn⊕〈{ϕ1}〉(µ

∗), · · · , ∆Xn⊕〈{ϕD}〉(µ
∗)
)
. (15)

Here we used the Hadamard product M ◦ N ∈ Rm×n of two matrices M,N ∈ Rm×n,
(M ◦N)i,j = Mi,j ·Ni,j.

Proof. Given a parameter µ∗ ∈ P we define

S(µ∗) =



Θ1
L(µ∗) 0 · · · 0

...
...

. . .
...

ΘQL

L (µ∗) 0 · · · 0
0

C(µ∗)...
0


∈ R(QL+QB ·D)×(D+1),

where the coefficient matrix C(µ∗) ∈ R(QB ·D)×D is given as

C(µ∗) =

ΘB(µ∗)
0

0
. . .

ΘB(µ∗)

 ,

8
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with ΘB(µ∗) ∈ RQB , (ΘB(µ∗))k = Θk
B(µ∗). Using S(µ∗) we define the matrix

G = G(µ∗) = S(µ∗)ᵀ ·G · S(µ∗) ∈ R(D+1)×(D+1), (16)

with G as computed in Section 2. For the exposition of the rest of the simultaneous
indicator evaluation we need some additional notation:

• Given a set of indices I = [i1, . . . , im] ⊂ N we define I ++ l := [i1 + l, . . . , im + l] for
l ∈ N.

• Given a set of indices I = [i1, . . . , im] ⊂ N we define the set of indices [I, l] ⊂ N:
[I, l] := [i1, . . . , im, l] for l ∈ N.

• Given a matrix M and two sets of indices I = [i1, . . . , i|I|] ⊂ N, J = [j1, . . . , j|J |] ⊂ N
we define the matrix MI,J ∈ R|I|×|J |

(MI,J)k,l := Mik,jl .

Assume a basis Φ ⊂ D of the space Xn to be given. Let IΦ ⊂ N be an index set for Φ
and ID ⊂ N be an index set for D. Additionally we use the vectors un,ϕ = un,ϕ(µ∗) from
Section 3.1.

Using the above notation we can define

g1 = G[1,IΦ++1],[1,IΦ++1] ·


1 · · · 1

−(un,ϕ1)1 · · · −(un,ϕD
)1

...
. . .

...
−(un,ϕ1)n · · · −(un,ϕD

)n


+ G[1,IΦ++1],ID++1 ·

−(un,ϕ1)n+1 0
. . .

0 −(un,ϕ1)n+1

 ,

g2 =
(
1 · · · 1

)
·

G
ᵀ
ID++1,[1,IΦ++1] ◦


1 · · · 1

−(un,ϕ1)1 · · · −(un,ϕD
)1

...
. . .

...
−(un,ϕ1)n · · · −(un,ϕD

)n




+
(
G2,2, · · · , GD+1,D+1

)
◦
(
−(un,ϕ1)n+1, · · · , −(un,ϕD

)n+1

)
.

Using this definition of g1 and g2, one can show by performing all remaining multiplica-
tions that the vector ∆ as defined in the proposition indeed represents the desired error
estimators.

9
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Figure 1: Heat diffusion coefficient λ(µ) : Ω→ R (left), solution uh(µ) for µ = (1, 2, 3, 4, 5, 6, 7, 8) (right).

4 Experiments

In this section we present some preliminary numerical results for the method introduced
in this paper. All tests were performed using our C++ library DUNErb, based on the
Distributed and Unified Numerics Environment (DUNE). Both packages can be found
online1.

For our tests, we solve the heat equation on the unit cube Ω = [0, 1]3. The problem
statement is as follows: Find u(µ) ∈ H1

0 (Ω) such that

−∇ · (λ(x)∇u(x)) = 1 in Ω,

u(x) = 0 on ΓD = [0, 1]× 0× [0, 1],

λ(x)∇u(x) · n = 0 on ∂Ω \ ΓD,

(17)

where µ ∈ P = (0, 10]8. The heat diffusion coefficient λ(µ) : Ω→ R has the form

λ(µ)(x) =
8∑
i=1

(µ)i · χi(x),

where, as usual, (µ)i ∈ R denotes the i-th component of the vector µ and the functions
χi : Ω→ {0, 1} denote the characteristic functions for the eight subdomains of Ω sketched
in the left plot in Figure 1. Furthermore, the right plot shows a typical solution for a
given parameter.

4.1 Offline Phase

We discretize Ω using 1000 cubes, Xh is a linear discontinuous galerkin space with
4000 degrees of freedom. The training set S ⊂ P is given by a lognormal distribution

1http://users.dune-project.org/
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Figure 3: Mean total runtime during the online
phase for the standard Greedy method and our on-
line basis construction algorithm for different values
of ρ

centered at 2 in each component. We generate a traditional [6] Greedy-basis ΦG with a
training set SG with |SG| = 1000 and a tolerance of 10−5 and a dictionary D using the
approach described in Section 2 using a training set SD ⊃ SG with |SD| = 2000. While the
generation of the traditional Greedy-basis takes more than 9 hours and produces about
600 megabytes of data, the generation of the dictionary takes only one hour but produces
about 1.1 gigabytes of data.

4.2 Online Phase

Using both the basis ΦG and the dictionary D we run online simulations on the test set
T = SG+ρR where R contains random numbers in (0, 1]8 and ρ ∈ R denotes a distortion
scale. For our algorithm, we use the same error tolerance as for the standard Greedy
algorithm: ε = 10−5.

Figure 2 shows the resulting basis sizes N for the standard Greedy method (which is
fixed by the basis construction during the offline phase, here: N = 871) and the basis
size N resulting from Algorithm 1 for different values of ρ. We see that, especially for
small disturbances of the training parameters, our online basis generation algorithm yields
substantially smaller bases.

For small disturbances ρ this pays out in terms of runtime: Figure 3 shows mean online
runtimes for the two algorithms and different values of ρ. This runtime includes reduced
simulation, error estimation and, for our algorithm, the time needed for basis construction.
Beginning with distortions in the range of 5·10−5 our algorithm is slower than the standard
approach as we then need lots of basis enrichment iterations in Algorithm 1. Still, it pays
out to use our algorithm even in these cases as we fulfill the error bound in all cases while
the standard Greedy method violates the error tolerance for the cases ρ = 5 · 10−3 (error:
maxµ∈T ∆XN

(µ) = 1.64 · 10−5) and ρ = 1 · 10−2 (error: maxµ∈T ∆XN
(µ) = 3.28 · 10−5).

11
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5 Outlook

In our future work we will investigate two different dictionary construction algorithms:
the “Offline–Greedy”-algorithm and the “Randomized Offline–Greedy”-algorithm. The
“Offline–Greedy”-algorithm will use Algorithm 1 with a small maximum basis size N
during the offline phase to iteratively find the parameter µ worst approximated in the
current dictionary and enrich the dictionary with uh(µ). This algorithm will hopefully
build up a dictionary that combines good approximation quality with small online basis
sizes, even for large distortions ρ.
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Abstract. It is well known that the computation of accurate trajectories of the Lorenz
system is a difficult problem. Computed solutions are very sensitive to the discretization
error determined by the time step size and polynomial order of the method, as well as
round-off errors.

In this work, we show how round-off errors limit the computability of the Lorenz
system and quantify exactly the length of intervals over which solutions can be computed,
expressed in terms of the floating point precision. Using adjoint-based a posteriori error
analysis techniques, we estimate the stability of computations with respect to initial data,
discretization, and round-off errors, respectively.

The analysis is verified by computing an accurate solution on the time interval [0, 1000]
using a very high order (order 200) finite element method and very high floating point
precision (400 digits).

1 Introduction

In a classic paper from 1963 [13], Edward Lorenz studied the computability of a simple
system of three ordinary differential equations,

ẋ = σ(y − x),

ẏ = rx− y − xz,
ż = xy − bz,

(1)

where σ = 10, b = 8/3, and r = 28. Lorenz computed numerical solutions of the
system (1) and found the solutions to be very sensitive to changes in initial data. The
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equations had been devised by Lorenz as a simple model of atmospheric flow, based on
a truncated Fourier expansion of the partial differential equations governing Rayleigh–
Bénard convection [14, 12, 15]. In his paper, Lorenz computed solutions on the interval
[0, 60]. As we shall see below, the Lorenz system is not computable on the equipment
that was available to Lorenz in 1963 beyond time T ≈ 25.

It is known that, given enough resources, the Lorenz system is computable over arbi-
trarily long time intervals. However, one may easily (and falsely) come to the conclusion
that the Lorenz system is not computable, or computable only over very short time in-
tervals, either by numerical experiments or by a simplistic analysis. Indeed, a standard
a priori error estimate indicates that the growth rate of the error is

‖e(T )‖ ≤ CeLT ε, (2)

where ‖e(T )‖ denotes some norm of the error at the final time T , L is the Lipschitz
constant of (1), and ε is the size of the residual or local truncation error in a numerical
solution of (1). The Lipschitz constant is of size L ≈ 33 which indicates that solutions
are not computable beyond T ≈ 1.1, even if the residual is close to machine precision
(εmach ∼ 10−16 on most computers).1 However, the estimate (2) is overly pessimistic; it is
well known that solutions of the Lorenz system may be computed on short time intervals.
In fact, one may easily compute accurate solutions over time intervals of length T = 25
with any standard ODE solver.

In [3], it was demonstrated that the Lorenz system is indeed computable on intervals
of moderate length (T = 30) on a standard desktop computer. The computability of the
Lorenz system was linked to the growth of a stability factor in an a posteriori estimate
of the error at the final time. It was shown that the growth rate of the stability factor is
non-constant. On average the growth is exponential but with a rate much smaller than
indicated by (2).

In [10], the computability of the Lorenz system was further extended to T = 48 us-
ing high order (‖e(T )‖ ∼ ∆t30) finite element methods. As we shall see below, this is
the “theoretical limit” for computations with 16 digit precision. Solutions over longer
time intervals have been computed based on shadowing (the existence of a nearby exact
solution), see [2], but for unknown initial data. Other related work on high-precision
numerical methods applied to the Lorenz system include [17] and [5]. For an overview of
some recent results obtained with high-precision numerical methods, we also refer to [1].

In this paper, we study and quantify the computability of the Lorenz system. In
particular we answer the following fundamental question: How far is the Lorenz system
computable for a given machine precision?

As we shall see, obtaining a sequence of converging approximations for the solution of
the Lorenz system is non-trivial. In particular, such a sequence of solutions cannot be

1The value of the Lipschitz constant was computed as the maximum l2-norm of the Jacobian J =
∂f/∂u of the right-hand side f of the Lorenz system over the interval [0, 1000].
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obtained by simply decreasing the size of the time step; see for example [16]. This has led
to misconceptions regarding the computability of the Lorenz system; see for example [18].
To obtain a sequence of converging solutions, one must also control the effect of round-off
errors. This was also noted by Lorenz [11] in a response to [18].

In this manuscript, we define computability as the length T of the maximum time
interval [0, T ] on which a solution is computable to within a given precision ε > 0 using
a given machine precision 0 < εmach < ε; that is, the maximum T such that infU ‖u −
U‖L∞(0,T ;l∞) ≤ ε, where the infimum is taken over all numerical approximations U of
the exact solution u computed with some time-stepping method and machine precision
εmach (as made more precise in Section 3). If the computability Tε = Tε(εmach) does not
depend strongly on ε, we write T = T (εmach). As we shall see, this is the case for the
Lorenz system as a result of exponential growth of errors as function of the final time T .
The definition of computability T (εmach) is closely related to the definition of a critical
predictable time Tc in [8] and the definition of a decoupling time T̂ in [16].

2 Numerical method and implementation

We consider the numerical solution of general initial value problems for systems of
ordinary differential equations,

u̇(t) = f(u(t), t), t ∈ (0, T ],

u(0) = u0.
(3)

The right-hand side f : RN × [0, T ] → RN is assumed to be Lipschitz continuous in u
and continuous in t. Our objective is to analyze the error in an approximate solution U :
[0, T ]→ RN , for example a numerical solution of the Lorenz system.

The continuous and discontinuous Galerkin methods cG(q) and dG(q) are formulated
by requiring that the residual R = U̇ − f(U, ·) be orthogonal to a suitable space of test
functions. By making a piecewise polynomial Ansatz, the solution may be computed on
a sequence of intervals partitioning the computational domain [0, T ] by solving a system
of equations for the degrees of freedom on each consecutive interval. For a particular
choice of numerical quadrature and degree q, the cG(q) and dG(q) methods both reduce
to standard implicit Runge–Kutta methods.

In the case of the cG(q) method, the numerical solution U is a continuous piecewise
polynomial of degree q that on each interval [tn−1, tn] satisfies

∫ tn
tn−1

Rv dt = 0 for all

v ∈ Pq−1([tn−1, tn]).
The results were obtained using the finite element package DOLFIN [9] version 0.9.2

together with the multi-precision library GMP [4]. For a detailed discussion on the im-
plementation, we refer to [7]. The source code as well as scripts to reproduce all results
presented in this manuscript are available on request.
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3 Error analysis

The error analysis is based on the solution of an auxiliary dual problem. The dual
(adjoint) problem takes the form of an initial value problem for a system of linear ordinary
differential equations,

−ż(t) = Ā>(t)z(t), t ∈ [0, T ),

z(T ) = zT .
(4)

Here, Ā(t) =
∫ 1

0
∂f
∂u

(sU(t)+(1−s)u(t), t) ds denotes the Jacobian matrix of the right-hand
side f averaged over the approximate solution U and the exact solution u.

The Lorenz system is quadratic in the primal variable u. Hence, the average in Ā
corresponds to evaluating the Jacobian matrix at the midpoint between the two vectors
U(t) and u(t). It follows that the dual problem of the Lorenz system is

−ξ̇ = −σξ + (r − z̄)η + ȳζ,

−η̇ = σξ − η + x̄ζ,

−ζ̇ = −x̄η − bζ,
(5)

where z = (ξ, η, ζ) denotes the dual solution and (x̄, ȳ, z̄) = (U + u)/2.
In [6], we prove the following a posteriori error estimate:

Theorem 3.1 (Error estimate). Let u : [0, T ]→ RN be the exact solution of (3) (assuming
it exists), let z : [0, T ] → RN be the solution of (4), and let U : [0, T ] → RN be any
piecewise smooth approximation of u on a partition 0 = t0 < t1 < · · · < tM = T of [0, T ],
that is, U |(tm−1,tm] ∈ C∞((tm−1, tm]) for m = 1, 2, . . . ,M (U is left-continuous).

Then, for any p ≥ 0, the following error estimate holds:

〈zT , U(T )− u(T )〉 = ED + EG + EC ,

where

|ED| ≤ SD ‖U(0)− u(0)‖,
|EG| ≤ SGCp max

[0,T ]

{
∆tp+1(‖[U ]‖/∆t+ ‖R‖)

}
,

|EC | ≤ SC C
′
p max

[0,T ]
‖∆t−1R̄‖,

where Cp and C ′p are constants depending only on p. The stability factors SD, SG, and
SC are defined by

SD = ‖z(0)‖, SG =

∫ T

0

‖z(p+1)‖ dt, SC =

∫ T

0

‖πz‖ dt.
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Furthermore the following bound for the computational error is proved in [6]:

Theorem 3.2. Assume that the round-off error is a random variable of size ±εmach with
equal probabilities. Then the root-mean squared expected computational error EC of The-
orem 3.1 is bounded by

(E[E2
C ])1/2 ≤ SC2

√
C ′p

εmach

min[0,T ]

√
∆t
,

where SC2 =
(∫ T

0
‖πz‖2 dt

)1/2

and C ′p is a constant depending only on p.

We note that the computational error (accumulated round-off error) is inversely pro-
portional to (the square root of) the time step; that is, a smaller time step yields a larger
accumulated round-off error.

Figure 1: Phase portrait of the solution of the Lorenz system on the time interval [0, 1000] for u(0) =
(1, 0, 0).
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4 Numerical results

In this section, we present numerical results in support of Theorem 3.1 and Theo-
rem 3.2.

4.1 Solution of the Lorenz system

The phase portrait of the solution of the Lorenz system is plotted in Figure 1. The
solution was computed with cG(100), which is a method of order 2q = 200, a time step of
size ∆t = 0.0037, 420-digit precision arithmetic2, and a tolerance for the discrete residual
of size εmach ≈ 2.26·10−424. The solution trajectory revolves around one of the two unstable
fixed points P± = (±6

√
2,±6

√
2, 27) for a while and then, seemingly at random, jumps

to the other fixed point. Phase portraits (“attractors”) resembling the phase portrait of
Figure 1 are commonly displayed in most books on dynamical systems and chaos theory.
However, in one way the phase portrait of Figure 1 is significantly different. It is the phase
portrait of a well-defined dynamical system, namely the Lorenz system (1) with initial
condition (1, 0, 0), not the result of an unspecified discrete map which includes both the
effect of a particular time-stepping scheme and the unknown effect of round-off errors.

To verify the computed solution, we perform a simple experiment where we compute
the solution with methods of increasing order. The time step is fixed (∆t = 0.0037) and
so is the arithmetic precision (420 digits). By Theorem 3.1, we expect the discretization
error EG to decrease exponentially with increasing order while the computational error EC

remains bounded. The error should therefore decrease, until EG < EC . Since no analytic
solution or other reference solution is available, we compare the cG(10) solution with the
cG(20) solution and conclude that when the two solutions no longer agree to within some
tolerance (here 10−16), the cG(10) solution is no longer accurate. The same experiment
is repeated for cG(20/30), cG(30/40), . . . , cG(90/100), cG(99/100). The solutions are
displayed in Figure 2. The results indicate that the cG(99) solution is accurate on the
time interval [0, 1025]. Alone, this does not prove that the cG(99) is accurate at time
T = 1025. However, together with the error estimate of Theorem 3.1 and the numerically
computed values of the stability factors presented below, there is strong evidence that the
solution is accurate over [0, 1025].

We emphasize that similar results may be obtained with other numerical methods and
other software. In particular, Theorem 3.1 shows that the solution is computable with
any solver that (i) discretizes the equations with high order and (ii) solves the discrete
equations with high precision. The authors are aware of two such solvers: the DOLFIN
solver used in this work and Taylor [5]. The full reference solution is available on request.

2The requested precision from GMP was 420 digits. The actual precision is somewhat higher depending
on the number of significant bits chosen by GMP.
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Figure 2: Computed numerical solutions (x-component) for the Lorenz system with methods of increasing
order, starting at cG(10) (a method of order 20) and increasing up to cG(99) (a method of order 198).

7

383

lacan
Rectangle



Benjamin Kehlet and Anders Logg

SD SG SC
0.510 · 10388 28.9 · 10388 2.08 · 10388

Table 1: Size of the stability factors SD, SG (for cG(1)), and SC at T = 1000.

Figure 3: Growth of the stability factors SC on the time interval [0, 1000] (left) and [0, 50] right.

4.2 Dual solution and stability factors

The dual solution grows exponentially backward in time. The size of the dual solution
at time t = 0 is SD = ‖z(0)‖ ≈ 0.510 · 10388. By Theorem (3.1), it follows that perturba-
tions in initial data for the Lorenz system are amplified by a factor 10388 at time T = 1000.
The amplification of round-off errors may be estimated similarly by integrating the norm
of the dual solution over the time interval. One finds that SC =

∫ T
0
‖πz‖ dt ≈ 2.08 · 10388,

which is the amplification of errors caused by finite precision arithmetic. The stability
factor for discretization errors depends on the numerical method and in the case of the
cG(1) method, one finds that SG =

∫ T
0
‖ż‖ dt ≈ 28.9 · 10388. This is summarized in

Table 1.
By repeatedly solving the dual problem on time intervals of increasing size, it is possible

to examine the growth of the stability factors as function of the end time T . The result
is displayed in Figure 3. Note that each data point (T, S) in Figure 3 corresponds to a
solution of the dual problem on the interval [0, T ].

By Figure 3, it is evident that the stability factors grow exponentially with the end
time T . On [0, 1000], the growth of the stability factor(s) may be approximated by

S(T ) ∼ 100.388T ∼ 100.4T . (6)

The rate of growth is very stable and it is therefore reasonable to extrapolate beyond time
T = 1000 to predict the computability of the Lorenz system on [0,∞). We return to this
question below in Section 5.

A growth rate of 100.388T is far below the growth rate e33T indicated by the simple
analytic a priori error estimate (2). A close inspection of the growth of the stability factor
SC (Figure 3) explains the discrepancy between the two estimates. The growth rate of the
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Figure 4: Error at time T = 30 for the cG(1) solution (left) and at time T = 40 for the cG(5) solution
(right) of the Lorenz system. The slopes of the green lines are −0.35 ≈ −1/2 and 1.95 ≈ 2 for the cG(1)
method. For the cG(5) method, the slopes are −0.49 ≈ −1/2 and 10.00 ≈ 10.

stability factor is not constant; it is not even monotonically increasing. While it sometimes
grows very rapidly, the average growth rate is much smaller. The analytic a priori estimate
must account for the worst case growth rate and will therefore overestimate the rate of
error accumulation by a large margin.

4.3 Error propagation

We conclude this section by examining how the error depends on the size of the time
step ∆t. In Section 3, we found that the discretization error EG scales like ∆t2q for
the cG(q) method. On the other hand, we expect the computational error EC to scale
like ∆t−1/2. Since initial data is represented with very high precision, we have E ≈
EG + EC ∼ ∆t2q + ∆t−1/2. We thus expect the error to decrease when the time step is
decreased, at least initially. However, at the point where EG = EC , the computational
error will start to dominate and we expect to see the error increase with decreasing time
step. This is confirmed by the results presented in Figure 4, which also confirm the
convergence rates EG ∼ ∆t2q and EC ∼ ∆t−1/2. We also note that the error remains
bounded for large values of ∆t; the numerical solution stays close to the attractor but in
the wrong place.

5 Computability of the Lorenz system

5.1 A model for the computability of the Lorenz system

Based on the analysis of Section 3 and the numerical results of Section 4, we develop
a model for the computability of the Lorenz system. We consider the cG(q) method and
make the following Ansatz for the error at the final time T as function of the time step ∆t,
the polynomial degree q, and the precision εmach,

E =
[
C

[q]
1 ‖U(0)− u(0)‖+ C

[q]
2 ∆tα + C

[q]
3 ∆tβεmach

]
· 100.388T .
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q 2 3 4 5

α 4.04 5.46 8.15 10.00
β -0.47 -0.50 -0.50 -0.49

Table 2: Values of the constants α and β as function of q at time T = 40.

q 2 3 4 5

C
[q]
2 0.000356 0.000135 0.000032 0.000007

C
[q]
3 0.0031 0.0036 0.0042 0.0048

Table 3: Values of the constants C
[q]
2 and C

[q]
3 as function of q.

To determine the constants α, β, C
[q]
1 , C

[q]
2 , and C

[q]
3 , we repeat the experiment of Figure 4

for q = 2, 3, 4, 5 on the interval [0, 40] using the cG(100) solution as a reference. The
constants α and β may be determined by a least-squares fitting of a linear polynomial to
the regime where the error is dominated by the discretization error EG or the computa-
tional error EC , respectively. The results are given in Table 2. As expected, we find that
α ≈ 2q. Furthermore, we find that β ≈ −1/2 in agreement with Theorem 3.2.

Next, we fix the constants α = 2q and β = −1/2 and determine the constants C
[q]
1 , C

[q]
2 ,

and C
[q]
3 as function of q. In Section 3, we found that SD(T ) = ‖z(0)‖ ≈ 0.510 · 100.388T ;

hence C
[q]
1 ≈ 0.5. By fitting curves of the form C

[q]
2 ∆t2q · 100.388T and C

[q]
3 ∆t−1/2 · 100.388T

to the two regimes where either EG or EC dominates, we find values for the constants C
[q]
2

and C
[q]
3 . We expect C

[q]
2 to decrease with increasing q (it is essentially an interpolation

constant) and C
[q]
3 to grow at a moderate rate (by a close inspection of the proof of

Theorem 3.2). The results are listed in Table 3. Based on these results, we find that

C
[q]
2 < 0.001,

C
[q]
3 ≈ 0.002 + 0.0005q.

We thus arrive at the following model for the propagation of errors:

E ≈
[
0.5 ‖U(0)− u(0)‖+ 0.001∆t2q + (0.002 + 0.0005q)∆t−1/2εmach)

]
· 100.388T . (7)

5.2 Optimal time step

Based on the model (7), we determine an estimate of the optimal time step size by
setting EG = EC . We find that

∆t = ((2 + 0.5q)εmach)
1

2q+1/2 ≈ ε
1

2q+1/2

mach (8)
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for large values of q. Inserting the values εmach = 10−420 and q = 100 used in this work,
we find ∆t ≈ 0.008 which is reasonably close to the value of ∆t = 0.0037 which was used
to compute the solution.

5.3 Computability as function of machine precision

To answer the question posed in the introduction — How far is the solution computable
for a given machine precision? — we insert the approximate optimal time step ∆t given
by (8) into (7). Neglecting data errors, that is, assuming U(0) = u(0), we find that

E ≈ 2 · 0.001∆t2q · 100.388T ≈ 0.002ε
2q

2q+1/2

mach · 100.388T ≈ 0.002εmach · 100.4T

for large values of q. Let nmach = − log10 εmach be the number of significant digits. It
follows that E ≈ 0.002 · 100.4T−nmach . We conclude that the computability Tε, that is, the
time Tε at which the solution is no longer accurate to within a precision ε is

Tε(εmach) =
nmach + log10(ε/0.002)

0.4
.

Since Tε does not depend strongly on ε (for εmach � ε), we find that the computability of
the Lorenz system is given by

T (εmach) = nmach/0.4 = 2.5nmach.

With six significant digits available to Lorenz in 1963, the computability was limited to
T ≈ 2.5 · 6 = 15. With 16 significant digits, the computability is limited to T ≈ 2.5 · 16 =
40. Finally, with 420 significant digits, as was used in this work, the computability is
limited to

T ∼ 2.5 · 420 = 1050 > 1000.

A more precise estimate is possible by considering the actual size of the stability factor
at any given time T . Noting that SC(T ) ≈ 2 · 10388 at T = 1000, we may obtain the
estimate

E ≈ 0.001εmach SC(T ).

With εmach = 10−16, it follows from Figure 3 that E = 0.001 at T ≈ 50. Furthermore, for
εmach = 10−6 we find that the computability is limited to T ≈ 25.

6 Conclusions

We have investigated the computability of the Lorenz system and come to the conclu-
sion that the size of the time interval on which the solution is computable scales linearly
with the number of digits, T ∼ 2.5nmach. Thus, with 420 digits of precision, as used in
this work, the computability is limited to 2.5 · 420 ≈ 1000. Furthermore, if a precision
of 840 digits is used, one may compute the solution on the time interval [0, 2000] and
if a precision of 4200 digits is used, one may compute the solution on the time interval
[0, 10000].
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Abstract. Detection, localization and estimation of details of concentrated defects
hidden in structural elements as an important part of structural health monitoring is con-
sidered here. In this work the effectiveness of discrete wavelet transform combined with
inverse analysis is also discussed. The efficiency of the method is studied particularly when
applied to eigenmodes of a cantilever steel beam expressed in amplitudes of vertical dis-
placements, velocities, accelerations or strains. The structural response signal measured
in discrete points is transformed using wavelet decomposition which clearly improve iden-
tifiability of damaged structure. Authors use a parametrized finite element model which
mimic the real structure and by changing control parameters embedded in the numerical
model minimize the discrepancy between the wavelet representation of both ’real’ and
numerically computed measurable quantities. For the discrepancy function minimization
(within least-square framework) the deterministic, iterative Trust Region Algorithm is
used. Also another technique which is applied to minimize the objective function within
a frame of global minimization techniques i.e. Genetic Algorithm is tested and checked
here.

1 INTRODUCTION

The problem of damage detection belongs to a wide class of identification problems,
where unknown parameters of a structure are determined from experimental tests. It
is connected with structural health monitoring and safety assessment. The damage can
have different forms such as cracks, voids, inclusions or delamination, often found in
composites. Localized damage is extremely dangerous because it can initiate progressive
failure of a whole structure.

Among a large number of non-destructive testing X-rays, vibration, acoustic emission,
heat transfer, magnetic field , eddy current or ultrasonic methods (see e.g. [1], [2], [3], [4],
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[5], [6], [7]) also wavelet transform combined with inverse analysis can be used. Because
even small and local damage leads to stiffness reduction, increase of damping and decrease
of a natural frequency of the structure, damage detection methods based on analysis of
structural dynamic response can be easily applied to identify the presence of damage [8]. It
happens that the experiments limited to measurement of eigenfrequences are insufficient,
since the global dynamic response is rather insensitive to damage localized on a small
area, therefore the localization and severity of defect is not easy to identify. On the other
hand methods based on local inspection or heat generation are capable to find damage
position, form and/or magnitude but have small range of applicability.

For structural health monitoring different types of response, namely eigenfrequen-
cies/eigenmodes, displacements, velocities and accelerations can be monitored. For this
purpose modern scanning laser vibrometer for non-contact measurement are often ap-
plied. Vibrometer is capable of gathering vibration data in all three-dimensional coor-
dinate system and have an extended range of ultra high vibration frequencies up to 600
MHz www.ects.pl.

The most fundamental challenge is the fact that damage is typically local phenomenon
and may not significantly influence the global response of structures. Therefore the
method which enables to extract the desired detailed information from a numerous data
representing the global response of a damaged structure called Wavelet Transformation
(WT) is proposed. Signal decomposition using WT allows to detect and localize the
damage because wavelets demonstrate strong disturbance in a place where some defect
is present. There are many wavelet functions e.g. Haar wavelet, Symlet, Coiflet, Meyer,
Mexican hat or Morlet and new ones are constantly developed. It follows from the ex-
perience (see [9]) that in the class of considered problems the most effective appeared
Daubechies wavelet of 4th order with two vanishing moments [10]. Estimation of the
magnitude of the damage can be done by making use of e.g. Lipschitz exponent [11].
However, data processing of the structural response signal using CWT or DWT has ap-
peared to be rather ineffective in identification of the type or shape of a defect. Therefore,
some alternative method which provides a more precise damage identification is needed.
In the literature a few attempts can be found, e.g. a combination of WT and artificial
neural networks [12] or with inverse analysis [13].

The inverse analysis provides an important tool if one would like to characterize a
bigger number of damage parameters in the locally deteriorated elements of the struc-
tures. Such technique uses, besides the experimentally obtained data (here the wavelet
representations of the experimental measurements), also their numerical counterparts ob-
tained from the computer test simulation. In the inverse analysis a variety of different
minimization techniques can be employed for the discrepancy minimization. The dis-
crepancy between experimental and numerical measurable quantities, called the objective
function, is usually minimized in the frame of least square approach [14]. In the literature
many authors solve an inverse problems by making use of iterative minimization gradient
based algorithms (e.g. [15]), based on soft computing methods (e.g. [16]), etc. The in-

2

390

lacan
Rectangle



Anna Knitter-Piatkowska and Tomasz Garbowski

verse analysis using any minimization algorithm, searches for a set of embedded (usually
unknown or uncertain) structural or constitutive parameters (not easily accessible from
the experiment) by making use of indirect measurement. Such approach was successfully
used by many researchers in various fields (e.g. [17]). However, the application of WT
in its discrete form together with inverse analysis for structural diagnosis is still an open
and unsolved problem.

2 BASIS OF WAVELET THEORY

Wavelets are functions that satisfying certain mathematical requirements can be used
to represent data or other functions. Nevertheless this concept is not new. In the early
1800’s Joseph Fourier, French mathematician, discovered that using superposition of sines
and cosines he could represent other functions. Fourier transform is a perfect tool for
analyzing the stationary signals representing them in frequency domain. Wavelets have
advantages over it in situations when the signal contains discontinuities, spikes or sharp
edges. In wavelet transform the data are cut into different frequency components and
then each component is analyzed with resolution matched to its scale. It reduces the
effects of the Heisenberg uncertainty principle [18], which in this case means the inability
of precise signal analysis in time domain and frequency domain at the same time.

Fourier transform is a basic tool for harmonic analysis and signal processing. It de-
composes a function/signal into sinusoids of different frequencies. The transformation is
reversible and lossless and the function can be reconstructed from its transform. Fourier
transform is defined over the space L2(R) of square-integrable functions.

Fourier transform represents a signal through a linear combination of basis function
and is defined as:

F (ω) =

∫ ∞

−∞
f (t) · e−iωtdt =

⟨
f (t), eiωt

⟩
, f ∈ L2(R), (1)

where i is the imaginary unit (i2 = −1), ω - circular frequency [rad/s] and t is time.
The inner product of (1) can be written in the form:

⟨ f, g⟩ =
∫
t∈R

f (t) · ḡ(t) dt, (2)

where ḡ (t) is the complex conjugate of g(t) function.
The Fourier coefficient F (ω) is obtained by multiplying function f and sinusoidal wave

eiωt. As the eiωt covers the entire real axis, the value of F (ω) depends on the values of
f(t) for all t ∈ (R). It is therefore difficult to analyze any local properties of f on the
basis of F (ω). Such analysis requires the decomposition of the signal using the set of
functions well localized in time and frequency. Wavelet transformation is well suited for
this purpose.
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It is considered that ψ (t) ∈ L2(R) is a wavelet (mother) function if it satisfies admis-
sibility condition: ∫ ∞

0

|Ψ(ω)|2

ω
dω <∞, (3)

where Ψ(ω) is Fourier transform of function ψ(t).
Average value of wavelet function is equal to zero, it means that the wavelet integral over
real axis disappears: ∫ ∞

−∞
ψ(t) dt = 0. (4)

In wavelet transform there is only one wavelet (mother) function. For signal decompo-
sition copies of wavelet, which are called wavelet family, are used. They are obtained by
scaling and translating ψ according to formula:

ψa,b =
1√
|a|
ψ

(
t− b

a

)
, (5)

where the variable t denotes time or space coordinate, a is the scale parameter and b
indicates the wavelet translation in time/space domain; a, b ∈ (R); a ̸= 0. The scale factor

|a|−1/2 is a normalization coefficient which ensures constant wavelet energy regardless of
the scale. This means that ∥ψa,b∥ = ∥ψ∥ = 1 [19].

Continuous wavelet transform of given function f(t) is obtained by integration the
product of the signal function and the wavelet functions [20]:

W f (a, b) =
1√
|a|

∫ ∞

−∞
f (t) · ψ̄

(
t− b

a

)
dt = ⟨ f (t), ψa,b⟩ , f ∈ L2(R). (6)

The inner product of (6) can be written in the form:

⟨ f (t), ψa,b⟩ =
∫
t∈R

f (t) · ψ̄a,b dt, (7)

where ψ̄a,b is the complex conjugate of ψ(t) wavelet.
On the basis of formulas (1), (2), (6) and (7) it can be concluded that the wavelet

transform is a transformation similar to the Fourier transform. Both of them are based
on the use of the product of a signal f (t) and the remaining part, called the kernel of
the transform. The main difference is that the kernel in Fourier transform are sinusoidal
functions (periodic, representing one frequency) and in wavelet transform the kernel is
wavelet function which satisfies conditions (3) and (4). Next dissimilarity is that wavelet
functions are localized in space. Fourier sinusoidal functions are not.
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An important role in applications plays a dyadic wavelet transformation. Substituting
a = 1/2j and b = k/2j, k, j ∈ C in the (5) a wavelet family is obtained:

ψj,k(t) = 2j/2ψ
(
2jt− k

)
, (8)

where j = 0, ..., J − 1 is scale parameter, k = 0, ..., 2j − 1 translation parameter and J is
the maximum level of transformation.
Discrete wavelet transform is defined as:

W ψj,k = 2j/2
∫ ∞

−∞
f (t) · ψ̄

(
2jt− k

)
dt = ⟨ f (t), ψj,k⟩ (9)

and wavelet coefficients are given by:

dj,k = ⟨ f (t), ψj,k⟩ . (10)

A linear combination of wavelet functions ψj,k and wavelet coefficients dj,k allows to rep-
resent a discrete signal (the number of data is equal to 2J) in the form:

f(t) =
J−1∑
j=0

dj,k ψj,k(t) (11)

Multi-level signal representation is possible thanks to multi-resolution analysis (MRA)
(see [21]), closely connected with wavelet transform. For multi-resolution signal analysis
a scaling wavelet φ(t) (father) is required:

φj,k(t) = 2j/2φ
(
2jt− k

)
. (12)

Discrete signal f(t) can be approximate using wavelet ψ(t) and scaling φ(t) functions
according to:

f(t) =
∞∑

k=−∞

aj,k · φj,k(t) +
∞∑

k=−∞

∞∑
j=0

dj,k · ψj,k(t), (13)

where aj,k are scaling function coefficients derived from the formula:

aj,k = ⟨ f (t), φj,k⟩ . (14)

A wavelet function has a band-like spectrum, so the coefficients dj,k have high frequen-
cies information (details). Coefficients aj,k have low-pass information with a constant
component which is called signal approximation.

Multi-resolution analysis of discrete signal can be expressed in Mallat’s algorithm:

fJ = SJ +DJ + ...+Dn + ...+D1, n = J − j (15)

where SJ is a smooth signal representation, Dn and are Sn are details and rough parts of
a signal, j is the level of decomposition and J level of MRA. The idea of multiresolution
analysis using Mallat pyramid is presented in Fig.1.
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Figure 1: Multiresolution analysis of discrete signal

3 PROBLEM FORMULATION

Studies on the identification of defects reported in the literature are most often related
to the beams, frames or plates (see e.g. [22]). They are in fact structural elements, which
are most common in engineering practice. However, the specific type of the structure
does not make any difference, provided that the response signal for any action (not nec-
essarily defined) can be received. The main task of this study is to detect localization
of damage in the structure, if such damage exists. Moreover the position, type, shape
and severity of defect should be found. A cantilever beam made of steel, with Young’s
modulus E = 200 GPa and mass density ρ = 7850kg/m3 is considered. The length of the
beam is 0.96 m and rectangular cross section has dimensions 4× 8 cm. Damage in beam
is modeled as local stiffness reduction, obtained by reducing the height of cross-section or
the value of Young’s modulus. Authors use a parametrized Finite Element (FE) model
which mimic the real structure subjected to dynamic mechanical excitation. All control
parameters gathered in the vector x are embedded in the numerical model; by changing
them one can minimize the discrepancy between the wavelet representation of both ’real’
and numerically computed measurable quantities. Here the ’real’ experiment is substi-
tuted with a numerical one, called here pseudo-experiment, in which all parameters (i.e.
damage localization, type or shape of damage, number of monitored points, etc.) are
known (Fig. 2a). By different initialization of the vector x in the numerical model (which
is different from the pseudo-experimental one) (Fig. 2b), and by comparing the converged
values of the sought parameters to those parameters used for pseudo-experimental data
generation, one can check the robustness of the proposed method.

The effectiveness of the method was studied when applied to eigenmodes expressed in
amplitudes of vertical displacements, velocities, accelerations or strains. The structural
response of this kind is a discrete signal measured in points uniformly distributed along
the span of a beam and transformed using WT. The response of undamaged structure in
such case is unnecessary.
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Figure 2: Steel cantilever beam: a) real damaged structure (experiment), b) computer model with variable
defect parameters.

4 PROBLEM SOLUTION AND RESULTS

Among a large group of optimization algorithms in frame of nonlinear least square
problems, the Gauss-Newton (GN) or Levenberg-Marquardt (LM) (see e.g. [23, 24] for
more details) are the most efficient and often implemented into the inverse procedure.
Here, however, another powerful algorithm is programmed and used for objective function
minimization, namely trust region algorithm (TRA). TRA uses a simple idea, similar to
the one in LM algorithm, where the new step is performed in the direction which combines
a Gauss-Newton and steepest descent direction. LM algorithm computes a new direction
using a following formula:

∆x = − (Hx + λI)−1 gx, (16)

where: λ is an internal parameter, gx = ∇ω (x) is a gradient of objective function ω with
respect to parameters x:

gx =
∂ω

∂x
(17)

and Hessian Hx = ∇2ω (x) is a second partial derivative of ω with respect to parameters
x:

Hx =
∂2ω

∂x2
. (18)

In the nonlinear least square approach, the gradient and Hessian can be computed based
on Jacobian:

J (x) =
∂R

∂x
, (19)

so the gradient and Hessian are defined, respectively:

g (x) = JTR, H (x) ≃ JTJ. (20)

Such approximation of the Hessian, which can be computed ’for free’ once the Jacobian is
available, represents a distinctive feature of least squares problems. This approximation
is, however valid if residuals are small, meaning we are close to the solution, therefore
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some techniques may be required in order to precondition Hessian to be semi-positive
defined (see e.g. [25]).

One of the main issues of the trust region approach, that to a large extent determines
the success and the performance of this algorithm, is the decision strategy of how large the
trusted region should be. Allowing it to be too large can make the algorithm facing the
same problem as the classical Newton direction line search, when the minimizer of model
function is quite far from the minimizer of the actual objective function. On the other
hand using too small region the algorithm misses an opportunity to take a substantial
step that could move it much closer to the solution.

Each k-th step in the trust region algorithm is obtained by solving the sub-problem
defined by

min
dk

mk (dk) = f (xk) + dT
k∇f (xk) +

1

2
dT
k∇2f (xk)dk, ∥dk∥ ≤ ∆k, (21)

where ∆k is the trust region radius. By writing the unknown direction as a linear combina-
tion of Newton and steepest descend direction, the sub-problem will obtain the following
form:

minmk (xk) = f (xk) +
[
α1d

SD
k + α2d

N
k

]T ∇f (xk)+

+ 1
2

[
α1d

SD
k + α2d

N
k

]T ∇2f (xk)
[
α1d

SD
k + α2d

N
k

] (22)

under the constrains: ∥∥α1d
SD
k + α2d

N
k

∥∥ ≤ ∆k. (23)

The problem now becomes two dimensional and it is solved for the unknown coefficients α1

and α2. In order to find both alphas in (22) the set of nonlinear equations has to be solved
using for example a Newton-Raphson techniques. Herein this approach is implemented
into inverse procedure for the discrepancy minimization.

TRA, however, is a ’local’ algorithm and if objective function is non-convex it may
stuck in the local minimum. Therefore a regularization method or multi-start techniques
can be beneficial. Here, very good results are obtained when the procedure is divided into
two steps: first decomposition of the output structural response signal, e.g. strains, using
DWT (see Fig. 3) for preliminary estimate of damage location and second the application
of TRA on the limited search field (i.e. to the number of elements, where the wavelet
disturbances is clearly evidenced). The advantage of this approach is relatively small
number of iterations where damage details/sought parameters are properly specified (see
Fig. 4).

Another possible technique which can be applied to minimize the non-convex functions
are methods belonging to the global minimization search family. Here, Genetic Algorithm
(GA) is programmed and employed for the damage detection problem. Some more details
on GA and other evolutionary-based algorithms can be found in many textbooks and
articles (e.g. [26], [27]). Unfortunately, the first approach to the damage detection problem
with GA was unsuccessful (i.e. none of the sought parameters were found) when as
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Figure 3: Structural response signal: a) expressed in strains , b) decomposed using DWT (detail 1).

damage position

no of damaged elem.

cross-section

or stiffness reduction

Objective function

Figure 4: Trust region algorithm: a) identified damage details, b) objective function.

the output signal the direct structural dynamic response (e.g. expressed in strains) was
used (see Fig. 5). Only the solution provided by application of GA on the output signal
represented by wavelet coefficients appeared to be successful (see Fig. 6). All defect details,
such as location, intensity, shape or number, were clearly identified within relatively small
number of iterations.

5 CONCLUSIONS

The contribution of this work is a novel approach to Structural Health Monitoring
(SHM) based on damage detection through wavelet transformation, numerical FE model-
ing and mathematical programming. The inverse analysis employed here uses two distinct
minimization algorithms in order to select the most suitable technique of DWT applica-
tion to SHM. The effectiveness of the method is studied by the way of an example of
cantilever steel beam subjected to mechanical excitation. The eigenvibrations are con-
sidered. The examples proved that application either TRA or GA is very efficient in
determining the details of damage such as location, severity, shape or number of defective
elements. However, the prerequisite is that as the output the structural response signal
(e.g. strains) represented in wavelet coefficients is taken into consideration. In the case of
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X(1)

X(2)

X(3)

Figure 5: Genetic Algorithm: a) unidentified damage details, b) fitness function.

X(1)

X(2)

X(3)

Figure 6: Genetic Algorithm: a) identified damage details, b) fitness function.

TRA application it allows to limit the search field to the number of elements, where the
evident wavelet disturbances is visible, therefore the procedure is performed in a small
number of iterations. In GA, when as the output signal the direct structural dynamic
response is used, damage detection failed. Only when the output signal is expressed in
wavelet coefficients, as mentioned, damage details are properly specified.

This preliminary work serves as a check of the usefulness of the proposed technique,
and will be validated, in future, by a real experiment on structural elements.
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Abstract. In this work, we present an explicit a-posteriori error estimator in isogeomet-
ric analysis for fluid dynamics problem like advection-diffusion equations. The technique
is based on the theortical framework of the variational multiscale (VMS) method [1] and
recently derived explicit formula of the fine-scale Green’s function [2]. This technique
is adequate for the methods with a local error distribution, such as stabilized methods,
where the element local problem captures most of the error and the proposed error in-
trinsic parameter is an approximation to the solution of the dual problem. The proposed
technique can be implemented straightforwardly in existing codes and is computationally
efficient. We consider different test examples to show the robustness and effectivitness of
this technique as a posteriori error estimator in isogeometric analysis.
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ABSTRACT 

Reliability and efficiency are two major challenges in simulation based engineering. These two challenges 
may be addressed by error estimation combined with adaptive refinements. A lot of research has been 
performed on error estimation and adaptive mesh refinement. However, adaptive methods are not yet an 
industrial tool, partly because the need for a link to traditional CAD-system makes this difficult in 
industrial practice. Here, the use of an isogeometric analysis framework introduced by Professor Thomas J. 
R. Hughes (UT at Austin) and coworkers [1] may facilitate more widespread adoption of this technology in 
industry, as adaptive mesh refinement does not require any further communication with the CAD system. 
A posteriori error estimation in numerical approximation of partial differential equations aims at: 

• give an upper bound on the error of numerical solution, if  possible give a guaranteed upper bound; 
• estimate the error locally and assure that this represents a lower bound for the actual error, up to a 

multiplicative constant (i.e. efficiency);  
• assure that the ratio of the estimated error and actual error goes to one, i.e., asymptotic exactness. 

 
Three main techniques of a posteriori estimates in the finite element method have evolved during the last 
decades; (i) Explicit residual-based estimators (ii) Implicit residual based estimators and (iii) Recovery 
based estimators, see Ainsworth and Oden [2] . The purpose of this project is to extend these posteriori 
techniques in adaptive isogeometric analysis framework for elliptic problems.  We also discussed the above 
three properties for our developed posteriori error estimators.  The adaptive refinement is achieved using 
local refinement strategies developed in Johannessen et al. [3]. The developed a posteriori based adaptive 
refinement methodology will be tested on some classical benchmark elliptic problems.  

References 

[1] T. J. R. Hughes, J. A. Cottrell and Y. Bazilevs: Isogeometric analysis: CAD, finite elements, NURBS, exact 
geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, 194(2005), 
4135-4195. 

[2] M. Ainsworth and J. T. Oden: A Posteriori Error Estimation in Finite Element Analysis, John Wiley & Sons, 
2000. 

[3] K. A. Johannessen, T. Kvamsdal and T. Dokken: Isogeometric analysis using LR B-splines, In review. 
Computer Methods in Applied Mechanics and Engineering. 

402

mailto:Arne.Morten.Kvarving@sintef.no


VI International Conference on Adaptive Modeling and Simulation 
ADMOS 2013 

J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) 
 
 
 

VERIFICATION AND VALIDATION FOR THE LARGE EDDY 
SIMULATION OF INCOMPRESSIBLE TURBULENT FLOWS WITH 

FENICS 

AURÉLIEN LARCHER, JOHAN HOFFMAN  

Computational Technology Laboratory  
High Performance Computing and Visualization  

KTH Royal Institute of Technology, Sweden  
 
 

Abstract. We describe a framework for verification and validation in the frame of the 
development of turbulence models for the Large Eddy Simulation of incompressible flows, by 
means of residual-based subgrid stabilisation.  
The main components consist of a posteriori error estimation of the numerical error, 
uncertainty quantification of data and modeling errors, and systematic verification of the 
software implementation in FEniCS (www.fenicsproject.org) by manufactured solutions.  
We introduce the different components, and present the combined framework in a number of 
examples .  
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Abstract. We present a reduced order finite element method based on the variational
multiscale method together with a component mode synthesis representation for the fine
scale part of the solution. We present an a posteriori error estimate in the energy norm for
the discrete error in the approximation which measures the error associated with model
reduction in the fine scale.

1 INTRODUCTION

In this contribution we briefly describe a recent multiscale finite element method, intro-
duced in [6], which builds on using a reduced order model for the fine scale in a variational
multiscale method, see [2] and the later developments [5].

Model reduction methods are commonly used to decrease the computational cost asso-
ciated with simulations involving repeated use of large scale finite element models of for
instance a complicated structure. The objective of model reduction methods is to find
a low dimensional subspace of the finite element function space that still captures the
essential behavior of the solution sufficiently well. A classical model reduction method is
component mode synthesis (CMS), see [3].

In CMS the computational domain is split into subdomains and a reduced basis as-
sociated with the subdomain is constructed by solving localized constrained eigenvalue
problems associated with the subdomains together with modes that represent the dis-
placements of the interface between the subdomains, as in the Craig-Bampton method
[1].

Here we construct a multiscale finite element method where the coarse scale is rep-
resented by piecewise linear continuous elements on a coarse mesh and the fine scale is
defined by a CMS related approach on a refined mesh, using the coarse mesh elements
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as subdomains in the CMS method. The coupling modes are computed for each pair of
neighboring elements and couple the response in the subdomains. Thus the fine scale is
finally represented as a direct sum of functions with support in each element and functions
associated with each edge supported in the two elements neighboring the edge. Adaptive
reduction is accomplished by choosing a basis in each such subspace consisting of a trun-
cated sequence of eigenmodes. The eigenmodes are numerically computed and capture
fine scale effects.

We note that in the original CMS method the interface problem is global, which is
a serious limitation since the reduced mass matrix is dense. In the multiscale method
we present here we instead get a mass matrix with a block structure that is similar to
finite element methods based on higher order polynomials. Furthermore, the size of all
eigenvalue problems solved in the fine scale computations can be controlled by refining
the coarse scale mesh.

We derive an a posteriori error estimate for the multiscale finite element method that
can be used to automatically tune the number of subscale modes in an adaptive algorithm.
For further details we refer to [6] and the previous work on a posteriori error estimates
for component mode synthesis [4].

2 LINEAR ELASTICITY

Strong form: The equations of linear elasticity take the form: find displacements u
such that

−∇ · σ(u) + τu = f , x ∈ Ω, (1a)

σ(u) = 2µε(u) + λ(∇ · u)I, x ∈ Ω, (1b)

u = 0, x ∈ ΓD, (1c)

n · σ(u) = gN , x ∈ ΓN , (1d)

where τ ≥ 0 is a real parameter, f is a body force, gN is a traction force, ε(u) =
1
2
(∇u + ∇uT ) is the linear strain tensor, σ the stress tensor, I is the d × d identity

matrix, and λ and µ are the Lamé parameters given by λ = Eν[(1 + ν)(1 − 2ν)]−1 and
µ = E[2(1 + ν)]−1, where E and ν is Young’s modulus and Poisson’s ratio respectively.
The coefficients can have multiscale behavior, i.e. exhibit variation on a very fine scale or
on multiple scales.

Weak form: The corresponding variational form of (1) reads: find u ∈ V = {v ∈
[H1(Ω)]d : v|ΓD

= 0} such that

A(u,v) = b(v), ∀v ∈ V, (2)

where A(·, ·) is the bilinear form

A(v,w) = a(v,w) + τ(v,w) (3)
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Figure 1: Left: coarse mesh T H on an L−shaped domain. Left: fine mesh T h obtained by a sequence of
uniform refinements.

with

a(v,v) = 2(µε(v) : ε(w)) + (κ∇ · v,∇ ·w), (4)

and b(·) is the linear form

b(v) = (f ,v) + (gN ,v)ΓN
. (5)

3 MULTISCALE METHOD

The mesh and finite element spaces: Let T H be a coarse mesh on Ω consisting
of shape regular triangles (d = 2) or tetrahedra (d = 3) and let T h be a fine mesh
obtained by a sequence of uniform refinements of T H . See Figure 3. Let V H ⊂ V h be the
corresponding spaces of continuous piecewise linear functions.

We then have the following splitting

V h = V H ⊕

(⊕
E∈EH

V h
E

)
⊕

(⊕
T∈T H

V h
T

)
(6)

Here V h
T ⊂ V h is the space of functions with support in element T ∈ T H , EH is the set of

edges in the coarse mesh T H , and if the edge E is shared by elements T1 and T2 in T H

then the edge space V h
E is defined by

V h
E = {v ∈ V h : supp(v) ⊂ T1 ∪ T2, a(v, w) = 0 ∀w ∈ V h

T1
⊕ V h

T2
} (7)

Note that this means that the functions in V h
E are uniquely determined, through harmonic

extension, by the restriction to the edge.
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Multiscale finite element space: To construct a multiscale basis in this finite element
space we use Fourier expansions in terms of eigenmodes determined by the following
eigenvalue problems. Reduction, is then obtained by truncating the Fourier expansion.

• Basis in V h
T : Let (Zi,Λi) ∈ V h

T × R+, for i = 1, 2, . . . , dim(V h
T ), be the eigenpairs

defined by

a(Z,v) = Λ(Z,v), ∀v ∈ V h
T (8)

Using modal truncation we obtain a reduced subspace V h,mT

T ⊂ V h
T , defined by

V h,mT

T = span{Zi}mT
i=1, (9)

where mT � dim(V h
T ).

• Basis in V h
E : Let (Zi,Λi) ∈ V h

E × R+, for i = 1, 2, . . . , dim(V h
E ), be the eigenpairs

defined by

a(Z,v) = Λ(Z,v), ∀v ∈ V h
E (10)

Using modal truncation we obtain a reduced subspace V h,mE

E ⊂ V h
E , defined by

V h,mE

E = span{Zi}mE
i=1, (11)

where mE � dim(V h
E ).

Finally, we arrive at the following reduced order multiscale finite element space

V h,m = V H ⊕

(⊕
E∈EH

V h,mE

E

)
⊕

(⊕
T∈T H

V h,mT

T

)
(12)

where m = (∪E∈EHmE) ∪ (∪T∈T HmT ) is the multi index containing the indices mE and
mT for all edges E ∈ EH and elements T ∈ T H .

Multiscale finite element method: The multiscale method is then directly obtained
by using this reduced order space in the standard variational formulation: findUm ∈ V h,m

such that
A(Um,v) = b(v), ∀v ∈ V h,m, (13)

Note that this is a coupled system involving both the coarse piecewise linear functions
and the edge and element spaces spanned by the eigenmodes define above. Fine scale
effects are captured in computations of the eigenfunctions on the fine mesh.
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4 A POSTERIORI ERROR ESTIMATE

A posteriori error estimates: Let ||| · ||| denote the energy norm, |||v|||2 = A(v, v) and
let Uh denote the standard finite element solution in V h. Then we have the following a
posteriori error estimate

|||Uh −Um|||2 ≤
∑
E∈EH

η2
E +

∑
E∈T H

η2
T . (14)

Here we introduced the following subspace indicators

η2
E =

‖RE(Um)‖2

ΛE,mE+1

, E ∈ EH , (15)

η2
T =
‖RT (Um)‖2

ΛT,mT +1

, T ∈ T H , (16)

where the subspace residual RI : V h
I → V h

I , is defined by

(RI(w),v) = b(v)− A(w,v), ∀v ∈ V h
I , I ∈ EH ∪ T H (17)

The indicators measure the error contribution due to reduction in the corresponding
subspaces V h,mE

E , E ∈ E , and V h,mT

T , T ∈ T .

Adaptive algorithm: Based on the a posteriori error estimate (14) we may construct
an adaptive solution procedure as follows:

1. Start with a guess of the subspace dimensions in V h,mE

E and V h,mT

T .

2. Solve the problem (13) and compute the subspace indicators (15) and (16).

3. If an indicator is large according to some refinement criterion, increase the number
of modes in that subspace.

4. If
∑

E∈E η
2
E +

∑
T∈T η

2
T < TOL, where TOL is a predetermined tolerance, stop.

Otherwise, go to 2.

5 NUMERICAL EXAMPLE

We finally consider linear elasticity with τ = 0, Young’s modulus E = 1, and Pois-
son’s ratio ν = 0.3 on the L−shaped domain clamped, and free on the reminder of the
boundary, at one side and exposed to a gravity force Fg acting on the whole domain,
see Figure 5 (left). As is well known the solution is singular in the corner. We use an
unstructured triangulation to construct the coarse mesh and a sequence of uniform refine-
ments to construct the fine scale mesh, see 3. In figure 5 (right) we compare the adaptive
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Figure 2: Left: set up of the problem in the numerical example. Right: decay of the error for the reduced
displacement U r using a uniform refinement strategy (dashed line) compared to an adaptive strategy
(solid line).

strategy described above with a uniform strategy. We plot the estimated energy norm
error compared to the actual energy norm error. We note that the error estimate is sharp
and that the adaptive strategy outperforms the uniform strategy. We also note that the
adaptive method actually produces an exponentially convergent sequence of approximate
solutions.
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Abstract. In order to consider virtual materials (not physically manufactured) or in order
to predict complex behavior on one length scale where the physics is better understood
on a lower scale, homogenization (or coarse-graining) can be a useful tool. Considering
atomistic systems, homogenization can be used to derive continuum properties whereby
the need for empirical continuum models i avoided. When there is a large separation
of scales, i.e. when the length scales of the sought continuum solution by far exceeds
the atomistic length scale, computational homogenization can be adopted, see e.g. [1].
Using this approach, the continuum stress-strain response can be obtained implicitly by
considering a representative volume element (RVE), also called representative lattice unit
in the case of a homogenization of a discrete lattice. However, when considering atomistic
systems, it is well known that defects play an important role. When investigating the
influence from single (or a few) defects, very large RVE’s need be considered.

In the case of scale-mixing, i.e. when the continuum scale and the atomistic scale
needs be resolved concurrently in the spatial domain, one popular method is the Quasi-
Continuum (QC) method, cf. [2, 3]. It allows for coarse graining of atomistic response in
terms of interpolation on a ”finite-element-type” mesh. The QC method is an approxi-
mation of the atomistic problem, rather than a homogenization technique.

In this contribution we establish the RVE for carrying out atomistic-to-continuum ho-
mogenization of a molecular statics problem. In particular, we are interested in computing
the representative response for different imperfections in a lattice. To this end, we wish
to consider relatively large lattices on the atomistic scale. In order to facilitate such
an analysis, we proceed along the lines of, e.g., [4] and device a goal-oriented adaptive
QC procedure for solving the atomistic problem on the RVE. Within the goal-oriented
framework it becomes natural to consider the macro scale (continuum) stress as the goal-
quantity that is solved for.
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The QC method is introduced in two steps. First, we consider the restriction of atom
displacement in terms of the representative atoms as a model reduction, i.e., we describe
the positions of all atoms in terms of discrete weights and the placements of certain so-
called representative atoms. Based on this approximation, while accounting for the exact
summation of all the bond-energies, we are able to compute goal-oriented error estimators
in a straight-forward fashion based on an adjoint (dual) problem pertaining to the chosen
output of interest. This computable error estimator pertains to a discretization error in
the finite element method. The second step in the QC method is that of quadrature. For
large QC elements, i.e. for a large amount of atoms whose placements are governed by the
same representative atoms, the bond energy and its derivatives are typically computed
using an appropriate discrete quadrature. We show how this approximation generates
a quadrature error (in addition to the discretization error) in the framework for error
estimation presented above. The combined error is estimated approximately based on
the same dual problem in conjunction with a hierarchical strategy for approximating the
residual.

As a model problem, we consider a mono-layer of graphene. The homogenization of
the macro-scale membrane forces, including initial relaxation, is considered for defective
graphene lattices. The 0 Kelvin condition is considered by omitting lattice vibration and
the Carbon-Carbon energy bonds are modeled via the Tersoff-Brenner potential, cf. [5],
which involves next-nearest neighbor couplings. In particular, we study the accuracy and
robustness of the proposed error estimator and the pertinent adaptive algorithm.
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Abstract. In numerous computational engineering applications, hexahedral meshes may
be preferred over tetrahedral meshes. However, automatic hexahedral meshing remains
an unsolved issue and thus generating a hexahedral mesh is known as a time-consuming
stage that requires a lot of user interactions in the simulation process. A possible way
for designing and optimizing a CAD model or a geometric shape requires parametric
studies where the shape is enriched by inserting geometric details into it. Then we
must ”adapt” the initial mesh and not generate it anew for each new detail taken
into account. In order to perform such studies with hexahedral meshes, we provide an
imprinting method allowing us to automatically add geometric details into an existing
mesh. This addition is done using geometric projections, sheets (layers of hexahedral
elements) insertions and combinatorial algorithms while preserving the hexahedral mesh
structure as best as possible.

1 INTRODUCTION

The definition of a real mechanical piece using only numerical modeling and simulation
has been increasingly used for several years. A lot of research efforts have been put into
the quality control of the numerical solutions and into the design of sophisticated, complex
and coupled modeling, which leads to increasingly time-consuming computations. Most
of these simulations rely on the finite element method (FEM) or the finite volume method
(FVM). Both of them require that the geometric model be discretized by a mesh. In most
cases, they are purely tetrahedral or hexahedral, that is to say exclusively composed of
tetrahedral elements or hexahedral elements. In this work, we focus on the generation of
hexahedral meshes, and more precisely on the adaptation of an existing hexahedral mesh
to fit new geometric features that are inserted into a CAD model during an adaptive
simulation process.
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The classical process for designing and optimizing a geometric shape requires para-
metric studies where the shape is modified and/or enriched by adding geometric details.
Considering a first shape with an associated mesh, we want to ”adapt” the initial mesh
and not to regenerate it from scratch for each new part taken into account (see Fig. 1). In
order to perform such studies with hexahedral meshes, we provide an imprinting method
that allows us to automatically add geometric details into a hexahedral mesh. This addi-
tion is done using geometric projections, sheets (layers of hexahedral elements) insertions
and combinatorial algorithms, while preserving the hexahedral mesh structure as best as
possible. Some authors have studied the insertion of complex geometric models into an
existing grid or octree structure in order to get the initial mesh [8, 12, 4, 9, 5, 6, 13].
In our work, we focus on CAD models where sharp features are numerous and must be
preserved; corners and ridges are typically difficult to capture in an existing mesh. The
main contributions of our work are:

• Contrary to existing algorithms [8, 12, 4, 9, 5, 6, 13], our method can be applied
onto any unstructured hexahedral meshes, it is not restricted to grids or octrees;

• While these algorithms only use a grid or octree to discretize the inner volume of
one or several geometrical domains, we discretize both the inner and outer volumes;

• Both the initial geometric domain and the geometric details to be inserted have
several corners and ridges.

The remainder of this paper is organized as follows: Section 2 gives an overview of
our algorithm while introducing necessary terminology. Section 3 discusses the detailed
algorithm for properly capturing the new geometric entities into the mesh. Section 4
explains how to improve the mesh quality in the vicinity of the inserted details and to
improve the robustness of our algorithm. Section 5 draws conclusions and outlines future
works.

2 MAIN STEPS OF THE IMPRINTING ALGORITHM

2.1 Background notions

A traditional representation [3] of a hexahedral mesh is to consider a 4-tuple (H, F,E, N)
where H is a non-empty set of hexahedra, F is the non-empty set of all quadrilaterals ad-
jacent to one or more hexahedra in H, E is the non-empty set of all edges adjacent to one
or more hexahedra in H and N is the non-empty set of all nodes adjacent to one or more
hexahedra in H. Hexahedra are 3-dimensional cells, or 3-cells, quadrilaterals are 2-cells,
edges are 1-cells and nodes are 0-cells. In this work, the geometric domain Ω that we want
to discretize is a 3-dimensional geometric object represented by its boundary. It is thus a
BRep object described as a 3-tuple (S,C,V) [2] where S is a non-empty set of geometric
surfaces enclosing a 3-dimensional space and such that ∀(s1, s2) ∈ S2, s1 ∩ s2 = ∅, C is
the non-empty set of curves adjacent to one or more surfaces in S and V is the non-empty
set of vertices adjacent to one or more surfaces in S.
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a b

c d

Figure 1: A hexahedral mesh is modified in order to add some geometrical details that can be relevant
for the numerical study or to get a more geometric-sharp model. In (a), the first mesh was obtained
using a sweeping algorithm [1]. In (b), two shapes, a cylinder and a cross shapes are added. In (c) and
(d), close-up of the imprint on the side of the original mesh resulting from the insertion of respectively
the cross and the cylindre shapes.

Let M = (H, F,E, N) be a hexahedral mesh discretizing1 the BRep object G =
(S, C, V ). In order to initialize boundary conditions for FEM and FVM methods, it is
mandatory to associate2 each i-cell to a j-dimensional geometric entity with j ≥ i. To
get a valid association, some constraints must be satisfied:

• A mesh surface sM ⊆ F , i.e. a set of pairwise adjacent faces of F forming a 2-

1The notion of discretization is not detailed in this paper. See for instance [3].
2This association is similar to the classification notion introduced by Remacle and Shephard in [7].
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manifold, must be associated to each geometric surface s ∈ S. It means that all the
faces in sM , all the edges and nodes adjacent to a face of sM are geometrically on
surface s within a tolerance, and sM discretizes surface s (i.e. every point x ∈ s is
contained in exactly one face, f ∈ sM , and sM wholly fills s.

• A mesh line lM ⊆ E, i.e. a set of pairwise adjacent edges of E forming a 1-manifold,
must be associated to each geometric curve c ∈ C. It means that all the edges in
lM and all the nodes adjacent to an edge of lM are geometrically on curve c within
a tolerance, and lM discretizes curve c (i.e. every point x ∈ c is contained in exactly
one edge, e ∈ lM , and lM wholly fills c.

Implicitly, it means that if two geometric surfaces s1 and s2 of a BRep object share a
curve c then the edges of the mesh line associated to c are also associated to s1 and s2

and such a line of edges separates the two sets of faces associated to s1 and s2.

2.2 Overview of the algorithm

Starting from a hexahedral mesh M = (H, F,E, N) that discretizes a BRep geometric
object G = (S, C, V ), the aim of our algorithm is to adapt M in order to discretize both
G and G2, where G2 = (S2, C2, V2) is a new geometric object fully enclosed into G. The
global process of our method is the following one:

1. Cells of H are split into two sets: those inside G2, denoted H2, and those outside;
cells that are intersected by the geometric object will either be classified as inside
or outside depending on a few criteria(see Section 3.1). Some refinement patterns
can be applied to ensure the right topology of H2 (see Section 4.1);

2. Each vertex of V2 is captured by a node located on the boundary of H2 (see Section
3.2);

3. Each curve of C2 is captured by a line composed of edges of E located on the
boundary of H2 of which the endnodes capture the endpoints of c (see Section 3.3);

4. Each surface s of S2 is captured by a mesh surface composed of faces of F located
on the boundary of H2 and delimited by mesh lines capturing the bounding curves
of s (see Section 3.4);

5. Layers of hexahedra are inserted along the boundary of H2 in order to improve the
quality of elements (see Section 4.2).

3 CAPTURING GEOMETRIC ENTITIES INTO A HEXAHEDRAL MESH

3.1 Extraction of inner cells

The first step consists in choosing which hexahedra of the original mesh M will be
considered as being part of the inserted geometric entity G2. Thanks to the fact that G2
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is fully enclosed into G, hexahedra are divided into two categories: inside or outside the
geometric detail, and the set of faces of M delimiting the two areas will be considered as
the discrete boundary of G2 in M .

• We first identify the hexahedra intersected by G2 and mark the remaining cells
as either inside or outside. Let H2 be the set composed of intersected and inner
hexahedra;

• The intersected hexahedra of H2 will then be classified as inside or outside depending
on whether more or less than half of their volume is located inside the geometric
detail; those classified as outside are removed from H2. This is done by, for each
hexahedron h of H2, taking a set of points Sh located inside the cell and determining
if most of them reside within G2 or not. For each point P in Sh the projected point
PS2 on the surfaces S2 is computed, then the sign of the scalar product between
PS2P and the outward normal to the surface at PS2 determines whether the point
is inside or outside (negative is inside, positive is outside).
Currently we take an arbitrary number of 27 points located inside each intersected
hexahedron using trilinear interpolation; Gauss points or some other quadrature
rule could be used.

At the end of this step, the hexahedra of M are separated into two sets: those inside G2

and those outside. In the following steps, our algorithm is restricted to selecting boundary
nodes, edges and faces among the discrete boundary of G2 in M .

3.2 Vertices’ classification

A boundary node n ∈ N will be associated to each vertex v ∈ V2 considering a distance
criterion, meaning the nearest node of N will be chosen for each vertex v of V2. A node
cannot be associated to more than one vertex, and in case of conflict, for example if two
vertices both have the same nearest node, vertices’ classification is done on a first-come,
first-served principle.

3.3 Curves’ classification

Curves’ classification is done in two steps.

First for each vertex v ∈ V2 we associate an edge to every curve adjacent to said vertex
(see Fig. 2-a-b). Let Cv be the list of curves adjacent to v, ordered around v in a direct
order. Let n be the node associated to v and En be the set of boundary edges of M
adjacent to n. We are looking for the list of ordered edges Ln ⊆ En, ordered around n in
a direct order, that best matches Cv. We define such a list as the list of ordered edges
that maximizes the cost function:

f(Ln) =

|Cv |∑
i=1

Cv[i].Ln[i]
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where Cv[i] and Ln[i] are the vectors of respectively the ith curve/edge of Cv/Ln pointing
outward from v/n. This phase is not mandatory but it allows us to select a better solution
near the vertices, which is typically where a good selection will improve robustness by
avoiding crossing between lines of selected edges; this non-crossing property is mandatory
for the algorithm used during the surfaces’ classification phase.

The second step builds the remainder of the lines for each curve c ∈ C2 (see Fig. 2-c-d),
by starting from one of the curve’s endpoints and building a contiguous line of boundary
edges to reach the other endpoint. A set of selectable edges is computed as the boundary
edges part of every hexahedron intersected by c, and a shortest path algorithm is used
where each edge is weighted by its Hausdorff distance to the curve [10]. This way, we
extract a suitable line of edges. Let us note that we do not start and end at the endpoints
of c, but rather we start from the first edges associated to c at its endpoints during the
previous step.

In case of curves that do not have endpoints (circles for example in the cylindrical
shape inserted, see Fig. 2-f) we arbitrarily put a few points on the curve and associate
them to boundary nodes , then build lines of edges that connect all those nodes using the
same method as described above, i.e. a weighted shortest path algorithm applied on a
restricted set of edges.

3.4 Surfaces’ classification

Surfaces’ classification is fairly straightforward once the edges’ lines have been deter-
mined. Sets of faces are delimited by the lines, and for each set of faces sM delimited by
a set of lines LM the corresponding surface s ∈ S2 is the surface delimited by the curves
the lines in LM are associated to (see Fig. 2-e). This is sufficient to characterize all the
surfaces of S2 but in two cases:

• When there are no curves, for example if the geometric detail is a sphere, there is
only one surface s in G2 which is then associated to sM ;

• When there are only two surfaces, hence delimited by the same set of curves we have
to choose an order of traversal for the curves and lines of edges and discriminate
between the two surfaces by determining which surface is on the left or on the right.
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a b

c d

e f

Figure 2: Curves’ classification, from a best combination around each vertex to building a line of edges.
In (a), close-up of the combination of edges that best matches the 3 curves of the cross shape at this
vertex. In (b), edges at every vertex have been associated to curves. In (c), a line of edges (in red) has
been associated to a curve. In (d), every curve in the cross shape has been associated to a line of edges.
In (e), surfaces are classified to sets of faces. In (f), a curve of the cynlindrical shape is associated to a
line of edges despite having no endpoints.
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4 ROBUSTNESS AND QUALITY IMPROVEMENT

At this point in the paper the main contributions of our work have been outlined; the
geometric detail G2 has been inserted into the initial mesh and its surfaces, curves and
vertices have been associated to mesh entities, but in order to be more robust and obtain
a resulting mesh of better quality our algorithm needs to apply the following steps:

4.1 Refinement

The quality and robustness of the geometric detail classification strongly depends on
the initial mesh. We use a 3-refinement strategy similar to the refinement used in [14]
in order to get a valid result at the end of the first step of our algorithm. Indeed, such
a refinement ensure that the topology of the set of inner hexahedra of H associated to
G2 will be the same as the topology of G2. In Fig. 3 the mesh is refined in the thin
areas using a criterion based on whether at least two non-neighbor surfaces intersect a
hexahedron. That allows the algorithm to better capture the thin top and bottom parts,
and to disjoin the two parts on the right side of the model. Otherwise depending on the
position and the size of the hexahedra near the thin space on the right of the model the
space would not be captured, meaning the selected hexahedra in this area would form one
block instead of two, and the corresponding surfaces and curves would not be classified.

a b

c d

Figure 3: A hexahedral mesh is refined in order to facilitate the geometric detail insertion. In (a), the
geometric detail is represented inside the original mesh, which is a regular cartesian grid. In (b), three
areas are refined, around the thin parts of the geometric detail; the inside hexahedra are represented in
yellow, the ouside ones in green. In (c), after curves’ classification. In (d), after sheets insertions, sheets
represented in red.
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4.2 Sheet insertion

After having classified the vertices, curves and surfaces of the geometric detail G2,
sheets can be inserted in order to offer good quality elements near the surface of the geo-
metric detail, and to provide boundary-aligned elements in case the numerical simulation
favours such a feature in a mesh (see Fig. 4). Depending on the requirements on the
resulting mesh, fundamental sheets and chords [2] can be inserted.

a b

Figure 4: Sheet insertions after classification of the cross shape inside the original mesh. In (a), one sheet
was inserted around the cross shape, inside the geometric detail. In (b), a sheet was inserted around the
shape but this time located on the side of the outer volume.

4.3 Mesh smoothing

A laplacian smoothing constrained by the geometric classification was applied to the
examples shown in this paper. But to get better quality, it seems mandatory to apply more
evolved algorithms. Indeed, as we insert sharp geometric objects, non convex areas with
sharp ridges appear. In such areas,algorithms merging untangling technics and geometric
smoothing should be used [11]. In order to select a suitable method, we need to further
study the impact of the geometric constraint on the smoothing method.

5 CONCLUSIONS

In this work we introduced a method to insert a geometric detail into an existing mesh.
The approach consists in selecting an initial good set of hexahedra, so as to simplify the
curves’ and surfaces’ classification steps that could prove overly difficult otherwise. This
is a strictly a priori selection, and slight changes could be applied to the selection, i.e.
adding or removing a select few hexahedra in order to improve quality or robustness.
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A lot of work remains to be done concerning robustness; for example we have at the
moment ignored the possibility that during vertices’ classification a vertex v could have
more adjacent curves than there are adjacent boundary edges to the nearest node, not to
mention any boundary nodes, hence an impossiblity to classify curves. Such an issue could
be resolved by refining the mesh around good nodes candidates, thus adding adjacent
edges to those nodes. Same wise the hexahedra selection must form a 3-manifold, as
that is an essential property for the surfaces’ classification step; the geometric criteria
that we currently use, i.e. keeping hexahedra which are at least half located inside G2 is
not sufficient and needs to be supplemented with topological criteria. Concerning quality,
sheets insertion needs to be further developped in order to adress and correct badly shaped
cells that can have several edges or even faces classified on the same curve or surface. This
could be done considering [2].
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Abstract. This work aims to develop a fully automated shape design optimization of a 3D con-
ical flow around diffuser with fixed main dimensions surrounded by a turbulent incompressible
flow. The optimization process is based on OpenFOAM-1.6-ext in combination with a meta-
model assisted evolutionary algorithm (MAEA). To improve the global diffuser performance,
typical cost functions are considered describing the corresponding operation of the diffuser.
The inner and outer contours of the 3D conical flow around diffuser walls are each indepen-
dently parameterized with a smooth Bézier-Spline of 4th-order. To provide an additional degree
of freedom for the optimization, the inner and outer diffuser wall are either splitted into two
continuous segments. Enabling a discontinuous transition in flow direction, the resulting effect
on the flow behavior and performance parameters as well are investigated. The obtained results
are additionally compared with simulation results of a commercial code.
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1 INTRODUCTION

Diffusers are mounted downstream of turbine impellers to convert the remaining kinetic en-
ergy into pressure by decelerating the flow. The flow rate of the medium passing through the
turbine is significantly affected by the diffusers geometry. In consequence, measures like geo-
metrical restrictions must be taken to avoid adverse flow.
For this reason, a fully automated shape design optimization of a 3D conical diffuser with fixed
main dimensions surrounded by turbulent incompressible free flow has been developed for im-
proving performance parameters such as pressure recovery coefficient and diffuser efficiency.
By using a fully 3D mesh, any three dimensional effects like intermittently appearing flow sep-
aration can be captured. A metamodel assisted evolutionary algorithm (MAEA) is embedded in
the standalone optimization tool EASY [1], which interacts with the mesh motion- and CFD-
solver included in the CFD-package OpenFOAM-1.6-ext. Regarding the optimization, reason-
able cost functions characterizing the proper operation of the diffuser are considered, such as
total pressure loss ∆ptot and pressure recovery coefficient Cp. For mesh motion, diffuser wall
shapes are parametrized with a smooth Bézier-Spline of 4th-order, see Fig. 2 (top). For provid-
ing the possibility of establishing a so-called shock-diffuser at the diffuser outlet during opti-
mization, an additional degree of freedom is implemented according to Fig. 2 (bottom) in order
to investigate the influence of a discontinuity transition at the inner and outer diffuser wall. To
preserve appropriate inlet profiles, a fully 3D physical model of the hydrokinetic turbine with
implemented original diffuser are steady-stately calculated and 1D-profiles for velocity- and
turbulence-quantities of the swirling flow exiting the impeller are assumed as inlet boundary
condition. Strong convex curvature occurring in the diffuser necessitates the application of a
modified two equation k − ω shear stress model with streamline-curvature correction (SST-CC
k-ω) [6] to capture the highly turbulent flow.
In order to evaluate the optimization process, the pressure recovery coefficient obtained by op-
timized geometry is compared with results from both original- and conical diffuser geometries
and with commercial code. For comparison purposes and for getting better insight into the
diffuser performance under realistic flow conditions, a free surface flow simulation is done.
Additionally, some basic aspects of swirling flow through conical diffuser enhancing vortex
formations are briefly mentioned.

1.1 Numerical Details and Boundary Conditions

The flow simulations consider an incompressible isothermal fluid flow using the Reynolds-
averaged Navier-Stokes (RANS) method. For the steady-state pressure-velocity coupling the
SIMPLE-Algorithm was used, for the transient one the PISO-Algorithm. For all convective
terms a 2nd-order interpolation scheme as well as a 1st-order implicit Euler scheme for time
discretization was applied. To enhance stability of the SIMPLE velocity-pressure coupling,
moderate under-relaxation factors were defined. The mesh was generated in accordance to the
y+-criterion (y+ ≥ 30) required from turbulence models using a standard wall function. During
mesh movement, a constant cell height of cells near the moving walls was ensured.

2 METHODS AND NUMERICAL SETUP

The set of boundary conditions was defined as usual for ducted single phase flow. To avoid
numerical oscillations at the domain outlet a fixed mean static pressure boundary condition was
prescribed. For the turbulence quantities and static pressure zero gradient boundary conditions
were chosen at the domain inlet. A 1D-profile including U1(r), k1(r) and ω1(r) was given at
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Figure 1: Work flow of the optimization process.

the diffuser inlet, assuming an axisymmetric inflow. At the ambient inlet, a permanent bulk
velocity U1AMB (free flow velocity) was predefined, see Fig. 2. To prescribe the turbulent
quantities at the ambient inlet, the turbulent kinetic energy k and the dissipation rate ω were
set with k = 1.5(U1AMBI)2 and ω = C0.75

µ k1.5/lt. Based on previous studies, the turbulent
intensity I = 0.03 and an uniform turbulent mixing length lt = 0.01m were expected at the
domain inlet. The distance between the solid diffuser wall and the free slip boundary defined at
the farfield was chosen sufficiently big, see Fig. 4 . For demonstrating the effect of the diffuser
geometry contour, a comparison between optimized- (OPTD/OPTC with or without either one
discontinuous transition along the inner and outer diffuser walls), original- (ORIG) and conical
(CON) wall shapes with same grid refinement was simulated.

2.1 Mesh Movement and Parameterization

For the parameterized boundary mesh movement, a mesh motion solver based on Laplacian
smoothing was applied. A variable quadratic diffusivity was prescribed during deformation to
keep distortions in the boundary region as low as possible. The vertices of the inner and outer
wall shapes of the 3D conical flow around diffuser were each independently parameterized with
a smooth Bézier-Spline of 4th-order and rotated by 360◦ yielding a 3D circular contour. Such a
curve of degree N is defined by the following parameterization

X(t) =
N∑
i=0

(
N

i

)
(1− t)N−itiPi, with t ∈ [0, 1] (1)

and is therefore ideally suited for varying the order of the Bézier-Spline. To ensure clarity about
the effect of a discontinuous transition along the inner and outer diffuser walls, their contours
were parametrized both with a polynomial of 3rd-order and 1st-order, enabling a discontinuity,
as can be seen in Fig. 2 (bottom). On the other hand, the contour is defined by a Bézier-
Spline of 4th-order causing smooth contour shapes, see Fig. 2 (top). Due to restrictions on the
optimizer’s directives, the inlet- and outlet coordinates of the diffuser wall shapes were assumed
to be constant, that means P0, PN = const. Additionally, with considering a discontinuity along
the diffuser walls, PN−1 was also assumed to be constant (PN−1 = const), see Fig. 2 (bottom).
All integrated values describing the diffuser characteristic were calculated at the diffuser inlet
R1 and -outlet R2.

As a compromise between accuracy and computational costs the diffuser walls are only pa-
rameterized with a smooth Bézier-Spline of max. 4th-order , which have already provided
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Figure 2: Interior diffuser boundary with a Bézier-Spline Parametrization of N -order (top) or with an additional
Bézier-Spline Parametrization of 1st-order for considering a discontinuity (bottom); (dashed) evaluation plane.

appropriate results for a quasi 2D wedge type diffuser [9].

2.2 Mesh Independence Study

For the given problem a mesh independence study with the conical diffuser was performed
to determine the required number of computational cells. Calculations of ∆ptot at three stages
of grid refinement (h = 1, 2, 4) were introduced and opposed to an estimated value fh=0 from a
Richardson Extrapolation [8] with higher order based on the lower order values fhi , see Tab. 1
and Fig. 3. The estimation fh=0 becomes

fh=0 ≈ fh=1 +
fh=1 − fh=2

rp − 1
(2)

whereas r is the grid refinement and p the formal order of accuracy of the algorithm. The order
of convergence is defined as p = ln(fh=4−fh=2)/(fh=2−fh=1))/ln(2) and h prescribes the grid
spacing. So, one can estimate the value of a quantity f as the grid spacing goes to zero (h→ 0).
The Grid Convergence Index (CGI), based upon a Richardson error estimator, represents a

Grid hi r = hi+1/hi fhi/fh=4

- - - m2/s2

Afine 1 2 0.4546
B 2 2 0.4747
C 4 − 1

|ε21| |ε42| ε21/ε42 p GCI21 GCI42

10−1 10−1 − − % %
0.42 5.25 0.08 4.70 0.22 2.62

Table 1: Three different grid refinement
stages with the integration variable ∆ptot
as quantity of fhi

, Normalized Grid Spac-
ing hi.

Table 2: Grid Convergence Index for three integration vari-
ables at different mesh refinements.

measurement of the difference between the computed data and the asymptotic numerical value.
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The CGI on the fine grid reads

CGIfine =
Fs|ε21|
rp − 1

, (3)

while the CGI of a coarser one is defined asCGIcoarse = Fs|ε42|rp/(rp−1), wherein the relative
error is εi+1,i = (fhi+1

− fhi)/fhi . The incorporated safety factor of Fs = 1.25 is suggested in
several works. As can be seen from Tab. 2, the convergence ratio R = ε21/ε42 < 1 shows a
monotonic convergence behavior.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

N
or

m
al

iz
ed

 T
ot

al
 P

re
ss

u
re

 L
os

s 
[-
]

Normalized Grid Spacing hi [-]

OpenFOAM, second order

Richardson Extrapolation

Figure 3: Calculated ∆ptot at different refinement
stages against the asymptotic approximation ob-
tained from the Richardson Extrapolation.

Figure 4: Computational area of the conical dif-
fuser.

Due to high computational costs during the time-consuming optimization process, the medium
size grid (h = 2) with about 2× 106 nodes was chosen for all calculations. Figure 4 illustrates
a typical computational grid used in the present work.

2.3 Flow Characteristics

In order to predict the diffuser efficiency, the well known pressure recovery coefficient Cp as
an averaged integrated value was used during optimization. Based on theoretical considerations,
a simple estimation of Cp can be derived from geometrical conditions only. After applying
the Bernoulli-Equation along a streamline from in- to outlet of the diffuser, the resulting ideal
pressure recovery coefficient is given by

Cpi = 1− 1

AR2
, (4)

which only depends of the area ratio AR = D2
2/D

2
1 of the diffuser geometry.

The diffuser performance is characterized by the flow averaged pressure recovery coefficient
using the normalized total kinetic energy 0.5|U1|2 at the diffuser inlet

Cp =

∫
ψ2

p2 dψ2 −
∫
ψ1

p1 dψ1

0.5

∫
ψ1

|U1|2 dψ1

(5)
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where ψ is the face flux at the calculation sections. Based on flowrate weighted values, the inlet
swirl is defined by the swirl number

S =

∫
ψ1

UaxUθrdψ1

R1

∫
ψ1

U2
axdψ1

, (6)

whereas the characteristic radius is the diffuser inlet radiusR1. The quantity represents the ratio
between angular and stream-wise momentum of the diffuser flow at the domain inlet. To ensure
simulation accuracy, all cost functions and performance quantities used in the optimization
process are averaged.

Due to swirl inflow, centrifugal forces gain a radial pressure distribution in the diffuser,
which leads to a low pressure level at the diffuser centerline. At a certain level of inlet swirl,
defined by the swirl number S, the arising of an axisymmetric streamwise vortex may be a
cause of worsening the diffuser performance. With increasing swirl, the pressure level at the
diffuser centerline decreases due to low velocity. So, the resulting dead water region reduces
the effective diffuser cross section similar to an annular discharge channel. To quantify the
influence of this cross-sectional area reduction the variable D2,vc is introduced characterizing
the magnitude of the vortex core:

ARvc =
D2

2 −D2
2,vc

D2
1

(7)

Hence the corrected ideal pressure recovery coefficient is given now by Cpi,vc = 1−1/AR2
vc.

Here, the outer diameter D2,vc was taken from a simple post simulation process, which extracts
the vortex core region inside the diffuser. Information about the bounding streamline between
main flow and vortex flow was obtained by applying a simple filter function of |u| → 0, which
was found to be sufficiently accurate for the present study. Interpolation between those cal-
culated discrete points was done by a modest polynomial interpolation D2,vc(x) =

∑
aix

i

(i = 0 . . . 3).
Since the diffuser geometry strongly influences the occurrence of undesired flow phenomena

inside the diffuser, the basic geometry specifications of the present diffuser are characterized by
parameters like the non-dimensional length L/D1 and the non-dimensional area ratio AR for
conical diffusers, as defined in Eq. 8 and 9.

L

D1

≈ 1.7 (8)

AR =

(
1 + 2

L

D1

tanθ

)2

≈ 2.9 (9)

2.4 Optimization Strategy

Optimization of hydraulic flow devices often involves time and is associated with compu-
tational cost, especially when optimizing complex 3D geometries. One efficient possibility
is applying an evolutionary algorithm (EA) with an inexact pre evaluation procedure for op-
timization. By introducing low-cost surrogate evaluation models, also called ”metamodels”,
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a significantly decreasing number of calls can be reached. Thus, this method aims to reduce
computational resources caused by the evaluation code, here CFD. Further details on the sub-
ject can be found in [2]. The optimization software EASY used in this study, is based on
Metamodel-Assisted-Evolutionary-Algorithms, widely denominated as MAEA, which are pre-
sented thoroughly in [3]. Another time-saving technique for global optimization is called the
hierarchical distributed MAEA (DMAEA) yielding a drastic reduced number of evaluations by
introducing separately handled subpopulation.

To find the optimal hydraulic layout of a 3D conical diffuser a (µ, λ) MAEA is coupled with
the open source CFD software package OpenFOAM-1.6-ext solving in parallel. This technique
subdivides the main population (offspring, parent and elite) into three different sub populations,
which are interacting among themselves over specific evolution operators. As discussed above,
metamodels are highly beneficial towards performance issues and need a database to store the
individuals. The implemented MAEA utilizes locally trained metamodels, for which neighbor
entries in the database are selected. λ radial basis function networks [4] are applied to pre
evaluate the population members before they are evaluated by problem specific tools and stored
in the database.

3 TURBULENCE MODEL VALIDATION

Outflow of an axial turbine is often characterized by a strong circumferential flow compo-
nent, which can alter the flow regime in the diffuser radically. Appearing angular momentum
leads to streamline curvature as well as a radial pressure gradient, which results in a low pres-
sure field at the diffuser centerline. Turbulent axisymmetric flow with swirl appears in several
industrial flow devices and needs to be addressed in a more specific way.

Thus, a turbulence model with modified production terms of the turbulent kinetic energy
following [6] was implemented into OpenFOAM-1.6-ext, which considers the turbulence aniso
tropy of swirling flow. The correction factor fcorr was defined in Eq. 10 and multiplied in the
transport equations for both k and ω. In simple terms, it should be noted that r∗ and r̃ represent
a function of the fluid normal stress S and shear stress tensor Ω. Flow with vanishing streamline
curvature therefore yields fcorr = 1.

fcorr = (1 + cr1)
2r∗

1 + r∗
(
1− cr3 tan−1(cr2r̃

)
− cr1 (10)

The turbulence models were briefly tested using a three-dimensional case [5] at a moderate
swirl level of S = 0.388 (see Eq. 6). As can be seen in Fig. 11, the original SST k-ω model
underestimates the angular velocity W in the wall near region, whereas the center line velocity
is predicted well. The corrected model shows a slight improvement of the angular velocity
although an overestimation at the end of the divergent part is observed, leading to a minor
backflow in the center region.

4 RESULTS

4.1 IDEAL PRESSURE RECOVERY COEFFICIENT Cpi

To point out the influence of strong dead water flow at the diffuser center line on the effective
cross-sectional area, the optimized geometry is taken as an representative example. The curves
of different ideal pressure recovery coefficients Cpi(x) at swirl inflow (S = 0.07, calculated
with Eq. 6), are shown in Fig. 6. The development of Cpi using the common formulation Eq. 4
shows the best pressure recovery and ends up at a value over 0.9. Based on the consideration of
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Figure 5: Comparison of circumferential velocity W using standard SST k-ω and SST-CC k-ω.

a corrected area ratioARvc (Eq. 7), the obtained Cpi,vc clearly shows a weakening trend towards
diffuser performance of about 6.2%, readily seen in Fig. 6. Figure 7 illustrates the shape of the
optimized wall shape and vortex boundary streamline respectively. Both curves bear a certain
geometrical resemblance to one another.
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Figure 6: Development of the pressure recovery coef-
ficient in the conical diffuser.

Figure 7: Wall contour of the diffuser wall and the
interpolated vortex core bounding streamline.

4.2 OPTIMIZATION

Table 3 shows steady-stately and transiently calculated pressure recovery coefficients Cp for
the different diffuser geometries ORIG, CON, OPTC and OPTD. Due to steady-state optimiza-
tion process using Cp as cost-function, a significant increase of Cp compared to the original-
and conical diffuser is gained, yielding a concave-flat-convex curved wall shape, as can be seen
in Fig. 8. Comparable results have been already obtained in [9, 10], for additional qualitatively
descriptions of the results see [10, 11, 13].

In order to take time depending factors into account, transient investigations with a maxi-
mum Courant Number of Comax = 1 were performed using a monitoring period of 15 seconds
from reaching a converged state. Comparing steady-state- and transient results, significant dif-
ferences in Cp occur with the optimized geometries OPTC and OPTD. While OPTC achieves
a higher Cp during steady-state optimization process, the value drops more than for OPTD if
transient effects are regarded. This can be attributed to a higher sensitivity of the steady OPTC-
contour with respect to time-dependent influences. Compared to the original diffuser ORIG, the
improvements of Cp according to transient simulations correspond to a respective percentage
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Geo CpS CpT ∆CpT ∗ ∆CpS−T
**

- - - % %
ORIG 0.459 0.438 0.00 4.60
CON 0.534 0.506 15.5 5.20
OPTC 0.680 0.580 32.4 14.7
OPTD 0.643 0.592 35.2 7.90

r/
R
1

1

x/L
0 0,5 1

OPTC
OPTD

Table 3: Comparison of the steady-stately calcu-
lated pressure recovery coefficient CpS

and the tran-
siently calculated one CpT

for the different geome-
tries ORIG, CON, OPTC and OPTD; difference of
CpT

related on ORIG geometry (*), difference be-
tween steady-state and transient results (**).

Figure 8: Optimized diffuser wall shapes OPTC and
OPTD using Cp as cost-function.

of approximately 32% for OPTC and 35% for OPTD - and related to the conical diffuser CON
of approximately 15% for OPTC and 17% for OPTD. Figure 9 and Fig. 10 show the influence
of different diffuser wall shapes on the established flow pattern. A strongly pronounced hub
vortex formation displaces the remaining fluid towards the diffuser walls leading to an energy
enrichment of the boundary layer, which in turn prevents flow separation in those regions.

Figure 9: Comparison of the transiently calculated ve-
locity U for the diffuser geometries ORIG and CON.

Figure 10: Comparison of the transiently calcu-
lated velocity U for the optimized diffuser geometries
OPTC and OPTD.

Since hub vortex structures are less developed for OPTD, a higher diffuser efficiency is
reached than for the other optimized geometry OPTC. Additionally, the discontinuity at the

9

431

lacan
Rectangle



M. Lenarcic, S. Erne and C. Bauer

OPTD-contour stabilizes the flow and time sequence of Cp and ∆ptot are about half the size
of amplitudes for OPTC. Despite transient effects, an almost steady flow field is induced with
a standard deviation for Cp and ∆ptot of SDCp < 3 × 10−3 and SD∆ptot < 5 × 10−3 for all
investigated geometries.

Compared to transient results from commercial code, differences of Cp and ∆ptot are less
than 1.5%.

4.3 FREE SURFACE FLOW

Hydrokinetic turbines driven by river current often have mounted a diffuser or augmented
channel unit downstream improving the flow characteristics of the turbine. To study the diffuser
characteristics under more realistic conditions, free surface flow simulations in a gravitational
field with appropriate inflow conditions were performed. A constant inflow water level and a
unique flow velocity for both fluid and air was prescribed at the ambient inlet boundary. The
side walls were defined again as symmetric planes.

Figure 11: Contour plot of static pressure distribution pd at y-z plane for the optimized geometry OPTC. (dashed
line) instantaneous contour of free surface; pd in N/m2.

The diffuser inflow conditions remain the same as those used in the single phase flow. Nu-
merical details and discretization methods the used flow solver is based on, can be found in
[7]. For the present study a coarsened block-structured mesh was used, however, with the same
boundary layer resolution. The maximum Courant Number was Comax < 0.25 during the tran-
sient simulation of 60 seconds, after reaching a quasi steady-state flow solution. Compared
with single phase studies using the same computational settings, the free surface flow simula-
tion tends to stronger fluctuations in the diffuser characteristics. As the simulation additionally
takes account of the hydrostatic pressure distribution and free surface stress forces, the variation
over time of Cp is increased significantly.

Figure 11 illustrates the static pressure distribution including the low pressure region in the
outer air flow. Even in the two phase simulation an improvement of Cp due to wall shape opti-
mization comes apparent. Compared to the conical diffuser CON, the OPTC shows an improve-
ment corresponding to a respective percentage increase of approximately 10%. A comparison
between the time-averaged pressure recovery coefficient of the single phase- and two phase
simulation shows that they are broadly in the same range, as can be seen in in Tab. 4.

Figure 12 draws streamlines of both CON and OPTC diffuser, where the simulation using
the optimized wall shape shows less single vortices in the backflow region. Also, the stream-
wise growth of the vortex core inside the optimized diffuser is significantly weaker than in the
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Geometry Cp1Ph
Cp2Ph

∆Cp1Ph−2Ph
*

- - - %
CON 0.506 0.492 2.8
OPTC 0.580 0.548 5.5

Table 4: Comparison of transiently calculated pressure recovery coefficient Cp for the geometries CON and OPTC;
single phase- (1Ph) and two phase simulation (2Ph); difference of Cp related on results from 1Ph calculation (*).

original diffuser observing a more stable vortex structure. Both plots present a reduction of the
diffuser area due to vortex formations at the centerline and a strongly disturbed flow after the
diffuser.

Figure 12: Time averaged velocity streamlines projected on y-z plane; left: conical contour (CON), right: opti-
mized contour (OPTC).

5 CONCLUSION

In this work an efficient coupling of OpenFOAM-1.6-ext with the optimization tool EASY
using a generalized metamodel assisted evolutionary algorithm (MAEA) is outlined. During
fully automated shape design optimization of a 3D conical flow around diffuser, the inner and
outer diffuser walls are each independently parameterized with a smooth Bézier-Spline of max.
4th-order. A modified version of the SST k-ω model is applied to capture streamline curvature
effects inside the diffuser flow. The influence of a discontinuity transition at the inner and outer
diffuser wall is carried out as well. The resulting optimized geometries show a comparable
diffuser efficiency, leading to a moderate increase of Cp compared to the original- and conical
geometry. Compared to the original diffuser ORIG, the improvements of Cp according to tran-
sient simulations correspond to a respective percentage of approximately 32% for OPTC and
35% for OPTD - and related to the conical diffuser CON of approximately 15% for OPTC and
17% for OPTD. The qualitative progress of the optimized curve shapes are quite similar to those
of previous diffuser investigations by [12, 9, 10]. Transient single phase simulations cause an
almost steady flow field with negligible standard deviations of Cp.
A comparison between the time-averaged pressure recovery coefficient Cp calculated by tran-
sient single phase- and two phase simulations for conical and optimized diffuser geometries
shows appropriate agreements with each other. However, the free surface flow simulation has
shown significantly stronger pressure fluctuations appearing more realistic, but is found to be
too time consuming for an evaluation code application.

Further studies are aimed at developing a wall shape optimization of an oval 3D flow around
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diffuser using Bézier-Surfaces for parameterization. Additionally, a simplified wall blowing
concept is applied on the turbine hub in order to reduce vortex formations.
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Abstract. The generalized finite element method (GFEM) allows setting good conditions of 
local approximations by means of enrichments functions with special features. One major 
advantage of this method is the mesh independence for crack simulations. Moreover, the 
strong gradients typical of linear elastic fracture mechanics problems can be faced by 
customized enrichments. In spite of the good performance presented by the method on several 
numerical simulations it is very important to assess error estimates from the obtained results. 
In this context, a new a posteriori error estimator for the generalized finite element method is 
hereby considered aiming mainly to guarantee the more accurate and reliable stress 
distribution. A secondary aim is to employ the error estimates as indicator in hp‐adaptive 
strategies. The proposed estimator is then based on the superconvergent patch recovery (SPR) 
technique, a widely used technique for evaluating recovered stress fields from the 
conventional finite element solutions. The GFEM-SPR procedure explores the clouds and 
partition of unity concepts to obtain recovered stress fields from interpolation polynomials. 
Such functions are identified using the singular value decomposition (SVD) strategy over 
superconvergent point values defined in each cloud in coincidence with the quadrature 
integration points. A particular issue that appears when enrichment is imposed over a 
localized region of the solid domain is related to the so called blending elements. Such 
elements blend nodes with and without enrichment, however presenting lack of partition of 
unity property and, hence, also losing the reprodutibility feature. Thus, the accuracy and 
convergence ratio of the GFEM can be affected. In this paper a modification in the standard 
GFEM proposed in literature to properly account for blending elements is adopted and the 
error estimator is also improved. Some benchmarks problems discretized by two‐dimensional 
triangular and quadrilateral element meshes are presented in order to assess the efficiency and 
computational performance of the procedure hereby proposed. The energy norms of the 
recovered solutions, as well the effectivity index of the estimator are presented by comparing 
numerical and analytic solutions when available. 
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Abstract. In a medical context, one of the most used techniques to produce an
initial mesh (starting from segmented medical images) is the Marching Cubes (MC)
introduced by Lorensen and Cline in [1]. Unfortunately, MC presents several issues in
the meshing context. These problems can be summarized in three types: topological
(presence of holes), of quality (sharp triangles) and accuracy in the representation of
the target domain (the staircase effect). Even though there are several solutions to
overcome topological and quality issues, the staircase effect remains as a challenging
problem.

On the other hand, the Computational Geometry Algorithms Library (CGAL)
[2], has implemented the Poisson Surface Reconstruction algorithm introduced in
[3], which is capable of producing accurate and high quality triangulations based on
a point set and its normal directions.

This paper shows how surface meshes can be produced using both, MC and
CGAL. Moreover, starting from the generated quality surface mesh, this work also
shows how volume meshes can be produced. Therefore, a complete workflow, start-
ing from segmented medical images to surface and volume meshes, is introduced
in this work. In particular, tetrahedral and mixed–element meshing techniques are
presented to produce a simulation with the Finite Element Method.
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1 INTRODUCTION

In the context of biomechanical modelling of human organs, the most common way
to produce a mesh suitable for biomedical applications is to perform the following
steps:

• Acquire volumetric medical images of the patient’s organ using magnetic res-
onance imaging (MRI), ultrasound (US), computed tomography scanner (CT)
or other imaging techniques.

• Achieve image segmentation in order to produce a cloud of points or an initial
surface mesh defining the geometry of the modelled domain.

• Add internal nodes to produce the 3D elements that will conform the final
volumetric mesh.

One of the most used methods for extracting surfaces from volumetric information
arising from sources such as MRI data and CAT scans is implicit modelling, leading
to an abundance of approaches. One of the most widespread approach is Marching
Cubes (MC) [1], which belongs to the family of techniques that uses a structured
grid for implicit modelling [4].

One apparent drawback of MC is the uniform sampling density which does not
take the local surface curvature into account, producing problems like: (i) presence
of holes or surface crossing (topology), (ii) sharp and flat triangles (quality) and
(iii) the MC characteristic staircase effect. Even though many approaches have
been proposed to control the mesh complexity, e.g., by adaptive octree descent with
sophisticated refinements, the quality and the staircase effect remain as challenging
problems.

The Poisson Surface Reconstruction Method (PSR) tackles these issues by es-
timating the surface as the iso-contour to an indicator function defined from the
normal vectors to the MC boundary. The Computational Geometry Algorithms Li-
brary (CGAL) implements a variant of this algorithm which solves for a piecewise
linear function [2].

This paper shows how to obtain high accuracy surfaces, that approximate a volume
outer boundary from MC algorithms using a PSR method implemented in CGAL.
Moreover, this paper shows how to obtain volume meshes starting from the acquired
surface mesh.

2 MATERIALS AND METHODS

The overall proposed workflow is shown in Figure 1, where three main compo-
nents are introduced: input data, surface meshing and volume meshing. The surface
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meshing is based on the MC method, the rendered mesh is improved in order to use
CGAL to apply a PSR method. The output of CGAL is finally used to construct a
high quality volume mesh.

Image Aquisition

Marching Cubes

Segmentation

Quality Improvement

Mixed-Element

Hexahedra

Tetreahedra

Computation of
point normal

Poisson Surface
Reconstruction

Quality
Improvement

Input Data Surface Meshing Volume Meshing

Figure 1: Main Workflow with three steps: Input Data, Surface Meshing and Volume Meshing.

2.1 Image acquisition and segmentation

Volumetric medical images from imaging acquisition technology, such as CT, MRI
and PET, are represented by a stack of 2D image slices in 3D space, where the tissue
type surrounding a Voxel (volumetric pixel) determines its value. The variations
in tissue type give rise to varying intensity which is quantized as a scalar value
known as grey level, or more often as vector or tensor values when Voxels contain
multiple scalar values, e.g. in ultrasound. The segmentation problem is essentially
a classification problem. A label representing the region to which an image Voxel
belongs is assigned to each Voxel. The assignment is however, subject to some
constraints, such as piecewise continuity and smoothness. Depending on the imaging
technique, the segmentation could be difficult and a research area in itself [5].

2.2 Surface Meshing

The first step is to use MC to render a surface from segmented contours. The
principle behind the MC algorithm is to subdivide space into a series of small cubes.
By the values at its eight vertices -below or above an isovalue- the intersections at the
cube edges are found. These intersections are used to generate triangles representing
the isosurface by a lookup table of surface configurations of cubes. However, the
MC shows important drawbacks for some surface configurations: the topology of
the isosurface is not unique and the resulting surface of two adjacent neighbor cubes
can produce: holes, poor quality triangles explained below and low accuracy in the
representation known as the staircase effect.
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With respect to holes in the triangle mesh, there are new versions of MC [4, 6],
that address and solve this problem. Alternatively a conventional solution is the use
of the ear clipping technique [7], adding new triangles to close the hole.

One of the most important quality metrics for surface meshes is the minimal angle.
There are two types of poor quality triangles: sharp and flat. The first refers to a
triangle that has one angle close to cero and two close to 90 degrees. A conventional
solution is the edge collapsing technique, which will “join” the two nodes opposite
to the “close to cero” angle. The second one has two angles close to cero and one
close to 180 degrees; there is no proper or general solution for this case.

These repairing techniques allow to get a surface mesh without sharp triangles
nor holes; the next section is dedicated to tackle the problem of low accuracy repre-
sentation or staircase effect.

2.3 Quality meshes from implicit functions

Starting with a surface mesh free of holes and sharp triangles, problems like stair-
case effect and remaining poor quality triangles can be overcome by the Poisson
Surface Reconstruction method (PSR) [2] which is available in the library CGAL.
The PSR formulation considers [3] all points at once, without resorting to heuris-
tic spatial partitioning or blending and so, is highly resilient to data noise. This
approach allows a hierarchy of locally supported basis functions, and the solution
reduces to a well conditioned sparse linear system.

CGAL takes as input a set of normal vectors (3D oriented set of points). The
normal of each node is computed as the average of incident triangle normals. Given
an oriented set of points. CGAL algorithm builds a 3D Delaunay triangulation from
these points and refines it by Delaunay refinement so as to remove all badly shaped
(non isotropic) triangles and to tessellate a loose bounding box of the input oriented
points [2]. The PSR defines an indicator function χ̃ as 1 at points inside the model,
and 0 at points outside. A new quality surface is obtained by extracting an isosurface.

The principle behind this method is the relationship between oriented points (nor-
mal vectors) and the indicator function. The gradient of the indicator function is a
vector field that is zero almost everywhere (since the indicator function is constant
almost everywhere), except at points near the surface, where it is equal to the inward
surface normal. Thus, the oriented point set can be considered as a sample points
from the gradient of the indicator function shown in Figure 2, [3].

The indicator function thus reduces to inverting the gradient operator, i.e. finding
the scalar function χ̃ whose gradient best approximates a vector field ~V defined by
the samples, i.e.

Min|∇χ̃− ~V |.
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Figure 2: Four stages to reconstruct a surface: obtain a set of sample oriented points, each oriented
point can be considered as a sample point of the gradient of some indicator function, the isosurface
induced by the indicator function defines the reconstructed model.

Applying the divergence operator, this variational problem transforms into a stan-
dard Poisson problem: Compute the scalar function χ̃ whose Laplacian (divergence

of gradient) equals the divergence of the vector field ~V ,

∆χ̃ ≡ ∇ · ∇~χ = ∇ · Ṽ .

In order to implement and solve this approach in a discrete domain, some problems
must be considered [3].

2.3.1 Define the gradient field

Because the indicator function is a piecewise constant function, explicit computa-
tion of its gradient field would result in a vector field with unbounded values at the
surface boundary. To avoid this, the indicator function is convolved with a smoothing
filter and considers the gradient field of the smoothed function [3].

∇(χM ∗ F̃ )(q0) =

∫
∂M

F̃ (q0)N̄∂M(p)dp

2.3.2 Approximating the gradient field

Using the point set S to partition ∂M into distinct patches ℘s ⊂ ∂M , we can
approximate the integral over a patch ℘s by the value at point sample s.p , scaled
by the area of the patch:

∇(χM ∗ F̃ )(q) ≈
∑
s∈S

|℘s|F̃s.p(q)s. ~N ≡ ~V (q)
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2.3.3 Solving the Poisson problem

Having formed a vector field ~V , we want to solve the function χ̃ so that ∇χ̃ = ~V .
However, ~V is generally not integrable (there is not guarantee that is curl-free), so an
exact solution does not generally exist. To find the best least-squares approximate
solution, we apply the divergence operator to form the Poisson equation.

∆χ̃ = ∇ · ~V

2.4 Volume Meshing

Following the workflow shown in Figure 1, there are three type of volume meshing
analyzed in this work and they vary in terms of element type employed: tetrahedra,
hexahedra or mixed–elements, meaning a mix of tetrahedra, hexahedra, pyramids
and prisms (wedges). In order to compare the different results generated by these
meshing techniques, it is first necessary to explain how quality of volume elements
is measured.

2.4.1 Quality of volume meshes

The Jacobian Ratio (JR) is one of the most used quality criterion in hexahedra
meshes [8, 9, 10, 11, 12] and in order to understand how it works, it is necessary to
understand some concepts first.

The FEM establish a bijective mapping function F between the modeled domain
referential (x1, x2, x3), in which the elements of the mesh are defined, and a referential
parent system (ξ1, ξ2, ξ3) for each type of element. The Jacobian matrix J of mapping
F considered at parent frame point ξ is then defined as:

J(ξ) :=
∂F

∂ξ
(ξ)

If for some reason, F is no longer bijective, a Finite Element Analysis (FEA)
cannot be carried out over the mesh. In order to detect the bijection property of
F , two values must be computed for each node. The first is the determinant of J ,
|J(ξ)|. The second is the Jacobian Ratio JR defined as:

JRi =
|J(ξ)|i
|J(ξ)|max

where |J(ξ)|max is the maximum value of |J | among all element nodes. Note that
JR is normalized to present values between (−∞, 1].
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Element category invalid very bad questionable good

JR value (−∞, 0.001] (0.001, 0.03] (0.03, 0.2] (0.2, 1]

Table 1: Quality categories for Jacobian Ratio

It is now possible to say that F is not longer bijective when JR ≤ 0 for at
least one of its nodes. Moreover, the quality of an element e can be defined as
JRe := |J |min/|J |max and therefore, if any element presents a JRe ≤ 0, then not
only is the element invalid, but the entire mesh is considered as not suitable for
FEA.

The JR is not only used to detect invalid elements, but also poor quality ele-
ments. A perfect element is the one with a JR = 1. An element is said to present
“questionable” quality when JR ∈ (0, 0.2) after the Verdict library of mesh quality
metrics1 and some authors [9, 11]. On the other hand, the documentation of one of
the most important commercial Finite Element Solver (FES), ANSYS2, states that
an element with a JR value3 less than 0.001 presents so poor quality that it is consid-
ered as invalid. Moreover, an element with a JR value ∈ (0.001, 0.03] is suitable for
FEA although the solution from the FES will be inaccurate. Regarding both quality
boundary definitions, Table 1 shows the different categories for element quality.

The JR criterion is widely used in hexahedra meshes and it can be easily extended
to prisms and pyramids by the computation of the |J | for those element types.
Unfortunately it is not a good quality measure for tetrahedra as the value of |J | is
the same for each tetrahedron node no matter their position, in other words, the
value of JR for a tetrahedron is always 1. Moreover, the JR does not allow the
detection of sliver (or flat) tetrahedra, which is one of the most common problems
for this type of element and it adds imprecision to the solution found by a FES.

On the other hand, there is a quality criterion used by several authors [13, 14, 15]
that considers important geometric aspects of the tetrahedron, like its volume V and
its edge lengths li:

Aγ :=

(
1
6

∑6
i=1 l

2
i

)3/2

8.47867× V
As it compromises the volume, it helps to detect sliver tetrahedra. Moreover, if V

is the signed volume, Aγ can detect element inversion. Finally, the use of the edge

1The verdict mesh verification library (2007) Sandia National Laboratories, http://cubit.

sandia.gov/verdict.html
2http://www.ansys.com
3Note that ANSYS defines the Jacobian Ratio as JR−1 regarding the notation used here.
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lengths will avoid to consider extremely sharp tetrahedra as “good” elements.
In order to consider a similar scale to JR, the final quality of a tetrahedron is

defined as Qtetra = A−1
γ . With this definition Qtetra is negative for any inverted

element, bad when it’s close to 0 and perfect when its value is 1.
The JR might also fail in detecting inverted pyramids. For this reason a signed

and normalized version of the aspect ratio (AR) presented in [16] is used. In this
case, a negative AR shows the presence of inverted elements.

2.4.2 Tetrahedral meshing using TetGen

To generate tetrahedral meshes, one of the most used softwares is TetGen (http:
//tetgen.org), developed by Hang Si. This program has implemented several mesh-
ing algorithms that allow to produce a tetrahedral mesh. Some of its capabilities
are: to preserve the input surface mesh and constraint the mesh generation process
in order to create quality elements, e.g., constraining the minimal dihedral angle.
It is important to note that TetGen, as well as CGAL, is capable of improving the
quality of a surface mesh. However, TetGen will use all the nodes of the input mesh
and will add more (Steiner points) in order to build a constrained or conforming
Delaunay triangulation. In contrast to TetGen, CGAL may or may not use all input
nodes in the process of achieving a quality triangulation. As it will be show in the
result section, CGAL tends to produce meshes with less triangles and nodes than
the quality mesh generated by TetGen (in the context of surface meshes generated
with the MC ).

2.4.3 Hexahedral meshing

One of the most common techniques to produce a hexahedral mesh is the Octree
[17]. The Octree allows regions of different refinement level to coexist in the same
mesh. By the use of several templates containing only hexahedra, transitions are
performed between coarse and refined regions [9, 10, 18].

The Cubit Tool Suite developed at Sandia National Laboratories (http://cubit.
sandia.gov/) implements most of the state of the art algorithms in hexahedral
meshing. Unfortunately, even for academic purposes, it is not easy to obtain a
license (as in the case of TetGen).

2.4.4 Mixed–Element mesheing

Once a hexahedral mesh is produced, there are two options to achieve surface
representation: (1) remove all hexahedra intersecting the boundary (meaning an

8
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element with inside and outside nodes) and then fill the gap adding new hexahedra
in a proper manner [9] or (2) project the outside nodes onto the surface.

A recent work [19] has proposed to replace boundary hexahedra by mixed–elements
in order to improve the overall mesh quality. Once this replacement is done, project
outside nodes onto the surface. This technique tends to produce less quality issues
than using only hexahedral; although, none of these techniques can ensure mesh
validity for a general case.

3 RESULTS AND DISCUSSIONS

The surface mesh generated for Breast simulation is shown in Figure 3. As men-
tioned in section 2.4.2, TetGen improves the quality of the input mesh; however,
the final results have more triangles than the output generated by CGAL and may
present flat triangles. Table 2 summarizes statistics for surface meshing in the con-
text of the workflow shown in Figure 1. Finally, the CGAL mesh was contrained to
present triangles with min angle above 30 degrees.

(a)

(b)

(c)

(d)

(e)

Figure 3: Breast surface meshing: (a) input data with the MC, (b) zoom to previous mesh, (c)
zoom to the same region in a TetGen optimized mesh, (d) zoom to CGAL mesh and (e) the output
mesh by CGAL

With respect to Volume meshing, the output of TetGen and the mentioned mixed–
element technique are compared. Unfortunately, the Cubit output could not be
compared as it was to difficult to obtain the software. Table 3 summarizes statistics
for volume meshing. Finally, Figure 4 shows the results for volume meshing, where
the overall mesh generated by TetGen is omitted because it is equal (in terms of
surface) to the mesh generated by CGAL.
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MC MC improved TetGen CGAL

nodes 12189 10104 50975 4058

triangles 24374 20204 101946 8112

min angle 0.008 0.0108 0 30

max angle 179.2 179.9 180 119.9

Table 2: Statistics for surface meshing

(a) (b) (c)

Figure 4: Breast volume meshing: (a) output by mixed–elements, (b) cut to see internal elements
and (c) same cut to TetGen mesh (using the surface generated by CGAL).

4 CONCLUSIONS

In this paper, we have proposed and evaluated a workflow based of sophisticated
existing tools to improve poor quality volumetric models, making the process simple
enough for non–experts to use in a wide range of applications.

The major advantage of the proposed workflow is that, the ability to remove
progressively poor quality elements allows to generate high quality surface meshes
and subsequently an accurate volume mesh of the actual geometry, from a point–
cloud acquired with conventional volumetric imaging methods.

Performance metrics over the polygonalization quality show that our workflow
can successfully generate volumes free of bad geometry problems, with good quality
triangles in many complicated surface meshes.

Elements Nodes Aspect–ratio Jacobian–ratio

TetGen 15680 4801 0.0623 –

Mixed–Elements 35748 27029 0.204 0.1894

Table 3: Statistics for volume meshing
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Abstract. Accurate estimates of limit loads for difficult stability problems in geotechnical 

engineering can rarely be obtained from a single finite element limit analysis without using an 

excessive number of elements. Therefore, efficient adaptive strategies which maximize the 

solution accuracy using minimum number of elements in the mesh are of great interest. This 

study explores the possibility of using the internal dissipation calculated from deviatoric 

stresses and strain rates as suitable control field for purely frictional materials. The 

performance observed for considered set of problematic for other adaptive schemes 

geotechnical examples is very promising. Moreover, the proposed approach works very well 

also for cohesive and cohesive frictional materials, suggesting its use as general engine for 

adaptive mesh refinement. 

 

1 INTRODUCTION 

For complex, practical stability problems in geotechnical engineering, accurate estimates 

of the collapse load or factor of safety can rarely be obtained from a single analysis and a trial 

and error process is usually required. The key to obtaining accurate solutions lies in accurately 

capturing the areas of plasticity within the problem domain, as their pattern and intensity 

govern the solution. The development of an efficient mesh adaptivity strategy, which is able 

to pinpoint the fine detail of a structure’s collapse mechanism, is thus of the highest priority in 

modern limit and shakedown analysis. 

A critical aspect of any adaptive meshing process is the estimation of the discretisation 

error present in a given finite element solution. Since a priori error estimates play only an 

indicative role (Borges et al.
[1]

), useful error estimates must employ a posteriori techniques to 

predict the overall discretisation error in one or more solution norms (or control variables). 

Generally speaking, two major approaches have been practiced so far. The first is the Hessian 

based error estimation, where the spatial distribution of the error in solution is obtained on the 

basis of information gathered from the matrix of second derivatives of some control variable 

(Zienkiewicz et al.
[2]

, Almeida et al.
[3]

, Lyamin et al.
[4]

). And the second is a so-called gap 

adaptivity scheme, which is based on the fact that for limit analysis applications the global 

error in the solution can be readily obtained as the sum of elemental differences between 

upper and lower bound estimates (Ciria et al.
[5]

, Muñoz et al. 
[6]

). 

448

mailto:andrei.lyamin@newcastle.edu.au
http://www.cgse.edu.au/


Andrei V. Lyamin, Kristian Krabbenhoft and Scott W. Sloan 

The major advantage of Hessian based error estimation when combined with optimal-

mesh-adaptive scheme is that it usually provides the element size distribution which 

converges (keeping the number of elements in the mesh constant) very quickly to a steady, 

smoothly graded mesh pattern, which can be either isotropic or anisotropic. It is very general 

and based on the fact that, at some point x in the vicinity of a point 0x , the difference between 

the variable of interest u and its discrete approximation hu  can be estimated using the 

following expression  

 
0 0 0( ) ( ( ))( )T

h R hC  u u x x H u x x x  (1) 

where C is a positive constant and 0( ( ))R hH u x denotes a recovered Hessian matrix. An anisotropic 

error estimator for element e of a partition h  of the domain   can then be introduced as 

   
1 2

2
1 2 2

0 0 0 0( ) ( ) ( ( ))( ) d ;
e

T

e e n n R h e

e

n h


         x x x H u x x x  (2) 

where n is the problem dimensionality, hn is the minimum dimension of element e, and n is the 

largest eigenvalue of the element Hessian matrix. It is assumed also that the estimated error yields 

the same value in any direction, i.e. 
2 2 2

1 1 2 2 n nh h h     .  

The choice of a suitable control variable is not obvious for plasticity problems. Several 

approaches have been practiced so far including those based on power dissipation or its gap 

(Ciria et al.
[5]

, Muñoz et al. 
[6]

), plastic multipliers (Lyamin et al.
[4]

) and strain rate 

(Christiansen & Pedersen
[7]

) fields employed as control variables. All these schemes work 

quite well for cohesive or cohesive-frictional materials, but for purely frictional soils their 

performance stalls as e.g. plastic multipliers have substantially high values for all zero stress 

points on the surface of soil domain, therefore cannot indicate reliably plastic areas. Similar 

conclusion can be made about performance of schemes based on power dissipation or strain 

rates.  This study explores the possibility of using the internal dissipation calculated from 

deviatoric stresses and strain rates (called also “shear power” in the rest)  

 1 1
1 13 3

: d , ,
e

ij ij ij ij ij iju s I I 


           s ε  (3) 

as suitable control field for purely frictional materials. In above ,ij ijs  and ,ij ij    are  the 

Cartesian and deviatoric stresses and strain rates, respectively, and 1I


, 1I


 are the first 

invariants for stresses and strain rates. 

The performance observed for considered set of problematic for other adaptive schemes 

geotechnical examples is very promising. Moreover, the proposed approach works very well 

also for cohesive and cohesive frictional materials, suggesting its employment as general 

engine for adaptive mesh refinement. 

2 THE OPTIMAL MESH ADAPTIVE SCHEME 

Usually mesh refinement proceeds with gradual adjustment of the element size aiming to 

distribute local error uniformly over the problem domain. The other alternative is to obtain the 
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element size distribution which minimizes the global error given by equation (2). This 

approach is known as optimal-mesh-adaptive technique and is described in detail e.g. by 

Almeida et al.
[3]

 In brief, the optimal-mesh-adaptive procedure can be cast as constrained 

optimization problem, which for two-dimensional case becomes 

 

  2

2 2 2 2

2

2 2

minimise   ( ) ( ) 2    

subject to  (4 / 3) ( )  to find , 
k

k

pp p

T T T T

T

e T T kT
T

h h h

N s h h T





  






 

 




 (4) 

where 2Th and Ts  are the new size and the stretching of element T, k  is the finite element 

discretization at the adaptation step k and 
eN is the desired number of elements at the step k+1. For 

p = 2 and the case of equilateral elements (no stretching) the solution to problem (4) is given by  

   2 4 3T e e eh N     (5) 

The advancing front algorithm (Peraire et al.
[8]

) has been employed for generating the 

mesh. As the meshing time is only a small fraction of the total CPU time in adaptive limit 

analysis, this algorithm was chosen in order to give full control of the mesh quality, including 

the shape of the elements and the rate of change of the element size throughout the mesh from 

one iteration to the next. Both refinement and coarsening of the mesh have been allowed.  

3 LIMIT ANALYSIS 

The lower (LB) and upper (UB) bound limit analysis formulations used in this 

investigation stem from the methods originally developed by Sloan
[9][10]

, but have evolved 

significantly over the past two decades to incorporate the major improvements described in 

Lyamin and Sloan
[11][12]

 and Krabbenhoft et al.
[13][14]

 . Key features of the methods include 

the use of linear finite elements to model the stress/velocity fields, and collapsed solid 

elements at all inter-element boundaries to simulate stress/velocity discontinuities. The 

solutions from the lower bound formulation yield statically admissible stress fields, while 

those from the upper bound formulation furnish kinematically admissible velocity fields. 

This ensures that the solutions preserve the important bounding properties of the limit 

theorems. 

Both formulations result in convex mathematical programs, which (considering the dual 

form of upper bound problem) can be cast in the following form: 

 0

    maximize 

    subject to   

                   ( ) 0, {1, , }if i N



 

 

Aσ p p

σ

 (6) 

where λ is a load multiplier, σ  is a vector of stress variables, A is a matrix of equality 

constraint coefficients, 0p  and p are vectors of prescribed and optimizable forces, 

respectively, if  is the yield function for stress set i and N is the number of stress nodes. The 
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solutions to problem (6) can be found efficiently by using general Interior-Point methods 

(IPM) or specialised conic optimization solvers (SOCP). 

4 NUMERICAL EXAMPLES 

Two representative examples from the soil mechanics are considered in this section to 

illustrate the efficiency of proposed adaptive approach. First example, so-called N problem, 

is about estimating the bearing capacity of rigid footing resting on cohesionless soil (sand). 

Second example is known as “passive earth pressure” case. Here the maximum lateral 

pressure which can be exerted to the soil cut, before it collapses upwards, needs to be found.  

Both examples are treated as two-dimensional problems and considered under plain strain 

conditions.  

Adaptive refinement proceeds by specifying the initial and target number of elements in 

the mesh, and the number of adaptive iterations. If this target number of elements is reached 

before the maximum number of iterations has exceeded, no additional elements are injected.  

However, some improvement can still be achieved by redistributing the element sizes in the 

remaining iterations if a better pattern of the control variable can be found. In examples 

considered the thresholds on mesh refinement and coarsening factors between 2 iterates were 

set to 0.25 and 1.5, respectively.  

4.1 Rigid rough strip footing on cohesionless soil (N problem) 

For a rigid strip footing resting on a ponderable purely frictional soil with no surcharge the 

bearing capacity is usually estimated by using reduced Terzaghi
[15]

 equation of the form 

   = 0.5q BN  (7) 

where  is soil unit weight, B is the width of the footing and N is the bearing capacity factor, 

which depends on soil friction angle, . There is no exact solution available for N and over 

the years several empirical expressions were suggested and used in practice (Brinch 

Hansen
[16]

, Caquot & Kerisel
[17]

). Recently very accurate estimates done by numerical limit 

analysis were reported (Hjiaj et al.
[18]

) and eventually quasi-exact values of N  were obtained 

by the method of characteristics (Martin
[19]

). Therefore, besides the standard for limit analysis 

UB-LB gap error estimation, this allows direct check of the accuracy of adaptively obtained 

q
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Figure 1. Geometry (a), initial mesh (b) and shear power dissipation plot (c) for strip footing. 
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solutions for this problem.    

The problem description (including Prandtl
[20]

 failure mechanism) together with the initial 

mesh used for analysis and corresponding shear power dissipation is given in Figure 1. Next, 

in Figure 2 the distributions of several traditionally used for adaptive limit analysis control 

variables are plotted. Due to the absence of cohesion in soil mass it is evident that power 

dissipation (all zeros) is not an alternative to govern refinement procedure in this case. And 

even if power loss due to soil unit weight is taken into account (Figure 2b) the resultant 

distribution does not resemble the actual collapse mechanism (slip line) to be considered as a 

good choice. Neither it will work when UB-LB gap of elemental power dissipation would be 

used. Similar comments are applied to another pair of control variables, strain rate and plastic 

multiplier fields. It is clear that all zero-stress points (soil surface boundary, LB case) are at 

plastic state, therefore will have some non-zero plastic multipliers as shown in (Figure 2d). 

This “noise” prevents plastic multipliers to be employed as adaptivity guide either. On the 

other hand, the dissipation computed using deviatoric terms of stresses and strains (shear 

power) has very distinctive distribution resembling classical Prandtl
[20]

 collapse mechanism 

for strip footing. And, as can be judged from results presented in Figure 3c, it works 

efficiently for both lower and upper bound discretizations. The final mesh and corresponding 

shear power dissipation are illustrated in Figure 3a,b. 

Figure 3. Final mesh (a), shear power dissipation (b) and convergence diagram for strip footing. 
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Figure 2. Distributions of commonly used control variables in the case of N problem. 

a)  power dissipation (UB) b)  rate of work by gravity (UB) c)  strain rate (LB) d)  plastic multiplier (LB)
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4.2 Passive earth pressure 

This is another classical problem in soil mechanics, where the lateral pressure, p, is applied 

to the soil mass to cause its collapse, as shown in Figure 4. There are several theories for this 

problem (the most famous are due to Coulomb
[21]

 and Rankine
[22]

) with different analytical 

solutions accounting for various soil slope angles, soil/wall interface conditions, mode of 

failure (no rotation or rotation allowed), etc. But our main focus here is not actually to 

compare results obtained to existing solutions, rather demonstrate that proposed mesh 

refinement approach performs reliably when applied to sands. For this purpose, in the same 

way as for N case, the distributions of most popular control variables traditionally used 

within the limit analysis adaptive schemes are given in Figure 5. It appears that the same 

comments as those given in previous section are applicable here as well - none of the 

distributions in Figure 5 seems to be suitable to assist with effective mesh refinement. On the 

other hand, using proposed adaptive scheme based on shear power dissipation results in 

robust refinement procedure as presented in Figure 6. 

Figure 4. Geometry (a), initial mesh (b) and shear power dissipation plot (c) for passive earth pressure. 
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Figure 5. Distributions of commonly used control variables in the case of passive earth pressure problem. 

a)  power dissipation (UB) b)  rate of work by gravity (UB) c)  strain rate (LB) d)  plastic multiplier (LB)
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5 CONCLUSIONS 

Based on deviatoric stress and strain fields elemental power dissipation was employed to 

control mesh refinement process in limit analysis computations for purely frictional materials. 

Both lower and upper bound counterparts of limit analysis were tested. The obtained results 

show that the proposed approach works reliably for demanding applications, where 

traditionally used control variables fail to perform.  
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Abstract. This work presents a methodology for adaptive generation of 3D finite element 

meshes using geometric modeling with multi-regions and parametric surfaces, considering a 

geometric model described by curves, surfaces, and volumes. The adaptive strategy adopted 

in this methodology is based on independent refinements of these entities. From an initial 

model, new sizes of elements obtained from numerical error analysis and from geometric 

restrictions are stored in a global background structure, a recursive spatial composition 

represented by an octree. Based on this background structure, the model curves are initially 

refined using a binary partition algorithm. The discretization of curves is then used as input 

for the refinement of adjacent surfaces. The surface discretization also employs the 

background octree-based refinement, which is coupled to an advancing front technique for the 

generation of an unstructured triangulation. Surface meshes are finally used as input for the 

refinement of adjacent volumetric domains. In all stages of the adaptive strategy, the 

refinement of curves, surface meshes, and solid meshes is based on estimated numerical errors 

associated with the mesh of the previous step in the adaptive process. In addition, curve and 

surface refinement takes into account curvature information. An example is presented in order 

to validate the methodology proposed in this work. 
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 2 

1 INTRODUCTION 

In numerical simulations using the Finite Element Method (FEM), two important aspects 

to be considered are the automatic generation of the model’s finite element mesh and the 

definition of the level of refinement associated with this mesh. For the first aspect, there are a 

variety of algorithms with different techniques to generate planar, surface, and volumetric 

meshes. The second aspect, i.e., the level of refinement, is usually defined manually by a 

specialist based on his/her own experience. However, this refinement should consider the fact 

that the density of the generated elements varies according to the gradient of the obtained 

solution, which is initially unknown. In this context, this work presents a methodology to 

automate the refinement process of three-dimensional meshes based on adaptive technique 

procedures. In this work, the proposed methodology is applied to stress analysis of solid 

structures using a displacement-based finite element formulation. However, since the 

methodology essentially treats geometric modeling and mesh generation aspects of the 

problem, it could be used in other types of 3D finite element simulation. 

Adaptive procedures try to automatically refine and coarsen a mesh, relocate its nodes, or 

adjust its cells to improve response accuracy. Usually, the computation begins with a trial 

solution obtained from a coarse mesh. The discretization error of this solution is estimated. If 

it fails to satisfy a prescribed accuracy metric, adjustments are made to achieve the desired 

solution with minimal effort. Common procedures are [1,2]: local/global refinement and/or 

coarsening of a mesh (h-refinement), relocating or moving a mesh (r-refinement), and locally 

varying the polynomial degree of elements (p-refinement). 

Some strategies have been proposed to efficiently automate the 3D mesh refinement 

process. These strategies can be divided in two approaches: local and global refinement. In 

local refinement, the process uses an initial mesh and locally, using a set of elements, refines 

or coarsens elements in the mesh. Most works in the literature are based on this approach, as 

described ahead. Kallinderis and Vijayant [3] and Muthukrishnan [4] present an adaptive grid 

scheme based on the division/deletion of tetrahedral cells. Golias and Tsiboukis [5] and 

Golias and Dutton [6] employ a set of topological Delaunay transformations of tetrahedral 

elements and a technique for node reposition. Lee and Lo [7, 8] approach mesh refinement by 

inserting additional nodes at the midpoint of the longest or quasi-longest line segment of the 

mesh that bisects the original edges to generate new elements. In Merrouche [9], the mesh 

adaptation is achieved by a 3D bisection method. De Cougny and Shephard [10] present an 

adaptive scheme based on subdivision patterns (for refinement), edge collapsing (for 

coarsening), and mesh optimization (following refinement and coarsening). Lee et al. [9] only 

increase the order and density of 3D finite element meshes. Lee and Xu [11] generate a 

surface mesh for the mid-surface of the thin-walled structure, controlling element size, and 

convert the surface mesh to a 3D solid mesh by extrusion. More recently, Zhang et al. [12, 13] 

generates tetrahedral and hexahedral meshing in multi-material domains using grid-based 

method that employs an octree structure, refining meshes also locally.  

In global refinement, on the other hand, at each refinement step, the entire mesh is deleted 

and another is generated based on new sizes of elements obtained from a discretization error 

estimation analysis. This process is used by Kettil et al. [14] only in regions with complicated 

parts. Hughes et al. [15] refine the structured meshes with NURBS surfaces. Our work 

presents a methodology that employs the global h-refinement approach. 
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A previous paper [16] proposed a two-dimensional self-adaptive strategy that was able to 

perform simulations involving automatic generation of meshes and adaptive methods. Other 

works have considered the same problem through different approaches, such as the study by 

Mark Shephard’s team [17], from the Rensselaer Polytechnic Institute. Cavalcante-Neto [18] 

proposed a technique for the generation of volumetric meshes of tetrahedral elements for 

arbitrary region domains. Combining this technique with the implementation of 3D error 

estimators, the authors defined a prototype of an environment for adaptive generation in three 

dimensions. However, in this previous work, the complete process was not performed 

automatically, i.e., the mesh was generated independently from the error estimation and had to 

be manually combined. Moreover, despite treating multi-regions, it was not very efficient, and 

parametric surfaces, which are used in several types of simulations, were not considered. 

This paper aims to present a methodology for adaptive generation of three-dimensional 

finite element meshes, using geometric modeling with multi-regions and parametric surfaces. 

Basically, the whole mesh adaptive process involves three steps: (1) analysis of a finite 

element (FE) model with discretization error estimation; (2) construction of a background 

structure to store new FE sizes that take into account the estimated discretization error and 

curve and surface curvature; and (3) hierarchical refinement of a FE model that is represented 

geometrically by curves, surfaces, and volume regions. This process may be repeated until a 

desired maximum allowed error metric is achieved. The methodology described herein covers 

only the last two steps, since discretization error estimation can be computed through different 

processes [1]. In this work, discretization error estimation is based on a standard technique 

used in the literature [19], in which the error is evaluated through the difference between 

stress field computed using conventional FE procedures and stress field obtained by means of 

more accurate recovery procedures (e.g. ZZ, SPR, or REP) [19-22]. 

The paper is organized as follows. Next section explains the proposed adaptive refinement 

strategy. Section 3 describes all the steps required to generate the background data structure 

that is used to define FE sizes in the adaptive process. The following section presents the 

hierarchical refinement of curves, surfaces, and volumes. An example of adaptive refinement 

is presented in Section 5. Finally, in Section 6, there is a conclusion. 

2 ADAPTIVE REFINEMENT STRATEGY 

The three-dimensional geometric model has a topological description of the vertices, 

curves, surfaces, and regions, as well as an associated geometric description, which consists 

of the coordinates of the vertices and the mathematical representation of the curves and 

surfaces. The geometric model can contain many regions. In this environment, the attributes 

of the simulation, such as the properties of the materials, loads and restrictions, are associated 

with the geometric entities. In this framework, the entities of finite element mesh (nodes and 

elements) automatically receive the attributes of the geometric entities that are related to. 

Using this approach, it is possible to create new meshes without losing the attributes. 

Figure 1 illustrates the automatic adaptive strategy of the proposed refinement process. The 

input data are the initial volumetric mesh of problem in question and the geometric entities 

(curves and surfaces), and as well as their associated attributes. Initially, this mesh is 

numerically analyzed, the information required to initiate the adaptive procedure. Such 

information basically consists of numerical discretization errors associated with each 
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volumetric element of the mesh. From these errors, the need for adaptive refinement is 

verified. If the results converge, the adaptive process is concluded with a final discretization. 

 

Figure 1: The proposed adaptive refinement process. 

If convergence is not reached, the sizes of the new elements are computed based on the 

estimated discretization error. All the resized data are stored in an auxiliary background 

structure. Although many background structures are published in the literature, as reviewed 

by Quadros [23], the present work uses a background octree structure, which has the 

advantage of not only allowing fast search procedures down to internal leaves but also 

representing the desired size of the elements defined by the size of the internal leaves. For 

these reasons, an octree is used to support the discretization of curves, surface meshes, and the 

volumetric mesh. 

In addition to discretization error estimation, curve and surface discretization is also 

required, especially when the curves and surfaces present high curvatures. In such locations, 

the meshes should be locally refined. Therefore, new element size data, based on the 

geometric information of the curves and surfaces, are computed and stored in the background 

octree. After this procedure, the background octree is internally finalized to provide a better 

transition between regions with elements of highly varying sizes. 

Using the size information from the background octree, the next step consists of a three 

level hierarchical approach to create a new volumetric mesh. First, the curves are refined 

based on the size of the elements stored in the octree structure. This refinement subdivides the 

curves into segments with sizes consistent with those of the discretization error analysis and 

geometric criteria. After refining the curves, the meshes associated with each of the model’s 

surfaces are discretized using an advancing front scheme in parametric space. This meshing 

scheme starts by subdividing curves on the boundary of each surface. Geometric curvature 

information is considered in surface refinement because the background octree takes this 

information into account. The last stage of the adaptive refinement process is related to the 

discretization of the domains of the model’s regions. Such discretization uses a 3D advancing 

front technique that starts from the triangulated meshes associated with the boundary surfaces 

of each 3D region, also considering the sizes of the elements provided by the background 

octree. As can be seen, this adaptive meshing methodology supports multi-regions in a 
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consistent manner, considering curve and surface curvature information in addition to the 

estimated discretization error. Finally, a new discretization error analysis is performed to 

assess the quality of the results. If convergence is not obtained, the whole adaptive process is 

repeated as described above. The next sections summarize the proposed refinement strategy. 

3 THE BACKGROUND OCTREE 

An octree is a tree data structure based on a cell with eight children. Each cell of an octree 

represents a cube in the physical space. Each child represents one octant of its parent. On the 

leaves of the tree are the computational cells of the grid. In this work, the background octree 

has two main objectives. The first is to develop local guidelines used to define the 

discretization of curves and surfaces. The second is to define the sizes of tetrahedral elements 

to be generated during the advancing front procedure. The octree generation includes four 

steps. Figure 2 depicts the external appearance of the background octree of a hypothetical 

model (Figure 2-a). In the first step (Figure 2-b), the octree is initialized based on the input 

mesh data, which are the new element sizes obtained in the discretization error analysis. The 

second step (Figure 2-c) refines the octree based on the geometric curvatures of curves. In the 

third step (Figure 2-d), the octree is refined based on the geometric curvatures of surfaces. 

Finally, in the last step (Figure 2-e), the octree is refined in order to obtain a better transition 

between the sizes of the elements generated in the advancing front surface refinement. 

3.1 Background octree refinement based on error analysis 

Initially, a bounding cube is created based on the maximum range of the three Cartesian 

coordinates of the input model. This cube is the octree’s root cell. In the first step of the octree 

refinement (Figure 2-b), each discretization error result of an element is used to determine the 

local depth of the subdivision. A characteristic size of each element is calculated for the 

estimated error and the octree cell containing the element’s central point is determined. If the 

size of the cell edge is larger than the calculated characteristic size, then this cell is subdivided 

into eight smaller cells. This process is repeated recursively and finishes when the size of the 

cell is smaller than the given size. This process is repeated for every element of the current FE 

mesh. The characteristic size is calculated considering an equilateral tetrahedron with the 

same volume of each element. 

The background octree works as a density function to guide the adaptive process. It could 

be replaced by other functions. It has the advantage of also allowing fast search procedures 

down to internal leaves. It could also have a different orientation to better adapt to models that 

are not parallel to Cartesian coordinates. However, the bounding cube parallel to the Cartesian 

coordinates is easier and faster to implement and usually gives very good results. 

3.2 Octree refinement based on curve curvature 

In some cases, when only the discretization error is considered in the adaptive process the 

new generated mesh (in the following step of the process) does not respect the actual 

geometry of the model’s curves. This behavior occurs when parts of a curve, for example, 

present high curvatures in a region where the discretization error is low. In these situations, it 

is necessary to refine the background octree based on the curvatures of the curves to preserve 

the original geometric characteristics of the model. 
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The methodology used to refine the curves of the model based on their curvatures is a one-

dimensional version of the procedure applied to discretize the background octree. The 

refinement of each curve employs a recursive spatial numbering technique similar to a binary 

tree data structure [24]. 

(a)  

(b)  (c)  

(d)  (e)  

Figure 2: A hypothetical model to explain the steps of octree construction: (a) Model geometry and loading; 

(b) External appearance of background octree based on discretization error analysis; (c) Refinement after 

considering curve curvatures; (d) Refinement after considering surface curvatures; (e) Refinement after 

considering maximum cell size at boundary cells and maximum difference of one level between adjacent cells. 

The main purpose is to generate a discretization on a curve according to its curvatures. The 

curvatures are calculated for specific curve segments. At first, the whole length of the curve is 

considered as the segment to be tested. If the curvature of the segment is lower than the 

maximum allowed curvature, the process is interrupted. Otherwise, the segment is recursively 

subdivided in two segments, and each one is tested in the same way, until the maximum 

curvature criterion is satisfied. At the end of this process (Figure 2-c), all the curve segment 

sizes and their middle points are transported to the background octree, using the same 

procedure explained in Section 3.1. 
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3.3 Octree refinement based on surface curvature 

After the background octree is refined considering curve curvatures, the octree refinement 

is increased based on surface curvatures. This step (Figure 2-d) captures high curvatures of 

surfaces, computes the required element sizes and their locations, and passes this information 

to the background octree. The reason to perform this step is the same as the previous stage: to 

represent the original geometry of the model. 

As in Section 3.2, the methodology applied to refine the surfaces of the model based on 

their curvatures is a two-dimensional version of the procedure used to discretize the 

background octree: a background quadtree, which is created similarly to the one presented by 

Miranda and Martha [25]. This way of computing the curvatures has shown to be efficient and 

robust, and this is the main reason for its adoption. The background quadtree generation 

follows some steps: 

• Quadtree initialization based on given boundary edges; 

• Refinement to force maximum cell size; 

• Refinement to provide minimum size disparity for adjacent cells; 

• Refinement to force minimum curvature difference between adjacent cells: this stage is 

explained ahead. 

As described in detail by Miranda and Martha [25], the first step has some modifications in 

relation to the original 3D algorithm [26]. The second and third steps have not changed. The 

fourth step was added to take high surface curvatures into account. 

The fourth step of the quadtree generation refines this auxiliary structure to force a 

minimum curvature difference between adjacent cells. Initially, the algorithm stores in each 

cell gradient vectors of the quadtree evaluated at the center of the cell. Then, it computes a 

vector normal to the surface of each cell. Finally, the algorithm obtains the cosine of the angle 

θ between the normal vectors of the two adjacent cells and compares it to a minimum value, 

cosθmin. This kind of comparison is similar to comparing the angle between the normal 

vectors and the maximum angle. If cosθ is smaller than cosθmin, then a new cell size, Hnew, is 

obtained from the current size, Hold, as Hnew = (Hold/cosθmin)⋅cosθ. This new size is used to 

locally refine the adjacent cells of the quadtree. This process is repeated recursively for every 

cell. The new element sizes stored in the auxiliary surface quadtree are transferred to the 

global background octree. At the end of this step, the background octree is refined considering 

the geometric curvatures of all of the model’s surfaces. 

3.4 Octree final refinement 

The previous step can leave large octree cells in the interior of a 3D region. In the first step 

of this final stage, the octree is refined to guarantee that no cell in the interior is bigger than 

the largest cell on the boundary. This will avoid excessively large elements in the domain 

interior. The octree is subsequently processed to force a single difference level between 

neighboring cells (Figure 2-e). This leads to a natural transition between regions with 

different degrees of refinement. This refinement is performed by traversing the octree and 

examining the difference in tree depth between adjacent cells. If the difference is larger than 

one level, the adequate cells are refined until the criterion is satisfied. 
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4 HIERARCHICAL REFINEMENT 

After the construction of the background octree, considering the new element sizes based 

on the discretization error and on curvatures of the geometric model, the final step is to re-

generate the mesh of the whole model. As mentioned previously, it is assumed that the three-

dimensional geometric model has a topological description of the vertices, curves, surfaces, 

and regions, as well as an associated geometric description, which consists of the coordinates 

of the vertices and the mathematical representation of the curves and surfaces. The geometric 

model can contain many regions. Mesh re-generation employs a hierarchical refinement of (1) 

curves, (2) surfaces, (3) and regions. 

The methodology used to refine the model’s curves is similar to the one mentioned in 

Section 3.2. At the beginning of the process, a curve is defined by its mathematical geometric 

description and by two nodes (initial and final points). Then, the curve length and middle 

node are obtained. From the middle node, one can determine the cell in the background octree 

where this node is located. A comparison is then made to verify whether the segment size is 

smaller than that of the corresponding cell. If the criterion is satisfied, the curve refinement 

process ends considering the nodes generated so far. Otherwise, the new node is inserted on 

the curve, this curve is subdivided in two partitions, and each one is tested in the same way, 

until the criterion is met. 

Surface mesh generation is based on the algorithm presented by Miranda and Martha [25]. 

This algorithm is applied to the generation of triangular meshes on each surface with arbitrary 

geometry, using its parametric description. The parametric description is used because it is 

common and efficient, since the surface mesh is generated using two-dimensional 

triangulation techniques. However, additional length and angle corrections are needed to 

consider metric distortions between parametric and 3D Cartesian spaces. With this procedure, 

generated triangles present good shape in 3D space. 

3D mesh generation in each closed region of the model is based on a technique presented 

by Cavalcante-Neto [26] and is used to obtain tetrahedral elements in arbitrary domains. 

Similarly to the procedure applied to generate surface meshes, this one is based on an 

advancing front technique coupled to a recursive spatial decomposition technique (octree). 

Originally, the algorithm employed an independent background octree in each 3D region to 

control the distribution of the node points generated in the interior. In the adaptive 

methodology proposed here, the global background octree is used for this purpose. 

The algorithm was designed to meet four specific requirements: to avoid producing 

elements with poor aspect ratios; to generate meshes conforming to existing triangular meshes 

at the boundary of a domain; and to generate meshes exhibiting good transitions between 

regions of different element sizes. The input to the algorithm is a triangular surface mesh, 

which describes the domain to be meshed. This mesh is obtained from the surface meshes on 

the boundary of a 3D region to be meshed. The algorithm steps are as follows: 

• A two-pass advancing front procedure is applied to generate elements. In the first pass, 

elements are generated based on geometric criteria, producing well-shaped elements. 

The background octree presented in Section 3 is used to control the sizes of the 

elements and the position of the interior nodes. The octree determines an ideal position 

for an optimal node to form a new element. This ideal position defines a search region 

where an optimal node for the new element may be located. This region is a sector of a 
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sphere whose center is the ideal position and whose radius is proportional to the octree 

cell size. If one or more existing nodes are inside this region, they are ranked based on 

a solid angle criterion, in order to get the best node for the new element. However, if no 

existing node is found, a new node is inserted at the ideal position and an element is 

generated using this node. In the second pass, elements are generated based only on the 

criterion that they have valid topology. Here, any existing node that forms a valid new 

element can be used, regardless of whether it is close to the ideal position or not. 

However, the same quality criterion is used and the node that forms the best solid angle 

is chosen for the generation of the new element. 

• If the advancing front procedure cannot progress, a back-tracking strategy [27] is 

employed to delete some elements, and the procedure is restarted. It consists basically 

of back tracking a few steps in the mesh generation and deleting faces that hinder the 

front from converging. This creates better regions where valid elements can be then 

generated. It is possible that the process of finding better regions may fail, for instance, 

if faces to be removed are part of the original boundary. When this occurs, other 

elements are deleted instead and the procedure is restarted. If a mesh still cannot be 

generated for this region, the algorithm fails and terminates. In principle, it is possible 

to create a boundary input mesh that forces the failure of the volume mesh generation. 

Such failure, however, has not yet been observed in “non-contrived” input, i.e., in any 

realistic input boundary meshes in many examples tested so far. 

• Once a valid mesh is created, the quality of the element shapes is improved by using 

the standard Laplacian smoothing technique and locally deleting poorly shaped 

elements and those adjacent to them. The boundary contraction is then restarted. 

After the generation of volumetric elements in all regions of the model as exposed above, a 

new error analysis is performed to assess the quality of the results. If convergence is not 

obtained, the whole adaptive process is repeated as described in the previous sections. The 

next section provides some examples of the proposed adaptive refinement process. 

5 EXAMPLE 

This section presents an example of adaptive 3D finite element mesh that was generated 

using the proposed adaptive methodology. It is important to emphasize that this paper does 

not aim to compute the performance of mesh generators (surface and volume) or assess the 

quality of the elements generated, since these tasks were covered in previous works [25, 26]. 

The adaptive strategy proposed in this paper results from the application of unstructured 

mesh generation techniques in surfaces and regions, combined with numerical errors 

associated with discretization. Numerical error estimators are implemented based on 

procedures developed for two-dimensional models [28] extended to three dimensions. These 

error estimators are supported by error estimation techniques widely adopted in the literature, 

called Superconvergent Path Recovery technique (SPR) [20,21] and Recovery by Equilibrium 

in Patches (REP) [22]. The numerical error estimators were implemented in a finite element 

numerical analysis program [29]. It is worth stressing that these error estimation techniques 

can be easily and directly replaced by any other technique that is more recent or efficient, as 

this is supported by the object-oriented organization of the analysis program. In the present 

example, SPR is employed for error estimation. 
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The presented example is a model of a bike suspension rocker [30], shown in Figure 3, that 

is composed by four cylinders that are connected by a central body. Uniformly distributed 

forces, of unitary intensity in the y direction are applied to the internal faces of the two top 

cylinders. Displacement restrictions are applied to the internal face of the lower cylinder. 

 

Figure 3: Example: bike suspension rocker model and finite element mesh refinement. 

The adaptive refinement of this example (see Figure 3) was carried out until the target 

relative error (3%) was reached. The mesh is refined in the intermediate cylinder and only 

part of the lower cylinder, where there are concentrations of stress. The number of linear 

tetrahedral elements in the initial mesh is 6223 and the number of nodes is 10303. In the final 

mesh, the number of elements is 186238 and the number of nodes is 273633. This example 

demonstrates the importance of considering the curvatures of the supporting surface in the 

adaptive refinement, which is another characteristic of the present methodology. 

6 CONCLUSIONS 

This paper described a methodology for adaptive generation of three-dimensional finite 

element meshes, using geometric modeling with multi-regions and parametric surfaces. The 

mesh adaptive process involves three steps: (1) FE analysis with error estimation; (2) 

construction of a structure to store the new sizes of the FE; and (3) refinement of the FE 

model. The approach adopted is the global refinement of the whole model in each adaptive 

refinement, using a background octree structure. After the construction of the octree, the new 

model is geometrically re-discretized employing a hierarchical curve, surface and volume 

refinement. Some important characteristics of the proposed methodology are: 

• The ability to refine and coarsen in regions of high and low response gradients. 

• The use of only one background octree for all regions of the model, allowing a smooth 

transition between regions and elements. 

• The hierarchical refinement of curves, surfaces, and volumes. 
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• The consideration of curvatures of curves and surfaces in the adaptive refinement. 

A recent article [31] published by the authors compares results of convergence rates of the 

proposed methodology with results presented in the literature. It was demonstrated that the 

current methodology converges faster to a lower relative error, because the 3D mesh 

generator used has more freedom to create new elements based on desired element sizes. This 

characteristic generates a desired mesh with the application of only a few steps of the adaptive 

refinement. In contrast, using a local refinement strategy, (local) element manipulations 

restrict the shape quality of new elements. 

Obviously, the current 3D mesh generation takes more time to create new elements, 

because the whole FE model must be created at each step. In this work, most of meshes were 

generated in less than one minute of clock time. However, in models that require a large 

number of elements (one million or more), time consumption can increases exponentially. 

While in many problems this is not an issue, it can be a limitation of the current approach that 

can be solved in two manners: (1) decomposing the domains into sub-domains and applying 

the mesh generator to each sub-domain; or (2) using a parallel 3D mesh generator. The latter 

option is our future work and is currently under development. 
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Summary. This paper is concerned with establishing the nature of the kinematic instabilities 

that arise in tetrahedral hybrid equilibrium models when the elements are formulated with 

polynomial approximation functions of a general degree. The instabilities are due to the 

spurious kinematic (or zero energy) modes, and these modes are first derived for a single 

element. The paper continues by identifying those spurious modes that can be propagated 

from one element to another via an interface. It is shown that at least three such modes exist 

for all degrees. 

1 INTRODUCTION 

     Hybrid equilibrium elements have been used to generate dual analyses for error estimation 

of conforming models
[1]

. Dual analyses may involve reanalysis of a complete mesh, or may 

involve local analyses of star patches
[2]

. In any event it becomes important to know whether 

spurious kinematic modes associated with hybrid equilibrium models may exist, and if so, 

whether they will affect the dual analyses. These questions have been studied for plate 

elements
[3-5]

. In this paper, we investigate the form taken by spurious kinematic modes for a 

single tetrahedral element of general polynomial degree, and consider the propagation of these 

modes between a pair of adjacent elements of the same degree. The results of this 

investigation should help to determine the general kinematic stability of patches of tetrahedral 

elements
[6,7]

, thereby setting the basis for robust implementations of these approaches.  The 

definition of spurious modes associated with an edge and an interface of an element exploit an 

orthogonal basis of polynomials for a triangular face
[8]

 that are expressed in terms of area 

coordinates. These enable the spurious modes to be generated in a hierarchical fashion which 

takes advantage of cyclic symmetry. 
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2 GENERAL FEATURES OF SPURIOUS KINEMATIC MODES OF TETRAHEDRA 

     Spurious kinematic modes refer to boundary displacements that have the nature of pseudo-

mechanisms and cause no internal stress. They do zero work with admissible boundary 

tractions, which are those that equilibrate with internal stress fields. Displacements of a face 

of a tetrahedron are described by complete polynomials of degree d, and this implies that the 

dimensions of the spaces of displacements and rigid body modes for an element are defined in 

Equation (1). Internal stress fields are described by polynomials of the same degree, and 

complete within the constraints set by equilibrating with zero body forces. In this case the 

dimensions of the stress and hyperstatic stress spaces are given by
[9]

 Equation (2). 

( )( )4 3 0.5 1 2 ;  6v rbmn d d n= × × + + =                                          (1) 

( )( )( ) ( )( ) ( )0.5 1 2 6 ;  0.2 3 2 2  for 2s hypn d d d n d d d d= + + + = − − + >                (2) 

and then the number of independent spurious kinematic modes is given by Equation (3). 

                               ( ) ( ) ( )6 1  for 2skm v rbm s hypn n n n n d d= − − − = + > .                                        (3)                                   

When d ≤ 2, the element is isostatic and then: 

 ( )( )( )0.5 1 2 6skm rbmn d d d n= + + − − .                                          (4) 

     Tractions applied to the boundary are considered as belonging to a space dual to that of 

displacements. Admisible tractions are those that equilibrate with an internal stress field, and 

the necessary and sufficient conditions for admissibility correspond to the need for 

complementary shear stresses along an edge of a tetrahedral element. With reference to Figure 

1, the complementary shear stress condition along edge 3-4 has the form in Equation (5).  

1 1 2 2sin cos sin cos 0n nϕ τ ϕ σ ϕ τ ϕ σ⋅ − ⋅ + ⋅ + ⋅ = ,                                                      (5) 

where φ is the dihedral angle between faces adjacent to the edge. For traction fields of degree 

d ≥ 2, (d+1) independent conditions associated with each edge lead to the homogeneous 

admissibility conditions on generalised element tractions represented by vector g, i.e. A
T
g = 0 

where the dimensions of A are nv × nskm. The spurious kinematic modes are then defined in 

terms of the dual basis for displacements by the columns of A. 

3 SPURIOUS KINEMATIC MODES FOR A TETRAHEDRAL ELEMENT OF 

GENERAL DEGREE 

     A convenient basis for polynomial displacement or traction functions over a triangular face 

is derived from the functions in the Digital Library of Mathematical Functions
 [8]

. These n = 

0.5(d+1)(d+2) functions have the properties of orthogonality and the benefit of a hierarchical 

structure. When expressed in terms of area coordinates Li they can be organised in a vector h 

to give Legendre polynomials along a particular edge, which leads to a very simple form of A 

when it is restricted to the two faces adjacent to that edge. This form, with dimensions 

(4n×(d+1)), is defined by A  in Equation (6), e.g. for the edge where L1 = 0. 
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where ∆1 and ∆2 are the areas of faces 1 and 2 in Figure 1, J = I(d+1) with even numbered 

diagonal coefficients = -1, and the n×(d+1) matrix H and the n dimensional vector h are 

defined in Equation (7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Traction components on a tetrahedron relative to edge connecting vertices 3 and 4. The right hand view 

is projected from vertex 3 to vertex 4. 
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Similar bases of h for other edges of the face are obtained using cyclic symmetry. Then the 

m
th

 column of H defines a signature function 2
m
ek  for face 2 corresponding to edge e as a 

combination of the basis functions in h. The total displacement vector of a point in face 2 due 

to the spurious kinematic modes associated with its three edges, oriented as in Figure 1, is 

τ2s τ1s 

τ2n τ1n σ1 

4 

3 

1 

2 face 1 

face 2 
n1 

δ2 

δ1 

τ1n 
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σ2 
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given by Equation (8), where ne is the unit outward normal vector to the other face adjacent to 

edge e, and m
ea  is the amplitude of the mth spurious mode associated with edge e. 

δ2 = 2
2

1 m m
e e

m e

k a
∆

 
 − ⋅
 
 

∑∑ .ne                                                                       (8) 

4 PROPAGATION OF “MALIGNANT” SPURIOUS MODES BETWEEN 

TETRAHEDRAL ELEMENTS. 

     Propagation of spurious kinematic modes can occur between a pair of elements A and B 

when they result in compatible displacements at the interface. The displacements are resolved 

into in-plane and normal components as indicated in Figure 2 at a point P. For each signature 

function m
jek  displacements are evaluated at a set of n grid points with a common set of rigid 

body constraints. This leads to the displacement Equation (9) for element A. 

 A Au E a= ⋅   and  w = A AC a⋅                                                              (9)   

where E
A
 and C

A
 contain displacement components corresponding to spurious modes of unit 

amplitude, and have dimensions (2n×3(d+1)) and (n×3(d+1)) respectively. The amplitudes of 

the spurious modes are collected in the vector a
A
. The matrices can be expressed as in 

Equation (10), where  the diagonal matrices are defined in terms of the Kronecker products in 

Equation (11) and ϕ A
e  denotes the dihedral angle at edge e of element A. 

1 2 3
A A A

s sE E E E D E D= = ⋅   , and  1 2 3
A A A

c cC C C C D C D= = ⋅              (10) 

 

 

 

 

 

 

 

 

 

 

Figure 2: Interface between elements A and B. 

     Matrices E and C are partitioned in Equation (10) to match the coefficients from edges 1 to 

3. Since these matrices are only dependent on the signature functions, which are expressed in 

terms of area coordinates, they are independent of the shape of the interface or the dihedral 

angles. 
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D I
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ϕ
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ϕ

+

 
 
 = ⊗
 
 
 

.     (11) 

     Compatibility conditions take the form in Equation (12), where the vector 

 
 

T
A Ba a contains the amplitudes of the 6(d+1) spurious modes associated with the edges 

of the interface belonging to elements A and B. The diagonal matrices  and B B
s cD D  for 

element B are similar to those for element A, but involve the dihedral angles ϕ B
e .  

   −       =   
         

A B A
s s

A B B
c c

ED ED a

CD CD a

0

0
                                                         (12) 

     It is found that generally (d ≥2) E has full column rank and so any spurious mode involves 

in-plane deformation of the interface, and compatibility requires ⋅ = ⋅
A A B B
s sD a D a . 

Eliminating a
A
 from the second set of Equation (12), leads to Equation (13). 

cot cot
   + =
   

A B B B
sC D D D a 0                                                         (13) 

where the suffix “cot” implies that cotφe replaces cosφe or sinφe in the diagonal matrices. The 

consequence of Equation (13) is that compatibility can be satisfied: 

• when C is column rank deficient, and/or 

• the geometrical configuration is degenerate in the sense that cot cot 0ϕ ϕ+ =
A B
e e  for one or 

more dihedral angles, i.e. faces in adjacent elements are coplanar. 

     Numerical trials involving singular value decomposition reveal that, when d > 3, C has 

column rank 3d and hence 3 spurious kinematic modes can be propagated via the interface in 

the non-degenerate case. These modes are linearly related to independent solutions of the 

homogeneous equations Ca = 0, and such solutions are given by the 3×3(d+1) matrix in 

Equation (14).  

0 1 0 1 1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1 1 0 1 0

1 0 1 0 1 0 1 0 0 1 0 1

T
a

− − 
 

= − − 
 − − 

� � �

� � �

� � �

.            (14) 

The corresponding spurious mode amplitudes for element A can then be defined in Equation 

(15). 

 
1 1

cot cot2

1A A A B
sa D D D a

∆

− −
   = +
   

.                                            (15) 

This solution can also be expressed, using the Kronecker matrix product in Equation (16). 
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                (16) 

It is observed from the form of a
T
 that the three modes can be characterised by a single one, 

which generates two more independent ones by using cyclic symmetry. When the pair of 

elements are symmetrical about the interface, cot cot=
A BD D  and in this case A A

cCD a⋅ = 0  and 

consequently the interface remains plane. The characteristic mode for a pair of regular 

tetrahedra of degree 4 is illustrated by the in-plane displacements shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Characteristic spurious kinematic mode that can be propagated between a pair of regular tetrahedral 

elements of degree 4. 

     The number of malignant modes for non-degenerate cases increases for d < 4, and the 

complete set of numbers is presented in Table 1. 

Table 1: Number of malignant modes for a general degree. 

d 0 1 2 3 ≥ 4 

number of malignant modes 3 6 6 5 3 
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 7 

     It should be noted that when: 

 

 d = 1, rank( E) = 3, and the 6 spurious modes associated with the interface of one of the 

elements can freely exist in a state of constant strain coupled with a rigid body displacement. 

Thus only 3 of the combined modes can be propagated to involve deformations. 

 

d = 0, the 3 spurious modes associated with the interface of one of the elements can freely 

exist as rigid body translations. Thus all the modes can be freely propagated as rigid body 

modes. 

5. CLOSURE 

     A pair of tetrahedral hybrid equilibrium elements always has the potential for at least three 

spurious kinematic modes to be propagated from one element to the other. This feature of 3D 

tetrahedral models is more complicated than the case with 2D models with triangular 

elements, where such propagation is normally blocked for degrees greater than two. 

Thus establishing the existence of spurious kinematic modes in a pair of tetrahedral elements 

is just the first stage in understanding when and how these modes can propagate in a more 

general mesh. Whilst experience has shown
[6]

 that assemblies of four tetrahedra into a single 

macro-element is free of spurious kinematic modes, it is intended to pursue further research to 

address the stability of more general configurations. 
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Abstract. The process of mechanical spallation of a solid aluminum target under the 
influence of an ultrashort laser pulse is considered. Modeling was carried out using the 
method of dynamic adaptation with explicit front tracking. The pulse duration was 100 fs, 
fluence 0.27 J/cm2. Modeling allowed to determine the thickness of the spalled layers, 
investigate the regimes in which spallation occurs in melt.  

 
 
1 INTRODUCTION 

The study of dynamic fragmentation in shock loaded metals and evaluation of geometric 
and kinematic properties of the resulting fragments is a topical issue for both fundamental and 
applied science. Among the dynamic processes of fragmentation, spall fracture of solid 
materials has been one of the most widely studied phenomena in a few decades [1,2]. The 
spallation is defined as a break of the media due to the stress that exceeds the strength of the 
substance. The main mechanism of rupture is the propagation of a compression pulse in a 
solid sample, that is reflected from the free surface and after the interaction with the incident 
unloading wave creates a tensile stress, which can lead to the damage in the material, ranging 
from small voids and cracks to complete destruction and release of spalled material. 

 
In recent years, there has been increasing interest in such phenomena in the liquid phase, 

which develop after partial or complete melting, for example, of metals which are exposed at 
the same time to compression or tension. Rapid heating of the metal target by ultra-short laser 
pulses (USLP) with femto-and picosecond duration may result in formation of stressed states 
in the subsurface region. The unloading of these states may result in the ablation of the 
irradiated melted layer. The process of dynamic fragmentation of liquid leads to the formation 
of a cloud of liquid droplets ejected into the space at a high speed. Understanding of the 
physical processes accompanying the process of fast ablation is necessary to determine the 
optimum regimes of treatment of materials with USLP.  The main method of theoretical 
research is molecular - dynamics simulation [3-5] that uses atomistic models. Continuous 
models are used much less frequently. Their use is limited by high computational complexity, 
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which is in the first place associated with the description of the initiation and propagation of 
the phase fronts. 

 
This paper deals with the theoretical modeling of the mechanisms of fragmentation of 

liquid, calculation of the process of the ejection of molten droplets and determination of the 
amount of obtained fragments. The modeling of fragmentation is based on the use of the 
continuum hydrodynamic non-equilibrium model [6,7]. 

2 STATEMENT OF THE PROBLEM 
Laser radiation propagates from the right to the left and, striking the surface of the metal 

target, is partly absorbed and partly reflected. The absorbed energy is used for heating, phase 
changes, generation of shock waves in the solid phase and dynamic fragmentation of the 
irradiated target. The main features of the high-power laser action on metals are associated 
with the high speed and volume type of the energy release of the laser pulse in the electronic 
component. Ultrafast heating of the metal targets by high-power laser pulses causes a strong 
deviation from the state of local thermodynamic equilibrium (LTE) and requires the 
appropriate adjustments in the mathematical model. Along with the thermodynamic 
equilibrium, we should consider the kinetic non-equilibrium of the high-speed phase 
transitions and strongly overheated metastable states caused by powerful cross-flow of 
material through the phase boundary. The model should also take into account the powerful 
dynamic effects associated with the rapid propagation of the phase fronts. The inclusion of 
these processes requires the explicit description of the kinetics of the phase transitions and the 
formulation of the conservation laws at the phase fronts, which are hydrodynamic 
discontinuities. The mathematical description of these processes is accomplished within the 
framework of the two-temperature and spatially one-dimensional multi-front non-equilibrium 
hydrodynamic Stefan problem, written for two phases - solid and liquid. When large negative 
pressure values result in fragmentation of the target, the following mathematical statement is 
written for both the bulk target and for every spalled part. 

2.1 System of equations. 
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where   
x

T
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pheee ∂
∂

−= ),(λ ,
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phphph ∂

∂
−= )(λ ,   ( ) ( ) ( )phphee TPTPTP ,,, ρρρ += . 

Here: PTu ,,,, ερ  - are the density, gas-dynamic velocity, internal energy, temperature and 
pressure of the media respectively, )( eTα - coefficient of volume absorption, G  - density of 
the laser radiation, - heat capacity, pheC , phe,λ  - heat conductivity,  - electron-phonon 
coupling factor. Indexes 

)( eTg
υ,, ls  correspond to solid, liquid and vapor phases respectively, 

- correspond to electron and phonon gas. The expressions for the electron heat capacity, 
heat conductivity and electron-phonon coupling factor are described in detail in the book [7]. 

phe,

2.2 Initial and boundary conditions 

293,,0,0),0(:0 00 ======= TTTpxut pheρρ K. 

On the left stationary border, we write the condition of a zero mass and heat flux: 

0,0: ==Γ= Tsss Wux ρ  

On the moving interphase melting boundary )(tx slΓ= , we use the boundary conditions 
according to the non-equilibrium model of melting that is a non-equilibrium kinetic analogue 
to the equilibrium Stephan problem formulated for a state sufficiently far from the local 
thermodynamic equilibrium. The system of equations at the boundary consists of the 
conservation laws of mass, momentum and energy, written for a stationary (laboratory) 
coordinate system: 
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These conservation laws are supplemented with the pressure dependence of the melting 
temperature and kinetic formula for the surface overheating dependence of the melting front 
velocity :  )( smslsl PTTT −=Δ

sphmsmm kPTPTT ,0,)( +==  

( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

slm

sl
ne
m2/1

slBslsl TT
T

R
L

exp1m/Tk3af)T(
Δμ

λ
Δυ  

Additional account of the hydrodynamic effects is made by non-equilibrium heat of melting 
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At the phase boundary, the electronic component is assumed to be continuous relative to 
the electron density  and temperature : eN eT
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At the moving evaporation front, )(tx kυΓ= , the model of surface evaporation in the 
approximation of the Knudsen layer is used as a boundary condition. The model consists of 
three conservation laws, and three additional parameters at the outer side of the Knudsen layer 
( υυυ ρ uT ,, ). In general, two of these three parameters are determined using the specific 
approximating relationships [8], and the third is found from the gas-dynamic equations. The 
expressions for the evaporation front are given in detail in the book [7].  

The boundary conditions for the electron component take the form: 

4
e

e T
x
T

σλ =
∂
∂

− ,  ))/(exp())(1()( 2
0 Lek tGTRtG τ−−=

where σ  - is the Stefan- Boltzmann constant. 

At the shock wave in solid, , we write Rankine-Hugoniot conditions [9] . )(, tx sshΓ=

3. COMPUTATIONAL ALGORITHM AND METHOD OF DYNAMIC 
ADAPTATION 

The main computational feature of the considered problem is the existence of 
discontinuous solutions, moving interfacial and contact boundaries. For the numerical 
solution of the mathematical model (1)-(3), we use the finite-difference method of dynamic 
adaptation [10]. The method is based on the procedure of transition to an arbitrary 
nonstationary coordinate system. This transition is made through an automatic conversion of 
coordinates using the sought solution, which allows formulating the problem of construction 
and adaptation of the grid at the differential level, i.e. in the resulting mathematical model, 
one part of differential equations describes the physical processes and the other - the behavior 
of grid. The method of dynamic adaptation allows to automate the problem of creation of the 
new domains and perform calculations with explicit tracking of any number of 
discontinuities, interfacial and contact boundaries. The method of dynamic adaptation and the 
used finite difference schemes are described in detail in the earlier papers [10-12]. The total 
number of nodes of the computational grid was set to 200 in the initial target. Additionally, 
each of the spalled fragments contained approximately 30 nodes in the average. 
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4. ALGORITHM OF COMPUTATION AND CONSTRUCTION OF 
COMPUTATIONAL GRIDS 

The compression wave, generated due to heating and thermal expansion of the target 
material, is followed by the rarefaction wave moving from the surface into the interior of the 
target. If the pressure in the rarefaction wave reaches a sufficiently large negative value, a 
mechanical spallation may occur, i.e. a formation of voids in the target material. As a result of 
the spallation, pieces of matter are splitted from the target and move in the direction opposite 
to the direction of the laser pulse. The spallation is introduced as follows: at the point where 
the criterion of spallation is met, i.e. at a certain value of the pressure, two new moving 
boundaries are introduced with saturated vapor between them and boundary conditions 
describing the kinetics of the surface evaporation and condensation. In the regimes when the 
temperature in the point of mechanical spallation is not high enough ( ), it is possible to 
replace the saturated vapor with vacuum. That is made for simplicity and without significant 
loss in accuracy of calculations. Then at these two new boundaries, we use the boundary 
conditions for the contact discontinuity of condensed matter - vacuum. In addition to the 
criterion of spallation, we also introduce an additional condition: the minimum size of the 
spalled material should not be less than several atomic layers, namely 1 nm. A detailed 
computational grid is automatically generated in the new domain. The nodes of the grid are 
concentrated on both boundaries according to the law of geometric progression. The 
minimum spatial step in the spalled domain was set to be 0.01 nm. If the minimum step in 
moving boundaries was set larger, for example, 0.1 nm, it was not enough to maintain the 
accuracy in the calculation of the boundary conditions: the amplitude of the periodic 
oscillations of the gas-dynamic velocity was slowly gradually growing upon reflection from 
the moving boundaries, while with the sufficient accuracy the amplitude should either not 
change or decrease due to numerical viscosity. These fluctuations are shown in Fig.7. 

bTT <

When multiple spallations occur, the speed of different spalled parts may be different, and 
one part may catch up with another. In this case, an algorithm of collapsing of the voids and 
uniting of two fragments into one was implemented at a certain small distance between the 
individual phases. This distance was chosen to be 0.4 nm. 

The expressions for the spallation criterion were taken from works of Grady [13] and 
Povarnitsyn [14]. The equation of state used in paper is a modification of EOS from the work 
of Lomonosov [15]. 

4.1 Volume melting 
The paper of Mei and Lu [16] provides a review of different estimates for the maximum 

overheating of the solid phase after which volume (homogenous) melting starts. These 
estimates give the maximum value in the range of 1.1 - 1.38 of the melting temperature. 
Based on this, we have chosen the following algorithm of consideration of volume melting. 
When the temperature reaches in some point, mT4.1 )( smm pTT = , then the whole region of 
solid from the first point where the temperature exceeds  is declared to be liquid and the 
surface melting boundary is moved to that point. The starting temperature of this region is 
recalculated via the latent heat with the account of the energy conservation law. 

mT
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Figure 1. Time dependence of electron and phonon temperature at the target surface. 

4. ANALYSIS OF THE RESULTS 

Action of USLP on the surface of Al target is considered. The laser pulse with the 
wavelength m8.0L μλ =  has Gaussian time profile, , with ))/(exp(0 τtGG −= 2 τ =0.1 ps 

and maximum intensity  W/cm2, corresponding to the fluence 
J/cm2. The absorbed fluence is approximately 

12
0 1052 1. ×=G

27.0=F ≈absF 0.06J/cm2. The computation 
starts at τ4−=t . Temperature dependence of the surface reflectivity  and the volume 
absorption coefficient 

( )eTR
(T )eα  were determined through the longitudinal dielectric 

permeability, which is determined by solving the kinetic equation [17] and with 5% error are 
approximated by the following analytical expressions: 

( )eTR =0.7845465-0.0048568 , eT ( )eTα =100exp(13.65497-0.026894T +1.66510-4 ). e
2

eT

In these expressions, is measured in electron-volts. eT

The laser fluence was chosen to be slightly above the spallation threshold, which for our 
computations was determined to be 055.0≈thF J/cm2. 

The evolution of the processes in the target is convenient to represent in the form of two 
consecutive stages: thermodynamically non-equilibrium with , Fig. 1,2 and hydro-

dynamical with , Fig. 4–9. Melting of the target starts from the irradiated surface 
with a large delay relative to the laser pulse, t ~+0.2ps. Significant overheating of the melting 
surface and high spatial temperature gradients provide high speed of the melting front 
propagation, 

phe TT >>

phe T~T

slυ ~2.3km/s, Fig.3. In this paper, the maximum value of overheating of the 
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solid phase was limited by the value of 1.4T . The decomposition of the overheated 
metastable state occurs in the form of a volume melting of the overheated region. 

m

≥The later second stage of the processes t 0.2 ps is associated with the evolution of 
hydrodynamic processes. High speed of the melting front is one of the causes of the 
appearance of high pressure region in the solid phase, 2~ slssp υρ ≈  20kbar, which leads to 
the formation of the strong compression in front of the melting boundary. Another cause of 
the compression wave is thermal expansion. Propagation of the compression wave has a 
loading effect on the substance and corresponds to a positive pressure half-wave. The 
compression stage is followed by an unloading stage, which corresponds to the negative  
pressure half-wave. 
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Figure 2. Spatial profile of electron and phonon temperature at t =+10ps. 

Fig. 4 shows the pressure profiles before the first spallation and right after that. Fig. 5 and 
6 show the density profiles and electron and phonon temperatures at =+0.4 ns. There are 9 
spalled parts seen at the figures with sizes from 2 to 19 nm. There were 20 spallation events in 
this computation, some of the spalled parts joined and formed larger fragments. The total size 
of the spalled material, converting via the density of solid, is 78 nm which is in good 
agreement with the values reported from MD simulation [18].  The temperature of the spalled 
parts is in the range from 1000K to 2100K. Repeated passage of the pressure waves, reflected 
from the left and right free boundaries, is observed in each of the spalled parts. These waves 
are most noticeable in the parts with the maximum sizes, in this modeling these are the most 
left and most right part with the sizes 45 nm and 35 nm correspondingly, where the pressure 
amplitude reaches the value of 1-2GPa. Fig. 7 shows the time dependence of hydro-dynamic 
velocity (black curve) at the right free boundary of the target (bulk liquid or solid), at the left 
boundary of the most left spalled part (red curve), the closest to the bulk target, and at the 
right boundary of the most right fragment, the farthest from the bulk target. The frequency of 
the velocity oscillations is different in different parts due to the different sizes of the parts. 
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Also, there are several velocity peaks during one period. That is caused by the fact that these 
fragments were created as a result of collision of several smaller parts which already had own 
oscillations with own frequency. The average movement velocity is about 200m/s for the left 
part and 500 m/s for the right part. It should be noted that in this modeling, almost entire 
liquid is spalled after the passage of the rarefaction wave, and the remaining 6 nm of liquid 
are already crystallized at the moment +0.4ns. Figure 7 shows the amount of liquid in bulk 
and in the spalled parts. It is seen that the whole liquid is spalled except the mentioned 6 nm. 
Figure 3 shows the velocity of the melting front. The maximum value of velocity reaches the 
value of 2300 m/s. At the moment +45ps, melting ceases completely and crystallization starts. 
The maximum crystallization velocity is 58 m/s. 
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Figure 3. Melting front velocity. 

5. CONCLUSION 

Algorithm of solution of the problem of laser ablation in a multiply-connected domain area 
using the dynamic adaptation method was developed. This algorithm was used to investigate 
the mechanism of fragmentation of a massive metal target by ultrashort laser pulses. A good 
agreement with molecular dynamic simulation for the spallation threshold and the amount of 
the fragmented material is obtained. 
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Figure 4. Pressure profiles before and after first spallation. 
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Figure 5. Density profile at t= +0.4ns 
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Figure 6. Electron and phonon temperature at t= +0.4ns 
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Figure 7. Hydro-dynamic velocity at the very right boundary of bulk phase, right boundary of the right spalled 
part and left boundary of the left spalled part. 
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Figure 8. Amount of material in bulk liquid and spalled liquid. 
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Figure 9. Non-dimensional grid step. 
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Abstract. The processes occurring in solid targets (metals, semiconductors) initiated by 
pulsed flows of condensed energy is described by two-temperature model (TTM). The 
simplest TTM model for metals consists of two, and for semiconductors of three non-linear 
parabolic equations. Ultrafast impact (pico-femtosecond pulse duration) predetermines the 
appearance of large solution gradients that require in numerical solution application of 
computational grids with dynamic adaptation. Transition to an arbitrary non-stationary system 
of coordinates, the velocity of which is unknown and depends on the desired solution is the 
basis of the construction of a dynamically adaptive grids. Velocity of the system of 
coordinates for the numerical discretization is used as a function that control the motion of 
grid nodes . Agreed change of movement of grid nodes with the solution is achieved by 
constructing of transformation function derived from the principle of quasi-stationarity. 

Simulation of some specific regimes of pulsed heating and melting of semiconductor 
silicon (Si), using a numerical grid with the controlled distribution of nodes was carried out.  

 
 
1 INTRODUCTION 

Pulsed laser radiation is a widely used tool for precision machining of materials, including 
semiconductors. Among semiconductor materials, silicon was most widespread in the 
instrument-making and is one of the most promising materials for thin-film nanotechnology. 

To optimize existing and develop new technologies of laser surface treatment of 
semiconductors it is necessary to perform a detailed study of the dynamics of processes 
occurring in the irradiation zone and leading to surface modification, including an analysis of 
the processes of heating, melting and evaporation. 

In this paper, we use the methods of mathematical modeling to investigate the action of 
laser pulse (picosecond) with a wave length of λL=0.53µm and the photon energy exceeding 
the band gap of silicon target ħω>Eg. The main feature of these regimes of laser action is 
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highly non-equilibrium of heating and melting processes, which results in a large difference 
between the carriers temperature and the lattice temperature. The numerical solution of  
system of partial differential equations of parabolic type was carried out by means of the 
dynamic adaptation method. The use of arbitrary nonstationary system of coordinates allows 
to construct grids with a constant number of nodes in regions with moving boundaries and 
allows to concentrate grid nodes in regions of large gradients of solutions. 

Laser radiation with intensity G(t), Gaussian distribution and wavelength λL extending 
from left to right (Fig. 1) falls on silicon target surface, where the part of the radiation is 
reflected and some is absorbed. The released energy of laser pulse causes heating, melting 
(moving boundary Гsl - melting front) and evaporation (moving boundary Гlv  - evaporation 
front). 

2 MODEL 
The mathematical model consists of transport equations of the laser radiation, which takes 

into account the temperature dependence of the reflectivity of the surface, the carrier balance 
equation that takes into account generation (photo-ionization) and recombination of charged 
particles (Auger recombination, and photo-recombination), the balance equations of energy 
carriers and the lattice, taking into account the absorption of laser energy, the exchange of 
energy between the electron and phonon subsystems, heat and mass transfer [1-2]. 

 

 
Figure 1. Scheme of laser irradiation. 

 
The basis of first-order phase transitions  is the mechanism of heterogeneous melting and 

evaporation. The process of melting - crystallization is described in approximation of classical 
variant of Stefan problem and the process of evaporation is described in approximation of 
Knudsen layer (single-phase version of Stefan problem). 

Semiconductor has the properties of metal after melting temperature is reached. And 
therefore it is necessary to write equations for the solid and liquid regions. 

Equations for solid region: 
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Equation (1) is equation for a concentration. Equations (2), (3) are energy equations for 
electron component and lattice. Equation (4) is equation of laser energy transfer.  

Equations for liquid region: 
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Where N – carrier concentration, J – particle current density, εe и εlat – internal energy of 
electron gas and lattice, We и Wlat – heat flow of electron gas and lattice, xL – right end of the 
sample, λe и λl – heat conductivity coefficient of electron gas and liquid metal, 

( )NTkGGI eien ++=
ω

β
ω

β
hh 2

2
21  and Ren=γN3 – electron-hole pairs generation and recombination 

velocities, γ - Auger recombination coefficient and ω - laser irradiation frequency, α – free-
carrier absorption coefficient, β1 and β2 - coefficients of one and two photon absorption, ki - 
collision ionization coefficient,  g(Te), g(Te)lat – electron-lattice energy exchange factor for 
metal and semiconductor, g(Te)lat=Ce/τE, τE  - energy relaxation time, Сe – heat capacity. g(Te) 
and other thermophysical  properties of metals reported in [4]. 

Equations (5), (6) are energy equations for electron component and lattice one. Equation 
(7) is equation of laser energy transfer.  

Boundary conditions: 
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Indexes lat, l, v, s, sat, b mean values affiliation to semiconductor lattice, metal liquid 
phase, vapor, solid phase, saturated vapor and boiling under normal conditions. 

3 METHOD 
The method of dynamic adaptation is based on a transition to an arbitrary non-stationary 

coordinate system. The usage of an arbitrary non-stationary coordinate system allows to 
formulate the problem of the grid generation and adaptation at the differential level, i.e. in the 
resulting mathematical model, one part of the differential equations describes the physical 
processes and the other part – the behavior of the nodes of the grid [5]. The transition to an 
arbitrary non-stationary coordinate system is performed using an automated coordinate 
transformation via the sought solution. 

According to the papers [5] – [7], we will perform a transition from the physical space 
 with Euler variables  to some computational space with an arbitrary non-stationary 

coordinate system  with variables
tx,Ω ),( tx

τ,qΩ ),( τq . This transformation can be performed using a 
substitution of variables of a common form ττ =tqfx ),,(=

t
, with a single-valued non-

degenerate reverse transformation     ),,(= =τϕ txq . 
During the transition from one coordinate system to another, the partial derivatives of the 

dependent variables are connected via the following expressions: 
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where qx ∂∂= /ψ  - is the Jacobian  of the reverse transformation. 
Using a replacement of variables of the common form and expressions (8), we can write 

the differential model (1) –(4) and (5) – (7) in the variables ),( τq : 
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where (13), (17) – are the equations of the reverse transformation with the transformation 
functions , . The functions  characterize the speed of the non-stationary 
coordinate system in the solid and liquid phases accordingly and are not predefined and 
should be determined.  

sQ lQ sQ , lQ

Thus, during the transition to an arbitrary non-stationary coordinate system, the initial 
differential models are transformed to the extended differential systems with additional 
equations (13) and (17). Their type, properties and form of the boundary conditions depend on 
the particular form of the functions Q [7]. At this stage of discussion, the functions  are 
not defined yet. After their determination, the equations (13) and (17) are used for 
construction of the grids that adapt to the gradients of solution and to the moving domain 
boundaries. Their differential analogues describe the dynamics of the grid nodes and the 
functions  perform the controlled motion of the grid nodes in an agreement with the 
dynamics of the sought solution.  The agreement is achieved by introduction of a functional 
dependency of the function Q  on the sought solution. But since the solution is not known 
beforehand, a problem arises with the determination of the optimum transformation 
function  that will provide a complete matching of the adaptation mechanism with the 
solution. If there are no complete matching, fitting coefficients are inserted into the 
controlling function. By the adjustment of the fitting coefficients, it is possible to make the 
degree of the mismatching lower. At the same time, the fact of the presence of the fitting 
coefficients in an adaptation method is an evidence of  its imperfection. 

sQ , lQ

sQ , lQ

Q

Such matching can be obtained using the quasi-stationary principle [1], [8], which states 
that it is necessary to switch to a such coordinate system, where the time derivatives will be 
small or satisfy the relation: 0 === ∂τε∂∂τε∂∂τε∂∂τ∂ llateN = . Then the 
transformation functions will take the form: 

  
( )

qqq
N

IR
q
J

q
G

q
W

q
W

Q
ate

enen
ate

s

∂
∂

+
∂
∂

+
∂
∂

−+
∂
∂

+
∂
∂

+
∂

∂
+

∂
∂

−=
l

l

εε

ψ
         

qq

q
G

q
W

q
W

Q
e

e

∂
∂

+
∂
∂

∂
∂

+
∂
∂

+
∂
∂

−=
l

l

l εε
 

 

491



The usage of adapting grids allowed to perform all computations of grids with total number 
of nodes less than 100.  

5 RESULTS 

Regimes of irradiation with a Gaussian intensity distribution in the pulse 
( ) ( )( ) t/-expGtG 0 τ= 2  were considered. Pulse duration τL = 10 ps. The maximum value of the 

intensity varied from G0=3x109 to 5x1010 W/cm2. Figures 2 and 3 show the time profiles of 
temperature and radiation at intensity G0 = 3x109 W/cm2. It can be seen that at such intensity 
the gap between the electron temperature and the temperature of the lattice is clearly seen, but 
the melting does not occur yet. 
 

 
Figure 2. Time dependences of incident G (black dotted curve) and absorbed part AG (red solid curve) of laser 

radiation intensity, G0=3x109 W/cm2. 
 

Increasing the intensity by one order of magnitude leads to the melting of silicon, which 
starts at the back front of the laser pulse. Typical time profiles of the laser radiation, surface 
temperatures, melting front velocity and (non)-equilibrium carrier concentrations on the 
surface for 3x1010 W/cm2 energy pulse are shown in Fig. 4-7. Since the melting of lattice 
starts at the back front of the pulse, the maximum velocity υsl reaches relatively low value of 
~ 27 m/s.  

 

492



 
Figure 3. Time dependences of electron Te (black solid curve) and lattice (red dotted curve) temperatures. 

 
 

 
Figure 4. Time dependences of incident G (black curve) and absorbed part AG (red curve) of laser radiation 

intensity, G0=3x1010 W/cm2. 
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Figure 5. Time dependences of electron Te (black curve) and lattice (red curve) temperatures. 

 
Figure 6. Time dependence of the melting velocity υsl. 

As seen from the time dependences of temperatures (Fig.5 and Fig.9) throughout pulse 
duration there is a noticeable gap between the phonon and electron temperatures, which 
reaches 12000K at the peak of the pulse. By the end of the pulse the phonon and electron 
temperatures become equal.  

Maximum melting front velocity reaches 27 m/s for 3x1010 W/cm2 and 225 m/s for 5x1010 

W/cm2. 
The presence of two peaks in the electron temperature in all regimes of irradiation should 

be noted, that indicates a change of the mechanism of absorption (photoprocesses replaced by 
inverse bremsstrahlung). 
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Figure 7. Time dependences of nonequilibrium N (black curve) and equilibrium N0 (red curve) carrier 

concentrations on the surface.  
 
A small change in the intensity of the radiation to 5x1010 W/cm2 (Fig. 8-11) leads to the 

beginning of melting near the maximum of intensity that provides high value of melting 
velocity υsl =225 m/s and the gap between temperatures. 

 

 
Figure 8. Time dependences of incident G (black curve) and absorbed part AG (red curve) of laser radiation 

intensity, G0=5x1010 W/cm2. 
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Figure 9. Time dependences of electron Te (black curve) and lattice (red curve) temperatures. 

 
Figure 10. Time dependence of the melting velocity υsl. 

 
Figure 11. Time dependences of nonequilibrium N (black curve) and equilibrium N0 (red curve) carrier 

concentrations on the surface. 
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4 CONCLUSION 
Application of dynamic adaptation method to the numerical solution of the problems of 

non-equilibrium heating and phase transformations in semiconductor materials was 
considered. Computational features of these problems are the presence of two moving 
interphase boundaries and the presence of regions of rapid change of the solution components 
with different scales in space and time. The use of arbitrary time-dependent system of 
coordinates allows us to construct computational grids with a constant number of nodes in 
regions with moving boundaries and concentrate grid points in regions of large gradients of 
solutions. 

Two functions of coordinate transformation by which we make controlled node 
distribution for nonlinear systems of differential equations of parabolic type  were defined. 

Numerical solution of two typical regimes of laser irradiation on the crystalline silicon 
was obtained. 
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Abstract. This paper addresses the construction of anisotropic metrics from higher-order
interpolation error in 2 dimensions [2, 3] for mesh adaptation. Our approach is based on
homogeneous polynomials that model a local interpolation error. Optimal orientation and
ratios are found by using the Sylvester decomposition [4]. Then we apply a global calculus
of variation to get the optimal metric field minimizing the Lp norm of the interpolation
error. We illustrate this approach on 3D numerical examples.
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Abstract. In this communication we present some recent results about time adaptiv-
ity with applications to fluid-dynamics. In particular, we are interested in phenomena
characterized by temporal multiscale as well as strong spatial heterogeneities, e.g., heat
flow problems, shallow water flows, hydrogeology, particle diffusion phenomena, etc. The
proposed adaptation procedure relies on a theoretical tool, i.e., an a posteriori error es-
timator, driving the automatic choice of both the spatial and temporal meshes. The key
point is to identify, in the error estimator, separate space and time contributions, as dis-
cussed, e.g., in [1, 2, 3]. Thus, on the one hand, we devise a sound criterion to update the
time step, able to follow the evolution of the problem under investigation. On the other
hand, we exploit an anisotropic adapted triangular grid. It is in fact well known that, by
better orienting the mesh elements according to the main features of the solution, it is
possible to maximize the solution accuracy for a fixed number of elements, rather than
reduce the number of degrees of freedom for a fixed solution accuracy (see, e.g., [4, 5]).
Application to purely diffusive problems was first provided in [6, 7]. Here we extend our
approach to nonlinear problems, such as the shallow water system considered in [8, 9].
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Abstract. We derive a goal-oriented estimate of the error in finite element approxima-
tions of nonlinear parabolic equations based on a representation that involves an equili-
brated flux reconstruction in space variable of the solution to the primal and to the (linear)
dual backward-in-time problem. The error estimate can be applied to any arbitrary finite
element discretization of the primal problem that admits a flux reconstruction in space
variable satisfying some local space-time conservation and approximation properties [1].
We assume that an implicit-in-time Euler-type scheme is employed for the primal prob-
lem. The adjoint problem is then approximated using the same type of discretization
scheme in time and a discontinuous Galerkin (dG) finite element method in space on
the same mesh as the one used for the primal problem. Owing to the local conservation
property of the dG, reconstructed equilibrated fluxes associated with the dual problem [2]
can be straightforwardly obtained for the calculation of the error estimates. In fact, the
dG method naturally produces fully computable elementwise contributions to the error,
which are accurate even on the original mesh since the support of the basis functions
coincides with the elements, see [3]. In this talk, we prove, and confirm with numerical
experiments, that the proposed error estimator is asymptotically exact.
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Abstract. In this communication we present preliminary results assessing the application
of a novel recovery technique, based on the well-known Superconvergent Patch Recovery
(SPR) technique, to linear elasticity problems solved within the framework of the Finite
Element Method (FEM). This recovery procedure provides statically admissible stress
fields which are used to obtain upper bounds of the error in the energy norm. Tradition-
ally, most error bounding approaches are residual-based, however their accuracy is not
always high. Therefore practitioners and engineers generally prefer to use recovery-based
techniques, because of their high accuracy and easy implementation.

Exploiting the fact that the strain energy of the difference between a kinematically
admissible stress field (typically a raw FE solution) and a statically admissible stress field
(for example our recovered solution) directly provides an upper bound of the error in the
energy norm [1], previous recovery techniques, such as the SPR-C [2], tried to obtain
upper bounds [3], relying on some correction terms, which depend on the exact solution,
to account for their lack of equilibrium. In this work we compare the performance of both
techniques.
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1 Introduction

Numerical methods to solve Boundary Value Problems (BVP) such as the 2D linear
elasticity problems have experimented a huge increase in their use by practitioners. More
specifically, the displacement-based Finite Element Method (FEM) is widely used today
in industries such as aerospace, civil engineering, automotive, etc. FEM is a powerful
method for a vast type of engineering problems, however it is only able to provide an
approximated solution. Therefore, some error level has to be accounted for to define the
safety factors during the design process of mechanical parts.

During a Finite Element (FE) analysis there are several sources of error like geometrical
simplifications of the actual component to make it suitable for the analysis, geometrical
errors due to the FE discretization of the domain, the discretization error due to the
FE approximation to the solution, etc. In this work we are going to focus only on the
discretization error.

During the last part of the 20th century, scientist have developed techniques to obtain
an estimation or a bound of the error in energy norm to quantify the quality of the FE
results. The first approaches yielding upper bounds in the error estimation were based
on explicit residuals [4], however their applicability is limited, since they are constant
dependent. Later, a new procedure based on implicit residuals appeared which, under
certain circumstances, is also able to provide upper bounds [5, 6, 7, 8, 9, 10, 11, 12].
Different approaches, related to the concept of dual analysis, working with a compatible
and with an equilibrated solution, were also used to directly obtain upper error bounds.
Some of them solving two global problems in parallel [13] or post-processing the FE
solution [6, 14, 15]. The main characteristic of these error bounding techniques is that
the error is evaluated by comparing the two solutions, one compatible and the other
equilibrated, which are complementary in nature, and whose errors are orthogonal.

Other techniques, which traditionally were unable to obtain bounds for the error in
energy norm, use the so-called Zienkiewicz and Zhu (ZZ) error estimator [16]. In this
case the FE solution (compatible) is compared with an improved solution, not necessary
equilibrated, obtained with a recovery procedure such as, e.g., the Superconvergent Patch
Recovery (SPR) [17, 18]. Today, the ZZ error estimator is widely used due to its simplicity
(only uses standard FE results) and high accuracy. However, the main drawback is that
despite of the fact that the ZZ error estimator in combination with the SPR technique
is asymptotically exact, it is unable to guarantee an upper bound of the error in energy
norm.

Some works to improve the original SPR technique have been carried out. Ródenas
and et al. proposed to add some constraints to impose local equilibrium to the recovered
solution [2] obtaining a quasi-equilibrated recovered solution, using the so-called SPR-C
technique. Dı́ez et al.[3] presented a methodology to obtain computable upper bounds of
the error in energy norm considering the quasi-equilibrated recovered field. Those ideas
were also applied by Ródenas and co-workers [19, 20, 21, 22] in the eXtended Finite
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Element Method (XFEM) framework [23, 24]. In all those methods the upper bound
property was not strongly guaranteed by using directly the recovered solution. Thus,
they needed the evaluation of some correction terms to compute the lack of equilibrium
[3] for which only an estimation was available.

In this work, we present a procedure which directly recovers a fully equilibrated re-
covered solution from the superconvergent stresses. Then, directly comparing the FE
solution with the recovered one, using a version of the the ZZ error estimator, we obtain
guaranteed upper bounds of the error in the energy norm, yielding sharp estimations as
shown in the section devoted to numerical tests.

2 Problem Statement

Let us consider the displacement field u taking values in Ω ⊂ R
2 as the solution of the

2D linear elasticity problem given by

−∇ · σ (u) = b in Ω (1)

σ (u) · n = t on ΓN (2)

u = 0 on ΓD (3)

where ΓN and ΓD are the parts of the boundary where the Neumann and Dirichlet con-
ditions are applied, such that ∂Ω = Γ̄N ∪ Γ̄D and ΓN ∩ΓD = ∅. b are the body loads and
t are the tractions imposed along ΓN . We consider a homogeneous Dirichlet boundary
condition in (3) for simplicity.

The problem can be rewritten in its variational form as:

Find u ∈ V : ∀v ∈ V a(u,v) = l(v) (4)

where V = {v | v ∈ H1(Ω),v|ΓD
(x) = 0} is the standard test space for the elasticity

problem. The symmetric and bilinear form a : V ×V → R and the continuous linear form
l : V → R are defined in vectorial form as:

a(u,v) :=

∫

Ω

σ
T (u)ε(v)dΩ =

∫

Ω

σ(u)TD−1
σ(v)dΩ (5)

l(v) :=

∫

Ω

bTvdΩ +

∫

ΓN

tTvdΓ, (6)

where σ represents the stresses, ε are the strains and D is the elasticity matrix of the
constitutive relation σ = Dε.

3 Fully equilibrated recovery procedure

Traditionally, recovery-type error estimators were unable to provide error bounds in
energy norm. Dı́ez et al.[3] made a first attempt by adding some correction terms to the
ZZ error estimator in order to ensure the upper bound property. In this section we are
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going to show a scheme for a new recovery procedure that, directly using the ZZ error
estimator, yields upper error bounds in energy norm.

When the recovered stress field σ
∗ is statically admissible in the ZZ error estimator, it

yields an upper error bound. Thus, in this section we aim to the evaluation of an statically
admissible stress field. To do that, σ∗ has to fulfil the internal equilibrium equation (IEE),
the boundary equilibrium equation (BE) and equilibrium of tractions along the internal
element edges (IB). Note that the normal stress tangent to the boundary is no necessarily
continuous along the element edges.

The technique presented here, called SPR-FE (Fully Equilibrated), is based in the
SPR technique developed by Zienkiewicz and Zhu [17]. In the SPR-FE, as in SPR, we
create patches of elements with the elements connected by the vertex nodes, so-called
patch assembly nodes (AN), see Figure 1a. There are two main differences between the
traditional SPR and the SPR-FE: a) in the SPR each recovered stress component is
represented by a single polynomial on each patch, while for the SPR-FE a polynomial
surface is fitted for each stress component on each element of the patch. In Figure 1a
we fit, by minimizing (7), a different polynomial surface for each stress component at
elements I, II, III, IV . b) the second difference is that the SPR technique builds up
the global recovered field in an element by adding the contributions of each patch using
a partition of unity. However, in the SPR-FE the global recovered field is obtained by
directly adding the contributions of all patches σ∗ =

∑AN
i σ

k
i connected to one element k

since the partition of unity is implicit in the functional (7). Note that when we apply the
constraints for internal and boundary equilibrium the problem loads will be also affected
by the partition of unity Nk

i .
For the statically admissibility condition, we add the constraints that are necessary to

enforce the required continuity and equilibrium in the recovered solution using a point
collocation approach, the number of points will depend on the degree of the recovered
field. This is obtained by adding continuity of tractions along the internal edges (red
edges). We enforce the recovered tractions to zero along the external edges (blue edges)
and finally we enforce the equilibrium equation at each element, separately. The recovery
process will be described below in more detail.

3.1 Recovery procedure

We minimize the following functional on each of the k elements of the patch with
assembly node i:

Ψ =

∫

Ωk

(

σ
∗

k −Nk
i σ

h
)2

dΩ k = I, II, III, IV (7)

where Nk
i is the linear shape function of the node i, in element k. σh is the FE stress field

and σ
∗

k = Pkak is the recovered stress field for the element k, where ak = {axx
k , a

yy
k , a

xy
k }T

are the coefficients for each stress component and Pk is the matrix for the polynomial
expansion pk = {xmyn : m,n ≤ q}k, where q is the polynomial degree
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I II

IIIIV

i

(a) Patch of elements. Assembly node i
represented in orange.

I

IV

II

III

G
E

x

h

(b) Patch in contact with a boundary
(green line) of the domain.

Figure 1: Internal patch formed by 4 elements (left) and patch in contact with the bound-
ary formed by 2 elements (right).

Pk =





pk 0 0
0 pk 0
0 0 pk



 (8)

For each element k, integrating numerically after the minimization of (7) we obtain
the following expression:

∑

pg

PT
kPk|J|ωak =

∑

pg

PT
kN

k
i σ

h|J|ω (9)

where |J| is the Jacobian of the coordinates transformation, ω is the weight of each
integration point and pg is the number of integration points. This expression yields
a linear system of equations for each element of the patch Mkak = gk. Due to the
constraints we have imposed, we need some interaction between the different recovered
stress fields. Thus, we assemble all four systems together and we obtain the following
linear system for the patch:









MI 0 0 0
0 MII 0 0
0 0 MIII 0
0 0 0 MIV























aI

aII

aIII

aIV















=















gI

gII

gIII

gIV















⇒ Ma = g (10)

3.2 Internal equilibrium constraint

In contrast with the SPR-C presented in [2], where the internal equilibrium equation
was ∇ · σ∗

k + b = 0, in the SPR-FE we have to take into account the partition of unity
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introduced in the functional (7). Therefore, it will affect to the body forces b and also
bring up a new term, first introduced in [15]: the fictitious body forces, ∇Nk

i σ
h. Their

role is to ensure that the forces applied to each patch satisfy global equilibrium for the
isolated patch. If their were not considered, then Equation (10), would generally have no
solution. Nevertheless, when we sum up the contributions of the four patches of a single
element k these terms will sum to zero, cancelling their effect at a global level.

Then, the internal equilibrium equation to impose in this case is∇·σ∗

k+Nk
i b = ∇Nk

i σ
h

at each element k. These constraints are independently enforced in all elements. This
generates the internal equilibrium matrix for each element CIEE

k and the independent
term hIEE

k .

3.3 External patch edge constraint

The next step is to add the constraints along the external boundaries of the patch,
that is, the constraints along the blue edges in Figure 1a. These constraints will ensure
tractions continuity when we sum up the contributions from the patches related to an
element. Since the partition of unity function is zero at the external edges of the patch,
the equation to be imposed there is σ

∗

k · n = 0, where n is the outward normal vector
along the patch boundary. This generates for each element the matrix CBE

k and the
independent term hBE

k = 0.

3.4 Internal patch edge constraint

Finally, it is also necessary to add the constraints along the internal boundaries of
the patch (red edges), i.e. the interfaces between elements. These are also used to
ensure tractions continuity along the element interface. The equation to be imposed is
σ

∗

k · nk + σ
∗

l · nl = 0, where k 6= l, nk and nl are the outward normal vectors of each
elements in the common edge (nk = −nl), generating CIB

k and CIB
l respectively, the RHS

is again null hIB
k = 0.

A particular situation occurs when an internal edge coincides with a boundary where
the tractions are prescribed. In Figure 1b we illustrate such a boundary (green line), which
is internal to the patch. This is a typical situation when the assembly nodes (orange point)
are over the boundary. In this case, the equations to be imposed have to take into account
the Neumann boundary condition then, σ∗

k · nk = Nk
i t. When the boundary condition

is non-homogeneous the corresponding term in the RHS is generally not null, hIB
k 6= 0.

Note that the opposite element sharing the edge, i.e. element l in the general case, does
not exist for this type of patch.

3.5 System resolution considerations

Adding all constraints to (10) we obtain the following linear system to solve at each
patch:
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M (CIEE)T (CEB)T (CIB)T

CIEE 0 0 0
CEB 0 0 0
CIB 0 0 0























a

λ
IEE

λ
EB

λ
IB















=















g

hIEE

0
hIB
k















(11)

and it could be rewritten as MCaC = gC , where C indicates that the constraints are
included.

The basis p for the stress field has to be able to represent all constraints to guarantee
the statical admissibility property. Thus, we need to analyse the minimum degree re-
quired for the stress field to guarantee the equations system (11) is solvable. We consider
a bi-quadratic representation of the displacement field. Linear or bilinear FE solutions
cannot be directly applied to this recovery procedure since they do not guarantee rota-
tional equilibrium of the patch [25]. Then, the FE stress field σ

h has quadratic terms, the
partition of unity used in (7) is bilinear and its divergence has linear terms. Analyzing the
constraints we need at least a 4th order polynomial interpolation because of the fictitious
body forces. In Table 1 we show the total size of the system to be solve at each node.
We have to pay attention to the “effective” number of “free coefficients” (last column),
the difference between the number of “Coefficients” a and the number of independent
constraints. For degree 4 there are more constraints (192+80+40 ¿ 300) than coefficients,
therefore some constraints have to be linearly dependent. In fact there are always lin-
early dependent constraints, as indicated by the difference between the dimension of the
system and its rank, and thus we obtain 16 effective free coefficients for degree 4. We use
the Singular Value Decomposition (SVD) technique to solve that system, identifying the
dependent equations and their consistency.

Degree Coefficients IEE ctr EB ctr IB ctr System size Rank Eff free coef
4 300 192 80 40 612 584 16
5 432 280 96 48 856 828 40
6 588 384 112 56 1140 1108 68

Table 1: Number of coefficients and constraints

4 Numerical results

In this section we verify numerically that the upper bound property is satisfied by the
error estimation when the SPR-FE is used in the ZZ error estimator in (12). We also
define the global effectivity index θ = ‖ees‖/‖e‖ as the ratio between the estimated error
‖ees‖ and the exact error, where σ is the exact stress field:

‖ees‖
2 =

∫

Ω

(

σ
∗ − σ

h
)T

D−1
(

σ
∗ − σ

h
)

dΩ (12)
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‖e‖2 =

∫

Ω

(

σ − σ
h
)T

D−1
(

σ − σ
h
)

dΩ (13)

We compare the results obtained with the SPR-FE with those obtained with the SPR-
C [2]. In all problems, plane strain and bi-quadratic elements will be considered for all
analyses.

4.1 Problem 1. 2× 2 square

This problem has an analytical cubic solution in displacements with body forces. The
problem model, material properties and exact solution are represented in Figure 2.

ux = x+ x2 − 2xy + x3 − 3xy2 + x2y

uy = −y − 2xy + y2 − 3x2y + y3 − xy2

σxx =
E

1 + ν
(1 + 2x− 2y + 3x2 − 3y2 + 2xy)

σyy =
−E

1 + ν
(1 + 2x− 2y + 3x2 − 3y2 + 2xy)

σxy =
E

1 + ν
(−x− y +

x2

2
−

y2

2
− 6xy)

bx =
−E

1 + ν
(1 + y) bx =

−E

1 + ν
(1− x)

E = 1000, ν = 0.3

Figure 2: Problem 1. Model, material and analytical solution.

Figure 3 shows the results obtained with the SPR-FE recovered stress field with 4th

(blue line) and 5th (red line) order polynomial interpolation. Black lines correspond to the
results obtained with the SPR-C technique. In terms of effectivity of the error estimator,
we observe that in all cases θ is above 1 (satisfies the upper bound property) and very close
to 1 (very accurate error estimation). Theoretically, for the SPR-FE the upper bound is
guaranteed but not for the SPR-C, however the results are quite similar. Regarding the
computational cost, we observe a considerable difference between the techniques. This is
due to the complexity of the technique used to solve system (11).

4.2 Problem 2. 2× 2 square in cylinder under internal pressure

The analytical solution of this problem corresponds to a pipe under internal pressure.
However, we have extract form the problem an squared area (green area) for the analysis
and we have run the FE analysis applying the corresponding Neumann boundary condi-
tions and constraining the rigid body motions. The problem model, material properties
and exact solution is represented in Figure 4, in polar coordinates.
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1.3
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θ

103 104
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103

DoF

Computational cost (s)

SPR-FE 4th

SPR-FE 5th

SPR-C

Figure 3: Problem 1. Q8. Global effectivity index θ and overall computational cost for
SPR-FE and SPR-C techniques.

a

b

P
L1

L2L3

L4

ur(r) =
P (1 + ν)

E(c2 − 1)

(

r(1− 2ν) +
b2

r

)

σr(r) =
P

c2 − 1

(

1−
b2

r2

)

σθ(r) =
P

c2 − 1

(

1 +
b2

r2

)

a = 5 b = 20 P = 1

E = 1000 ν = 0.3 c =
b

a

Figure 4: Problem 2: Model, material and analytical solution.

For this problem the upper bound property is not strictly guaranteed because the
tractions over the boundary of the domain (green area) cannot be represented by the
polynomial basis used for the recovery. However, in Figure 5 we observe again an upper
bound for the two techniques and the results are very accurate for all of them.

5 Conclusions

In this work we have presented a novel technique that is able to provide an upper
error bound in energy norm. This technique is based on the ZZ error estimator and it
uses an elaborated recovery procedure. Results showed that the computational cost to
obtain that recovered field is quite high in comparison with standard recovery procedures.
The main advantage of the SPR-FE is that, in contrast with other recovery procedures
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Figure 5: Problem 2. Q8. Global effectivity index θ and computational cost for SPR-FE
and SPR-C techniques.

such as the SPR-C, it is able to obtain guaranteed error bounds without any correction
terms. Nevertheless, the SPR-C is obtaining for these examples numerical upper bounds
and error estimates close to one. We are currently working to improve the computational
cost associated to the SPR-FE to make it competitive with traditional error bounding
techniques.
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Abstract. During a numeric simulation based on the finite element method, the h-refinement 
of the mesh consists in splitting the elements where an error indicator is higher than a 

threshold. One major point is that the final mesh must be conformal. When the mesh is 

defined only by triangles or tetrahedra, the junction between two zones with a different level 

of refinement has been solved for many years. When the mesh is made of hexahedra, this 

junction cannot be made of hexahedra. A proposal is made in this paper to connect the zones 

with some specific elements. Two applications are presented here and show the efficiency of 

the method. 

 

1. INTRODUCTION 

In a numerical simulation using the finite element method, the mesh has to be fine enough 

to guarantee the accuracy of the solution. To achieve this goal, mesh adaptation offers an 

effective compromise, combining a fine mesh with a low computational cost. When using the 

h-refinement method, some meshes are divided but difficulties occur at the interface between 

two zones with different levels of refinement, if a conformal mesh is required. That problem 

is solved either by specific finite elements in the junction [1] or by a specific splitting of these 

meshes [2]. 

If the initial mesh is made of triangles or tetrahedra, the splitting of the meshes at the 

interface produces new triangles or tetrahedra. Since the early 90’s, this method has been 

implemented in HOMARD, our software for mesh refinement ([3], available in [4]). But in 

some numeric simulations, the initial mesh is made of hexahedra because they are more 

efficient than the tetrahedra. In that case, the transition is not as simple as it is with the 

tetrahedra: the conformal connection cannot be made with others hexahedra. To solve this 

problem, we developed a new method. First, the error indicator from the computed solution is 

used to produce a non-conformal mesh [5]. Then, every hexahedron that is located at the 

interface between the zones of different levels of refinement is examined: using tetrahedra and 

pyramids makes possible a conformal connection. 
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The first part of this paper, chapter 2, presents a basic application on a 3D structure that 

shows the advantages of the h-refinement when the mesh is made of hexahedra. The transition 

zone will be described and the convergence of the computation is easily reached. Secondly, 

chapter 3, the central part of the method is detailed. Last, chapter 4, an industrial application 

of the method is presented. 

2. FIRST EXAMPLE OF APPLICATION 

To give an idea of the effectiveness of the h-refinement with a mesh made of hexahedra, 

we present an example in structural mechanics. Lo et al suggested this test case in [1]. The 

model represents a 3D cross with one fixed face (see. Figure 1). A uniform pressure is applied 

on one face. The objective is to get an accurate value of the field of displacement along the 

line opposite to the fixed face. The simulations are done with Code_Aster [6], the open source 

finite element software for mechanical analysis. The mesh adaptations for this test case have 

been driven using the goal-oriented estimation of the error [7]. The goal of the mesh 

adaptation is to increase the accuracy on the displacement. 

Fixed face
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Figure 1: Description of the 3D cross 

The initial mesh is composed of second order hexahedra. The threshold is established as 

10% of the largest error in the initial mesh. The adaptation stops when the global error 

indicator on the structure is 20% of its value on the initial mesh. The evolution of the refined 

meshes along the iterations of the adaptation ensures the diminution of the global error of the 

problem. When the convergence is reached, the aspect of the meshes all along the iterations is 

similar to those obtained by Lo. When we look at the meshes (see. Figure 2), we see that the 

refinement occurs near the fixed face and near the edges between two branches of the cross, 
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as expected. The transition zones between two different levels of refinement are visible in the 

figure each time a volume is not a hexahedron anymore. 

 

Figure 2: Initial and adapted meshes of the 3D cross 

For some different strategies (see. Figure 3), we present the value of the total error plotted 

against the number of nodes, in a log-log-plot. First, a uniform refinement is tested (circle). 

As expected, a fast convergence cannot be reached with a uniform refinement. In the other 

cases, the threshold is defined either by an absolute value (abs plot), or by the percentage of 

the “worst” meshes (pcm plot). We can see that the influence of the strategy on the speed of 

convergence is rather small. Whatever the choice, the convergence is reached with more or 

less the same number of degrees of freedom. This conclusion is coherent with our experience: 

the most important is to catch the elements where the error is high and to be sure that they are 

refined. 
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Figure 3: Convergence 

3. ALGORITHM 

The algorithm is described with details in [3]. The guidelines are presented here; a special 

focus is made on the technique that is employed to produce a conformal mesh when 

hexahedra are present. 

 

3.1. Basic ideas 

At the beginning of the process, all the elements of the initial mesh belong to level #0. The 

computation of the physical problem produces an error indicator over every element. Giving a 

threshold identifies some elements: those where the error indicator is higher than this 

threshold are split. That phase creates some elements that belong to level #1. Then, we have to 

solve the junction between the two different levels of refinement by introducing some special 

divisions of the elements to produce a conformal mesh. A new computation is made over this 

new mesh and the same adaptation can be processed one more time, until convergence is 

reached. 

In our method, we decided to deal with 3D meshes and 2D meshes as well. When the mesh 

is composed of 3D elements, the faces of every element are defined in the data structure. If a 
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3D element has to be split because of the value of the error indicator, the decision of 

refinement is transferred to its faces. Then the resolution of the conflicts between the levels of 

refinement is made uniquely by considering the 2D faces. This is the central part of the 

algorithm and it is the same whatever the composition of the initial mesh. Last, examining the 

final decisions of its faces makes the refinement of every 3D element. 

We illustrate this technique for a 2D mesh made of quadrangles. It is based on a three-

stage procedure: 

A. Mark every quadrangle that requires refinement according to the error indicator 

B. Mark every quadrangle that has at least two refined neighbours 

C. Stop the propagation using transition elements 

These stages are illustrated in Figure 4. Suppose that the grey quadrangles are the elements 

over which the error is higher than the threshold (A1). The first action of the phase A is to 

refine these elements: all their edges are equally split in two by placing a node at their 

midsections, so that four internal quadrangles are created (A2). The central quadrangle with 

two refined neighbours is then refined (B1). In our example, that action modifies the status of 

its neighbour on the right: it now has two split neighbours so it also has to be refined (B2). At 

this point, there are no more quadrangles with 2 refined neighbours or more. In the last step, 

all the quadrangles with one refined neighbour are split using a special technique (C). 

A1. Error > threshold A2. Refined meshes

B1/B2 Rules of 2 neighbours C. The transition meshes  

Figure 4: Algorithm for a 2D mesh 

3.2. The transition elements 

A special point must be made regarding the transition elements. They are defined to ensure 

a conformal transition between two different levels of refinement. When 3D elements are 

present in the mesh, at the end of the phase B of the algorithm, these 3D elements can be 

sorted by the status of their faces: 

• No face is split: the 3D element is kept as is 

• All the faces are regularly split: the 3D element is regularly refined 

• Other situations: the 3D element is located into a transition zone between two different 

levels of refinement. Each situation must be analyzed (see. 3.2.2) 
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3.2.1. Refinement of a quadrangle 

At the end of the phase B of our algorithm (Mark every quadrangle that has at least two 

refined neighbours) every quadrangle is in one of these 3 situations: either no edge is split, or 

a unique edge is split, or all edges are split. If all the edges are split, placing a node at its 

midsection equally splits each edge. Adding a node at the centre of the quadrangle produces 

the 4 quadrangles of the regularly refinement 

When a unique edge is split, some transition elements are needed. We decided that no 

additional node on any edge would be introduced to create them. Consequently, the pending 

node is connected to the opposite vertex, to produce three triangles. 

 

 

 

 

Figure 5: Refinement of a quadrangle: regular and transition 

3.2.2. Transition elements for the hexahedra 

The situation is much more complex when a hexahedron is located at the interface between 

two zones with a different level of refinement. The analysis of this case constitutes the central 

point of our work. When the rules are applied, one of six cases can happen at the end of the 

phase B: 

• No edge is split: the hexahedron is kept as is 

• All the edges are split: the hexahedron is regularly refined. 

• A unique edge is split. The two quadrangular faces that share this edge are refined by 

transition while the four others faces are kept intact. Two internal edges are created 

from the middle of the split edge to the two vertices on the opposite edge. This internal 

division produces four pyramids whose bases are the four non-split quadrangular faces 

of the hexahedron. 

 

Figure 6: One edge is split 
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• Two edges on two different faces are split. The two faces of the hexahedron that do not 

have a split edge are kept intact, while the other four are split into triangles. An 

additional node is created at the centroid of the hexahedron. Ten internal edges are 

created with that centroid as a vertex: two are created to connect it to the centre of the 

two split edges while the other eight are created with the eight vertices of the 

hexahedron. Two pyramids are then built with bases on the two intact quadrangular 

faces of the hexahedron, and twelve tetrahedra are created on the remaining triangles. 

 

Figure 7: Two edges are split 

•  Three edges on three different faces are split. Two of these edges cannot belong to the 

same face, so the six faces of the hexahedron are split in triangles. An additional node is 

created at the centroid of the hexahedron. Eleven internal edges are created with that 

centroid as a vertex: three in connection with the centre of the three split edges, while 

the other eight with the eight vertices of the hexahedron. Eighteen tetrahedra are then 

created with the eighteen triangles 

 

Figure 8: Three edges are split 
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• A face and its four edges are split. The opposite face of the hexahedron is kept intact, 

while the other four are split into triangles. Four internal edges are created from the 

centre of the regularly split face to the vertices of the opposite quadrangular face. A 

pyramid is then built on the intact quadrangular face of the hexahedron. Four more 

pyramids are also built on the four quadrangular faces produced by the refinement of 

the refined face. Last, four tetrahedra are created on the four remaining triangles that are 

located in the centre of the lateral faces. 

 

Figure 9: Four edges are split 

3.2.3. Two comments about the pyramids 

Usually, the hexahedra or the tetrahedra are preferred in a numerical simulation rather than 

the pyramids because of their properties. However, the pyramidal element offers an effective 

solution to maintain the compatibility between zones [8]. For the h-refinement, thanks to 

these pyramidal elements, there is no need to define interfacial relations. The algorithm is the 

same over the whole mesh, whatever the type of elements. 

In a further iteration of the adaptive process, if nothing special is done, the pyramids could 

be split. There should be a risk in the quality of the mesh. To avoid that phenomenon, we give 

a temporary status to the transition elements. At the beginning of a new iteration, these 

transition elements are removed. The algorithm is applied over the plain elements. At the end, 

new transition elements are added to make a conformal mesh. Doing that, the transition 

elements are never split and the quality of the mesh is saved. 

4. NUMERICAL APPLICATION 

We illustrate this algorithm with the simulation of an industrial installation: the mechanical 

analysis of an arch dam, during the filling up. Two major parts are described: the foundation 

and the arch. The foundation represents the rocky part around the river valley and gives the 

stability to the structure. The arch made of concrete is modelled and the variation of the 

thickness is taken into account. 

The initial mesh is mainly made of hexahedra, with a few prisms and tetrahedra in the 

conformal connection between the arch and the foundation (see Table 1 and Figure 11). The 

simulation is divided into two parts. Firstly, a calculation is done without any water: the 

objective is to get an initial state of the stresses in the calculation, considering its weight and 

the reaction of the foundation. Secondly, the level of the water rises in the upstream side, up 

to the top of the arch (see Figure 10). The pressure of the water on the upstream face of the 

arch modifies the field of the stresses and of the displacement in the arch. 

522

lacan
Rectangle



Gérald Nicolas, Thierry Fouquet 

 9 

t
876543210

h

Empty

Full

 

Figure 10 - Filling up of the dam 

 

 

Figure 11 - Initial mesh of the dam, upstream side 

 

The strategy of the adaptation is based on a succession of adaptation. The first calculation 

is made until time #1, when the first level of water is reached. At this point, the calculation is 

stopped and the distribution of the stresses and the displacement is examined. On every single 

element, the variation of the displacement between the element and its neighbours is 

computed and stored. The elements where this value is higher than the mean over the domain 

plus four times the square deviation are selected ([9], [10]). These selected elements are split 

at the beginning of the algorithm and the propagation is done until a conformal mesh is 

obtained. At this point, this new mesh is used for a second calculation from the very 

beginning of the building of the dam to the time #2 of the filling up. We operate the same 
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mechanism until time #8 (see Figure 12). Doing this, the mesh is adapted for every position of 

the upper level of the water. 

 

t
876543210

Calculation from t=0 to t=1, then adaptation

Calculation from t=0 to t=2, then adaptation

Calculation from t=0 to t=3, then adaptation

id

Final calculation from t=0 to t=8 over the adapted mesh  

Figure 12 - The scheme of the adaptation 

At the end of the process, the mesh is refined where it is necessary (see Figure 13), mainly 

at the centre and the bottom of the arch. The results of the simulation are similar to the 

reference. The number of degrees of freedom in the adapted mesh is much lower than in the 

reference mesh (see Table 1). This reduction allows using less memory and is very effective 

for large problems. 

 

Mesh Nodes Hexahedra Prisms Tetrahedra Pyramids 

0 21 982 4 019 108 4 0 

1 29 158 4 996 114 564 898 

2 32 758 5 587 243 681 1 074 

3 36 158 6 218 254 779 1 217 

4 39 154 6 787 285 841 1 298 

5 39 693 6 809 285 905 1 422 

6 40 191 6 836 285 961 1 524 

7 40 297 6 838 285 985 1 545 

Reference 153 007 32 152 864 32 0 

Table 1 - Number of elements during the adaptation 
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Figure 13 - Final mesh of the dam, upstream side 

 

5. CONCLUSIONS 

In this paper, we presented an h-refinement method for the adaptation of a conformal 

hexahedral mesh. The algorithm that propagates the decisions of splitting an element is 

governed by a simple rule on the faces: every quadrangular face that has at least two refined 

edges is to be refined. The conformal junction between two zones with a different level of 

refinement is achieved by a combination of tetrahedra and pyramids. 

Some numerical experiments show that this technique is effective to increase the quality of 

the results. Thanks to this process, the confidence into the conclusion of a computation is 

improved. 
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Abstract. In aeronautical CFD, engineers require accurate predictions of the forces and 
moments but they are less concerned with flow-field accuracy. Hence, the so-called "goal 
oriented" mesh adaptation strategies have been introduced to get satisfactory values of 
functional outputs at an acceptable cost, using local node displacement and insertion of new 
points rather than mesh refinement guided by uniform accuracy[2, 3, 4, 5, 6]. Most often, 
such methods involve the adjoint vector of the function of interest. Our purpose is to present 
goal oriented criteria of mesh quality and local mesh adaptation strategies in the framework of 
finite-volume schemes and a discrete adjoint vector method [1]. They are based on the total 
derivative of the goal with respect to (w.r.t.) mesh nodes. More precisely, a projection of the 
goal derivative, removing all components corresponding to geometrical changes in the solid 
walls or the support of the output [7]. The methods are assessed in the case of 2D and 3D 
Euler flow computations, with structured and unstructured meshes. 
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Abstract. In this work, we propose new bounding techniques that enable to derive
accurate and strict error bounds on outputs of interest computed from numerical ap-
proximation methods such as the finite element method. These techniques are based
on Saint-Venant’s principle and exploit specific homotheticity properties in order to im-
prove the quality of the bounds computed from the classical bounding technique. The
capabilities of the proposed approaches are illustrated through two-dimensional numerical
experiments carried out on a linear elasticity problem.

1 INTRODUCTION

In the context of finite element (FE) model verification, research and engineering activ-
ities focus on the development of robust goal-oriented error estimation methods designed
to achieve strict and high-quality error bounds associated to specific quantities of interest.
A general method [1] consists in using extraction techniques as well as robust global error
estimation methods, and involves the global solution of an auxiliary problem, also known
as dual or adjoint problem. The derivation of accurate local error bounds entails a fine
resolution of this auxiliary problem. Nevertheless, the classical bounding technique may
provide low-quality error bounds on specific quantities of interest, particularly when the
global estimated errors related to both reference (primal) and adjoint (dual) problems are
mainly concentrated in disjoint regions. The main source of overestimation presumably
stems form the Cauchy-Schwarz inequality, especially when the zone of interest is located
far from the predominant contributions of the global estimate associated to reference
problem. This observation has spurred the development of new bounding techniques able
to circumvent, or at least alleviate, this serious drawback by optimizing the sharpness and
practical relevance of the classical computed bounds. In this work, we propose and ana-
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lyze new improved bounding techniques based on non-classical and innovative tools, such
as homotheticity properties [2]. These techniques are carefully tailored for the derivation
of inequalities between appropriate quantities over two homothetic domains contained in
the whole structure. Such relations are based on Saint-Venant’s principle and seem to be
limited to solely linear problems. The classical and enhanced techniques can be combined
with an intrusive approach (local refinement techniques) or a non-intrusive one (handbook
techniques [3]) to get a reliable solution of the adjoint problem.

The paper is organized as follows. Section 2 presents both reference and adjoint prob-
lems and defines the discretization error. Section 3 recalls basics on goal-oriented error
estimation using extraction (or adjoint-based) techniques and the concept of constitutive
relation error through the construction of admissible solutions. Section 4 describes the
main features of the improved bounding techniques, while Section 5 provides some nu-
merical experiments conducted on a linear elasticity problem with comparative results
between conventional and alternative bounding techniques.

2 REFERENCE AND ADJOINT PROBLEMS

2.1 Reference problem and discretization error

Let us consider a mechanical structure occupying an open bounded domain Ω ⊂ Rd (d
being the space dimension), with Lipschitz boundary ∂Ω. The prescribed loading acting
on Ω consists of: a displacement field Ud on part ∂uΩ ⊂ ∂Ω (∂uΩ 6= ∅); a traction
force density F d on the complementary part ∂fΩ of ∂Ω such that ∂uΩ ∪ ∂fΩ = ∂Ω,
∂uΩ∩ ∂fΩ = ∅; a body force field f

d
within Ω. Structure Ω is assumed to be made of an

isotropic, homogeneous material with linear and elastic behavior characterized by Hooke’s
tensor K. Assuming a quasi-static loading, an isothermal case and a small perturbations
state, the reference problem consists of finding a displacement/stress pair (u,�) in the
space domain Ω, which verifies:

• the kinematic conditions:

u ∈ U ; u = Ud on ∂uΩ; "(u) =
1

2

(
�u+�Tu

)
in Ω; (1a)

• the weak form of equilibrium equations:

� ∈ S; ∀ u∗ ∈ U0,

∫
Ω

Tr
[
� "(u∗)

]
dΩ =

∫
Ω

f
d
· u∗ dΩ +

∫
∂fΩ

F d · u∗ dS; (1b)

• the constitutive relation:

� = K "

(
u
)

in Ω, (1c)

where "(u) represents the classical linearized strain tensor corresponding to the symmetric
part of the gradient of displacement field u. Affine spaces U =

{
u ∈ [H1(Ω)]d

}
and

S =
{
� ∈Ms(d) ∩ [L2(Ω)]d

2
}

guarantee the existence of finite-energy solutions, Ms(d)
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representing the space of symmetric square matrices of order d. Lastly, U0 ⊂ U denotes
the vectorial space associated to U .

In practical applications, the exact solution of the reference problem, hereafter denoted
(uex,�ex), remains usually out of reach and only an approximate solution, referred to as
(uh,�h), can be obtained through numerical approximation methods (such as the FE
method (FEM) associated with a space mesh Ωh mapping Ω). Such a numerical approx-
imation is searched in a discretized space Uh×Sh ⊂ U×S. A displacement-type FEM
leads to a displacement field uh verifying kinematic constraints (1a) and a stress field �h

computed a posteriori from constitutive relation (1c).
The resulting discretization error, denoted eh = uex − uh, can be assessed in terms of:

• a global measure defined with respect to the classical energy norm ‖•‖u,Ω =(∫
Ω

Tr
[
K "(•) "(•)

]
dΩ
)1/2

, providing a global discretization error eΩ = ‖eh‖u,Ω;

• a local measure defined with respect to a specific output of interest I(u) of the
problem, providing a local error eI = I(uex) − I(uh). Under the assumption of a
linear quantity of interest with respect to displacement u, it merely reads: eI =
I(eh).

2.2 Adjoint problem

The quantity of interest, hereafter denoted I, is a goal-oriented output, such as the
mean value of a stress component over a local region or the displacement value at a
specific point, for instance. These meaningful quantities of practical interest to engineers
are usually defined by means of extraction techniques, i.e. by expressing the local quantity
I being considered in the global form involving global extraction operators, also called
extractors. In this work, for the sake of simplicity, the quantity of interest is represented
as a linear functional L of displacement field u on a finite support under the following
global form:

I = L(u) =

∫
Ω

(
Tr
[
�̃Σ "(u)

]
+ f̃

Σ
· u
)

dΩ, (2)

where so-called extractors �̃Σ and f̃
Σ

, known analytically, can be mechanically viewed as
a prestress field and a body force field, respectively. In the following, let Iex = L(uex) and
Ih = L(uh) be the unknown exact value of the quantity of interest I being studied and
its approximate value obtained through the FEM, respectively.

Once the quantity of interest has been put into such a global form, the classical ap-
proach then consists of introducing an auxiliary problem, also called adjoint problem,
which is similar to the reference problem, except that the external mechanical loading
(F d, fd) is replaced by the extractors on the one hand, and the non-homogeneous Dirich-
let boundary conditions are changed to homogeneous kinematic constraints on the other
hand. The adjoint problem consists of finding a displacement/stress pair (ũ, �̃), in the
space domain Ω, which verifies:

3
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• the kinematic conditions:

ũ ∈ U0; (3a)

• the weak form of equilibrium equations:

�̃ ∈ S; ∀u∗ ∈ U0,

∫
Ω

Tr
[
�̃"(u∗)

]
dΩ = L(u∗) =

∫
Ω

(
Tr
[
�̃Σ "(u∗)

]
+ f̃

Σ
· u∗
)

dΩ;

(3b)

• the constitutive relation:

�̃ = K "

(
ũ
)

in Ω. (3c)

For similar reasons to the reference problem, the exact solution (ũex, �̃ex) of the adjoint
problem remains out of reach in most practical applications, and one can only obtain an
approximate solution, denoted (ũh, �̃h). This last solution lies in a discretized FE space
associated with a space mesh Ω̃h, mapping the physical domain Ω.

3 BASICS ON GOAL-ORIENTED ERROR ESTIMATION BASED ON
CONSTITUTIVE RELATION ERROR

We review here the classical procedure based on the concept of constitutive relation
error (CRE) to obtain strict local error bounds on functional outputs.

3.1 Constitutive relation error

Starting from an admissible solution (ûh, �̂h) provided by one of the existing tech-
niques [4], one can measure the global residual on constitutive relation (1c), called the
CRE measure and denoted ecre,Ω ≡ ecre,Ω(ûh, �̂h) = ‖�̂h −K "(ûh)‖�,Ω, with ‖•‖

�,Ω =(∫
Ω

Tr
[
• K−1 •

]
dΩ
)1/2

. Computing the CRE measure ecre,Ω provides a guaranteed
upper bound of the global discretization error ‖eh‖u,Ω, as the well-known Prager-Synge
hypercircle theorem leads to the following bounding inequality:

‖eh‖
2
u,Ω = ‖uex − ûh‖

2
u,Ω 6 ‖uex − ûh‖

2
u,Ω + ‖�ex − �̂h‖2

�,Ω = e2
cre,Ω, (4)

which conveys the guaranteed nature of the CRE measure ecre,Ω with respect to the global
discretization error.

Introducing the average admissible field �̂
m
h =

1

2
(�̂h + K "(ûh)), one can directly de-

duce another fundamental relation, called the Prager-Synge’s equality:

‖�ex − �̂
m
h ‖�,Ω =

1

2
ecre,Ω. (5)

Equations (4) and (5) are key relations to derive guaranteed error bounds in both global
and local robust error estimation methods.

4
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In the same manner as for the reference problem, an admissible solution of the ad-
joint problem, hereafter referred to as (ˆ̃uh, ˆ̃�h), can be derived from one of the existing
equilibration techniques. Then, the associated CRE measure ẽcre,Ω ≡ ecre,Ω(ˆ̃uh, ˆ̃�h) of the
adjoint problem can be computed leading to a global estimate of the discretization error
ẽh = ũex − ũh of the adjoint problem.

Now, let us focus on the main principles of the classical bounding technique involved
in goal-oriented error estimation methods based on extraction techniques and the concept
of CRE.

3.2 Basic identity and classical bounding technique

The expression of the quantity of interest I reformulated in the global form (2) as well
as properties of both admissible solutions (ûh, �̂h) and (ˆ̃uh, ˆ̃�h) lead to the following basic
identity:

Iex − Ih − Ihh =
〈
�ex − �̂

m
h , ˆ̃�h −K "(ˆ̃uh)

〉
�,Ω

, (6)

where 〈•, ◦〉
�,Ω =

∫
Ω

Tr
[
•K−1◦

]
dΩ is an energetic inner product defined on the stress field

space S. Ihh can be viewed as a computable correction term involving known quantities
of both reference and adjoint problems:

Ihh =
〈

ˆ̃�mh , �̂h −K "(ûh)
〉
�,Ω

+ L(ûh − uh), (7)

where ˆ̃�mh =
1

2
(ˆ̃�h + K "(ˆ̃uh)). Ih + Ihh can be interpreted as a new approximate solution

of the exact value Iex of the quantity of interest.
The fundamental equality (6), which does not call for any orthogonality property of

the FE solutions and allows to build the finite-dimensional spaces associated to reference
and adjoint problems independently, is the keystone of the classical bounding technique
as well as the improved ones described in section 4.

Subsequently, the classical bounding procedure merely consists of applying the Cauchy-
Schwarz inequality to (6) with respect to inner product 〈•, ◦〉

�,Ω and then using Prager-
Synge’s equality (5). This yields:

|Iex − Ih − Ihh| 6
1

2
ecre,Ω ẽcre,Ω. (8)

Eventually, the derivation of strict lower and upper bounds (ξinf, ξsup) of Iex (or, equiva-
lently, of the local error Iex − Ih) can be achieved straightforwardly, just having a global
error estimation procedure at hand:

ξinf 6 Iex 6 ξsup, (9)

with

ξinf = Ih + Ihh −
1

2
ecre,Ω ẽcre,Ω;

ξsup = Ih + Ihh +
1

2
ecre,Ω ẽcre,Ω.

(10)
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Besides, owing to the independent natures of spatial discretizations associated to ref-
erence and adjoint problems, a convenient way to achieve accurate and sharp bounds of
Iex is to perform a local space refinement of the adjoint mesh Ω̃h alone around the zone
of interest ω in order to properly solve the adjoint problem while keeping a reasonable
computational cost. In most common situations, the discretization error related to the
adjoint problem is concentrated in the vicinity of the zone of interest, whereas that related
to the reference problem may be scattered around zones which present some singularities
or other error sources. However, when the error related to the reference problem is mostly
located outside and far from the zone of interest, the classical bounding technique may
yield large and low-quality local error bounds and thus makes useless bounding result (9).
This is the point that we are revisiting here.

The proposed bounding techniques we present in the following section are intended to
get around this serious drawback proper to the classical technique in order to sharpen the
local error bounds.

4 IMPROVED BOUNDING TECHNIQUES

4.1 Homotheticity transfromation

Let us consider a reference subdomain, denoted ω1 and included in Ω, defined by a
point O and a geometric shape. The set of homothetic domains ωλ associated to ω1 is
defined as:

ωλ = H[O,λ](ω1) (11)

where H[O;λ] stands for the homothetic transformation operator centered in point O,
called homothetic center, and parameterized by a nonzero positive scalar λ ∈ ]0 , λmax],
also called magnification ratio, scale factor or similitude ratio, such that ωλ ⊂ Ω (see
Figure 1). The geometric shape defining the set of homothetic domains ωλ can be chosen
arbitrarily. Nevertheless, these physical domains are supposed to be basic in practice,
such as a circle or a rectangle in 2D, and a sphere or a rectangular cuboid (also called
rectangular parallelepiped or right rectangular prism) in 3D, for instance.

For a given pair (ωλ, ωλ̄) of homothetic domains included in Ω, represented in Figure 1
and parameterized by (λ, λ̄), such that ωλ ⊂ ωλ̄ ⊂ Ω, i.e. λ ∈ ]0 , λ̄], the position vλ of a
point Mλ along boundary ∂ωλ can be defined from the position vλ̄ of the corresponding
point M λ̄ along boundary ∂ωλ̄ by the following relation:

vλ =


λ

λ̄
vλ̄(s̄) parameterized by (λ, s̄) in 2D;

λ

λ̄
vλ̄(s̄1, s̄2) parameterized by (λ, s̄1, s̄2) in 3D,

(12)

where s̄ (resp. s̄1 and s̄2) represent the curvilinear abscissa along boundary ∂ωλ̄ in 2D
(resp. 3D).

Such a parameterization leads to various homotheticity properties [2] that are at the
root of fundamental inequalities such as the one introduced in Section 4.3.
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Figure 1: Examples of rectangular (a) and circular (b) homothetic domains in 2D.

4.2 Principle

First, let us recall the expression of quantity q involved in basic identity (6) for building
local error bounds :

q =
〈
�ex − �̂

m
h , ˆ̃�h −K "(ˆ̃uh)

〉
�,Ω

, (13)

where �̂
m
h and ˆ̃�h−K "(ˆ̃uh) are given quantities coming from reference and adjoint prob-

lems, respectively, and �ex is the unknown exact stress solution of the reference problem.
By considering a subdomain ωλ of domain Ω and its complementary part Ω \ ωλ, the

approach consists in splitting quantity q into two distinct contributions qωλ and qΩ\ωλ :

q = qωλ + qΩ\ωλ ,

where

qωλ =
〈
�ex − �̂

m
h , ˆ̃�h −K "(ˆ̃uh)

〉
�,ωλ

; (14a)

qΩ\ωλ =
〈
�ex − �̂

m
h , ˆ̃�h −K "(ˆ̃uh)

〉
�,Ω\ωλ

. (14b)

When quantity ˆ̃�h −K "(ˆ̃uh) involved in the CRE measure of the adjoint problem is
mostly concentrated over part ωλ, i.e. by choosing a subdomain ωλ surrounding the zone
of interest ω, part qΩ\ωλ can be accurately bounded by simply using the Cauchy-Schwarz
inequality with respect to inner product 〈•, ◦〉u,Ω\ωλ and the Prager-Synge’s equality (5):∣∣qΩ\ωλ

∣∣ 6 ‖�ex − �̂
m
h ‖�,Ω\ωλ ẽcre,Ω\ωλ 6

1

2
ecre,Ω ẽcre,Ω\ωλ . (15)

Given that the discretization error associated to the adjoint problem is mainly located
around the zone of interest ω ⊂ ωλ, ẽcre,Ω\ωλ is a relatively small computable term. It
follows that the main contribution to the local error comes from part qωλ . Consequently,
quantity qωλ has to be bounded with a particular care in order to derive accurate local
error bounds while preserving the guaranteed nature of the error estimate.
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4.3 Fundamental inequality

Let us consider the space V of functions satisfying homogeneous equilibrium conditions:

V = {v ∈ U such that div(K "(v)) = 0 in Ω} , (16)

and let us introduce the Steklov constant, or Steklov eigenvalue, h defined in [5] as:

h = max
v∈V |ω1

S1(v), (17)

with

S1(v) =

∥∥∥K (v ⊗ n)sym

∥∥∥2

�,∂ω1

‖v‖2
u,ω1

, (18)

where (•)sym represents the symmetric part of tensor of order 2 (or matrix) •. Then,
for any homothetic domain ωλ ⊂ Ω parametrized by λ > 0, one can derive a relation
involving the product of constant h and parameter λ:

hλ = max
v∈V |ωλ

Sλ(v), (19)

with

Sλ(v) =

∥∥∥K (v ⊗ n)sym

∥∥∥2

�,∂ωλ

‖v‖2
u,ωλ

. (20)

Let (ωλ, ωλ̄) be a pair of homothetic domains such that λ ∈ ]0 , λ̄], i.e. ωλ ⊂ ωλ̄. The
following key inequality holds [2]:

‖�ex − �̂h‖2
�,ωλ

6

(
λ

λ̄

)1/h

‖�ex − �̂h‖2
�,ωλ̄

+ γλ,λ̄, (21)

where

γλ,λ̄ ≡ γλ,λ̄(ûh, �̂h) =

∫ λ̄

λ′=λ

[(
λ′

λ

)−1/h
1

hλ′
e2

cre,ωλ′

]
dλ′. (22)

Let us note that, using Prager-Synge’s equality (5), unknown term ‖�ex − �̂h‖�,ωλ̄
involved in the right-hand side term of fundamental inequality (21) is readily bounded as:

‖�ex − �̂h‖2
�,ωλ̄

6
(
‖�ex − �̂

m
h ‖�,ωλ̄ + ‖�̂mh − �̂h‖�,ωλ̄

)2

6
1

4

(
ecre,Ω + ecre,ωλ̄

)2
(23)

It follows that fundamental result (21) can be rewritten in terms of perfectly known
quantities as:

‖�ex − �̂h‖2
�,ωλ

6

(
λ

λ̄

)1/h
1

4

(
ecre,Ω + ecre,ωλ̄

)2
+ γλ,λ̄. (24)

This last inequality is the key point to derive sharp bounds for part qωλ .

8
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4.4 Final bounding result

Applying the Cauchy-Schwarz inequality with respect to scalar product 〈•, ◦〉
�,ωλ

and
then using the key inequality (24) introduced in the previous section leads to the following
bounding result:

|qωλ − Ihhh,λ| 6

[(
λ

λ̄

)1/h
1

4

(
ecre,Ω + ecre,ωλ̄

)2
+ γλ,λ̄

]1/2

ẽcre,ωλ . (25)

Collecting both inequalities (25) and (15) for parts qωλ and qΩ\ωλ , respectively, one
obtains:

|Iex − Ih − Ihh − Ihhh,λ| 6 ẽcre,ωλ δλ,λ̄ +
1

2
ecre,Ω ẽcre,Ω\ωλ , (26)

where

δλ,λ̄ ≡ δλ,λ̄(ûh, �̂h) =

[(
λ

λ̄

)1/h
1

4

(
ecre,Ω + ecre,ωλ̄

)2
+ γλ,λ̄

]1/2

(27)

and

Ihhh,λ =
1

2

〈
�̂h −K "(ûh), ˆ̃�h −K "(ˆ̃uh)

〉
�,ωλ

(28)

are fully calculable from the computed approximate solutions of both reference and adjoint
problems.

Thus, this improved technique provides the following guaranteed lower and upper
bounds (χinf, χsup) of Iex:

χinf 6 Iex 6 χsup, (29)

with

χinf = Ih + Ihh + Ihhh,λ −
∣∣∣∣ẽcre,ωλ δλ,λ̄ +

1

2
ecre,Ω ẽcre,Ω\ωλ

∣∣∣∣ ; (30a)

χsup = Ih + Ihh + Ihhh,λ +

∣∣∣∣ẽcre,ωλ δλ,λ̄ +
1

2
ecre,Ω ẽcre,Ω\ωλ

∣∣∣∣ . (30b)

These bounds depend on both parameters λ and λ̄ associated to subdomains ωλ and
ωλ̄, respectively. In order to get a practical minimizer, one seeks to reduce ratio λ/λ̄ as
much as possible by choosing: the smallest parameter λ such that domain ωλ surrounds
the zone of interest ω; the largest parameter λ̄ such that domain ωλ̄ remains a homothetic
mapping of ωλ (preserving its geometric shape) contained in Ω, and leading to sharp error
bounds.

A second improved technique has been introduced and relies on similar homotheticity
arguments, but differs from the first one presented in this paper in the way of bounding
part qωλ , which involves another fundamental inequality. The interested reader can refer
to [2] for more information. This alternative bounding technique leads to guaranteed

9
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lower and upper bounds (ζinf, ζsup) of Iex. Those bounds involve only one parameter λ̄,
which can be chosen such that subdomain ωλ̄ recovers the zone where the solution of
adjoint problem has stiff gradients.

5 NUMERICAL RESULTS

All numerical experiments have been performed assuming that the material remains
isotropic, homogeneous, linear and elastic with Young’s modulus E = 1 and Poisson’s
ratio ν = 0.3. Furthermore, the two-dimensional examples are assumed to satisfy the
plane-stress approximation. The balance technique used to derive a statically admissible
stress field is the element equilibration technique (EET) combined with a p-refinement
technique consisting of a p+ k discretization, p being the FE interpolation degree and k
an additional degree equal to 3 (see [4]).

Performances of the proposed bounding techniques are illustrated through the two-
dimensional cracked structure of Figure 2, which presents two round cavities. A homoge-
neous Dirichlet boundary condition is imposed to the bigger circular hole, whereas a unit
internal constant pressure p0 is applied to the smaller one. Furthermore, the top-left edge
is subjected to a unit normal traction force density t = +n. Besides, a single edge crack
emanates from the bottom of the smaller cavity. The two lips of this crack as well as
the remaining sides are traction-free boundaries. The FE mesh Ωh consists of 7 751 linear
triangular elements and 4 122 nodes (i.e. 8 244 d.o.f.), see Figure 2. The reference mesh
Ωh̄ used to compute an “overkill” solution and to define a “quasi-exact” value, denoted
Iex for convenience, of the quantity of interest is built up by dividing each element into
256 elements; thereby, it is made of 1 984 256 linear triangular elements and 996 080 nodes
(i.e. 1 992 160 d.o.f.).

(b)(a)

x

y

t

p0

Ud = 0

!

Figure 2: Cracked structure model problem (a) and associated finite element mesh (b).

The quantity of interest being considered in this work is a linear function of displace-
ment field u associated to reference problem. It is the average value of the component

10
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σxx of the stress field � in a local zone ω ⊂ Ω:

I = 〈σxx〉ω =
1

|ω|

∫
ω

σxx dΩ, (31)

where extraction domain ω corresponds to an element of FE mesh Ωh illustrated in Fig-
ure 2 and |ω| represents its measure. The loading of the the adjoint problem involves an
extractor corresponding to a uniform prestress field �̃Σ = K "̃Σ over element ω, where

"̃Σ =
1

|ω|
x⊗ x.

The main contributions to the error estimate ecre,Ω associated to reference problem are
by a majority located near the crack tip, while that to the error estimate ẽcre,Ω associated
to adjoint problem are concentrated around the zone of interest ω. Therefore, the error
estimates for both reference and adjoint problems are localized in disjoint regions.

The homothetic center O coincides with the center of the circle Cω circumscribed by
element ω and the values of parameters λ and λ̄ involved in the first improved technique
are set to 2 rCω and 14 rCω , respectively, where rCω corresponds to the radius of Cω. The
value of parameter λ̄opt involved in the second improved technique is set to 9 rCω , which
enables to achieve the sharpest bounds for quantity of interest I.

The results obtained for classical bounding technique as well as first and second im-
proved variants are presented in terms of the normalized bounds (ξ̄inf, ξ̄sup), (χ̄inf, χ̄sup),
(ζ̄inf, ζ̄sup), respectively, with respect to Iex. Figure 3 shows the evolutions of the normal-
ized lower and upper bounds of Iex for quantity of interest I as functions of the number of
elements Ñe contained in the FE mesh Ωh̃ associated to adjoint problem for the classical
bounding technique as well as the two improved ones. The adjoint mesh Ωh̃ has been
locally refined near the zone of interest ω, since the loading and the contributions to
the global error estimate of the adjoint problem are highly localized in this region. One
can see a slight improvement in the bounds obtained with the first improved technique
compared to the classical one. As regards the second improved technique, a very clear
improvement is observed allowing to achieve sharp local error bounds without refining
too much the adjoint problem, thus keeping an affordable computing time.

6 CONCLUSION AND PROSPECTS

In this paper, we introduced new approaches related to the general framework of robust
goal-oriented error estimation dealing with extraction techniques. These techniques are
based on mathematical tools which are not classical in model verification. Various linear
quantities of interest (such as the local average of a stress component, the pointwise value
of a displacement component or a stress intensity factor) are considered in [2] to illustrate
the effectivity of the proposed techniques. Those numerical experiments clearly demon-
strate the efficiency of these methods to produce strict and relevant bounds on the errors
in linear local quantities of interest compared to the classical bounding technique, espe-
cially when the discretization error related to the reference problem is not concentrated in
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Figure 3: Evolutions of the lower and upper normalized bounds of Iex for local quantity I1, obtained using
the classical bounding technique as well as first and second improvements, with respect to the number of
elements Ñe associated to the discretization of the adjoint problem.

the local zone of interest. Nevertheless, the second proposed technique seems to achieve
sharper local error estimates than the first one. Finally, such powerful methods may
open up opportunities and help widen the field of robust goal-oriented error estimation
methods. Both techniques could be easily extended to other quantities of interest but are
restricted to linear problems, i.e. cases where Saint-Venant’s principle is well established.
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Abstract. This paper proposes a method of identification of the admittance coefficient,
from in-situ measurements, by applying the CRE-based updating technique to the acous-
tical problem. Local estimators are developed to localize defective sensors. The process
is illustrated on a 1D case.

1 INTRODUCTION

In recent decades, sound intensity and quality are taking an increasingly important
place in the design process of products like cars or aircrafts, and different types of ab-
sorbing materials have therefore been developed and used in such products to achieve this
purpose. To predict the influence of absorbing materials on the sound propagation inside
cavities, industries generally use numerical tools, in which the acoustical properties of
absorbing materials are described by the admittance coefficient. However, the conditions
in which these parameters are measured can differ significantly from the ones in which the
materials are really used. In this paper, the parameters required to describe admittance
coefficients are identified, from in-situ measurements, by using the updating technique
based on the CRE [1]. The main advantages of this method are that the updated param-
eters keep a physical meaning, that it allows taking into account the measurement error
and that it allows locally evaluating the modeling and measurement errors [2]. The CRE-
based updating method is therefore applied to the acoustical problem and the process is
applied on simple 1D test case.
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2 ACOUSTICAL FORMULATION

2.1 Acoustical problem

Let us consider an acoustical domain Ω with boundary ∂Ω . The pressure field is the
solution of the Helmholtz equation (1) with associated Dirichlet (2) and generalized (3)
boundary conditions.

∆p+ k2p = 0 in Ω (1)

p = p on ∂DΩ (2)

vn =
j

ωρ

∂p

∂n
= λAnp+ (1− λ)v̄n on ∂GΩ (3)

where k = ω
c

is the wave number, ω is the angular frequency, ρ is the density of the fluid,
An is the admittance coefficient, describing the absorbing properties of the materials, v̄n

is the normal component of the prescribed velocity and λ is a parameter allowing to define
the nature of the boundary (λ = 0 for a vibrating border, λ = 1 for an absorbing border
and 0 < λ < 1 for a border at the same time vibrating and absorbing)

2.2 Construction of the error

The principle of CRE-based updating technique is to split the set of mathematical
equation into a set of reliable equations and a set of less-reliable equations on which the
CRE is constructed. In the acoustical problem, the less-reliable equation is the generalized
boundary condition and the CRE is expressed by

ξ2
ω =

ω2ρ2

D2
ω

∫
∂GΩ

(vn − λAnp− (1− λ)v̄n)∗(vn − λAnp− (1− λ)v̄n)dΓ (4)

where D2
ω is a normalization factor. To take the errors of the measurements into account,

the modified CRE is defined by

e2
ω = ξ2

ω +
r

1− r
η2

ω (5)

where

η2
ω =
|πp− p̃|2

|p̃|2
(6)

where p̃ are the measured pressures |.|2 denotes an energy norm. In Eq. (5), r
1−r

is a
weighting factor translating the confidence on the measurements. If the measurements
are assumed to be accurate, this factor will tend to the infinity (r → 1).

2
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2.3 Local indicators

Error (5) can be rewritten as follows

e2
ω =

NBound∑
i=1

ξ2
ω,i +

NSens∑
j=1

r

1− r
η2

ω,j (7)

where NBound and NSens are respectively the number of boundaries and of sensors and ξ2
ω,i

and η2
ω,j are respectively the local estimators of the CRE and of the error in measurements.

2.4 Updating on a frequency range

In order to further regularize the problem, the updating process is generally performed
on a frequency range [ωmin, ωmax]. The expression of the modified CRE (7) becomes

e2
T =

1

NFreq

NFreq∑
f=1

e2
ωf

=
1

NFreq

NFreq∑
f=1

(
Nbound∑

i

ξ2
ωf ,i +

NSens∑
j

η2
ωf ,j

)
= ξ2

T +
r

1− r
η2

T (8)

where NFreq is the number of frequencies in the frequency range.

3 Implementation of the two-stages updating technique

The first step consists in the localization of the defective sensor, by looking at the
distribution of η2

iT of each sensor i on the global error in measurements η2
T . If the sources

of error are identified, it is possible to correct the measurement. Otherwise, measurements
are removed from the set of measurements. The second step is the two-stages updating
process, consisting in

• the localization of the most erroneous parameters, by looking at the distribution of
ξ2
ET of each boundaries E on the global CRE ξ2

T . All the boundaries such as

ξ2
ET ≥ δ maxEξ

2
ET (9)

with δ = 0.8, for example, are considered as the worst modeled and the parameters
used to describe the admittance coefficients and/or the normal component of the
prescribed velocity are considered as the most erroneous.

• the correction of the parameters identified as the most erroneous.

At each iteration of the two-stages process, the global modified CRE e2
T is calculated

and compared to the required quality level e2
T0. If this level is reached, the process ends.

Otherwise, a new iteration is performed.

3
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4 APPLICATION

4.1 Reference problem

Let us consider a 1D acoustical domain of 1m length. The domain is meshed with 40
elements, and the frequency range is from 100Hz to 1000Hz. The domain is excited by a
loudspeaker covered by felt at x = 0m and that at x = L = 1m, the border is covered by
foam. The boundary conditions are therefore defined by

• at x = 0 : λ0 = 0.5 - v̄n,0(ω) = fHP(F/m, ζ, φ, ω0, ω) - An,0(ω) = fDBM(σ, d, ω)

• at x = L : λL = 1 - An,L(ω) = fDB(σ, d, ω)

where fHP represents the velocity of a membrane of a loudspeaker (F is applied force to the
loudspeaker, m is the mass of the membrane of the loudspeaker, ζ is the damping ratio,
φ is a phase and ω0 is the eigen-frequency of the membrane), fDB and fDBM respectively
represent the Delany-Bazley model (for the felt) and the Delany-Bazley-Miki model (for
the foam) used to describe the admittance coefficient of the absorbing materials (σ is the
resistivity and d is the stiffness of the material). The exact values of the coefficients used
in these models are given in Table 1. The second column of this table gives the initial
value of the parameters.

Let us consider that all the nodes, excepted those at the boundaries, are considered as
a sensor location. The measured pressures are given by the numerical solution of the 1D
acoustical problem, using the exact value of the parameters. In order to verify the step
of localization of defective sensors, 3 sensors (at x = 0.25m, x = 0.5m and x = 0.75m)
are considered as defective with an error of 50%.

4.2 Localization of defective sensors

The first step of the process is to ensure that the pressures are correctly measured.
Figure 1 gives the distribution of the local estimators η2

iT . It is clearly shown that the 3
defective sensors have a bigger contribution to the global error in measurement η2

T than
the other ones. It is therefore possible to localize defective sensors.

4.3 Updating process

Table 1 gives the results of the updating process, considering with (third column) and
without (fourth column) defective sensors, allowing to conclude that the correction of the
erroneous measurements allows to improve the results of the updating process.

5 Conclusions

A method to identify acoustical properties of absorbing material, from in-situ measure-
ments, based on the CRE updating technique, is developed. In addition, local estimators
are used to localize and correct the erroneous measurements. The technique is applied on

4
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Figure 1: η2
iT /η

2
T (in percent) for r → 1

Parameters Exact value Initial value Final Value
without with

v̄n,1 F/m (m/s2) 0.20 0.15 0.1922 0.20
φ (rad) 20π/180 30π/180 31.1535π/180 20.0006π/180
ζ 0.45 0.60 0.4480 0.45
ω0 (Hz) 2π200 2π150 2π199.5813 2π200.0005

An,1 σ (Ns/m4) 2 104 1.5 104 1.5003 104 2.0200 104

d (m) 0.02 0.015 0.0203 0.0200

An,2 σ (Ns/m4) 1.5 103 2 103 1.6003 103 1.4963 103

d (m) 0.015 0.02 0.0150 0.0150

Table 1: Values of the parameters of the problem

a 1D simple test case, in order to illustrate the localization of defective sensors and the
influence of the correction of the erroneous measurements on the results of the process.
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Abstract. We propose in this talk to address the issue and effect of linearization in the
quality of the error estimates in quantities of interest for strongly nonlinear problems (see
e.g. [1, 2]). It is well known that the error representation in this case can be decomposed
into two contributions: 1) one contribution in the form of the product of the residual by
the solution of a linearized adjoint problem that describes the discretization error and 2)
the other contribution that combines all higher-order terms with respect to the error in
the primal solution that describes the linearization error. In most works on goal-oriented
error estimation, the linearization error contribution is usually neglected with respect to
the discretization error. However, when the nonlinear effects are significant, one cannot
assume any longer that the latter is dominant over the former. In fact, it becomes obvious
in those cases that linearization errors should be also controlled. We will present here
the construction of refinement indicators that combine both sources of errors in order to
simultaneously control those in a balanced manner.
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Abstract. The aim of this paper is to study the possibility of using extended finite ele-
ment methods to model piezoelectric transducers attached to beam structures without the
need for a conforming mesh. The main focus of this study is to propose enrichment func-
tions to represent accurately the strain discontinuities in Euler-Bernoulli and Timoshenko
beams. Further, we evaluate the performance of the enrichment functions on simple static
cases with a special emphasis on the shear locking in the Timoshenko beam.

1 INTRODUCTION

Thin piezoelectric transducers are widely used in applications such as active vibration
control, wave generation in materials and structural health monitoring. The finite ele-
ment modelling of piezoelectric transducers is well established; an overview of the existing
models can be found in [1]. Current practice for the modelling of structures equipped with
flat piezoelectric transducers requires the development of specific beam or plate elements
which are usually not available in commercial codes. The most important criteria when
using the finite element method to model piezoelectric transducers attached to host struc-
tures is that the mesh must exactly match the boundary between the piezoelectric trans-
ducers and the host structure. This requirement of conforming meshes leads to extensive
remeshing of the structure when optimal transducers configurations are investigated.

The need for conforming meshes arises due to the following reasons: the occurrence of
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a strain jump across the interface between the piezoelectric transducer and the host struc-
ture due to the additionnal stiffness of the piezoelectric transducer and the distributed
efforts acting on the edges of the patch when used as an actuator, the continuity of the
displacement field across the interface, and the presence of an electric field only in the
piezoelectric material. To overcome meshing difficulties and capture local phenomenon,
the extended finite element method (XFEM) for weak discontinuities was proposed for
two-dimensional problems [2]. In this paper, we will make use of XFEM to develop en-
riched Euler-Bernoulli and Timoshenko beam elements that can capture jumps in strains
across the interface between two materials using a non-conforming mesh. We identify the
location of the interface using an implicit level-set method. This paper is organized as
follows: Section 2 gives a brief overview about the behaviour of piezoelectric transducers
under actuation and their impact on the host structures. In Section 3, we develop the
enriched Euler-Bernoulli beam element with special emphasis on finding the right enrich-
ment function. In section 4, we develop the enriched Timoshenko beam finite elements.
In section 5, the shear locking problem of the enriched Timoshenko beams are explained
and an assumed natural strain method to avoid shear locking are proposed and tested for
an enriched Timoshenko beam element.

2 PIEZOELECTRIC ACTUATORS ATTACHED TO HOST STRUCTURES

Piezoelectric transducers operate in two modes: sensors and actuators. They are used
as sensors when generation of a surface charge happens as a result of mechanically straining
the piezoelectric material. For instance, this effect is usually used in force and acceleration
sensors. They also function as actuators when the geometry of the piezoelectric material
changes due to an applied electric field. Actuating the piezoelectric transducer produces
equivalent forces on the host structures as described in [3]. A cantilever beam with
attached piezoelectric transducers is considered in this paper as shown in Figure 1.

Actuating the piezoelectric transducers produces bending moments and point-forces
in the host structure at the boundaries of the piezoelectric actuator as shown in Figure
2. These stresses result in jumps in the membrane deformation and curvature of the
beam. In this study, we are interested in capturing these jumps using a non-conforming
mesh. Specifically we will be tackling the jump in the curvature of beams. This case is
similar to two-material beams where deformation jumps occur at the material interfaces.
For the sake of simplicity, a two-material beam considered here in order to develop the
enriched beam finite elements. These enriched finite elements could then be adapted to a
multi-layer coupled electro-mechanical beam model.

3 ENRICHED EULER-BERNOULLI BEAM FINITE ELEMENT

Assuming Euler-Bernoulli theory, the transverse deflection w of the beam is governed
by the fourth order differential equation given by

d2

dx2
(EI

d2w

dx2
) = q(x) (1)
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V

HOST STRUCTURE

PIEZOELECTRIC TRANSDUCER

1.3
0.1 1.4

Figure 1: Cantilever beam with piezoelectric transducers

Figure 2: Equivalent loads on a cantilever beam with piezoelectric transducers

where E is the Young’s Modulus of the beam, I is the area moment of inertia about the
transverse axis of the beam and q is the distributed transverse load. The weak form of
this equation is given for an element by

∫ xe+1

xe

(

EI
d2v

dx2
d2w

dx2
− vq

)

dx+

[

v
d

dx

(

EI
d2w

dx2

)

−
dv

dx
EI

d2w

dx2

]xe+1

xe

= 0 (2)

The essential boundary conditions involve the specification of the deflection w and the
slope dw

dx
. The natural boundary conditions involve the specification of the bending mo-

ment EI d2w
dx2 and the shear force d

dx
(EI d2w

dx2 ) at the boundaries. The curvature of the beam

is given by d2w
dx2 and is considered as the generalized strain measure of the beam. Hermite

shape functions are used to approximate the deflection at any point of the beam using
finite elements, which reads

uFEM = Σ2
i=1(Hiwi +Riθi) (3)

where uFEM represents the deflection of the beam, Hi and Ri are the Hermite cubic
shape functions and wi and θi are the nodal deflections and nodal rotations. Considering
the problem defined in Figure 2, classical finite element modelling requires conforming
meshes in order to capture properly the material interfaces. An extended finite element
method (XFEM) allows the use of non-conforming meshes. In a XFEM approach, the
displacement field is enriched using the partition of unity technique [4] and is given by

uXFEM = Σ2
i=1(Hiwi +Riθi) + Σn

j=1Njψjaj (4)

where Nj are the partition of unity shape functions, n is the total number of functions
forming the partition of unity, ψj are the enrichment functions and aj are the additional
degrees of freedom related to the enrichment.
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3.1 Enriched Nodes

The location of an interface is found using the implicit level-set method. The level-set
is a measure of the signed distance between a node and the considered discontinuity. The
elements where the discontinuity is present are found using level-sets as described in [5].
The kinematics of all the nodes belonging to this element needs to be enriched.

l

l
2

l
1

x
1

x
2

x
a

Figure 3: Enriched beam element

Figure 4: Two-material Cantilever beam with uniform load
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Figure 5: Non-conforming and conforming meshes for the considered problem

4

550

lacan
Rectangle



S.Raman, B.C.N.Mercatoris and A.Deraemaeker

0 0.2 0.4 0.6 0.8 1
−0.01

−0.008

−0.006

−0.004

−0.002

0

Length of beam [m]

D
is

pl
ac

em
en

ts
 [m

]

0 0.2 0.4 0.6 0.8 1
−0.02

−0.015

−0.01

−0.005

0

Length of beam [m]

R
ot

at
io

n 
[r

ad
]

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

Length of beam [m]

C
ur

va
tu

re
s 

[m
−

1 ]

 

 

XFEM

Non−Conforming FEM

Conforming FEM

Figure 6: Comparison of Displacements, Rotations and Curvature of two-material Euler-Bernoulli beam

3.2 Enrichment functions for Euler-Bernoulli beams

In the field of XFEM, two-material problems are classified as weak discontinuity prob-
lems because the discontinuity occurs in the derivatives of the primary variables which
remain continuous. The modelling of weak discontinuities using XFEM is explained in
[2] and [5] for two-dimensional problems. In this case, the primary variable is discretized
using linear shape functions and the enrichment functions are therefore not suitable for
the case of Euler-Bernoulli beams which require cubic shape functions. Since two inde-
pendent jumps, a curvature jump and a transverse shear jump, are needed to incorporate
properly a discontinuity in an Euler-Bernoulli beam, two enrichment functions have to be
defined. Their properties are listed as follows
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• The enrichment functions have to be cubic and piece-wise continuous

• They have to vanish at the boundary of the element to avoid problems with blending
elements as documented in [6]

• The first derivative of enrichment functions have to be continuous at the interface

• The first derivative of the enrichment functions should also get to zero at the bound-
ary of the element

• The second and third derivatives of the enrichment functions should be discontinu-
ous at the location of the interface

Considering an element depicted in Figure 3 whose extremities are located at X1 and
X2 with a material discontinuity located at Xa, the enrichment functions are derived by
means of the conditions set forth above. From the admissible space, the following set of
enrichment functions are found

ψ1 =

{

3s21 − 2s31 if x < Xa

1− 3s22 + 2s32 if x > Xa

(5)

ψ2 =

{

ℓ1s
2
1(s1 − 1) if x < Xa

ℓ2s2(s2 − 1)2 if x > Xa

where

s1 =
x−X1

ℓ1
and s2 =

x−Xa

ℓ2
(6)

3.3 Partition of unity for Euler-Bernoulli beams

Partition of unity is formed by a set of shape functions which add up to one. In
case of Euler-Bernoulli beams, the Hi functions sum up to one and form a partition of
unity. With the partition of unity established, we can now write the discretized XFEM
expression for the beam element shown in Figure 3 as

uXFEM = H1w1 ++R1θ1 +H2w2 +R2θ2 +H1ψ1a1 +H2ψ1a2 +H1ψ2a3 +H2ψ2a4 (7)

with degrees of freedom w1,θ1,a1 and a3 at node 1 and the remaining at node 2.

3.4 Implementation

Considering the beam problem defined in Figure 4 and the conforming and non-
conforming meshes depicted in Figure 5, the XFEM solution and the FEM solution on
the same non-conforming mesh are plotted in Figure 6. These solutions are compared
with the conforming mesh solution also given in Figure 6. It can be observed that the
jump in curvature is properly captured by the XFEM using a non-conforming mesh. For
the FEM solution using a non-conforming mesh,the change in material properties is care-
fully accounted for during numerical integration by applying the material property of the
material where the integration point is located.
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4 ENRICHED TIMOSHENKO BEAM FINITE ELEMENT

In this second part, the proposed approach is extended in order to incorporate a weak
discontinuity within a Timoshenko beam theory. The strain energy considering both
bending and shear contributions is given as

U =
1

2

∫

V

σxǫxdV +
1

2

∫

V

τxyγxydV (8)

where the normal stresses are given by the Hooke’s law

σx = Eǫx (9)

and the transverse shear stress is given by

τxy = kGγxy (10)

where k is the shear correction factor that varies according to the cross-section of the
beam and G is the shear modulus given by

G =
E

2(1 + υ)
(11)

where υ is the Poisson’s ratio for the beam material. Considering a Timoshenko beam
theory, the strain energy becomes

U =
1

2

∫ l

0

EI(
∂θ

∂x
)2dx+

1

2

∫ l

0

kAG(−
∂w

∂x
+ θ)2dx (12)

In contrast with the Euler-Bernoulli beam element, independent linear interpolations are
used here for the rotation and the deflection. For the case of a classical finite element,
this reads

wFEM = N1w1 +N2w2 (13)

θFEM = N1θ1 +N2θ2

where N1 = 1− x/l and N2 = x/l where l is the length of the element. As with an Euler-
Bernoulli beam, the Timoshenko beams can be enriched by introducing the partition of
unity based enrichment functions as follows

wXFEM = N1w1 +N2w2 +N1ψ1a1 +N2ψ1a2 (14)

θXFEM = N1θ1 +N2θ2 +N1ψ2a3 +N2ψ2a4

Since linear interpolations are used, the enrichment functions ψ1 and ψ2 can be ramp
functions as described in [5]. The partition of unity is formed by the shape functions N1

and N2. As described in the previous section, the location of the discontinuity is found
using the level-set and the elements containing a discontinuity are enriched.
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Figure 7: Comparison of the novel XFEM Timoshenko beam theory with respect of the clasical conforming
beam theories for the two-material beam problem. The deflection, the rotation and the curvature are
compared.

4.1 Locking in Timoshenko beams

Without using any specific treatment, the element beam described in the previous
section suffers from shear locking. This occurs due to inconsistent interpolation for w and
θ. In order to avoid the occurence of shear locking, many techniques were proposed such
as the assumed natural strain method, the reduced integration method and the consistent
interpolated element method. A detailed description of these methods can be found in
[7]. In this paper, an assumed natural strain method is used to avoid any shear locking
in the enriched Timoshenko beam element.
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Figure 8: Comparison of shear-strains of two-material Timoshenko beam

5 SHEAR LOCKING TREATMENT IN AN ENRICHED TIMOSHENKO

BEAM ELEMENT

The strain energy in Equation (12) is made of two parts namely the bending energy
and the shear energy. The stiffness matrix can therefore be split into two parts: the
bending part and the shear part which reads

K =

∫ x2

x1

[Bb]
T
EI[Bb]dx+

∫ x2

x1

[Bs]TkGA[Bs]dx (15)

where Bb and Bs are the operators linking respectively the curvature and the transverse
shear to the degrees of freedom of the beam. Using Equation (14), these operators are
given for an XFEM beam element as

Bb =

[

0
dN1

dx
0

dN2

dx
0 0

d(N1ψ)

dx

d(N2ψ)

dx
0 0 0 0 0 0 0 0

]

(16)

Bs =

[

0 0 0 0 0 0 0 0

−
dN1

dx
N1 −

dN2

dx
N2 −

d(N1ψ)

dx
−
d(N2ψ)

dx
N1ψ N2ψ

]

The Bs matrix in the above equation will lead to a shear locking problem due to the
presence of shape functions and their derivatives together. Based on the definition of the
transverse shear strain χ = θ − dw

dx
, an assumed natural strain method is used to treat

properly the shear locking. The transverse shear strain is assumed piece-wise constant
on each side of the interface. This is motivated by the fact that a conforming mesh with
regular beam element would lead to a piece-wise constant transverse shear field with a
discontinuity at the material interface. A classical collocation method is used to determine
the assumed strain as follows

∫ xa

x1

←→χ1 − χ = 0 (17)
∫ x2

xa

←→χ2 − χ = 0

9
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Figure 9: Behaviour of Elements as t→0

Expanding the above equations with the assumption that χ1 and χ2 are constant leads
to

←→χ1 =
1

ℓ1

∫ xa

x1

N1θ1 +N2θ2 +N1ψb1 +N2ψb2 (18)

−(
dN1

dx
w1 +

dN2

dx
w2 +

d(N1ψ)

dx
a1 +

d(N2ψ)

dx
a2)

←→χ2 =
1

ℓ2

∫ x2

xa

N1θ1 +N2θ2 +N1ψb1 +N2ψb2 (19)

−(
dN1

dx
w1 +

dN2

dx
w2 +

d(N1ψ)

dx
a1 +

d(N2ψ)

dx
a2)

Using Equations (19) and (2), the Bs operator can be split into two contributions related
to each part of enriched beam element as follows

Bs
1 =

1
ℓ1

∫ xa

x1

[

0 0 0 0 0 0 0 0

−
dN1

dx
N1 −

dN2

dx
N2 −

d(N1ψ)

dx
−
d(N2ψ)

dx
N1ψ N2ψ

]

(20)

and

Bs
2 =

1
ℓ2

∫ x2

xa

[

0 0 0 0 0 0 0 0

−
dN1

dx
N1

dN2

dx
N2 −

d(N1ψ)

dx
−
d(N2ψ)

dx
N1ψ N2ψ

]

(21)
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5.1 Implementation

The considered problem is depicted in Figure 4. The Poisson’s ratio is assumed to be
0.3 for both the materials. The deflection, the rotation and the curvature are compared
in Figure 7 for the proposed XFEM Timoshenko formulation using the non-conforming
mesh shown in Figure 5, with respect to a Timoshenko formulation and an Euler-Bernoulli
formulation both using a refined conforming mesh. Since the beam is very thin, it is shown
that the results of both Euler-Bernoulli and Timoshenko formulations are coherent. Also
from Figure 8, it can be observed that the jumps in the transverse shear strain field is
also captured accurately using XFEM. As shown in Figure 9, the solution of the enriched
Timoshenko formulation and the solutions of conforming Timoshenko and Euler-Bernoulli
approches are in good agreement when the beam thickness tends to zero. This effectively
proves that any shear locking does not occur when using the extended Timoshenko beam
finite element. The difference between the Euler-Bernoulli approach and the Timoshenko
approach can also be observed in Figure 9, where for smaller values of length over thickness
ratio, the solutions of the two approaches are different because the shear effects which are
more prevalent at these ratios are only considered when modelling using the Timoshenko
theory. Also the contribution from strain-energy to the total energy of the beam reduces
as the length to thickness ratio increases. The enriched element behaves no different in
this regard.

6 CONCLUSION AND PERSPECTIVES

In this study, we have detailed the enrichment functions for Euler-Bernoulli beam.
Simple static case was tested with the newly proposed enrichment function and found to
be satisfactory. A shear-locking free enriched Timoshenko beam finite element was also
developed and tested for the same static case. An assumed natural strain method was
used in order to avoid shear locking in Timoshenko beams. The current work will form
the basis for the development of plate elements using an enriched finite element approach.
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Abstract. In this article an adaptive timestep control for the generalised-α methods
is introduced. If the methods for first and second order ODEs are formulated as onestep
schemes a second solution can be computed with the backward Euler method, which costs
no additional computing time. If the generalised-α methods are formulated as multistep
methods an adaptive timestep control is only introduced for first order ODEs. In this
case the method is formulated with variable coefficients and a second solution is computed
with the Leapfrog method. Numerical examples show in the case of the onestep versions
the advantages of the adaptive algorithms.

1 INTRODUCTION

In this article we consider the generalised-α methods, which are introduced for first
order ODEs in [JWH00] and for second order ODEs in [CH93]. The generalised-α methods
are usually of second order and allow the damping of high frequencies, which can be
controlled by certain parameters. An analysis for first order problems can be found
in [DP03]. In the case of second order ODEs many papers can be found, which analyse
the generalised-α method, for example [EBB02]. It is well known that the generalised-α
method for first order problems can be formulated as onestep and multistep methods. In
the case of second order methods this statement is only true if the ODE is linear in the
first derivative (see [EBB02]). For both classes of multistep methods second order can
be achieved if a further order condition is satisfied. Together with stability conditions
(see [EBB02]) a robust and effective class of methods is obtained. If these parameter
sets are used for onestep methods theoretically only first order can be reached. But the
error constant is very small so that the observed numerical order of convergence is two.
Moreover in our experience the onestep versions achieve better results than the multistep
versions.
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For solving ODEs or DAEs a good time integration method needs an error estimator
to increase efficiency. This error estimator suggests a new timestep size to reach a given
accuracy. If the timestep size is too small a lot of unnecessary computational work has
to be done. Otherwise, if the timestep size is too large, the results become less accurate.
In [HNW93] two approaches for time-adaptive one-step methods are presented. The first
one is called Richardson extrapolation and can be applied to every one-step method. In
this case the calculations for computing an approximation of the solution at the next
timestep are repeated with the timestep size τ/2 and compared with the first result, i.e.
the computational work increases by a factor of 3. Thus, the question of efficiency arises.

A more effective control of timesteps can be achieved with the so-called embedding
technique, which can be used for many Runge–Kutta and Rosenbrock–Wanner meth-
ods [HW96, SW92]. In this case a second solution can be computed with almost the
same coefficients and without solving a further linear or non-linear solution, i.e. there
are almost no further computational costs. Applications can be found in [HHR12, JR10,
Lan01, Ran04].

In this article different approaches are considered. In the case of the onestep formula-
tion of the generalised-α method the backward Euler method can be used to compute a
second solution without any further computation. As the numerical examples will show
this is an effective way of computing adaptive timestep sizes.

In the case of the multistep formulation we need methods, which have variable coeffi-
cients. In the case of second order ODEs we get a formulation, which involves potentials
of the mass and the damping matrix. Therefore we only develop for the onestep version a
formulation with variable coefficients. In this case a second solution can be computed with
the Leapfrog method. This approach can be found in [GS00] for a backward difference
formular.

This paper is structured as follows. First we introduce the generalised-α methods
for first and second order ODEs. A short analysis about convergency and stability is
given. Then adaptive algorithms are explained and numerical examples illustrate the
adavantages of the new adaptive methods.

2 THE GENERALISED-α METHOD FOR 1ST ORDER ODES

In the following we consider the ODE

u̇ = f(t,u), u(0) = u0. (1)

To determine the numerical solution of (1) we use the generalised-α method, which is
given by the formulas (see [JWH00, DP03])

u̇n+αm = f(tn+αf
,un+αf

), (2)

un+1 = un + τ u̇n + τγ(u̇n+1 − u̇n), (3)

u̇n+αm = u̇n + αm(u̇n+1 − u̇n), (4)

un+αf
= un + αf (un+1 − un). (5)
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It is well known that the generalised-α method can be formulated as a onestep and a
twostep method.

2.1 The formulation as onestep method and its analysis

First we manipulate the formulas (2)–(5) to obtain a non-linear system consisting of
two decoupled equations. For simplification we define fn+αf

:= f(tn+αf
,un+αf

). A simple
calculation gives us

un+1 = un + τ

(
1− γ

αm

)
u̇n +

τγ

αm
fn+αf

, (6)

u̇n+1 =
1

τγ
(un+1 − un − τ(1− γ)u̇n) , (7)

if αm 6= 0. We call the scheme (6)–(7) the onestep generalised-α method. The starting
value u̇0 can be computed from the ODE (1). Next we want to determine the order of
consistency. Therefore the numerical solution un+1 can be expanded in a Taylor series as
follows

un+1 = un + τ u̇n +
τ 2γαf
αm

ün +O(τ 3).

For consistency of order 2 we get the condition
γαf
αm

=
1

2
. Since un+1 depends on u̇n we

use equation (7) for expanding u̇n+1 in a Taylor series and get

u̇n+1 = u̇n +
ταf
αm

ün +O(τ 2),

i. e. u̇n+1 is of order 1 if
αf
αm

= 1. Summarising our results we have consistency of order

2 if αm = αf and γ = 1/2. It can be easily shown that the generalised-α method is
zero-stable if αm > 1/2. In other words our method is convergent if αm > 1/2.

2.2 Formulation as multistep method and its analysis

The generalised-α method can be formulated as a twostep method as follows

un+1 =
2αm − 1

αm
un −

αm − 1

αm
un−1 +

τ(1− γ)

αm
fn−1+αf

+
τγ

αm
fn+αf

. (8)

For αm = 3/2, αf = 1 and γ = 1 we obtain the backward difference formula (BDF) from
Gear (see [HW96]). Next we expand un+1 in a Taylor expansion and compare it with the
exact solution. Then we have

un+1 = un + τ u̇n +
τ 2

2

2αf − αm + 2γ − 1

αm
ün +O(τ 3).
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Comparing the Taylor expansions for u(tn+1) and un+1 leads to the condition for second
order consistency

γ =
1

2
− αf + αm, (9)

which is already known from [JWH00, DP03]). The generalised-α method in form (8) is
convergent of order 2 if αm > 1/2 and condition (9) holds. For stability the setting

αf = γ =
1

1 + ρ∞
, αm =

3− ρ∞
2(1 + ρ∞)

. (10)

is used (see [JWH00, DP03]). Note that condition (9) is automatically satisfied. For
ρ∞ = 0 we get the BDF-2 method.

3 THE GENERALISED-α METHOD FOR SECOND ORDER ODES

3.1 The formulation as onestep method

In the following we consider the second order ODE

ü = f(t,u, u̇), u(0) = u0, u̇(0) = u̇0. (11)

The generalised-α method can be written as

un+αf
= αfun+1 + (1− αf )un, (12)

u̇n+αf
= αf u̇n+1 + (1− αf )u̇n, (13)

ün+αm = αmün+1 + (1− αm)ün, (14)

un+1 = un + τ u̇n + τ 2

[(
1

2
− β

)
ün + βün+1

]
, (15)

u̇n+1 = u̇n + τ [(1− γ)ün + γün+1] , (16)

ün+αm = f(tn+αf
, αfun+1 + (1− αf )un, αf u̇n+1 + (1− αf )u̇n), (17)

where tn+αf
= tn + ταf . To abbreviate we write

fn+αf
:= f(tn+αf

, αfun+1 + (1− αf )un, αf u̇n+1 + (1− αf )u̇n).

These equations can be simplyfied to

un+1 = un + τ u̇n + τ 2

[(
1

2
− β

αm

)
ün +

β

αm
fn+αf

]
, (18)

u̇n+1 = u̇n + τ

[(
1− γ

αm

)
ün +

γ

αm
fn+αf

]
. (19)

ün+1 =
1

αm
[ün+αm − (1− αm)ün] =

1

αm

[
fn+αf

− (1− αm)ün
]
. (20)
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Next we expand these three expression into Taylor expansions and get

un+1 = un + τ u̇n +
1

2
τ 2ün +O(τ 3),

u̇n+1 = u̇n + τ ün + γ
αf
αm

τ 2ün +O(τ 3),

ün+1 = ün + τ
αf
αm

...
un +O(τ 2).

It follows that the method is of order 2 if αf/αm = 1 and γαf/αm = 1/2. This is the
same result as in the previous section.

3.2 Formulation as multistep method

As in the previous section the generalised-α method can be written as a multistep
method if the ODE (11) is linear in u̇. Therefore we consider the problem as in [EBB02]

M ü + Cu̇ + S(u) = F(t),u(0) = u0, u̇0 = v0. (21)

Then equation (17) reads as

M ün+αm = F(tn+αf
) − S(αfun+1 + (1 − αf )un) − C(αf u̇n+1 + (1 − αf )u̇n). (22)

The generalised-α method can be formulated as a multistep method with the help of (15),
(16), and (22). These formulas are evaluated at time tn, tn+1, and tn+2 (see for exam-
ple [EBB02]). Then we get

3∑
j=0

[Mαj + τCγj]un+j + τ 2

2∑
j=0

δj[Sn+j+αf
− F(tn+j+αf

)] = 0, (23)

where

α0 = 1− αm, α1 = 3αm − 2, α2 = 1− 3αm, α3 = αm,

γ0 = (1− αf )(γ − 1), γ1 = 1− 2αf − 2γ + 3γαf , γ2 = αf + γ − 3γαf , γ3 = αfγ,

δ0 =
1

2
+ β − γ, δ1 =

1

2
− 2β + γ, δ2 = β

and

Fn+j−αf
= F(αf tn+j+1 + (1− αf )tn+j) = F(tn+j + αfτ)

Sn+j+αf
= αfS(un+j+1) + (1− αf )S(un+j).

The method has consistency order 2 if γ =
1

2
+ αm − αf . The method is zero-stable and

convergent if αm ≥ 1/2, αf ≤ 1/2 and γ ≤ 1/2 (see [EBB02]). For stability often the
setting

β =
(1 + αm − αf )2

4
, αf =

1

1 + ρ∞
, αm =

2− ρ∞
1 + ρ∞

is used (see [CH93]).
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4 ADAPTIVITY

4.1 Adaptivity for the onestep version

If the generalised-α methods are formulated as onestep methods the so-called PI-
controller from Gustafsson et. al. [GLS88] can be used. To suggest a new timestep size
we need solutions of order p and p − 1. The approximation of the generalised-α method
can be used as a second order approximation since the error constant is very small and the
methods behave in our numerical experiments as a second order method. As the second
solution with order 1 we use the backward Euler method. The next timestep size τn+1 is
proposed to be

τn+1 = ρ
τ 2
n

τn−1

(
TOL · rn
r2
n+1

)1/2

, (24)

where ρ ∈ (0, 1] is a safety factor, TOL > 0 is a given tolerance, and rn+1 := ‖un+1−ûn+1‖.
In [HNW93, HW96, SW92] different error measures can be found, which use a combination
of relative and absolute errors. For further details about the numerical error and the
implementation of automatic steplength control we refer to [HW96, Lan01]. The algorithm
reads as follows:

• Compute the numerical solution (un+1, u̇n+1)> with the help of the generalised-α
method (6), (7).

• Compute the second solution with the backward Euler method and use u̇n+1 as
approximation for f(tn+1,un+1), i. e. ûn+1 = un + τnu̇n+1.

• Compute the numerical error with rn+1 and approximate the new timestep length
τn+1 with (24).

• If the numerical error is smaller than the given tolerance the timestep is accepted,
otherwise it is rejected and has to be recomputed with the new timestep length τn+1.

In case of second order ODEs we use equations (12)–(17) to compute the numerical
approximation un+1. As in the case of the first order ODEs the backward Euler can be
used for computing the first order solution.

The chemical reaction E5 This chemical reaction problem is called E5 and can be
found in the collection by Enright, Hull, and Lindberg [EHL75]. The equations are given
by

u̇1 = −Au1 −Bu1u3,

u̇2 = Au1 −MCu2u3,

u̇3 = Au1 −Bu1u3 −MCu2u3 + Cu4,

u̇4 = Bu1u3 − Cu4
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with the initial conditions u1(0) = 1, 76× 10−3 and ui(0) = 0, i ∈ {2, 3, 4}. Moreover we
set as in [HW96] A = 7, 89× 10−10, B = 1, 1× 107, C = 1, 13× 103, and M = 106. The
equations should be solved in the time interval [0, 1013]. Note that the variables u2, u3,
and u4 satisfy the equation u2 − u3 − u4 = 0. The parameter ρ is chosen to be 0, 1/4,
1/2, 3/4, and 9/10, resp. For ρ tending to 1 the algorithm becomes instable. We compare
the generalised-α methods with other implicit and linear-implicit second order solvers like
ROS2 (see [VSBH99]), ROS2S (see [HHR12]), and the method of Ellsiepen (see [EH01]).
It can be observed from Figure 1 that the generalised-α methods with the new stepsize
controller are more effective than the other second order methods.

Figure 1: Comparison of generalised-α methods for first order ODEs: CPU time versus error

Kepler’s problem Consider the second order ODE

ÿi = − yi
(y2

1 + y2
2)3/2

, i = 1, 2.

The initial conditions are given by u0 =

(
0,

√
1 + e

1− e
, 1− e, 0

)>
, where e ∈ [0, 1) is a

given parameter. In our numerical example we choose e = 1/2. We solve the problem
in the interval [0, 20000] with the generalised-α methods for second order ODEs and use
the new adaptive timestep control. The parameter ρ is chosen to be 0, 1/4, 1/2, 3/4, and
9/10, resp. We compare the generalised-α methods with other implicit and linear-implicit
second order solvers like ROS2 (see [VSBH99]), ROS2S (see [HHR12]), and the method of
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Ellsiepen (see [EH01]). It can be observed from Figure 2 that the generalised-α methods
with the new stepsize controller are more effective than the other second order methods.
In this case we get better results for a larger ρ.

Figure 2: Comparison of generalised-α methods for second order ODEs: CPU time versus error

4.2 Adaptivity for the multistep version

In this section we derive first a multistep formula for the generalised-α method, which
has variable coefficients. Note that this idea works only for the generalised-α method for
first order problems. In the case of the generalised-α method for second order problems
matrix potentials must be computed.

Let us start with the generalised-α method for first order problems. We want to formu-
late this method as a twostep method with variable coefficients. We consider equations (6)
for tn and tn+1 and (7) for tn. A simple calculation leads to

un+1 = un +
τn+1

τn

αm − 1

αm
(un − un−1)− τn+1

γ − 1

αm
fn−1+αf

+ τn+1
γ

αm
fn+αf

.

The BDF-2 method with variable timesteps is a special case with the setting γ = αf = 1
and αm = (2τn−1 + τn)(τn−1 + τn).

Next we want to derive the condition for order 2. Therefore we compute a Taylor
expansion of un+1 and obtain

un+1 = un + τn+1u̇n +
τn+1

αm

[
−τn

2
(αm − 1)− τn(γ − 1)(αf − 1) + τn+1γ

]
ün +O(τ 3

n+1)
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It follows
tn(1− αm)− 2τn(γ − 1)(αf − 1) + 2γαfτn+1 = τn+1αm. (25)

Next we consider the problem u̇ = 0. Applying the adaptive generalised-α method we
obtain

un+1 −
(

1 + ωn
αm − 1

αm

)
un + ωn

αm − 1

αm
un−1 = 0.

It follows

ξ2 −
(

1 + ωn
αm − 1

αm

)
ξ + ωn

αm − 1

αm
= 0,

which has the solutions ξ1 = 1 and ξ2 = ωn(αm − 1)/αm. It follows

ωn
ωn + 1

≤ αm ≤
ωn

|ωn − 1|
.

For the A-stability of the method we consider the problem u̇ = λu, λ < 0. Using the
adapative generalised-α method we get

un+1 =

(
1 + ωn

αm − 1

αm

)
un − ωn

αm − 1

αm
un−1 +

τn+1(1− γ)

αm
λ((1− αf )un−1 + αfun))

+
τnγ

αm
λ((1− αf )un + αfun+1).

We are interested in the case λ→ −∞ and get

0 = τnγαfξ
2 + (τn+1(1− γ)αf + τnγ(1− αf )) ξ + τn+1(1− γ)(1− αf ).

The solutions of this equation are given by

ξ1 =
αf − 1

αf
, ξ2 = τn+1

γ − 1

τnγ
.

As in the case of constant coefficients we solve ξ1 = −ρ∞ and ξ1 = −ρ∞ together with (25)
and get

γ =
τn+1

τn+1 + ρ∞τn
, αf =

1

ρ∞ + 1
, αm =

2τn+1τn − τnρ∞
τn + ρ∞τn + τn+1 + τn+1ρ∞

.

For adaptivity we want to use a so-called predictor-corrector scheme (see for exam-
ple [GS00]). The predictor is a scheme, which needs no solution of a linear or nonlinear
system, for example an explicit method. The corrector is the desired method, in our case
the generalised-α-method.
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Let us assume that the predictor and the corrector are of order p, i. e. it holds

upn+1 − u(tn+1) = Cp
τ p+1
n+1

(p+ 1)!
f (p+1)(tn), (26)

ucn+1 − u(tn+1) = Cc
τ p+1
n+1

(p+ 1)!
f (p+1)(tn), (27)

where upn+1 is the approximation of the predictor and ucn+1 is the approximation of the
corrector. In the system (26)–(27) the quantities u(tn+1) and f (p+1)(tn) are unknown.
Therefore we solve equation (26) w.r.t. u(tn+1) and insert it into equation (27). Then we
get the following approximation of the local truncation error

dn+1 = ucn+1 − u(tn+1) = Cc
τ p+1
n+1

(p+ 1)!
f (p+1)(tn) =

Cc
Cc − Cp

(ucn+1 − upn+1). (28)

As predictor we want to use the leapfrog method (see [GS00]) given by

upn+1 = un +

(
1 +

τn
τn+1

)
τn+1u̇n −

(
τn+1

τn

)2

(un − un−1).

Expanding this formula into a Taylor expansion gives us the constant Cp, which reads as

Cp = −
(

1 +
τn
τn+1

)
.

The error constant Cc we receive from the Taylor expansion of the generalised-α method.
We obtain

Cc =

(
τn
τn+1

)2
αm − 1 + 3(1− γ)(αf − 1)2

αm
+ 3

γα2
f

αm
− 1.

The chemical reaction E5 As numerical example we again choose the chemical reac-
tion problem E5. The parameter ρ is chosen to be 0, 1/4, and 1/2, resp. For ρ > 1/2 we
obtain too many stepsize rejections and the algorithm becomes ineffective. We compare
the generalised-α methods with other implicit and linear-implicit second order solvers like
ROS2 (see [VSBH99]), ROS2S (see [HHR12]), and the method of Ellsiepen (see [EH01]).
It can be observed from Figure 3 that the generalised-α with the new stepsize controller
is not as effective as the other second order methods.

5 Summary and Outlook

In this article we gave a short analysis of the generalised-α method for first and second
order ODEs and introduced a new adaptive timestep control. In case of the onestep
versions this controller is better than other adaptive second order methods. For multistep
methods the adaptivity is more complicated. We have seen that only in the case ρ ∈
[0, 1/2] an effective method is achieved. In future works adaptivity should also be possible
if ρ > 1/2.
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Figure 3: Comparison of generalised-α methods for first order ODEs: CPU time versus error
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Abstract. In this study, we investigate efficient time integration techniques for a high-
order accurate discontinuous Galerkin method. The method is associated to a Jacobian-
free Newton-Krylov algorithm. This method is known to resolve the problem of strong
restriction on the time step due to the so-called Courant-Friedrichs-Levy condition for
stability of the discontinuous Galerkin scheme associated to an explicit time discretiza-
tion. However, the shortcoming of implicit time integration methods is the extremely
high computational cost and memory requirement induced by the large number of de-
grees of freedom in practical applications. In the present work, we focus on efficient
preconditioning techniques. In a first time, we will review and compare techniques in
the context of Jacobian-free Newton-Krylov algorithm such as block-Jacobi, LU SGS
and ILU(0) preconditioners. Then, we will exploit the possibility of using approximate
Jacobians as preconditioning matrix to reduce the strong computational cost and mem-
ory requirement associated to a high-order discontinuous Galerkin method. Steady-state
and time-dependent solutions of the compressible Euler equations in two and three space
dimensions will be considered to assess the performances of the present method.
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Abstract. For the last decades, three trends have grown and reinforced each other: the
fast growth of hardware computational capacities, the requirement of finer and larger finite
element models for industrial simulations and the development of efficient computational
strategies amongst which non-overlapping domain decomposition (DD) methods [2, 3, 4]
are very popular since they have proved to be scalable in many applications. One main
shortcoming in DD lies on the absence of verification of the discretized models in order to
warranty the quality of numerical simulations (global or goal-oriented error estimators).
In a recent work [1], we introduced a first error estimator in a non-overlapping domain
decomposition framework and outlined its connection with two iterative non-overlapping
domain decomposition solvers (FETI and BDD). It is fully parallel in the sense that
it involves a simple preprocessing of interface tractions and the use of standard black-
box sequential error estimators [5, 6, 8] independently on each subdomain. It yields
a guaranteed upper bound on the error whatever the state (converged or not) of the
iterative solver associated to the interface continuity. It has been numerically observed
that our first DD-error estimator enables to recover the same efficiency factor as the
standard sequential. However, its main drawback is its inability to separate the algebraic
error (coming from the DD iterative solver) from the discretization error per subdomains.

In this talk, we present some of our recent work that aims at separating the algebraic
error and the discretization error. We introduce a new guaranteed upper bound that
enables to introduce such a separation. This leads to the definition of new convergence
criteria of DD iterative solvers based on the estimation of the discretization error instead of
purely algebraic criteria. Works in progress are related to (i) goal-oriented error estimator
(ii) nonlinear problems.
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Abstract. In this contribution we present an adjoint based a posteriori error estimator
for (nonlinear) parabolic problems discretized with the fractional step θ time-stepping
scheme. This scheme combines several highly desired attributes: it is second order accu-
rate, strongly A-stable and shows very little numerical dissipation. The drawback of this
time-stepping scheme is its time-stepping character based on a finite difference approxi-
mation which makes it ill-suited for variational and in particular adjoint error estimation
techniques.

We will propose a Petrov-Galerkin scheme, that is shown to be algebraically equivalent
to the fractional step θ time-stepping scheme for linear problems and that can be regarded
as an approximation of this scheme for general nonlinear problems.

The error estimator is split into two parts: the first is a traditional residual based esti-
mator of the Galerkin scheme, the second measures the defect in Galerkin orthogonality
given by the numerical quadrature error. Both estimator parts require the solution of an
adjoint in time solution.
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Abstract. Recently, Goal Oriented Adaptivity (GOA) has been an active research area
because of its advantages in terms of computational cost and accuracy. This technique
consists in solving two Finite Element (FE) problems: the primal one, which is the actual
problem and the dual one, which is an auxiliary problem depending on the Quantity of
Interest (QoI).

To improve the quality of the error estimate in the QoI we consider a recovery-based
procedure which enforces local equilibrium for an accurate stress representation. The
proposed procedure requires the explicit expressions for the dual loads which, traditionally,
are not obtained in the FE framework. Our objective in this paper is to obtain those
explicit expressions for the dual problem for the extraction of linear QoI in the context
of linear elasticity. The ZZ-type error estimator is used to evaluate the error in the QoI
at element level, yielding a high quality, as shown in the numerical tests.

1 Introduction

The Finite Element (FE) solution is a numerical approximation to the unknown exact
solution of a Boundary Value Problem (BVP), thus, there exists an error due to the
discretization. The most widely used way to estimate the discretization error is to evaluate
it in terms of the global energy. A great effort has been devoted since the very beginning
by researchers in order to obtain good approximations or even sharp upper bounds for
the global error measurement in energy norm [1, 2, 3, 4, 5, 6, 7].
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These error estimators were based on the evaluation of an approximation to the true
error in energy norm. However, for practitioners this quantity is, in general, not very
useful from an industrial point of view. In practice, analysts run simulations in order to
evaluate stresses, displacements, etc... in a particular area of the domain. In the late 90s,
a new paradigm appeared [8, 9, 10] where, instead of evaluating the error of the solution
in terms of energy, the error is evaluated in terms of a Quantity of Interest (QoI) in a
Domain of Interest (DoI). That is, some relevant quantity are considered as the main
output. Then, we directly control the error of the QoI in the DoI. The error estimation of
a QoI requires solving two problems simultaneously, the first one is called primal problem
and is the one we are interested in. The second problem, called dual or adjoint problem,
serves to extract the information for the error in the QoI. Both problems are geometrically
identical and differ on the applied loads. Those of the dual problem depend on the DoI
and the QoI. The construction of the dual problem will be explained later in more detail.

Our approach to obtain estimations of the error in the QoI, in contrast to previous
techniques, is based on the use of equilibrated recovered fields obtained for the solution
of both, the primal and the dual problem. The proposed procedure begins with the
evaluation of displacement recovered fields considering: the fulfilment of boundary and
internal equilibrium equations, Dirichlet constraints and, for singular problems, the split-
ting of the displacement and stress fields into singular and smooth parts, as described
in [11]. Similar recovery techniques considering stresses were previously used to obtain
upper bounds of the error in energy norm in [12, 13]. For the recovery procedure we need
the analytical expressions defining the loads for the primal and dual problems. Thus, for
the dual problem, we must obtain the analytical expressions related to the QoI required
during the recovery process.

Numerical tests using 2D benchmark problems with exact solution are used to investi-
gate the quality of the proposed technique. Results for different quantities of interest show
that the technique provides excellent error estimates which can be used in goal oriented
adaptive procedures.

2 Problem Statement

2.1 Primal problem

In this section we briefly present the model for the 2D linear elasticity problem. Denote,
in vectorial form, σ and ε as the stresses and strains, D as the elasticity matrix of the
constitutive relation σ = Dε, and u the unknown displacement field, which take values
in Ω ⊂ R

2. u is the solution of the boundary value problem given by:
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Su = −b in Ω (1)

ǫ(u) = Lu in Ω (2)

Gσ (u) = t on ΓN (3)

u = ū on ΓD, (4)

ΓN and ΓD denote the Neumann and Dirichlet boundaries with ∂Ω = ΓN ∪ ΓD and
ΓN ∩ ΓD = ∅, b are body loads and t are the tractions imposed along ΓN . S = LTDL,
being L the differential operator, and G is the projection operator that projects the stress
field into tractions over any boundary with outward normal vector n = {nx ny}

T :

L =





∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x



 (5)

G =

[

nx 0 ny

0 ny nx

]

(6)

Consider the initial stresses σ0 and strains ε0, the symmetric bilinear form a : (V +
ū)× V → R and the continuous linear form ℓ : V → R defined by:

a(u,v) :=

∫

Ω

σ
T (u)ε(v)dΩ =

∫

Ω

σ
T(u)D−1

σ(v)dΩ (7)

ℓ(v) :=

∫

Ω

vTbdΩ +

∫

ΓN

vTtdΓ +

∫

Ω

σ
T(v)ε0dΩ−

∫

Ω

ε
T(v)σ0dΩ. (8)

With these notations, the variational form of the problem reads [14]:

Find u ∈ (V + ū) : ∀v ∈ V a(u,v) = ℓ(v) (9)

where V is the standard test space for the elasticity problem such that V = {v | v ∈
[H1(Ω)]2,v|ΓD

(x) = 0}.
Let uh be a finite element approximation of u. The solution for the discrete counterpart

of the variational problem in (9) lies in a subspace (V h + ū) ⊂ (V + ū) associated with a
mesh of finite elements of characteristic size h, and it is such that:

∀vh ∈ V h ⊂ V a(uh,vh) = ℓ(vh). (10)

Consider the linear elasticity problem given in (9) and its approximate FE solution uh ∈
V h ⊂ V . This problem is related to the original problem to be solved, that henceforth
will be called the primal problem.
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2.2 Dual problem

Now, let us define Q : V → R as a bounded linear functional representing some
quantity of interest, acting on the space V of admissible functions for the problem at
hand. The objective is to estimate the error in Q(u) when calculated using the value of
the approximate solution uh:

Q(u)−Q(uh) = Q(u− uh) = Q(e). (11)

As will be shown later, Q(v) may be interpreted as the work associated with a displace-
ment field v and a distribution of forces specific to each type of quantity of interest. If we
particularise Q(v) for v = u, this force distribution will allow us to extract information
concerning the quantity of interest associated with the solution of the problem in (9).

A standard procedure [15] to evaluate Q(e) consists in solving the auxiliary dual prob-
lem (also called adjoint or extraction problem) defined as:

Find w ∈ V : ∀v ∈ V a(v,w) = Q(v). (12)

An exact representation for the error Q(e) in terms of the solution of the dual problem
can be simply obtained by substituting v = e in (12) and remarking that for all wh

Q ∈ V h,
due to the Galerkin orthogonality, a(e,wh

Q) = 0 such that:

Q(e) = a(e,w) = a(e,w)−
�

�
�

�
�:0

a(e,wh) = a(e,w −wh) = a(e, ǫ). (13)

Therefore, the error in evaluating Q(u) using uh is given by:

Q(u)−Q(uh) = Q(e) = a(e, ǫ) =

∫

Ω

(

σp − σ
h
p

)

D−1
(

σd − σ
h
d

)

dΩ, (14)

where σp is the stress field associated with the solution of the primal problem and σd

is the one associated with the dual problem. Using the Zienkiewicz and Zhu (ZZ) error
estimator [16] and (14) we can derive an estimate for the error in the QoI which reads:

Q(e) ≈ Q(ees) =

∫

Ω

(

σ
∗

p − σ
h
p

)

D−1
(

σ
∗

d − σ
h
d

)

dΩ, (15)

where σ
∗

p and σ
∗

d represent the recovered stress fields for the primal and dual problems,
respectively. Here, we expect to have a sharp estimate of the error in the QoI if the
recovered stress fields are accurate approximations to their exact counterparts.

In order to obtain accurate representations of the exact stress fields both for the primal
and dual solutions, we propose the use of a locally equilibrated displacement recovery
technique, called SPR-CD, based on the ideas in [17, 11, 13]. This technique, which is
an enhancement of the Superconvergent Patch Recovery (SPR) proposed in [18], enforces
the fulfillment of the internal, boundary equilibrium equations and Dirichlet boundary
conditions locally on patches. For problems with singularities the stress field is also
decomposed into two parts: smooth and singular, which are separately recovered.
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3 Quantities of Interest

The recovery procedure based on the SPR technique and denoted as SPR-CD, fully
described in [19], relies on the a priori known values of b, t, ε0, σ0 and Dirichlet boundary
conditions to impose the internal and boundary equilibrium equations and the exact
displacements over ΓD. Regarding the loads, these values are already available for the
primal problem (bp and tp). However, the body forces bd, boundary tractions td, etc...
are not known for the dual problem. We can easily derive expressions associated to certain
linear QoIs, e.g. the mean values of displacements and stresses in a sub-domain of interest
Ωi, which can be interpreted in terms of bd and td. This approach was first introduced in
[20] and presented later in [21]. Similarly, in [22] the authors defined the relation between
the natural quantities of interest and dual loading data.

3.1 Mean displacement in Ωi

Let us assume that the objective is to evaluate the mean value of the displacements
along the direction α in a sub-domain of interest Ωi ⊂ Ω. The functional for the quantity
of interest can be written as:

Q(u) = ūα|Ωi
=

1

|Ωi|

∫

Ωi

uTcuα
dΩ, (16)

where |Ωi| is the volume of Ωi and cuα
is a vector used to select the appropriate combina-

tion of components of u. For example, cuα
= {1, 0}T if α is parallel to the x-axis. Now,

considering v ∈ V in (16) results in:

Q(v) =

∫

Ωi

vT

(

cuα

|Ωi|

)

dΩ =

∫

Ωi

vTbddΩ. (17)

Note that the term cuα
/|Ωi| formally corresponds to a vector of body forces in the problem

defined in (9). Therefore, we can say that bd = cuα
/|Ωi| is a constant vector of body loads

that applied in the sub-domain of interest Ωi can be used in the dual problem to extract
the mean displacements.

3.2 Mean displacement along Γi

For the case where the quantity of interest is the functional that evaluates the mean
value of the displacements along a given boundary Γi the expression reads:

Q(u) = ūα|Γi
=

1

|Γi|

∫

Γi

uTcuα
dΓ, (18)

|Γi| being the length of Γi and cuα
a vector used to select the appropriate component of

u. Again, considering v ∈ V in (18) we have:

Q(v) =

∫

Γi

vT

(

cuα

|Γi|

)

dΓ =

∫

Γi

vTtddΓ (19)
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Note that the term cuα
/|Γi| can be interpreted as a vector of tractions applied along

the boundary in the problem defined in (9). Thus, td = cuα
/|Γi| is a vector of tractions

applied on Γi that can be used in the dual problem to extract the mean displacements
along Γi.

3.3 Mean stresses and strains in Ωi

In the case that our QoI is the mean stress (or strains) in Ωi we can define the QoI (20)
where cTσα

is a vector to choose any linear combination of the stress (strain) components.

Q(u) = σ̄α|Ωi
=

1

|Ωi|

∫

Ωi

cTσα
σdΩ =

∫

Ωi

cTσα

|Ωi|
σdΩ (20)

Comparing the last integral in (20) with (8) we can define ǫ0,d = cTσα
/|Ωi| corresponding

to the term of initial strains that we need to apply in the dual problem to extract the
value of σ̄α|Ωi

. A similar formulation can be derived for the case of the mean strains in
Ωi such that σ0,d = cTǫα/|Ωi|. Note that the loads for the dual problem of this QoI could
also be obtained applying the divergence theorem, yielding tractions along the boundary
of the DoI which are equivalent to the initial strains.

3.4 Mean tractions along Γi

Let t = {tn, tt}
T , with tn and tt the normal and tangential components of the tractions

vector t. Let us assume that we want to evaluate, for example, the mean normal tractions
along boundary Γi. The functional that defines the mean tractions along the boundary
Γi can be expressed as

Q(u) = t̄n =
1

|Γi|

∫

Γi

tTcdΓ (21)

Using (21) and considering the extraction vector c and the rotation matrix RΓ that
aligns the tractions normal to the boundary Γi we have:

t̄n =
1

|Γi|

∫

Γi

tTcdΓ =
1

|Γi|

∫

Γi

{

tn tt
}

{

1
0

}

dΓ =

=
1

|Γi|

∫

Γi

{

tx ty
}

RT
Γ

{

1
0

}

dΓ =

∫

Γi

{

tx ty
} RT

Γ

|Γi|

{

1
0

}

dΓ =

∫

Γi

{

tx ty
}

uddΓ

(22)

In (22) the term ud = RT
Γc/|Γi| corresponds to a vector of displacements used as

Dirichlet boundary conditions for the dual problem used to extract the mean value of the
normal tractions along Γi.

Note that in this case w̄Q = ud 6= 0, then (13) does not hold. We redefine the dual
problem in (12), ∀v ∈ V , such that:

a(v,wQ) = 0 in Ω

wQ = ud on Γi

(23)
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The dual solution can be expressed aswQ = w0
Q+w̄Q, wherew

0
Q = 0 on Γi. Assuming that

w̄Q = ud is in the FE solution space, the FE approximation for (23) is also decomposed
into two parts wh

Q = wh0
Q + w̄Q where, again, wh0

Q = 0 on Γi. Therefore, we have for the
dual problem:

∀v ∈ V a(v,w0
Q) = −a(v, w̄Q) (24)

Substituting v = e in (24), using the Galerkin orthogonality property, a(e,wh0
Q ) = 0, and

considering that e0Q = eQ we write:

a(e,w0
Q −wh0

Q ) = a(e, e0Q) = a(e, eQ) = −a(e, w̄Q) (25)

Similarly, the QoI can also be rewritten by means of the divergence theorem. Thus,
generalizing (22) ∀v ∈ V we have:

Q(v) =

∫

Γi

(Gσ(v))Tud dΓ =

∫

Ωi

σ(v)Tǫ(ud) dΩ = a(v,ud) (26)

Thus, Q(e) = a(e,ud) = a(e, w̄Q) and substituting in (25) we obtain the error for this
QoI: Q(e) = −a(e, eQ).

3.5 Generalized stress intensity factor in Ωi

The Generalized Stress Intensity Factor (GSIF) K is the characterizing parameter in
problems with singularities. The GSIF is a multiplicative constant that depends on the
loading of the problem and linearly determines the intensity of the displacement and stress
fields in the vicinity of the singular point. In the particular case that the corners that
produce the singularities have an angle of 2π, this parameter is called the Stress Intensity
Factor (SIF).

Let us consider the general singular problem of a V-notch domain subjected to loads
in the infinite. The analytical solution for this singular elasticity problem can be found in
[23] where, considering a polar reference system centred in the corner, the displacement
and stress fields at points sufficiently close to the corner can be described as:

u(r, φ) = KIr
λIΨI(λI, φ) +KIIr

λIIΨII(λII, φ) (27)

σ(r, φ) = KIλIr
λI−1ΦI(λI, φ) +KIIλIIr

λII−1ΦII(λII, φ) (28)

where r is the radial distance to the corner, λm (with m = I, II) are the eigenvalues that
determine the order of the singularity, Ψm and Φm are sets of trigonometric functions that
depend on the angular position φ, and Km are the Generalised Stress Intensity Factors
(GSIFs). For the evaluation of the GSIF we consider the expression shown in [24]:

K(1,2) = −
1

C

∫

Ω∗

[(

u(2)
x

∂q

∂x

)

σ(1)
xx +

(

u(2)
y

∂q

∂y

)

σ(1)
yy +

(

u(2)
x

∂q

∂y
+ u(2)

y

∂q

∂x

)

σ(1)
xy

−

(

σ(2)
xx

∂q

∂x
+ σ(2)

xy

∂q

∂y

)

u(1)
x −

(

σ(2)
xy

∂q

∂x
+ σ(2)

yy

∂q

∂y

)

u(1)
y

]

dΩ, (29)
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where u(1), σ(1) are the displacement and stress fields from the FEM solution, u(2), σ(2)

are the auxiliary fields associated with the extraction functions for the GSIFs in mode I
or mode II, q is an arbitrary function used to define the extraction zone, which is one at
the singular point and 0 on the boundaries. xj refers to the local coordinates system at
the crack tip. For more details we refer the reader to [24].

Rearranging terms of the integral in (29), we can obtain:

K(1,2) =

∫

Ω

u(1)T
(

−
1

C

)

[

σ
(2)
xx q,1 + σ

(2)
xy q,2

σ
(2)
xy q,1 + σ

(2)
yy q,1

]

+ σ
(1)T

(

−
1

C

)







u
(2)
x q,1

u
(2)
y q,2

u
(2)
y q,1 + u

(2)
x q,2






dΩ (30)

where q,1 = ∂q/∂x and q,2 = ∂q/∂y. Rewriting the previous expression we obtain:

K(1,2) =

∫

Ω

(

u(1)TA+ σ
(1)TB

)

dΩ (31)

Thus, if we replace u by a vector of arbitrary displacements v, the quantity of interest
can be defined as:

Q(v) =

∫

Ω

vTbddΩ +

∫

Ω

LvTDε0ddΩ (32)

where A has been replaced by the dual body forces bd and the term B has been replaced
by the vector of initial strains ε0d. It must be taken into account that these expressions
can be used either for mode I or mode II.

4 Numerical examples

To verify the influence of the analytical dual loads we compare the standard SPR with
our new approach, called SPR-CD, using a singular problem. Plane strain and 2D linear
elastic behavior are considered. A bilinear (Q4) h-adaptive refinement process, guided
by the error in the quantity of interest, has been considered in all examples. To assess
the performance of the recovery procedure and error indicators we have considered some
quantities: i) the global effectivity θ that indicates the relation between the exact error
Q(e) and the estimated error Q(ees):

θ =
Q(ees)−Q(e)

|Q(e)|
, (33)

with positive values meaning overestimation of the error and negative values underesti-
mation, and ii) the error in the QoI ηQoI which is the relation between the estimated and
exact value of the QoI according to the next expression:

ηQoI =
Q(uh) +Q(ees)

Q(u)
(34)
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4.1 Problem 1. L-Shape plate

The problem model is in Figure 1a. The model is loaded on the boundary with the
tractions corresponding to the first symmetric term of the asymptotic expansion that
describes the exact solution under mode I or II loading conditions around the singular
vertex. The exact displacement and stress fields for the singular elastic problem can
be found in [23]. Material parameters are elastic modulus E = 1000 and Poisson’s ratio
ν = 0.3. As we are solving a singular problem, for the recovery we use the singular+smooth

technique described in [11]. For this problem we consider the GSIF as the QoI, that is KI

or KII. When KI is the QoI the primal problem is loaded with KI = 1 and KII = 0, and
with KI = 0 and KII = 1 when KII is the QoI. In Figure 1 we present a set of h-adapted
meshes for KI. We represent in Figure 2, for KI and KII, the results of the proposed

x

y

2
2

1

1

(a) Problem model (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 1: Problem 1. L-Shape plate. Sequence of the h-adaptive refinement process
guided by the error in the QoI KI.

recovery procedure (SPR-CD) using the analytical expressions of the dual loads, and the
standard SPR. The smoother and more accurate behavior of the novel procedure,is clearly
shown in both the effectivity of the error estimator and the indicator for the QoI.

5 Conclusions

In this work we have presented a methodology to obtain the analytical expressions
for the loads of the dual problem, which are required by the equilibrated displacement
recovery technique we are using to locally equilibrate the recovered dual stress field.
The error estimation is performed by using a ZZ-type error estimator, thus, the quality
of the recovered solutions is critical. Numerical results have shown the importance of
equilibrating the recovered solutions for the primal and dual problem in order to provide
the sharp error estimates presented.
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Figure 2: Problem 1. KI and KII. Evolution of the global effectivites
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Abstract. The gradient-based optimization methods used for optimization of structural
components require that the information of the gradients (sensitivity) of the magnitudes of
interest with respect to the design variables is calculated with sufficient accuracy. The aim
of this paper is to present a module for calculation of shape sensitivities with geometric
representation by NURBS (Non-Uniform Rational B-Splines) for a program created to
analyze 2-D linear elasticity problems, solved by FEM using cartesian grids independent
of the geometry, CG-FEM.

First, it has been implemented the ability to define the geometry using NURBS, which
have become in recent years in the most used geometric technology in the field of en-
gineering design. In order to be able to represent exact geometries, a scheme based on
matrix representation of this type of curve and proper integration is proposed. Moreover,
the procedures for shape sensitivities calculation, for standard FEM, have been adapted
to an environment based on cartesian meshes independent of geometry, which implies, for
instance, a special treatment of the elements trimmed by the boundary and the imple-
mentation of new efficient methods of velocity field generation, which is a crucial step in
this kind of analysis.

Secondly, an error estimator, as an extension of the error estimator in energy norm
developed by Zienkiewicz and Zhu, has been proposed for its application to the estimation
of the discretization error arising from shape sensitivity analysis in the context of cartesian
grids.

The results will show how using NURBS curves involves significant decrease of geo-
metrical error during FE calculation, and that the calculation module implemented is
able to efficiently provide accurate results in sensitivity analysis thanks to the use of the
CG-FEM technology.
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1 INTRODUCTION

This paper presents an approach for calculation of shape sensitivities based on the use
of cartesian meshes independent of the geometry. Gradient based optimization processes
require this kind of information, and its accuracy influences the evolution of the process.
Specifically, this paper focuses on 2-D optimization problems, with exact representation
of the geometries, governed by the linear elasticity equations, using FEM to determine
the sensitivity of the quantities of interest.

(a) Approximation mesh. (b) Integration mesh.

Figure 1: Example of meshes related to CG-FEM.

Meshes independent of the ge-
ometry are used as a tool to al-
leviate the meshing and remesh-
ing burden, for example, in the
Generalized FEM (GFEM)[1] or
Extended FEM (XFEM)[2]. The
analysis proceducre makes use of
two meshes, an approximation
mesh, which is a mesh that covers
the original domain and is used
for the construction of the approx-
imation basis, and an integration
mesh intended for numerical eval-
uation of all integrals.

The approximation mesh needs to be a FE mesh satisfying only the requirement of
covering completely the problem extension, as shown in Fig. 1(a), while the integration
mesh is obtained by the division into subdomains of each element of the approximation
mesh separately, taking into account the local geometry of the domain as shown in Fig.
1(b). For this subdivision the Delaunay triangulation is used, generating integration
subdomains whose number will depend on the curvature of the edge crossing the elements.

In addition to this, the elements are disposed following a cartesian grid pattern in
order to achieve significant computational savings, absolutely necessary in optimization
analysis, where iterative analyses leading to considerable data flows are required.

Nowadays engineering analysis and high-performance computing are also demanding
greater precision and tighter integration of the overall modeling-analysis process. In this
regard, we will reduce errors by focusing on one, and only one, geometric model, which
can be utilized directly as an analysis model. There are a number of candidate compu-
tational geometry technologies that may be used. The most widely used in engineering
design are NURBS (Non-Uniform Rational B-splines), the industry standard. NURBS
are convenient for free-form surface modeling, can exactly represent conic sections such
as circles, cylinders, spheres, etc., and there exist many efficient and numerically stable
algorithms to generate them. In order to achieve an accurate geometrical representation
we present in this paper a combination of exact geometrical modeling, using NURBS
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technology, and proper numerical integration while maintaining standard polynomial FE
interpolation (isoparametric formulation).

Some of the most popular optimization methods are the gradient-based methods, based
on the calculation of derivatives (sensitivities). To evaluate these gradients, a sensitivity
analysis with respect to design variables is necessary. The design variables are defined by
the analyst and describe the geometry of the component to be optimized. As a prelude
to the calculation of sensitivities, it is necessary to define how to vary the position of
material points of the domain in relation to the design variables, i.e. the sensitivity of the
coordinates of the particles. This sensitivity can be interpreted as a velocity field, and its
quality will affect the accuracy of the results. In this work we adapt the calculation of
sensitivities to an CG-FEM environment, dribbling the problems arising from the use of
meshes independent of the geometry and taking advantage of the cartesian grid structure.
To evaluate the quality of the calculations we will implement an error estimator based on
SPR techniques.

2 EXACT GEOMETRICAL REPRESENTATION

This section gives a brief introduction to NURBS[3][4]. In addition, it explains practical
features when operating with cartesian meshes. A NURBS curve is defined as follows

P (t) =

∑n
i=0 Ni,p(t)wiBi∑n
i=0Ni,p(t)wi

0 ≤ t ≤ 1 (1)

where Bi = (xi, yi) represents the coordinate positions of a set of i = 0, . . . , n control
points, wi is the corresponding weight, and Ni,p is the degree p B-spline basis function
defined on the knot vector

Kt = {t0, t1, . . . , tn+p+1} (2)

The i-th (i = 0, . . . , n) B-spline basis function can be defined recursively as

Ni,p (t) =
(t− ti)Ni,p−1 (t)

ti+p − ti
+

(ti+p+1 − t)Ni+1,p−1 (t)

ti+p+1 − ti+1

Ni,0 (t) =

{
1 ti ≤ t ≤ ti+1

0 otherwise
(3)

The polynomial space spanned by the B-spline basis can be converted into the piecewise
polynomial representation spanned by the power basis so that the matrix representation
for B-spline curves is always possible. There are some situations where it may be advan-
tageous to generate the coefficients of each of the polynomial pieces, e.g., when we have to
evaluate the curve at a large number of points or when we have to intersect the geometry
with the mesh, as we will see later. Explicit matrix forms we have used would make it
easier and faster because polynomial evaluation is more efficient in a power basis. In this
work we have used a recursive procedure to get these matrices[5], then if we can represent
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each section of the NURBS by standard parameter u = t−ti
ti+1−ti being t ∈ [ti, ti+1) the range

that defines each one of them, we can write the matrix representation of a NURBS as

P (j, u) =
U(u)M(j)w(j)B(j)

U(u)M(j)w(j)
(4)

where U = {1 u u2 . . . up}, M(j) the coefficient matrix corresponding to the span j,
B(j) the coordinates of the control points that influence the span j and h(j) the weights
for these control points.

One of the major tasks observed by using cartesian meshes independent of the ge-
ometry is the evaluation of its intersection with the geometric entities. Although the
mesh is formed only by straight lines, the task of processing the intersections is a great
computational effort. Although NURBS are rational curves, intersecting with straight
lines implies that we can transform the NURBS rational expression in a non-rational
polynomial expression, and therefore any algorithm to find polynomial roots will be valid.

As seen in Fig. 1(b) the integration mesh is composed by the internal elements and
the subdomains created using a Delaunay triangulation depending on the curvature of
the boundary. This triangulation attempts to capture the curvature of the geometry in
order to solve the numerical integrals. However a linear triangulation, as in Fig. 1(b),
will not suffice if we want to take advantage of exact geometries, so we use a coordinate
transformation that allows us to accurately represent the problem domain. To achieve
this the transfinite interpolation[6], commonly used in p-adaptivity, is ideal because it
performs a mapping using area coordinates of triangles to locate the integration points
considering the exact geometry, this computational effort will be located only in the
boundary elements which reduces the number of triangular mappings to be done.

3 SHAPE SENSITIVITY ANALYSIS

In this paper we solve 2-D elasticity problems where discrete equilibrium equation is

Ku = f (5)

and its derivative with respect to any design variable am is given by

∂K

∂am
u + K

∂u

∂am
=

∂f

∂am
and rearranging K

∂u

∂am
=

∂f

∂am
− ∂K

∂am
u (6)

where K and ∂K
∂am

are the global stiffness and stiffness sensitivity matrices and ∂f
∂am

are
the equivalent forces sensitivities, considered null value because it is assumed that the
applied forces will not change with the introduction of a disturbance of differential order.

Let us consider the formulation of isoparametric 2-D elements. The stiffness matrix of
the element is given by

ke =

∫
Ωe

BTDB|J|dΩ (7)

4
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where Ωe is the domain in local element coordinates, B is the nodal strains-displacements
matrix, D is the stiffness matrix that relates stresses with strains and |J| is the determinant
of the Jacobian matrix.

Considering the derivative of D with respect to design variables is zero we will have

∂ke

∂am
=

∫
Ωe

[
∂BT

∂am
DB + BTD

∂B

∂am

]
|J|dΩ +

∫
Ωe

[
BTDB

∂|J|
∂am

]
dΩ (8)

where all members can be evaluated numerically, although the calculation of ∂B
∂am

and ∂|J|
∂am

will require the sensitivity of the nodal coordinates, known as velocity field, defined as

∂

∂am
{xi, yi} = Vm (xi, yi) (9)

The velocity field along the contour can be easily evaluated from the parametric descrip-
tion of the boundary. Theoretically, the velocity field is subject to only two requirements:
regularity and linear dependency[7] with respect to the design variables.

To ensure the quality of the velocity field is even more important when using cartesian
meshes independent of the geometry, since the integration mesh has elements intersected
with the boundary, leading to internal and external nodes (blue squares and red circles
respectively in Fig. 1(a)) needed to be assigned an appropriate velocity field satisfying
the boundary conditions imposed.

From now on we will use the problem of a 1/4 of cylinder under internal pressure
(Figs. 2(a) and 2(b)), to illustrate the velocity field generation process. In the sensitivity
analysis of this example is considered only one design variable corresponding to the outer
radious of the cylinder, thus taking am = b. The strategy will be to impose a velocity field
on the boundary evaluated (Fig. 2(c)), for instance, using a finite difference scheme, and
then to perform an interpolation to the rest of the internal domain and an extrapolation
to the external nodes; so we present the next alternatives:

(a) Theoretical model. (b) NURBS model with loads
and constraints.

(c) Design variable am = b.

Figure 2: Cylinder under internal pressure. Problem definition.
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Complete domain velocity field. This option implies to interpolate by picking points
over the boundary and weighting the inverse of their distance with respect every
internal node. For the external nodes, knowing the information in the boundary and
in the internal domain it is possible to fit local polynomial surfaces on patches of ele-
ments around these nodes in order to get a proper extrapolation of the information.
An output for the example is Fig. 3(a).

Contour adjacent elements velocity field. Knowing that any velocity field, satisfy-
ing some conditions, would be suitable for calculation of sensitivities, at least theo-
retically, we could obviate the internal domain and follow the previous strategy but
only in the elements intersected with the boundary. This would lead to important
computational savings without sacrificing much accuracy. See Fig. 3(b).

Physical approach. We can set up a load case where the Dirichlet boundary conditions
are a velocity field[8], then, solving a FEM problem, we could obtain a solution that
represents a velocity field on all active nodes. This solution will be very smooth
but with the computational cost related to solving a system of equation. See Fig.
3(c). Note that iterative solvers can be used to solve the system of equations. If
the intermediate solutions satisfy Dirichlet boundary conditions then they can be
used as velocity fields as they meet the theoretical requirements thus reducing the
computational cost to obtain a valid velocity field.

(a) Complete domain velocity
field.

(b) Contour adjacent ele-
ments velocity field.

(c) Physical approach velocity
field.

Figure 3: Comparison between different velocity fields for the cylinder example.

4 ERROR ESTIMATION BASED ON RECOVERY TECHNIQUES

In general it is not possible to know the exact error of the solution associated to the FE
discretization in the problem analyzed, since this requires knowing the exact solution of the
problem. Currently different methods have been developed to estimate the discretization
error of the FE solution.
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For linear elasticity problems the energy norm ‖u‖ is commonly used for quantifying
the discretization error of the solution obtained from the FE analysis. In order to eval-
uate an estimate, ‖ees‖, of the exact value of the discretization error in energy norm,
‖eex‖, Zienkiewicz and Zhu[9] developed the ZZ estimator, which is currently in wide use,
proposing the use of the following expression:

‖ees‖2 =

∫
Ω

(
σ∗ − σh

)T
D−1

(
σ∗ − σh

)
dΩ (10)

where domain Ω can refer to either the whole domain or a local (element) subdomain,
σh represents the stresses evaluated using the FE method, σ∗ is the so called smoothed
or recovered stress field, that is a better approximation to the exact solution than the
FE stresses σh. In defining the σ∗ field inside of each element the following expression is
normally used:

σ∗ = Nσ∗ (11)

where N are the same shape functions used in the interpolation of the FE displacements
field and σ∗. is the vector of smoothed nodal stresses in the element.

4.1 The SPR Technique and its Modifications

It becomes evident from (10) and (11) that the precision of the ZZ estimator will be
a function of the smoothing technique used to obtain the nodal values σ∗. Because of
its accuracy, robustness, simplicity and low computational cost, one of the most popular
techniques used to evaluate σ∗ is the Superconvergent Patch Recovery (SPR) technique
developed by Zienkiewicz and Zhu[10].

The components of σ∗ are obtained from a polynomial expansion, σ∗p, defined over a
set of contiguous elements called patch which consists of all of the elements sharing a
vertex node, of the same complete order q as that of the shape functions N. For each of
the stress components of this polynomial, σ∗p is found using the following expression:

σ∗p = pa (12)

where p contains the terms of the polynomial and a is the vector of polynomial unknown
coefficients.

The data of the FE stresses calculated at the superconvergence points are used to
evaluate a by means of a least-square fit. Once the a parameters have been calculated
for each stress component, the values of σ∗ are obtained by substituting the nodal co-
ordinates into the polynomial expressions σ∗p.

After the publication of the SPR technique, a great number of articles followed which
proposed modifications generally based on an approximate satisfaction of equilibrium
equations to improve its performance. In this paper we will use an implementation of
the SPR-C technique[11] which is a modification of the original SPR technique with the
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J.J. Ródenas, J.E. Tarancón, O. Marco and E. Nadal

objective of improving the values of σ∗. In this approach constraint equations are applied
over the a coefficients that define the stress interpolation polynomials in the patch σ∗p,
so that these polynomials can satisfy both field equations (internal equilibrium equation
and compatibility equation) and boundary conditions (boundary equilibrium equation,
symmetry boundary condition, etc.) as far as the representation of σ∗ by means of
polynomials can allow. The constraint equations over the a coefficients are applied using
the Lagrange’s multipliers method.

4.2 Error Estimation in Sensitivities

As explained before, the sensitivity of the FE solution will not be exact, regardless of
the method used for calculating sensitivities. So we will need to determine a magnitude
to quantify the discretization error in sensitivities associated to the FE discretization.

Following [12],we will use the sensitivity of the square of the energy norm with respect
to the design variable considered as magnitude for the quantification of the discretization
error in sensitivities. This sensitivity is defined as the variation of the square of the energy
norm with respect to the design variables, i.e.:

χm =
∂‖u‖2

∂am
=

n∑∫
Ωe

σTD−1

(
2

(
∂σ

∂am

)
+

σ

|J|
∂ |J|
∂am

)
|J| dΩe (13)

The discretization error in sensitivities can be evaluated deriving (10) with respect to
the design variables, yielding

e (χm)es =
n∑∫

Ωe

((
σ∗ − σh

)T
D−1

(
2

[(
∂σ

∂am

)∗
− ∂σh

∂am

]
+

(
σ∗ − σh

)
|J|

∂|J|
∂am

)
|J|

)
dΩe

(14)

where, considering ue as displacements at nodes of each element e, ∂σh

∂am
is given by:

∂σh

∂am
= DB

∂ue

∂am
+ D

∂D

∂am
ue (15)

In addition it is important to point out that in order to smoothing the derivatives of the

stress field with respect to the design variables
(

∂σ
∂am

)∗
, we will apply recovery techniques

similar to those used with the stress field σ∗.
The computational cost will be reduced since it only requires the determination of(
∂σ
∂am

)∗
and the direct application of the above equation. The remaining quantities

involved in the above expression (|J|, ∂|J|
∂am

and σ∗) will be available through previous
calculations of the analysis, the calculation of sensitivities and the estimation of the dis-
cretization error in energy norm. We have to say that the smoothing of the stress field
will be carried out with the SPR-C technique while the field of stress derivatives will be
recovered with the standard SPR technique.
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5 NUMERICAL RESULTS

Before starting with numerical comparations we have to define some magnitudes to
help us to evaluate and to understand the results obtained. First of all, we define the
estimated relative error in sensitivities. This is more easily interpretable than the absolute
error, then we will have

η (χm)es =

√∣∣∣∣ e (χm)es
χm + e (χm)es

∣∣∣∣ (16)

To evaluate the effectivity of the error estimator in sensitivities we will use

θ (χm) =

√∣∣∣∣e (χm)es
e (χm)ex

∣∣∣∣ (17)

In addition, we can find in [12] a relationship between the discretization error in energy
norm and the discretization error in sensitivities. This relationship between the two types
of errors can be used as an indicator quality of the results obtained from the velocity field
generation process, being defined as

e(χm)ex
‖e(u)ex‖2

≈ const. (18)

Now we will show the analyses performed to evaluate the proper behavior of the work
developed and the accuracy of the results. For proper evaluation of the results we will
evaluate the parameters defined in the previous paragraphs.

The exact solution for the problem defined in Fig.2 is: energy norm ‖uex‖2 = 2Π =
0.055815629478779 and χmex = −5.082398781807488 · 10−4.

For this problem we will compare the complete domain velocity field, the contour
adjacent elements velocity field and a velocity field calculated by the physical approach
of FE. Also we will use a field imposed analytically so that we can judge the goodness of
the methods developed. This field is calculated directly at nodes following the expression
Vm = (r · A−B) · ∆am where the coefficients A and B will define a growing linear
function from the axis of the cylinder depending on the nodal distance r.

The first analysis will be an h-adaptive refinement procedure with linear elements to
observe the performance differences between inner and outer arcs created with NURBS
or with standard splines defined with with different sets of interpolation points, 3 to 9.

In Figs. 4(a) and 4(c), we can evaluate the results in magnitudes related to the sensi-
tivity analysis, where we can see that the convergence rate and the quality constant are
better in the geometry defined by NURBS. But Fig. 4(b) is very important as it shows
the error in energy norm and we see how for splines the convergence rate tends to zero as
it approaches a value of error, related with the geometrical definition error, while for the
geometry defined by NURBS the value of the error continues decreasing steadily.
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J.J. Ródenas, J.E. Tarancón, O. Marco and E. Nadal

(a) Relative estimated error in
sensitivities, η(χm)es%.

(b) Relative exact error in enery
norm, η(u)ex%.

(c) Quality constant, e(χm)ex
‖e(u)ex‖2 .

Figure 4: Effect of using NURBS. h-adaptive refinement and analytical velocity field.

After seeing these results, the remaining analyses in this section will use NURBS ge-
ometry. The simulations will be two analyses with linear elements and mesh refinement,
one with uniform refinement and the other with h-adapted meshes. Both will compare
the analytical velocity field and the one obtained by the physical approach of FE, with
the complete domain velocity field and the contour adjacent elements velocity field.

Regarding uniform refinement, Fig. 5(a) shows similar convergence rate for the latest
meshes, but when comparing the quality constant and the effectivity, in Figs. 5(b) and
5(c), only the field generated by the physical approach is able to match convergence rate
and to maintain quality constant stable with respect the analytically imposed.

(a) Relative estimated error in
sensitivities, η(χm)es%.

(b) Effectivity of the error estima-
tor in sensitivities, θ (χm).

(c) Quality constant, e(χm)ex
‖e(u)ex‖2 .

Figure 5: Effect of velocity field. Uniform refinement. Geometry defined by NURBS.

If we use h-adaptive meshes then we will get similar results. The value of the conver-
gence rate is good overall, (Fig. 6(a)). The effectivity index of the physical approach is
the only capable of keeping up with the analytical velocity field, Fig. 6(b), but the quality
constant of the velocity fields is acceptable for all of them, Fig. 6(c).
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(a) Relative estimated error in
sensitivities, η(χm)es%.

(b) Effectivity of the error estima-
tor in sensitivities, θ (χm).

(c) Quality constant, e(χm)ex
‖e(u)ex‖2 .

Figure 6: Effect of velocity field. h-adaptive refinement. Geometry defined by NURBS.

6 CONCLUSIONS

This paper presents a module for the calculation of shape sensitivities with geometric
representation by NURBS for a program created to analyze linear elastic problems, solved
by FEM using 2-D cartesian meshes independent of geometry. Evaluating the results
obtained, the theoretical bases available in the literature on the calculation of sensitivities
have been adapted properly to an environment for which they were not developed in the
beginning, thus overcoming the requirements arising from the use of cartesian meshes
independent of the geometry and, on the other hand, various methods to generate robust
and efficient velocity fields have been implemented as well. To evaluate the quality of
the calculations we have implemented an error estimator based on SPR techniques. In
general we can say that among the velocity field evaluation techniques analyzed, which
provides better results in problems with a smooth solution is the physical approach of FE.
The creation of the velocity field using this technique requires solving a problem with the
same size of the original problem and that is usually done by a direct solver for small size
problems but for large size problems the use of iterative procedures could be interesting.
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Abstract. Since the engineering of turbo machines began the improvement of spe-
cific physical behaviour, especially the efficiency, has been one of the key issues.
However, improvement of the efficiency of a turbo engine, is hard to archive using a
conventional deterministic optimization, since the geometry is not perfect and many
other parameters vary in the real approach.

In contrast, stochastic design optimization is a methodology that enables the
solving of optimization problems which model the effects of uncertainty in manufac-
turing, design configuration and environment, in which robustness and reliability are
explicit optimization goals. Therein, a coupling of stochastic and optimization prob-
lems implies high computational efforts, whereby the calculation of the stochastic
constraints represents the main effort. In view of this fact, an industrially relevant
algorithm should satisfy the conditions of precision, robustness and efficiency.

In this paper an efficient approach is presented to assist reducing the number of
design evaluations necessary, in particular the number of nonlinear fluid-structure
interaction analyses. In combination with a robust estimation of the safety level
within the iteration and a final precise reliability analysis, the method presented
is particularly suitable for solving reliability-based structural design optimization
problems with ever-changing failure probabilities of the nominal designs.

The applicability for real case applications is demonstrated through the example
of a radial compressor, with a very high degree of complexity and a large number of
design parameters and random variables.
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(nodal variables)

Modelling of
nonlinearities and transient behavior

(mechanical variables)

Finite volume model Finite element model

Geometry model
(geometrical variables)

Optimization problem
(design parameters)

Stochastic problem
(random variables)

(nodal variables)

Figure 1: Coupled numerical models and different variable spaces of a stochastic design optimiza-
tion of a fluid-structure interaction analysis based on a parametric geometry model (according
Chateauneuf, 2008).

1 INTRODUCTION

1.1 Stochastic design optimization

In engineering problems, randomness and uncertainties are inherent and may be
involved in several stages, for example in the system design with material param-
eters and in the manufacturing process and environment. Stochastic optimization,
also referred to as reliability-based and variance-based optimization is known as the
most adequate and advantageous methodology for system or process design and
aims at searching for the best compromise design between design improvement and
robustness or reliability assurance. Herein, the optimization process is carried out
in the space of the design parameters and the robustness evaluation and reliability
analysis are performed in the space of the random variables. Consequently, during
the optimization process the design variables are repeatedly changed, whereby each
design variable vector corresponds to a new random variable space. Therefore usu-
ally, a high number of numerical calculations are required to evaluate the stochastic
constraints at every nominal design point. This repeated search becomes the main
problem, especially when numerical nonlinear multi-domain simulations and CAD
models are involved.

Unfortunately, in real case applications of the virtual prototyping process, it is not
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always possible to reduce the complexity of the physical models to obtain numerical
models which can be solved quickly. Although progress has been made in identi-
fying numerical methods to solve stochastic design optimization problems and high
performance computing, in cases such as those that have several nested numerical
models, as shown in Fig. 1, the actual costs of using these methods to explore various
model configurations for practical applications is too high. Therefore, methods for
efficiently solving stochastic optimization problems based on the introduction of sim-
plifications and special formulations for reducing the numerical efforts are required.
Note: an extended version of this paper is published in Roos et al. (2013).

1.2 Application to aerodynamic optimization

In comparative studies on the application of the deterministic optimization for
aerodynamic optimization (see e.g. Sasaki et al., 2001, Shahpar, 2000) usually stochas-
tic programming algorithms or response surface methods (see e.g. Pierret and van den
Braembussche, 1999) are used in turbomachinery design, for example in the devel-
opment of engine components, such as at Vaidyanathan et al. (2000). In Shyy et al.
(2001) a comprehensive overview is represented.

Another very comprehensive study of the use of the combination of genetic algo-
rithms and neural networks for two-dimensional aerodynamic optimization of profiles
is presented in Dennis et al. (1999) combine a genetic algorithm with an gradient-
based optimization method.

Furthermore, an increasing application of stochastic analysis on turbo machinery
(e.g. at Garzon, 2003, Garzon and Darmofal, 2003, Lange et al., 2010, Parchem and
Meissner, 2009) underlines the importance of integrating the uncertainty analysis
into the aerodynamic design process.

2 RELIABILITY ANDVARIANCE-BASED DESIGN OPTIMIZATION

2.1 Deterministic optimization

Optimization is defined as a procedure to achieve the best outcome of a given ob-
jective function while satisfying certain restrictions. The deterministic optimization
problem

f(d1, d2, . . . dnd
)→ min

el(d1, d2, . . . dnd
) = 0; l = 1, ne

um(d1, d2, . . . dnd
,γ) ≥ 0; m = 1, nu

dli ≤ di ≤ dui
di ∈ [dli , dui ] ⊂ Rnd

(1)
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Figure 2: Different solution points d̃Ii or d̃i as
result of a deterministic vs. stochastic design
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optimization d̃i with corresponding most proba-
ble failure point x∗j in the space of the randomly
distributed von Mises stress and the yield stress.

is defined by the objective function f : Rnd → R subject to the restrictions, defined
as equality and inequality constraints el and um. The variables d1, d2, . . . dnd

are the
optimization or design variables and the vector of the partial safety factors γ ensures
the system or design safety within the constraint equations um, for example defining
a safety distance u(d, γ) = yg/γ − yd ≥ 0 between a defined limit state value yg and
the nominal design value yd of a physical response parameter y = f(d). In structural
safety assessment, a typical constraint for the stress is given as

u(d, γ) = σy,k/γ − σd ≥ 0 (2)

ensuring the global safety distance

∆γ = σy,k − σd = σy,k −
σy,k
γ

= σy,k

(
1− 1

γ

)
between the defined quantile value σy,k of the yield stress and the nominal design
stress σd with the global safety factor γ, as shown in Fig. 3. Whereby, in the real
approach with given uncertainties, σd corresponds to the mean von Mises equivalent
stress σ̄e at the current design point.
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2.2 Stochastic chance-constrained optimization

Stochastic optimization algorithms use the quantification of uncertainties to pro-
duce solutions that optimize the expected performance of a process or design, en-
suring the target variances of the model responses and failure probability. So, the
deterministic optimization problem (1) can be enhanced by additional stochastic
restrictions. For example, the expression for system reliability

1− P (F)

P t(F)
≥ 0 (3)

ensures that the probability of failure

P (F) = P [{X : gk(x) ≤ 0}] =

∫
nr. . .

∫
gk(x)≤0

fX(x)dx (4)

cannot exceed a given target probability P t(F), considering the vector of all random
influences

X = [X1, X2, ..., Xnr ]
T (5)

with the joint probability density function of the random variables fX(x) and k =
1, 2, ..., ng limit state functions gk(x) ≤ 0.

These enhancements of the problem (1) are usually referred to reliability-based
design optimization, in which we ensure that the design variables di satisfy the given
constraints (3) to some specified probabilities. As a consequence, now the design
parameters

d = E[X] (6)

are the means of the nr random influences X with every changing density function
during the optimization process. As a result of the random influences, now the
objective and the constraints are non-deterministic functions.

2.3 Reliability analysis using adaptive response surface method

For an efficient probability assessment of P (F), according to Eq. (4), a multi-
domain adaptive design of experiment in combination with directional sampling (see
e.g. Ditlevsen et al., 1990) is introduced in Roos (2011) to improve the accuracy
and predictability of surrogate models, commonly used in applications with several
limit state conditions. Furthermore, the identification of the failure domains using
the directional sampling procedure, the pre-estimation and the priori knowledge of
the probability level is no longer required. Therefore this adaptive response surface
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method is particularly suitable to solve reliability-based design optimization prob-
lems considering uncertainties with ever-changing failure probabilities of the nominal
designs.

However, a reliability analysis method based on surrogate models, is generally
suitable for a few random variables only. In case of the proposed probability assess-
ment method, an efficient application is given up to nr = 10, ..., 25, depending on the
number of relevant unsafe domains. Therefore, a variance-based sensitivity analysis
should be used to find a reduced space of the important random influences.

2.4 Global variance-based sensitivity analysis

In general, complex nested engineering models, as shown in Fig. 1 contain not only
first order (decoupled) influences of the design parameters or random variables but
also higher order (coupled) effects on the response parameter of a numerical model.
A global variance-based sensitivity analysis, as introduced by Saltelli et al. (2008),
can be used for ranking variables X1, X2, . . . , Xnr with respect to their importance
for a specified model response parameter

Y = f(X1, X2, . . . , Xnr)

depending on a specific surrogate model Ỹ . In order to quantify and optimize the
prognosis quality of these meta models, in Most and Will (2008) and Most (2011)
the so-called coefficient of prognosis

COP =

(
E[YTest · ỸTest]

σYTest
σỸTest

)2

; 0 ≤ COP ≤ 1 (7)

of the meta model is introduced. In contrast to the commonly used generalized
coefficient of determination R2 based on a polynomial regression model, in Eq. (7)
variations of different surrogate models Ỹ are analyzed to maximize the coefficient of
prognosis themselves. This procedure results in the so-called meta model of optimal
prognosis, used as surrogate model Ỹ with the corresponding input variable subspace
which gives the best approximation quality for different numbers of samples, based
on a multi-subset cross validation obtained by latin hypercube sampling (see e.g.
Huntington and Lyrintzis, 1998).

The single variable coefficients of prognosis are calculated as follows

COPi = COP · S̃Ti (8)

with the total sensitivity indices

S̃Ti =
E(V (Ỹ |X∼i))

V (Ỹ )
(9)
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ylg E[Y ] yug = yg

σY

Figure 4: Relationship between density func-
tion fY (y) of a model response, sigma level
and exceedance probability, depending on
chosen limit state conditions yu,lg .
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σtL = 4.5
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Figure 5: Convergence of a sequential stochastic
chance-constrained optimization with successive in-
terpolation of the nominal response limit yd to en-
sure a target sigma level σt

L.

which have been introduced by Homma and Saltelli (1996), where E(V (Ỹ |X∼i)) is
the remaining variance of Ỹ that would be left, on average, if the parameter of Xi

is removed from the model. In Eq. (9) X∼i indicates the remaining set of input
variables.

2.5 Probability estimation based on moments

For an accurate calculation of the reliability it would be interesting to expand
the probability density function of the model responses about a critical threshold.
Unfortunately, the density functions are unknown, especially close to the unsafe do-
main with high failure probability. Existing methods such as polynomial expansions,
maximum entropy method or saddlepoint expansion, as reviewed in Hurtado (2008),
are frequently used within the reliability-based structural optimization replacing the
expensive reliability analysis.

A more simple, non-intrusive approach for a rough estimation of the failure prob-
ability is the calculation of the minimal sigma level σL for a performance-relevant
random response parameter Y defined by an upper and lower limitstate value yu,lg :=
{Y |g(X) = 0} as follows

E[Y ]± σL · σY
!

≶ yu,lg

The sigma level can be used in conjunction with standard deviation to measure the
deviation of response values Y from the mean E[Y ]. For example, for a pair of
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Figure 7: Sigma level variation and associated
probability of failure (assumption: normal dis-
tribution for all important random responses).

quantiles (symmetrical case) and the mean value we obtain the assigned sigma level

σL =
yg − E[Y ]

σY
(10)

of the limit state violation, as explained in Fig. 4. Therewith, the non-exceedance
probability results in

P (E) = P ({Y |Y≶yu,lg }) = f(σL)

as a function of the sigma level, depending on the current distribution type of Y . In
the same manner failure probability

P (F) = P ({Y |Y > yg}) = f(σL) (11)

is given as a function of the sigma level. For example, assuming a normal distribution
of the random response Y with µY = 0 and σY = 1, as shown in Fig. 6, the failure
probability is given as a nonlinear function

P (F) = Φ(−σL) = Φ(−yg)
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of the sigma level, as illustrated in Fig. 7. Therewith, a probability of P t(F) =
3.4 · 10−6 is achieved when the performance target σtL is 4.5 σ away from the mean
value.

Other values of acceptable annual probabilities of failure P t(F) depending on the
consequence of failure, significance warning or without warning before occurrence of
failure and (non-)redundant structures can be found in engineering standards, e.g.
in DNV (1992).

2.6 Methods solving stochastic optimization problems

Sensitivity analysisInitial design

Sensitive parameters
Iteration 0

Optimization

Optimal design
Iteration I, II, III, IV, ...

Modification of
safety factors γ and
constraints um(d,γ)

Robustness evaluation

σL ∼= σt
LσL ≶ σt

L

Reliability analysis

P (F) ∼= P t(F)P (F) ≶ P t(F)
Robust and safety

optimal design

Figure 8: Basic concept of a decoupled loop of a reliability-based and variance-based stochastic
design optimization using global variance-based sensitivity analysis and robustness evaluation to
reduce the design parameter and random variable space.

In general, problem (1) to (6) is solved as a combination of a deterministic op-
timization in the nd-dimensional design space and a stochastic analysis in the nr-
dimensional random space. Derivative-free global optimization methods are typically
recommended to solve the sequential deterministic optimization problem, according
to Eq. (1) for highly nonlinear numerical models, especially fluid-structure interaction
models with probability-based constraints, whose objective and constraint function
value may be computed with some noise or are non-computable in any design points.
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Evolutionary computation, as a special class of global optimization strategies, im-
itates the natural processes like biological evolution or swarm intelligence. Based on
the principle “survival of the fittest” a population of artificial individuals searches
the design space of possible solutions in order to find a better solution for the opti-
mization problem. In this paper an evolution strategy using a class of evolutionary
algorithms is used. This strategy uses normally distributed mutations, recombina-
tion, selection of the best offspring individuals, and the principle of self-adaptation
of strategy parameters, as described in Bäck (1995).

As an alternative derivative-free optimization method, especially useful for ex-
pensive numerical computations, we use the adaptive response surface methodology,
as introduced in Etman et al. (1996), Toropov and Alvarez (1998), Abspoel et al.
(1996), Stander and Craig (2002), Kurtaran et al. (2002).

Mainly, there are three methods for solving these kinds of coupled problems (1) to
(6). The simplest and most direct solution method is a coupled approach in which a
full reliability analysis is performed for every optimization function evaluation (see
e.g. Choi et al., 2001). This involves a nesting of two distinct levels of optimization
within each other, one at the design level and one at the reliability analysis level.
This coupled procedure leads in general to an inefficient double loop with a large
number of design evaluations.

The single-loop method (see e.g. Kharmanda et al., 2002) simultaneously mini-
mizes the objective function and searches for the β-point, satisfying the probabilistic
constraints only at the optimal solution, but needs a sensitivity analysis to analyti-
cally compute the design gradients of the probability constraint.

An alternative method, used in the following, is the sequential approach (see e.g.
Chen et al., 2003). The general concept is to iterate between optimization and uncer-
tainty quantification, updating the constraints based on the most recent probabilistic
assessment results, using safety factors or other approximation methods. This effec-
tive iterative decoupled loop approach can be enhanced by updating the constraints
during the internal optimization using sigma levels and statistical moments

σLk

σtL
− 1 ≥ 0; σLk

=
ygk − E[Yk]

σYk
; k = 1, ng

in place of the exceedance probability of the Eq. (3). Essentially, by means of trans-
formation in Eq. (11) of the probability-based highly nonlinear and non-differentiable
constraints to linear ones, these functions may be more well conditioned for the op-
timization approach and we can expect a better performance of the solution process.
Of course, the transformation in Eq. (11) can only be used as a rough estimation
of the safety level and we have to calculate the probabilities of failure using the
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Figure 9: Parametric CAD model of a one stage radial compressor, consisting of a impeller and
returnvane

reliability analysis, at least at the iteration end.
As shown in Fig. 8, in the initial iteration step a variance-based sensitive analysis

identifies the most important multivariate dependencies and design parameters. Af-
ter this, the deterministic optimization step results in an optimal solution for which
the sigma level is calculated using a robustness evaluation, based on a latin hyper-
cube sampling. The size of violation of the target sigma level is used to interpolate
the constraints using modified safety factors. Whereby, as an important fact, the
interpolation order increases continuously with each iteration step, so in practice
three or four iteration steps may meet our optimization requirements in terms of
robustness and safety. Fig. 5 shows a typical convergence of a sequential stochastic
chance-constrained optimization.

Furthermore, the optimization steps and the final reliability analysis run mostly
efficiently in the space of the current significant parameters. So every size of problem
definition (number of design and random parameters) is solvable within all sigma
levels.

The following numerical example with a very high degree of complexity is given
to demonstrate the solving power of this sequential stochastic chance-constrained
optimization by adapting the constraint um(d, γ) depending on interpolated nominal
response values yd.
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3 NUMERICAL EXAMPLE

3.1 Fluid-structure interaction model

The stochastic optimization method presented here is applied to a CAD and CAE
parameter-based design optimization of a radial compressor shown in Fig. 9, including
material, process and geometry tolerances. In the example presented the target of
the optimization process is to maximize the efficiency of the turbine engine with
respect to a limitation of the maximal v. Mises stress. Additional constraints are
defined by resonance of any eigen frequency with the rotational velocity of the rotor.
In total 36 optimization parameters and 49 random influences are defined.

The Calculations were done with the software ANSYS Workbench and the proba-
bilistic and optimization tasks were performed with the optiSLang software package.

As the method was already explained in Sec. 2, the results of the example are
summarized. For a extended version see Roos et al. (2013).

3.2 Decoupled stochastic optimization loop

Through the sensitivity analysis the design parameters were reduced to 10 design
variables with a relevant coefficient of optimal prognosis. The mean efficiency of the
initial radial compressor was 86%. The best design of the latin hypercube sampling
with an efficiency of 88.9% is used as start design of an evolutionary optimization
based on the surrogate model of the meta model of optimal prognosis and gives with
one additional design evaluation an efficiency of 89.3%. The distance of the design
stress to the 5% quantile of the yield strength is a result of the first global safety
factor of γI = 1.5 of the first iteration step. The target sigma level is σtL = 4.5 to
ensure a probability of failure P (F) = 3.14 · 10−6. In the following, only the results
of each iteration are shown in the Tab. 1.

Of course, the probability levels of violation of the limit state conditions or of
the initial efficiency are only a rough estimation and at least a reliability analysis
of the final design is recommended, especially for small probability levels. With the
identification of the random sub domain directional sampling on adaptive moving
least square is used for reliability analysis (see Sec. 2.3). The moving least square
approximation is based on N = 56 design evaluations of an adaptive D-optimal
design of experiment, as shown in Figs. 10 and 11. The assigned failure probability
P̄ (F) = 2.5 · 10−6 ≤ P t(F) = 3.4 · 10−6 indicates an optimized six sigma design.

Finally, the Figs. 12 and 13 show the flow along the return vane blades. It is
distinctly and visibly how the separations have been reduced in the optimized design
and a more uniform flow is present.

12

610

lacan
Rectangle



Dirk Roos, Kevin Cremanns & Tim Jasper

Safety factor γi,
sigma level σi

L, σi
d and efficiency ηi

i γi σi
L σi

d ηi

0 2.4 - 1.27 · 108 86%

1 1.5 5.13 1.67 · 108 90.5%

2 1.32 3.6 1.75 · 108 90.8%

3 1.426 4.1 1.71 · 108 90.0%

4 1.46 4.48 91%

Table 1: Results for each iteration step i.

Figure 10: Anthill plot of the analyzed N =
56 design evaluations of the reliability analysis
within iteration step IV between efficiency η
and yield stress σy.

Figure 11: Response surface plot of the reliabil-
ity analysis design IV.

4 CONCLUSIONS

In this paper an efficient iterative decoupled loop approach is provided for reducing
the necessary number of design evaluations. The applicability of this method for
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Figure 12: Flow angle of the initial design at
the returnvane blades with separations along
the blades

Figure 13: Flow angle of the optimized design
at the returnvane blades with a much more uni-
form flow

real case applications is demonstrated for a radial compressor. Using the approach
presented, it is possible to improve the efficiency by about 5%. In addition we obtain
an optimized design which is insensitive to uncertainties and considers the target
failure probability.
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T. Bäck. Evolution strategies: an alternative evolutionary algorithm. In Artificial
Evolution, pages 3–20. Springer-Verlag, 1995.

A. Chateauneuf. Advances in solution methods for reliability-based design optimiza-
tion, volume 1 of Structures and Infrastructures: Structural Design Optimization
Considering Uncertainties, chapter 9, pages 217 – 246. Taylor & Francis, London,
UK, 2008.

W. Chen, H. Liu, J. Sheng, and H. C. Gea. Application of the sequential optimization
and reliabilty assessment method to structural design problems. In Proceedings of
DETC’03, ASME 2003 Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, Chicao, Illinois USA, September 2 –
6 2003.

K. K. Choi, J. Tu, and Y. H. Park. Extensions of design potential concept for
reliability-based design optimization to nonsmooth and extreme cases. Structural
and Multidisciplinary Optimization, 22:335–350, 2001.

B. H. Dennis, G. S. Dulikravich, and Z.-X. Han. Constrined shape of optimization of
airfoil cascades using a navier-stokes solver and a genetic/sqp algorithm. In ASME
99-GT-441, 1999.

O. Ditlevsen, R. E. Melchers, and H. Gluver. General multi-dimensional probability
integration by directional simulation. Computers & Structures, 36:355–368, 1990.

DNV. Structural reliability analysis of marine structure. Technical Report Classifica-
tion Notes, No. 30.6, Det Norske Veritas Classification AS, Computer Typesetting
by Division Ship and Offshore, Norway, 1992.

L.F.P. Etman, J.M.T.A. Adriaens, M.T.P. van Slagmaat, and A.J.G. Schoofs. Crash-
worthiness design optimization using multipoint sequential linear programming.
Structural Optimization, 12:222–228, 1996.

Victor E. Garzon. Probabilistic Aerothermal Design of Compressor Airfoils. PhD
thesis, Massachusetts Institute of Technology, 2003.

15

613

lacan
Rectangle



Dirk Roos, Kevin Cremanns & Tim Jasper

Victor E. Garzon and David L. Darmofal. Impact of geometric variability on axial
compressor performance. Journal of Turbomachinery, 125:692–703, 2003.

T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of
nonlinear models. Reliability Engineering & System Safety, 52(1):1 – 17, 1996.

D. E. Huntington and C. S. Lyrintzis. Improvements to and limitations of latin
hypercube sampling. Probabilistic Engineering Mechanics, 13(4):245 – 253, 1998.

J. E. Hurtado. Structural robustness and its relationship to reliability, volume 1 of
Structures and Infrastructures: Structural Design Optimization Considering Un-
certainties, chapter 16, pages 435 – 470. Taylor & Francis, London, UK, 2008.

G. Kharmanda, A. Mohamed, and M. Lemaire. Efficient reliability-based design opti-
mization using a hybrid space withapplication to finite element analysis. Structural
and Multidisciplinary Optimization, 24:233 – 245, 2002.

H. Kurtaran, A. Eskandarian, D. Marzougui, and N.E. Bedewi. Crashworthiness
design optimization using successive response surface approximations. Computa-
tional Mechanics, 29:409–421, 2002.

A. Lange, M. Voigt, K. Vogeler, H. Schrapp, E. Johann, and V. Gümmer. Prob-
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Abstract. The paper outlines a time-sequential space-time adaptive FE-strategy ap-
plied to finite strain coupled consolidation, which can be viewed as a prototype model of a
class of nonlinear and time-dependent poro-mechanics problems. The natural variational
setting for the consolidation problem allows for space-time FE using dG- or cG-methods
in time depending on the expected character (quasistatic or dynamic). We discuss goal-
oriented error computation and the combined space-time adaptivity while accounting for
non-linearities in the model as well as the output functional.

One key ingredient in the proposed strategy is to introduce a hierarchical decomposition
in space-time of the discrete function space(s) in which the approximate dual solution is
sought. As a result, it is possible to decompose the estimated error from the discretization
in space and time in a unified fashion within the same algorithm. This decomposition
of error contributions allows for efficient adaptive mesh-refinement in space and time
separately. Moreover, other sources of error (model and solution errors) can be identified.

Traditionally, controlling the global error in space-time problems involves storing the
complete solution and, when adopting an adaptive algorithm, complete re-computation
of the solution for each iteration of the space-time mesh. The main idea proposed in
this contribution is to increase the computational efficiency of the adaptive scheme by
avoiding recursive adaptations of the entire space-time mesh; rather, the space-mesh and
the time-step defining each finite space-time slab are defined in a truly sequential fashion.
The procedure involves the solution of an initial, approximate, dual solution on a coarse
”background” space-time mesh which is kept fixed during the space-time re-meshing for
the primal problem.

The overall performance of the proposed strategy is investigated using a few numerical
examples.
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Abstract. A variational formulation of damage for thermomechanically coupled problems is 

proposed. Based on variational methods for dissipative materials developed in the last few 

years (especially since [1]), this formulation allows for the accurate simulation of a wide 

variety of damage models, encompassing the behavior of various classes of polymers, the 

target application of the present paper. 

A full development of the proposed formulation is presented in the first section. From an 

energy-like scalar-valued functional, the balance equations of the problem are derived, 

including the coupling terms between the different physics. The treatment of thermal effects 

follows [2]. A distinction between an internal and an external temperature allows for a 

factorization that, contrary to more classic formulations, keeps a symmetric structure to the 

problem. In order to describe rate dependence phenomena, the deformation energy potential is 

constructed from a generalized Kelvin-Voigt/Maxwell rheological model. Eigenvalues of 

strains are used as independent variables so that large strains are properly treated, following 

[3]. Having established the ingredients for a variational formulation of thermo-viscoelasticity, 

we move on to include damage effects. After a brief description of the choices made in [4] for 

the modeling of low cycle metal fatigue, a general framework for the inclusion of different 

damage models is presented.  

In the second section, different damage models are applied. Although the framework we 

present is sufficiently general to consider anisotropic models, only isotropic examples of 

damage are presented in this article. The simplest case, where a scalar damage variable acts 

only upon the elastic part of the deformations, is presented first. We then apply the damage 

variable to both elastic and viscous parts of the deformation, which yields a more complex 

behavior. The possibilities of developing even more complex damage models, with different 
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damage variables acting upon each rheological Maxwell branch, is also discussed – it should 

be noted, though, that such models bring about increasingly tougher challenges in parameter 

identification. Different damage evolution laws are tested to show the versatility of the 

formulation. 

The third and final section consists of the validation of the proposed model for the simulation 

of some characteristic phenomena of polymer damage behavior. A final discussion of further 

possible applications of the formulation concludes the present article.  
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Summary. It is well known that adaptive methods provide the most effective means to obtain 
reliable solutions and control the amount of computation required. However, for many classes 
of problems the best adaptive method still requires a level of computation that demands 
massively parallel computing. This paper presents a set of technologies for parallel adaptive 
simulation that includes a parallel mesh infrastructure, dynamic load balancing procedures 
and parallel anisotropic mesh adaptation. Examples of anisotropically adapted meshes for 
real-world fluid flow problems, including boundary layer meshes, are given. 
 
1 INTRODUCTION 

Adaptive anisotropic unstructured mesh technologies support the effective analysis of 
complex physical behaviours modelled by partial differential equations over general three-
dimensional domains. Although adaptively defined anisotropic meshes can have two to three 
orders of magnitude fewer elements than a more uniform mesh for the same level of accuracy, 
there are many cases where the desired size of the adapted meshes are so large that they can 
only be solved on parallel computers. The execution of a simulation on a parallel computer 
requires the mesh to be distributed over the nodes and cores of the parallel computer.  

The design of an infrastructure supporting adaptive unstructured meshes on massively 
parallel computers must consider the management of mesh information, the modification 
operations to be carried out on the meshes, and the scalability of the algorithms. The most 
basic functionality of the mesh infrastructure is to support the distribution of the mesh over 
the cores of the parallel computer. In adaptive simulations additional functionality is needed 
to adapt the mesh in parallel as the simulation process proceeds. A key requirement of 
effective parallel simulation is maintaining equal distribution, or load balance, of the 
computations, especially for the typically dominant analysis-related computations. Since 
mesh adaptation locally increases and/or decreases the mesh density, methods are needed to 
redistribute the mesh in order to regain load balance for the subsequent analysis step. 

This paper presents a set of three components that are needed to support geometry-based 
parallel adaptive simulations. The first component is a parallel mesh infrastructure designed to 
support evolving meshes of any size on massively parallel computers. The second component 
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supports dynamic load balancing procedures that are capable of regaining the load balance of 
meshes as they adaptively evolve. The third component is a generalized mesh modification 
procedure that can execute anisotropic mesh adaptation, including boundary layer meshes, in 
parallel on distributed meshes.  

2 PARALLEL MESH INFRASTRUCTURE 
It is clear that simulations on meshes with millions and billions of elements require the mesh 
to be distributed over the compute cores of the massively parallel computers that execute the 
simulation. The most common form of mesh decomposition over distributed memory 
compute cores is to partition into a set of parts where the individual parts are groups of mesh 
entities.  Between neighboring parts, the number of mesh entities on the common boundary is 
kept as small as possible in order to minimize communications. In addition to the mesh 
maintaining parallel distribution information, it must also maintain information relating it to 
the high-level problem domain definition to effectively support general mesh adaptation.  
This information allows mesh adaptation processes to account for the actual shape of the 
problem domain as the mesh is adapted and not be restricted to the geometric approximation 
defined by the initial mesh [12]. Rebalancing the workload as the mesh is adapted requires 
effective methods to migrate mesh entities between parts and update the inter-part 
communication links. The Parallel Unstructured Mesh Infrastructure (PUMI) is being 
developed to support the needs of adaptively evolving meshes on massively parallel 
computers [22], [23]. 

The geometric model is the high-level (mesh independent) definition of the domain that 
consists of a set of topological entities with adjacencies and associated shape information. A 
general non-manifold boundary representation [26] is needed to support the full range of 
requirements that often include multiple material domains and reduced dimension entities as 
elements in the mesh.  PUMI interacts with the geometric model through a functional 
interface that supports the ability to interrogate the geometric model for the adjacencies of the 
model entities and geometric information about the shape of the entities [2], [24]. The use of 
such a representation allows the mesh adaptation procedures to interact with the geometric 
domain through simple topologically driven geometric interrogations to ensure that the mesh 
modifications are consistent with the actual geometric domain [12]. Other interactions with 
the geometric domain definition support the proper transformation of the input boundary 
condition fields onto the mesh and using geometric interrogations to the original geometry to 
support element integrations for mesh entities bounded by curved domain boundaries [7].  
Effective execution of mesh adaptation and field transformation procedure requires a 
complete mesh representation in which the complexity of any mesh adjacency interrogation is 
O(1) (i.e., not a function of mesh size [3], [22]). Meeting this requirement does not require the 
explicit storage of every one of the four levels/orders of mesh entities (vertex, edge, face and 
region) or all of the 12 possible adjacencies. However, it is critical to use a complete mesh 
representation [20], [22] so that information on any mesh entity or mesh entity adjacency can 
be obtained in O(1) time.  
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2.1 Partition Model 
When a mesh is distributed to N parts, each 

part is assigned to a process or processing core. A 
part is a subset of topological mesh entities of the 
entire mesh denoted by Pi, 0 ≤ i < N. Figure 1 
depicts a 2-D mesh that is distributed to three 
parts. Each part is treated as a serial mesh with the 
addition of part boundaries to describe groups of 
mesh entities that form the links between parts. 
Mesh entities on part boundaries, called part 
boundary entities, are duplicated on all parts for 
which they bound other higher order mesh 
entities. Mesh entities that are not on any part 
boundaries exist on a single part and are called 
interior mesh entities (with respect to the part). The boundary between the parts in different 
processes is an inter-process part boundary and the boundary between the parts on the same 
process is an intra-process part boundary. 

For each mesh entity, the residence part set [22], [23] is a set of part ID(s) where a mesh 
entity exists based on adjacency information: If mesh entity Mi

d is not adjacent to any higher 
dimension entities, the residence part set of Mi

d is the ID of the single part where Mi
d exists. 

Otherwise, the residence part set of Mi
d is the set of part IDs of the higher order mesh entities 

that are adjacent to Mi
d. Note that part boundary entities share the same residence part if their 

locations with respect to the part boundaries are the same. 
In the 2-D mesh illustrated in Figure 1, the part boundary entities are the vertices and edges 

that are adjacent to mesh faces on multiple parts. The residence part set of vertex Mi
0 and edge 

Mj
1 are {P0, P1, P2} and {P0, P1}, respectively. 
For the purpose of representation of a partitioned mesh and efficient parallel operations, a 

partition model is developed. 
• Partition (model) entity: A topological entity, Pi

d, which represents a group of mesh 
entities of dimension d or less, which have the same residence part set. One part among 
all parts in residence part set is designated as the owning part.  

• Partition classification: Unique association of mesh entities to a partition model entity. 
Figure 2 depicts the partition model of the distributed 

mesh. The mesh vertex Mi
0, depicted in Figure 1, duplicated 

on three parts, is classified on the partition vertex P0
0 such 

that P0
0 represents mesh vertex duplicated on part {P0, P1, 

P2}, P0
1, P1

1, and P2
1 represent mesh edges and vertices 

duplicated on part {P0, P1}, {P0, P2}, and {P1, P2}, 
respectively. At the mesh entity level, the proper partition 
classification is needed to maintaining up-to-date residence 
part set and owning part information which is key to effective 
support of an evolving distributed mesh. As illustrated in 
Figure 3, the partition model can be viewed as a part of 
hierarchical domain decomposition. 

 
  Figure 1: A distributed 2-D mesh. 

 
Figure 2:  A partition model of 

the mesh in Figure 1. 
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     (a) Geometric Domain            (b) Partition Model                        (c) Partitioned Mesh 

Figure 3: Domain representation hierarchy: (a) geometric model, (b) partition model and (c) partitioned mesh. 

2.2 Migration 
Mesh migration is a procedure that moves mesh entities from one part to another. 

Migration supports: (i) partitioning, (ii) dynamic load balancing, and (iii) obtaining mesh 
entities needed for mesh modification operations. In the mesh migration procedure, a partition 
object is the basic unit to assign a destination part id. It can be either a mesh entity not on the 
boundary of any higher dimension mesh entities or a group of mesh entities contained in a 
single part called p-set [27]. Figure 4 presents the pseudo code of migration algorithm while 
figure 5 shows the steps involved. 

 
INPUT: a list of partition objects and destination parts. See Figure 5(a). 
OUTPUT: a mesh with new partitioning  
 
Step 1. Collect all mesh entities that will be effected by migration.  
Step 2. For entities collected in step 1, determine residence part set and 

update partition classification based on new partitioning. See Figure 5(b). 
Step 3: Among entities collected in step 1, collect entities to remove 

based on residence part set.  
Step 4. Exchange p-set and entities along with partition classification. 

See Figure 5(c). 
Step 5.  For entities collected in step 1, and newly created entities on 

destination parts, update part boundary links. 
Step 6: Delete entities collected in step 3. See Figure 5(d). 

 
Figure 4: Pseudo code of migration algorithm. 

2.3 Ghosting 
A class of operations on mesh entities near a part boundary such as error estimation and 

element shape optimization often require data from adjacent mesh entities that are internal to 
neighboring parts. This information could be obtained by the repeated communication 
requests between parts. However, such communications adversely affect scalability and 
performance. Thus it is desirable to minimize them and localize the data for part boundary 
computations. In cases where this needed data is static for the entire operation, such as 
solution fields used in error estimation, or change slowly, such as coordinates in element 
shape optimization, an alternative is to provide all the needed information through local 
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copies of the remote data. The common approach creates one or more layers of ghost copy of 
the needed un-owned mesh and field data near part boundaries [8], [25].  

 

 

Figure 5: Migration steps demonstrated on a 2-D mesh. 

To support a full range of ghost requirements for unstructured meshes, a generalized N-
layer ghosting parallel ghosting algorithm has been developed and implemented [15] in 
PUMI. The algorithm supports the creation of layers of copied mesh entities of desired order 
and their bounding entities based on specification of a bridge dimension using mesh 
adjacencies.  The key components of the ghost creation process are: 
• Ghost dimension: Permissible options in a topological mesh representation can be 

regions, faces or edges. As ghost entities are specified through a bridge dimension, the 
lowest possible dimension of a ghost entity can be an edge since the minimum bridge is 
a vertex. Vertices are ghosted if they are part of higher dimension ghost entities. For 
example, in a 1-D mesh, the only possible ghost dimension is an edge and the vertices 
that are on the boundary of ghost edges can be ghosted to create the ghost edges. 

• Bridge dimension: Ghost entities are specified similar to second order adjacencies 
using a bridge entity. The bridge entity must be of lower topological order than the 
ghost and can be a face, edge or a vertex. Two common examples of ghosted entities 
are: (i) the mesh regions that are bounded by faces classified on a partition model face, 
and (ii) the mesh regions that are bounded by vertices classified on partition model 
vertices, edges or faces. A less common, but supported case would be the mesh edges 
that are bounded by vertices classified on partition model vertices, edges or faces. 

• Number of layers: Number of layers of ghost entities. Layers are measured from the 
part boundary. 
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For example, to get two ghost layers of regions, bridged by bounding vertices, the ghost 
dimension is set to region, the bridge dimension set to vertices and number of layers is 2. 
When multiple ghost layers are requested by an application, the ghosting process starts with 
the first (innermost) layer of ghosts adjacent to part boundary. Figure 6 shows zero, one and 
two layers of ghosted mesh regions based on a vertex bridge. 

 
  (a) partition with no ghosting          (b) one layer          (c) two layers  

Figure 6: Application of region ghosting based on a vertex-based bridge. 

Figure 7 illustrates the ghosting procedure with ghost dimension 2, bridge dimension 1 and 
the number of layers 1: (a) initial mesh (b) collect mesh faces to ghost which are bounded by 
partition model edges (c) for mesh faces and their downward adjacent entities collected in 
step b, determine the destination part id(s) to migrate to based on residence part set (d) 
exchange entities (e) at the original copy, update ghost copy information. 

 
Figure 7: 2-D Ghosting steps. 

A ghost entity stores information about its owner entity and the part where the owner entity 
exists. At a minimum, a ghost entity’s owner must also store information about its ghost 
copies that exist. This synchronizes the ghost copies synchronized with their owner entities 
and eliminates the need for inter-part communication if there are any queries about ghost 
entity ownership. The inter-part communication required in the ghost creation process is 
optimized by utilizing a general-purpose package that sends messages within a fixed process 

624

lacan
Rectangle



Mark S. Shephard, et al. 

 7 

neighborhood by packing small MPI messages and avoiding unnecessary calls to MPI 
collective operations [18]. 

 
3 DYNAMIC LOAD BALANCING 

Another key component of supporting unstructured mesh simulation workflows is dynamic 
load balancing. At a minimum, the mesh needs to be partitioned such that resulting adapted 
mesh fits within the memory of each node onto which the mesh is partitioned.  PDE analysis 
additionally requires consideration of the workload by accounting for the different entity 
types defining the computation load of the phases of the analysis. In both cases peak 
imbalance determine performance since one heavily loaded processor can force all the others 
to sit idle while it completes. Small valleys (with load below average) leave a few processes 
idle having a minimum affect of scaling. Therefore, the reduction of peaks for each workflow 
step is critical for parallel performance and scaling. A dynamic partitioning algorithm must 
also account for the connectivity of the unstructured mesh such that the part boundaries are 
optimized to minimize the amount of communications across neighboring parts. 

The most powerful partitioning procedures for meshes are the graph and hypergraph-based 
methods as they can explicitly account for application defined balance criteria via graph node 
weights, and one piece of the mesh connectivity information via the definition of graph edges. 
Hypergraph-based methods can further optimize the mesh partition at the cost of increased 
run-time over the graph-based methods [4]. Graph based methods balance the weighted values 
of the graph nodes while trying to minimize the number of graph edges between parts. When 
partitioning an unstructured mesh, the graph nodes are selected to be the appropriate set of 
mesh entities, where in most cases the set of graph nodes are all the mesh entities of the 
highest order (mesh regions in 3D and mesh faces in 2D). The graph edges are defined by the 
mesh adjacencies that happen to be of importance to the simulation step for which the 
partition is being constructed. For example in the case of linear finite elements where the 
unknowns are at mesh vertices, creating a graph edge between each mesh regions that shares a 
vertex is important, while in a face-based finite volume procedure graph edges should be 
defined between the pair of mesh regions that share a face. 

In addition to the use of standard graph-based procedures, consideration is being given to 
drive selected dynamic load balancing operations directly from the adjacencies of the mesh 
entities since it is the selected adjacency information that defines the graph edges in standard 
graph-based partitioners. Two advantages of a tool that performs parallel Partitioning using 
Mesh Adjacencies (ParMA) are: (i) it can more easily account for the balancing of mesh 
entities of different dimensions at the same time, and (ii) could potentially be more 
computationally and memory efficient since, by working with the existing mesh topological 
information, it avoids the need to construct a separate partition graph.  

The ability to use ParMA to effectively improve mesh partitions in-turn to improve the 
scalability of finite element solvers has been clearly demonstrated [28]-[31], where 
consideration was given to the balance of mesh regions, critical for equation formation, as 
well as mesh vertices, critical for equation solution of linear finite elements. Recent 
extensions to ParMA have generalized these procedures such that mesh entities of all orders, 
with assigned priority, can be considered [23]. For example, in the case of quadratic finite 
elements, there are unknowns at both the mesh vertices and mesh edges. Thus in that case 
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there is a high priority given to balancing the mesh edges and vertices, since equation solution 
is the dominating computational step, while the mesh regions are given a lower priority, since 
their balance controls the scaling of the equation formation step. 

A second area of application of ParMA currently being investigated is repartitioning before 
a mesh adaptation step. Typically the mesh before a mesh adaptation step is well balanced, 
however, since the mesh adaptation procedures are going to refine the elements is some areas 
and coarsen them in others, the adapted mesh would be dramatically out of balance after 
adaptation, to the point that exceeding available memory becomes quite likely. Thus before 
the mesh is adapted, the new mesh size information is used to assign weights to the current 
mesh entities (>1 in areas where the mesh will get finer, <1 in areas where the mesh will get 
coarser) and the mesh in rebalanced. The execution of this process yields a mesh that is very 
close to being well balanced after mesh adaptation [29]. A full graph-based predictive 
partitioning [29] is used before mesh adaptation to ensure it will execute without problems 
and again at the end to refine the balance for the next analysis step. Noting that the only goal 
of the current predictive load balancing is to load balance the subsequent analysis after the 
mesh is adapted, it is not considering the scaling of the adaptive process itself, and that even 
with its current goals, the load balance must be improved between mesh adaptation and the 
next analysis step. This indicates that there is potential for improving the process. The 
primary idea under current consideration, potentially as the mesh is being adapted, is to merge 
neighboring parts in which the number of mesh entities after adaptation will be less than, or 
equal to, that of a balanced part, and to split parts that will be heavily refined into a number of 
parts such that each has about the average number of mesh entities after adaptation.  
 
4 PARALLEL ANISOTROPIC MESH ADAPTATION 

Many physical problems of interest involve directional solution features. To address such 
cases adaptive mesh control methods are designed to match an anisotropic mesh size field 
defined through the application of a posteriori correction indicators [1], [5], [9], [19]. In the 
case of viscous flow problems is it is important to supplement the general anisotropic mesh 
adaptation procedures with ones that can maintain a semi-structured boundary layer mesh on 
selected boundaries [5], [10], [11], [17], [21]. The two approaches to creating the adaptive 
anisotropic meshes given an adaptively defined anisotropic mesh size field, including adapted 
boundary layers, are complete domain re-meshing methods, and methods that use local mesh 
modification. Adaptive re-meshing accounts well for curved domains and mesh resolution. 
However, this is at the cost of re-meshing the entire domain. A more serious concern of the 
use of global re-meshing, especially for problems where accurate transfer of the solution 
fields to the new mesh is required, is both the cost and accuracy of general mesh-to-mesh 
solution transfers. Conversely, mesh adaptation based on local mesh modification can be a 
faster method that when coupled with local solution transfer methods, can provide more 
accurate solution transfer. However, the set of local mesh modification operators must be rich 
enough to be able to produce the desired anisotropic mesh configurations, while accounting 
for the curved domain geometry (e.g., as defined by the CAD). A local mesh modification-
based procedure that meets these requirements builds off a complete set of mesh modification 
operations that include compound operators [13] and that maintains semi-structured boundary 
layers (if any) [17], [21], while local operations also ensure that the adapted mesh conforms to 
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the curved domain geometry [12], [13].   
The parallel implementation of the general mesh modification operators work directly with 

the partitioned mesh by querying the PUMI provided partition model to coordinate operations 
during mesh refinement.  Mesh coarsening and swapping operations are supported by PUMI 
mesh migration functions to move required mesh entities between parts [6]. The parallel 
migration procedures have been extended to include mesh sets that require stacks of semi-
structured mesh entities to be migrated together thus supporting the parallel execution of 
semi-structured boundary layer adaptation [17].  

Figure 8 shows a simple example of parallel mesh adaptation including a boundary layer. 
Figure 8(a) shows an initial coarse mesh that includes a boundary layer while Figure 8(b) 
shows an adapted mesh on the same simple geometry. In more general cases, the adaptation of 
the boundary layer can locally reduce the anisotropy to the point where it is desirable to 
convert the top portions of the boundary layer to be a regular unstructured mesh such that 
more general unstructured mesh modification operations can be applied. To support this 
functionality the mesh adaptation procedures need additional extensions to deal with the 
pyramid elements that are introduced by local trimming of the boundary layer mesh (Figure 9) 
[17]. 

 

  
   (a) Initial Mesh    (b) Adapted Mesh 

Figure 8: 2-D Boundary layer adaptation. 

  

            
     

Figure 9: An example requiring the introduction of pyramid elements to allow the trimming boundary layers. 

Tetrahedra 

Prisms 

Pyramids 
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5 PARALLEL ADAPTIVE EXAMPLES 
The first example is a viscous flow simulation of a NASA CIAM scramjet case run with a 

free stream Mach number of 6.2, and a free stream reference temperature of 203.5 Kelvin. 
The initial boundary layer mesh has 2.9M regions with a mid-section cut-away view of the 
boundary layer mesh, including close-up of the inlet, is shown in the top two images in Figure 
10. The adapted boundary layer mesh has 43M regions and is shown in the bottom two 
images in Figure 10. 

 

 
  

 
Figure 10: Initial and anisotropic adapted meshes for a scramjet engine. 

The second example is a multiphase flow in which a fluid in being injected into air. In this 
example the interfaces between the fluid and air is modeled using a level set method [16]. The 
mesh adaptation procedure is keyed to perform anisotropic mesh adaptation at the zero level 
set that represents the dynamic two-fluid interface. Figure 11 shows the anisotropically 
adapted mesh at three different time steps in the simulation.  

 
6 CLOSING REMARKS 

This paper provides an overview of a set of procedures to perform parallel anisotropic 
mesh adaptation of unstructured meshes that can include semi-structured boundary layer 
meshes. The parallel mesh infrastructure, PUMI, parallel partitioning using mesh adjacencies, 
ParMA and mesh adaptation procedures, MeshAdapt, have been implemented using a 
component-based approach in which all interactions are controlled through functional 
interfaces. This approach allows these tools to be efficiently coupled with various 
unstructured mesh analysis codes and other mesh related components such as mesh 
generators, dynamic load balancers, etc. See http://www.scorec.rpi.edu/software.php for 
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information on, and access to, these components. 
  
 

   
Figure 11: Anisotropic adapted meshes for a two-phase flow problem. 
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Abstract. The Cahn–Hilliard phase-field (or diffuse-interface) model has a wide range
of applications where the interest is the modelling of phase segregation and evolution
of multiphase flow systems. In order to capture the physics of these systems, diffuse-
interface models presume a nonzero interface thickness between immiscible constituents,
see [1]. The multiscale nature inherent in these models (interface thickness and domain
size of interest) urges the use of space-adaptivity in discretization.

In this contribution we consider the a-posteriori error analysis of the convective Cahn–
Hilliard [4] model for varying Péclet number and interface-thickness (diffusivity) parame-
ter. The adaptive discretization strategy uses mixed finite elements, a stable time-stepping
algorithm and residual-based a-posteriori error estimation [2, 5]. This analysis for the
convective model forms a basic step in our research and will be helpful to the coupled
Cahn–Hilliard/Navier–Stokes system [3] which is the desired model for future research.

1 INTRODUCTION

1.1 The Model

Let Ω ⊂ Rd be a bounded domain with d = 1, 2, 3 and ∂Ω be the boundary which
has an outward unit normal n. The convective Cahn-Hilliard equation can be written as
follows:

1
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Find the real valued functions (c, µ) : Ω× [0, T ]→ R for T > 0 such that

∂tc−
1

Pe
4µ+∇ · (uc) = 0 in ΩT := Ω× (0, T ]

µ = φ′(c)− ε2∇c in ΩT

c(·, 0) = c0 in Ω

∂nc = ∂nµ = 0 on ∂ΩT := ∂Ω× (0, T ],

where ∂t(·) = ∂(·)/∂t, ∂n(·) = n · ∇(·) is the normal derivative, φ is the real-valued free
energy function, u is a given function such that ∇ · u = 0 in Ω and u · n = 0 on ∂Ω, Pe
is the P éclet number and ε is the interface thickness.

The nonlinear energy function φ(c) is of the double well form and we consider the
following C2-continuous function :

φ(c) :=


(c+ 1)2 c < −1,

1
4

(c2 − 1)
2
c ∈ [−1, 1] ,

(c− 1)2 c > 1.

1.2 Weak Formulation

In order to obtain the weak formulation, we consider the following function space and
the corresponding norm as a suitable space for µ:

V := L2(0,T; H1(Ω)), ‖v‖2
V :=

∫ T

0

‖v(t)‖2
H1

(Ω)
dt

and the space suitable for the phase variable c is

W := {v ∈ V : vt ∈ V ′} ,

where V ′ := L2(0,T; [H1(Ω)]′) is the dual space of V with the norm ‖vt‖2
W := ‖v‖2

V +‖vt‖2
V ′ ,

where

‖vt‖2
V ′ :=

∫ T

0

‖vt(t)‖2
[H1(Ω)]′ dt.

Then the weak form of the problem becomes:
Find (c, µ) ∈ Wc0 × V :

〈ct, w〉+ (u∇c, w) +
1

Pe
(∇µ,∇w) = 0 ∀w ∈ H1(Ω)

(µ, v)− (φ(c), v) + ε2 (∇c,∇v) = 0 ∀v ∈ H1(Ω),

for t ∈ [0,T], where Wc0 is the subspace of W of which the trace at t = 0 coincide with
c0.

2
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To derive an a-posteriori error representation, we will employ the mean-value-linearized
adjoint problem. The dual problem can be defined in terms of dual variables (p, χ) where
the dual variable p is a function in the space

W q̄ := {v ∈ W : v(T ) = q̄} .

Then the dual problem can be written:
Find (p, χ) ∈ W q̄ × V :

−∂tp+ u∇p+ ε24χ− φ′(c, ĉ)χ = q1 in Ω× [0, T )

χ− 1

Pe
4p = q2 in Ω× [0, T )

p = q̄ on Ω× {t = T}
∂np = ∂nχ = 0 on ∂Ω× [0, T ],

where the nonlinear function φ′(c, ĉ) is a mean-value-linearized function

φ′(c, ĉ) =

∫ 1

0

φ′′ (sc+ (1− s)ĉ) ds.
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Abstract. A methodology for computational 3D reconstruction and structured hexahedral 
meshing for patient-specific hemodynamics analysis of the carotid artery bifurcation with a 
stenosis is presented. The purpose of this work is the use of anatomically realistic blood flow 
simulations by the finite element method (FEM) derived from in vivo medical imaging to 
make patient specific studies of flow phenomena associated with the development of 
atherosclerosis disease. Blood flow is described by the incompressible Navier-Stokes 
equations and the simulation is carried out under pulsatile conditions. The study of a diseased 
carotid bifurcation illustrates the extremely complex hemodynamical behaviour along the 
cardiac cycle.  

 
 
1 INTRODUCTION 

A long standing hypothesis that correlates fluid dynamic forces and atherosclerotic disease 
has led to numerous analytical, numerical, and experimental studies over the years. The 
observation that atherosclerotic disease is focal typically occurring at sites of complex 
hemodynamics, such as arterial bifurcations, junctions, or regions of high curvature inspired 
these studies. High wall shear stress (WSS), damage the arterial wall and regions of low or 
oscillatory shear stress cause monocyte adhesion to the endothelium, an early stage in 
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atherogenesis [1]. The carotid bulb is one of the first sites in the carotid bifurcation to develop 
late atherosclerotic inflammation consistent with reports that show this to be a region of low 
WSS. Usually flow separation occurs at the carotid bulb due to the increase in cross-sectional 
area, being this region of separation greater during deceleration phase of systole, when the 
fluid undergoes the largest reversal of momentum. 

Recent non-invasive medical imaging data acquisition made feasible to construct three 
dimensional models of blood vessels. B-mode ultrasound is a non-invasive method of 
examining the intima and walls of peripheral arteries providing measures of the intima-media 
thickness (IMT) at various sites (common carotid artery, bifurcation, internal carotid artery) 
and of plaques that may indicate early presymptomatic disease. It also allows measurements 
of blood flow velocities providing accurate information on flow fields. Validated 
computational fluid dynamics models using data obtained by these currently available 
measurement techniques can be very valuable in the early detection of vessels at risk and 
prediction of future disease progression.  

Computational modelling of blood flow in realistic arterial geometries has the potential to 
provide a complete set of hemodynamic data that cannot be acquired by measurement alone. 
This needs to be performed by combining the latest computational fluid dynamics approaches 
with the velocity measurements and flow images obtained using ultrasound techniques. 

In this work flow characteristics in a patient-specific carotid bifurcation with a stenosis are 
investigated by using direct numerical simulation. A semi-automatic methodology for patient-
specific reconstruction and structured meshing of the right carotid bifurcation is presented. As 
hexahedral meshes compared to tetrahedral/prismatic meshes converge better, and for the 
same accuracy of the result less computational time is required [2-4] a tool to generate 
suitable structured hexahedral meshes for vascular modelling frameworks from Doppler 
ultrasound images is considered.  

Blood flow simulation models [5] using pulsatile inlet conditions based on in vivo colour 
Doppler ultrasound measurements of  blood velocity, allow to compare numerical results with 
experimental data collected in clinical practice. The three-dimensional, unsteady, 
incompressible Navier–Stokes equations are solved with the assumptions of rigid vessel walls 
and constant viscosity (Newtonian fluid).   

The ultimate aim of this study is the reconstruction of geometry and flow environment 
from in-vivo patient data, particularly at the extra-cranial carotid artery, using Doppler 
ultrasound data. 
 

2 METHODOLOGY 

To perform the computational investigation of patient specific arterial morphology and 
blood flow behaviour using a finite element code four steps are necessary: acquiring the in 
vivo anatomical data of the arterial segment, image surface reconstruction, 3D finite element 
mesh definition and blood flow simulation. Data was obtained in Hospital de São João, a 
university hospital in Oporto, Portugal. Informed consent of each volunteer was obtained 
using a protocol for the acquisition of a set of longitudinal and sequential transverse Doppler 
images and velocity measurements at carotid artery bifurcation. Using a standard commercial 
colour ultrasound scanner (General Electric vivid e) a set of longitudinal and transversal B-
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mode images of the common carotid artery (CCA), its bifurcation and proximal segments of 
internal carotid artery (ICA) and external carotid artery (ECA) of a patient was acquired This 
set of images cover the bifurcation region, about 10 cm long.  

For each volunteer velocity measurements were made at different locations in the common, 
internal and external carotid arteries allowing the definition of the boundary conditions and 
the validation of the blood flow simulation.  

The acquired Doppler ultrasound images made possible the 3D geometry reconstruction 
and mesh generation. A selected 2D longitudinal image shown in figure 1 was manually 
segmented by three medical experts and a rough outline of the intima-media region 
boundaries was defined and imported into the modeling commercial software FEMAP 
(FEMAP, Siemens PLM, USA & Canada).  

 
Figure 1: Carotid arterybifurcation of patient P1: (a) input image, (b) estimated boundaries 

A computational 3D geometry reconstruction and a structured hexahedral mesh of the 
lumen were constructed. The centerlines of  CCA, ECA and ICA were defined at the adopted 
mid-plane by creating a curve associated to equidistant points from splines a to b, a to c and d 
to b. Then, cylindrical geometries are assumed for CCA, ECA and ICA, except at their 
junctions, and their cross-sections modified according to the drawn lumen boundary and 
acquired cross-sectional ultrasound images. Artery surfaces are defined as vessels presenting 
curved axes and cross-sectional shape and diameter variability. As shown in figure 2 cross-
sections of internal carotid artery and external carotid artery junctions are the result 
of overlapped cross-sections, defining non-circular sections.  

      

Figure 2: Definition of carotid bifurcation surface  
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Using software FEMAP, mesh generation of the previously defined surface was performed 
by dividing the domain in six parts being each part meshed independently and maintaining 
finite elements continuity at each contact surface as shown in Figure 3. The generation of the 
volume mesh with hexahedral elements started by building a 2D mesh (quadrilateral) on the 
confining cross-sections defined at the bifurcation, as artificial separations of CCA, ECA and 
ICA branches. Then CCA, ECA and ICA branches are treated independently by sweeping or 
extruding the 2D mesh in order to generate a volume mesh of hexahedrons.  

   
Figure 3: Structured mesh and cross-section slices for spatial velocity variation A–A, B–B, 

C–C and D–D (figure 4). 

The use of computational meshes with well-organized elements along the main flow direction 
assures faster convergence and more accurate numerical solutions as blood motion in vessels 
is highly directional [3-5].  More accurate solutions are also obtained with a finer mesh in the 
bifurcation, near stenosis and near wall regions. 

 
Figure 3: Measured flow wave form in the common carotid distal the flow divider  
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It is desirable to impose boundary conditions a few diameters upstream and downstream 
the region of interest therefore the polygonal surface obtained is not directly usable for 
generating a suitable computational mesh. Cylindrical 4-diameter extensions are added in the 
direction of the centerlines in order to reflect the vessels geometry as it approaches the 
domain of interest.  

With the inlet flow corresponding to the systolic peak a mesh sensitivity analysis was 
carried out under steady conditions. Mesh refinement was performed until changes in 
velocities and maximum nodal WSS became less than 1.5%; a mesh of 55 thousand 
hexahedrons was chosen and a temporal convergence was performed with a temporal 
refinement until changes in velocities and maximum nodal WSS became insignificant 
between the adopted and finer time steps (less than 1.5%). A large amount of computational 
work is involved and with the chosen mesh the transient study was performed with a constant 
time step equal to 2.5x10-3s.  

3 RESULTS AND DISCUSSION 

The accuracy and efficiency of the blood simulation is validated comparing velocities 
given by numerical calculations with experimental data collected in clinical practice. In figure 
5 velocities are compared with Doppler ultrasound measurements at different cross-section 
locations. At all positions in the carotid bifurcation there is a good agreement between the 
obtained flow velocities and those obtained experimentally in clinical practice as deviations 
are less than 5% at all positions.  

 
Figure 5: Velocity field in the mid plane of the bifurcation at systolic phase: Power-

Doppler measurements and calculated velocities 

Numerical velocity field in some sections is presented in Figure 6, for two cardiac phases, 
near peak systolic and at mid-deceleration phase. Within the stenosis, section A-A, no large 
velocity gradients can be noticed as there is no variation in lumen section. The increase in 
lumen section of the carotid bulb just downstream the stenosis contributes to the tendency for 
flow separation observed in sections B-B and C-C. This recirculation zone, downstream the 
stenosis is higher during deceleration phase due to the fact that flow parthens change 
drastically during this phase of the cardiac cycle. In the external carotid artery high velocity 
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gradients occur in section C-C due to the apex-induced separation; high velocity gradients can 
also be observed in section D-D for both internal and external carotid arteries as the blood 
vessel diameter decreases significantly. 

 
Figure 6: Velocity distribution at four sections near peak systolic and at mid-deceleration 

phase (section locations in figure 3). 

In order to elucidate the role of carotid hemodynamics on plaque vulnerability WSS 
distribution at the two same flow phases is studied. In Figure 7 WSS distribution near peak 
systolic time shows high shear stress at the inner wall of the ECA, corresponding to high 
velocity-gradients with a skewed velocity profile. However the highest values are found at the 
inner wall of ICA, downstream the stenosis, due to the reduction of the lumen diameter.  

                

(a)                                                            (b) 

Figure 7: WSS distribution at two flow phases: (a) near peak systolic, and (b) diastole. 
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Recirculation zones are characterized by patches of low WSS in ICA, where the largest 
regions are associated with the apex-induced separation near the outer sinus wall and with the 
stenosis-induced separation along inner and outer walls. At diastolic time high shear stress 
zones can also be observed, however patterns at the two time instants are different providing 
further evidence that flow patterns change drastically during the cardiac cycle. One striking 
similarity prevails between both instants: the largest continuous region of low WSS seems to 
exist in the carotid bulb, where late atherosclerotic inflammation develops. 

This work addresses the hemodynamical environment of a diseased carotid bifurcation 
concluding to be extremely complex during systolic phase and different from that at diastolic 
phase.  
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Abstract. The numerical integration of weak form over the elements that are crossed
by discontinuities in embedded interface methods is addressed in this work. Since these
methods lead to complex shaped cut volumes, integration of weak form requires an efficient
method for integration of polynomials over arbitrary polyhedra. Most widely, volume
decomposition [1] or moment fitting methods [2] are used for such integrations. In this
work, we present an efficient and robust method, based on the divergence theorem, for
integration of polynomials over polyhedra. For a scalar function F , using the divergence
theorem, the integration over R ⊂ R3 whose boundary is given by S can be written as,∫

R
FdV =

∫
S
Gnx dA; where G =

∫ S

κ

Fdx (1)

where κ is an arbitrary reference point. G is evaluated by integrating F using one-
dimensional Gauss quadrature, and then to compute the required integral, G is integrated
using another set of Gauss quadratures defined on surfaces of the polyhedra. The method
is extremely easy to implement, and we show through numerical examples that it is
efficient as well.
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Abstract. As a development with short-term and lower cost are strongly required in 21st 
century. Therefore the innovation tool using Taguchi-methods for development of a new 
product with optimum condition was developed and evaluated. There are two trials in the 
innovation tool using Taguchi-methods. First trial investigates rough fuctions regarding all 
levers of all control factors, then important control factors and meaningless control factors are 
sorted. Second trial decides the optimum combination of the control factors by more detail 
trial using only important control factors. The optimum condition for polishing a minute die 
was investigated for evaluating this innovation tool in the experiment. It is concluded from 
the result that (1) Innovation tool using the Taguchi-methods was useful for development with 
short-term and lower cost, and (2) This tool could quickly and exactly decide the optimum 
polishing condition.  
 
 
1 INTRODUCTION 

Recently a developments with short-term and lower cost are strongly required for 
shorten products life cycle. Therefore FEM simulation is used for predicting the result of 
design process instead of doing experiments. On the other hand, Taguchi-methods [1], [2], [3], 
[4], [5] is also used for deciding optimum process conditions. However these methods are not 
enough to develop a new product with short time, lower cost, high quality and high accuracy. 
In this study, the innovation tool using Taguchi-methods for development of a new product 
with optimum condition was developed and evaluated. The Taguchi-methods has several 
properties; the selected optimum combination for the control factors has very high robustness, 
influences for the each level of the control factors were shown by the each SN ratio and 
Sensitivity with decibel unit. Therefore the Taguchi-methods was used for the innvovation 
tool. In this research, there are two trials using the innovation tool; the first trial investigates 
rough fuctions regarding all levers of all control factors, and important control factors and 
meaningless control factors were sorted by using the results of the first trial. Second trial 
decides the optimum combination of the control factors by more detail trial using only 
important control factors. The optimum condition for polishing a minute die was investigated 
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for evaluating this innovation tool in the experiment. This new method will be more proper 
than the conventional Taguchi-methods [6] or other methods [7], [8] for searching the 
optimum condition. 

2 EXPLANATION OF TAGUCHI-METHODS 
Flow chart regarding explanation of the Taguchi-methods for products is shown in 

Figure 1. Taguchi-methods is used to decide optimum processing conditions with narrow 
dispersion for robust design. Control factors are equal to the design factors (See the control 
factors in Table 1). Noise factors are occurred for the error of function on the product (See the 
noise factors in Table1). Most designer can understand that the final functions of the 
developed product are strongly influenced for the each lever of each control factor under 
several noise factors. All combinations using all control factors are compressed by an 
orthogonal table (See the orthogonal array in Table 2). Then the experiment or the CAE 
analysis with influence of noise factors is performed by the orthogonal table. At last, the 
average and the standard deviation regarding all combinations using all parameters are 
calculated for the SN ratio and Sensitivity.  

Then most of users write the effective figure of the control factors and zealously search 
the combination of the control factors for large SN ratio. A product using the combination 
isn’t nearly influenced by noise factors. Specifically decision of optimum combination using 
the parameters for high robustness was completely finished.  

Properties regarding the Taguchi-methods were that the selected optimum combination 
for the control factors has very high robustness, and influences for the each level of the 
control factors were shown by the each SN ratio and Sensitivity with decibel unit. Therefore 
most designers can selected the optimum lever of each control factor by checking the 
effective figure of the control factors for both SN ratio and Sensitivity. 

The control and the noise factors are shown in Table 1. These factors are important 
factors in the Taguchi-methods. Each factor has several levels. The control factors are equal 
to the design factors. Noise factors relate to the error of function with regard to the product. b 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

See the control factors in Table 1 

See the orthogonal array in Table 2 

See the noise factors in Table1 

Figure 1 : Flow-chart of the Taguchi-methods 

Many parameters 

Compression of the parameters by an orthogonal table 

Trial with influence of the noise factors by CAE of 
experiment 

Decision of optimum combination using the 
parameters for high robustness 
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The total of all combinations using all control factors is 81 (=34) kinds (Table 1); however, 
these combinations are compressed to 9 kinds in the orthogonal table (Table 2). The influence 
of the noise factors is investigated 3 times for each combination of the control factors. 
Therefore the number of trial in this case is 27 (= 9 kinds×3 times). SN ratio and sensitivity 
are calculated by equations (1) and (2). 
 

SN ratio (db) = 10 log (μ 2 ／σ2 ) (1)

Sensitivity (db) = 10 log μ 2 (2)

 
Where μ is average of the evaluation value, and σ is standard deviation of the evaluation value 
in the results of trial. The evaluation value is the final properties or the final functions. Then 
most of users write the effective figure (Figure 2) of the control factors and search the 
combination of the control factors for the largest SN ratio. At that time, a product using the 
combination is not nearly influenced by noise factors. These effective figures are used for 
decision of optimum combination  using  several  parameters  in design of a product with high  

Table 1: Control factors and noise factors in the Taguchi-methods 

Control factors 
Name A B C D 

Levels
A1 B1 C1 D1 
A2 B2 C2 D2 
A3 B3 C3 D3 

Noise factors 
Name N 
Levels N1 N2 N3 

 

Trial 
No. 

Control factors 
Result with 
noise factors SN ratio

(db) 
Sensitivity 

(db) A B C D N1 N2 N3 
1 A1 B1 C1 D1 2.7 2.6 2.4 24.5 8.2 
2 A1 B2 C2 D2 2.3 2.2 2.0 23.0 6.7 
3 A1 B3 C3 D3 2.1 1.9 2.0 26.0 6.0 
4 A2 B1 C2 D3 3.3 3.1 3.0 26.2 9.9 
5 A2 B2 C3 D1 4.6 4.4 4.5 33.1 13.1 
6 A2 B3 C1 D2 3.3 3.3 3.0 25.3 10.1 
7 A3 B1 C3 D2 2.1 2.3 2.4 23.4 7.1 
8 A3 B2 C1 D3 3.1 3.2 3.1 34.7 9.9 
9 A3 B3 C2 D1 4.7 5.1 4.9 27.8 13.8 

Table 2 : Orthogonal array, SN ratio and sensitivity in the Taguchi-methods 
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robustness. When the SN ratio becomes large, the distribution of the final functions becomes 
small and the product has high robustness. 

Finally, the average and the standard deviation regarding all combinations using all 
parameters are calculated by the SN ratio and Sensitivity with respect to the 9 kinds. The 
addition theorem in the Taguchi-methods is used to calculate the results for all combinations. 
For example, when m is a control factor and n is the level for the factor, the SN ratio SNm n  
and Sensitivity Sm n for  the control factor m and the level n are calculated by the 
addition theorem. Moreover the SN ratio SN a4・b2・c1・d3・e2・f1・g2 and the Sensitivity Sa4・b2・

c1・d3・e2・f1・g2 for a4, b2, c1, d3, e2, f1, g2 using control factors (a, b, c, d, e, f, and g) and 
levels (1, 2, 3, 4, 5 and 6) are calculated by equations (3) and (4), respectively. 

 
SN a4・b2・c1・d3・e2・f1・g2 = SN a4+SN b2+SN c1+SN d3+SN e2 

                   +SN f1+SN g2－(7－1)  SNa v e    
(3)

Sa4・b2・c1・d3・e2・f1・g2 =Sa4+Sb2+Sc1+Sd3+Se2+Sf1+Sg2 

－ (7－1) Sa v e  
(4)

 
Where SNa v e  and Sav e  are averages of all  SN ratios and Sensitivities, respectively. SN 
ratios and Sensitivities of the final properties or the final functions for all combinations of 
all control factors are quickly estimated before the trials. 

Figure 2 : Relationship between SN ratio or Sensitivity and each lever of each control factor 
 (In the case, the best condition was supposed at the smallest final function possible) 

(a) Effective figure for SN ration 

(b) Effective figure for Sensitivity 
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3 INNOVATION TOOL USING TAGUCHI-METHODS 

There  are  several  strong  points  in  the  Taguchi-methods. Trial combinations are 
compressed to small size by using the orthogonal table, then the Taguchi-methods can 
estimate the final results for all combinations. Therefore the development with high quality is 
quickly performed. 

Everyone can check influences for all levers on all control factors in the effective figure 
(Figure 2). SN ratio is used for robustness of the final properties or the final functions, and 
Sensitivity is used for evaluation regarding the final properties or the final functions. The final 
properties or the final functions have the several influences of the noise factors. Therefore the 
trial using the Taguchi-methods can arrive at the results with high robustness.  

Flow-chart of the innovation tool using the Taguchi-methods is shown in Figure 3. The 
tool consists of two trials using the Taguchi-methods; these are “First trial for selection of the 
several important parameters” and “Second trial for decision of the optimum condition”. In 
the First trial, all levers of all control factors in your laboratory should try for the final 
properties or the final functions. This trial is for picking out the important parameters and for 
throwing away the meaningless parameters. If difference of influence on the each level 
regarding a control factor in the effective figure of “the Sensitive” is very little, the control 
factor is judged to the meaningless parameter. And when SN ratio is very small, the level of 
the control factor is judged to low robustness. Only important parameters selected in the First 
trial are used in the Second trial. In this trial, each important parameter are checked in more 
detail. If the important parameters require the larger or smaller level of a control factor for 
optimum condition, the new equipment for the larger or smaller level of a control factor is 
supplied in here. And if the important parameters require the level with high precision of a 
control factor for optimum condition, the new equipment with high precision is also then 
supplied in here. This second trial becomes the final trial, because optimum condition is 
decided by the second trial using Innovation Tool using Taguchi-methods with the best 
condition in the laboratory.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 3 : Flow-chart of the innovation tool using the Taguchi-methods 

All control factors and noise factors which have several effects 
regarding the final properties or the final functions are selected.  

[First Taguchi method for selection of the important control factors] 
Maximum, medium and minimum levels for each control factor in the 

laboratory possible at persent are inputted in the first Taguchi methods. The 
important control factors are selected and are understood about its favorable 
values. 

[Final Taguchi method for decision of optimum condition the important 
control factors] 

Lavels in the neighborhood of the favorable value for the only 
important control factors in the laboratory possible at near future are 
inputted in the final Taguchi methods. Optimum levels for each control 
factor are decided. Combination using optimum control factors can achieve 
the most suitable goal for the final properties or the final functions 
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4 EVALUATION USING THE POLISHING TOOL 

4.1 First trial for selection of the several important parameters regarding the polishing 
tool  

Optimum polishing condition is investigated for evalguchi-methods. Polishing tool and 
polishing procedure are shown in Figures 4 and 5, respectively[9]. This poliuation of the 
Innovation Tool using Tashing tool consists of the pipe and the ball head with diamond grains. 
Base material of the ball head is epoxy resin. Slurry consists of water, a polymer and diamond 
grains. The polishing tool is installed on the spindle of CNC milling machine, is rotating and 
moving in three dimensional directions by NC control. Several diamond grains in the 
polishing head and in the slurry can cut on the work piece. The polishing trace becomes very 
shallow because of soft ball head. However surface roughness of the work piece becomes 
aa0aa 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Schematic view of the polishing tool

Collet chuck 

Ball head  
with diamond grains 

Pipe 

To spindle of a machine tool 

Shaft 

 

Vessel 
Work piece 

Slurry for polishing

● 

Polishing head 

●

Polishing tool 
i●

CNC milling machine 

Table of the machine tool 

Figure  5: Schematic view of polishing (Principle)

●

Cleaning

Work 

Polishing
 tool 

: Diamond grain in
 polishing head 
: Diamond grain in
 slurry (Active) 

Feed using NC control  

Control factors 

Name Spindle speed 
        min-1 

Feed speed 
      mm/min 

Polishing
pressure  
MPa

Polishing 
pitch 

mm
Room Temp. 

℃ 

Levels 
300 0.5 60 0.030 20 
2400 1.0 120 0.045 25 
8000 5.0 180 0.060 30 

Noise factors 
Name Measuring position  

 
 Levels Point 1 Point 2 Point 3 Point 4 Point 5

 

Table 3: Control factors and noise factors for the polishing in the First trial 

●

● 

● 

●
● 

Point 1 Point 2 
Point 3 
Point 4 Point 5 

5×5mm 
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very small because of shallow trace. After all, the polishing tool can polish to mirror-like 
surface. Particularly the ball head of the polishing tool has small diameter which is smaller 
than 1 mm. Therefore the polishing tool can polish a minute die. 

Control and noise factors for the first trial are shown in Table 3. Control factors are 
several polishing conditions. These control factors are experimental parameters as thoroughly 
as possible I could in my laboratory, and the levels of the each control factor are maxmum, 
minimum and middle values. Namely we can try all possibility for picking out the important 
parameters and for throwing away the meaningless parameters. Several measuring points are 
used for the noise factor. Surface roughness after polishing is used for the final function. 

The effective figures for SN ratio and Sensitivity in the First trial are shown in Figure 6. 
Spindle speed, feed speed, polishing pressure and polishing pitch were selected for the 
important parameters by the effective figure, and the room temperature was thrown away 
from the control factors because of the little differences on influence of the each level 
regarding the room temperature in the effective figure of Sensitive. Optimum condition is that 
spindle speed was 8000 min-1, feed speed was 0.5 mm/min, polishing pressure was 120 MPa 
and polishing pitch was 0.03 mm in the First trial. Therefore these control factors are 
investigated in more detail in the next final trial. 

4.2 Second trial for decision of the optimum condition regarding polishing tool 
Control and noise factors for the second trial are shown in Table 4. The only important 

parameters  in the first trial  are  used for the control factors  in the second trial.  These control  

(b) Effective figure for Sensitivity 
Figure 6 : Relationship between SN ratio or Sensitivity and  

each lever of each control factor in the First trial
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factors have large influence for surface roughness, and the levels of the each control factor are 
established nearby the optimum condition of the first trial. The effective figures for SN ratio 
and  Sensitivity  in  the  Second trial  are  shown  in  Figure 7.  The  optimum condition is that 
spindle speed was 10000 min-1, feed speed was 0.5mm/min, polishing pressure was 140 MPa 
and polishing pitch was 0.030mm in the Second trial.  The SN ratio becomes very large and 
the Sensitivity becomes very small at the optimum condition. At that time, this polishing can 
make smooth and fine surface and the polishing has very high robustness. And average and 
standard deviation of surface roughness at best and worst polishing condition were also 
estimated by equations (3) and (4). 

Table 4: Control factors and noise factors for the polishing in the Second trial 

Control factors 

Name Spindle speed
        min-1 

Feed speed 
      mm/min 

Polishing 
pressure  
MPa 

Polishing pitch 
mm 

Levels 
8000 0.3 100 0.015 
9000 0.5 120 0.020 

10000 0.7 140 0.030 
Noise factors 

Name Measuring position  
Levels Point 1 Point 2Point 3Point 4Point 5

 

●
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●
●
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Point 4 Point 5 

5×5mm 

(a) Effective figure for SN ration 

Figure 7 : Relationship between SN ratio or Sensitivity and  
each lever of each control factor in the Second trial
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4.3 Evaluation regarding decision of the optimum condition for polishing tool 
The optimum condition for polishing tool is evaluated in the experiment. Polishing 

condition used in the experiment is shown in Table 5. Work piece material is carbide. 
Specifications of the polishing tool and the slurry are similar to the previous experiment. Best 
and worst conditions in the Second trial are included for the polishing conditions. 

Surface roughness of the polishing with best and worst conditions is shown in Figure 8. 
The results of the experiment are similar to the calculated results by the Innovation Tool using 
Taguchi-methods. The optimum condition for polishing tool was decided by only twice trials. 
Therefore the Innovation tool using the Taguchi-methods was useful for development with 
short-term and lower cost. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Polishing condition Best condition Worst condition 
Spindle speed         min-1 10000 9000 
Feed speed        mm/min 0.5 0.7 

 Polishing pressure     MPa 140 100 
Polishing pitch        mm 0.3 0.2 

Polishing 
tool 

Material of polishing head (Ball head) Epoxy resin 
Diameter of polishing head (Ball head) φ1.0 mm 
Diamond grain in ball head (＃=Mesh size) #2500  
Pipe 0.7 mm 

Slurry 

Base liquid Water 
Diamond grain in slurry (＃=Mesh size) #2500 
Rate of grain ( slurry : diamond) 10 wt% (9:1) 
Ratio of PEO（Poly-ethylene-oxide）for 
water 2 wt% 

Work piece Carbide 
 

Table 5: Best and worst conditions for the polishing  

Figure 8 : Surface roughness of the polishing with best 
and worst conditions (By the Innovation  
Tool using Taguchi-methods) 
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5 CONCLUSIONS 
- The innovation tool using Taguchi-methods was useful for decision of optimum 

condition. 
- The proposed method effectively predicted the optimum polishing condition in 

experiment for evaluation. 
- The predicted results conformed to the results of the actual polishing.  
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Abstract. This paper presents a numerical study of a recent technique that consists

in modeling embedded geometries by a level-set representation in combination with local

anisotropic mesh refinement. This method proves beneficial in CFD simulations involving

complex geometries, as it suppresses the need for the tedious process of body-fitted mesh

generation, without altering the finite element formulation nor the prescription of bound-

ary conditions. The first part of the study deals with a simple Laplace problem featuring a

planar interface on which a Dirichlet boundary condition is imposed. It is shown that the

appropriate amount of local isotropic refinement yields the optimal convergence, unlike

uniform refinement. Anisotropic refinement further ensures geometric convergence and

limits the growth of the number of unknowns. The second part deals with the adaptive

strategy for CFD problems. We show that the methodology yields accurate flow solutions,

despite very limited user interaction.

1 INTRODUCTION

Because of the increasingly complex geometries involved in flow problems of industrial

relevance, numerical methods based on unstructured meshes have become popular in CFD.

However, the corresponding meshing methods require a high-quality CAD description of

the geometry, which is not part of the traditional workflow in fields like architecture or

medicine. Many professionals also lack the expertise required to build appropriate meshes

for flow problems. Nevertheless, recent progresses in meshing technology could overcome

these barriers.

In this work, we use anisotropic adaption to generate a nearly body-fitted mesh. The

mesh is locally refined depending on a level-set function that describes the geometry

1
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without resorting to a CAD model [1, 2]. Dirichlet boundary conditions can then be

imposed in a strong manner by node collocation, just as with classical body-fitted meshes.

Unlike other treatments of embedded geometries, this technique only requires a standard

finite element formulation, without basis enrichment or Lagrange multipliers that alter

its numerical properties.

2 ADAPTIVE STRATEGY FOR NEARLY BODY-FITTED MESHES

A metric-based anisotropic mesh adaptation procedure is performed. It generates a

uniform unit mesh [3] in a prescribed Riemannian metric space that corresponds to an

anisotropic adapted mesh in the Euclidean space. Anisotropic mesh adaptation is per-

formed in the vicinity of the interface Γ described by the level-set function φ(x), i.e. in a

band {x s.t. |φ(x)| ≤ E} of thickness 2E around Γ. With a linear discretization, the ap-

proximation error on the level-set function φ(x) is of second order. An appropriate metric

field M can thus be constructed from the gradient vector ∇φ(x) = (φx φy φz)
T
and the

Hessian matrix H(φ(x)) of φ(x). More details about the construction of the metric can

be found in [4].

In a first step, we apply this method to an academic 2D Laplace problem in a square

with an embedded planar surface [5]. The solution is compared to the results obtained on

anisotropic meshes with results obtained on uniform refined meshes and isotropic adaptive

refined meshes (see Fig. 1). We show that an appropriate level of local refinement around

the geometry recovers the optimal grid convergence rate for the solution, whereas uniform

refinement yields first-order convergence as can be seen in the left plot of Fig. 2.

We also show in the right plot of Fig. 2 that controlling the anisotropic character of

the adaption further enables the error of the geometrical discretization to decrease at

optimal rate, which is not the case for isotropic refinement. This affects particularly the

computation of integral quantities, such as lift and drag in CFD. Anisotropic adaptive

refinement also slows down the growth of the number of unknowns, which limits the

computational overhead.

3 ADAPTIVE MESHES FOR CFD

The adaptive strategy for CFD combines the presented nearly body-fitted adaptive

mesh strategy with an iterative anisotropic adaption to the flow solution. A second mesh

metric is constructed by calculating a scaled eigenspace of the Hessian matrix of the

norm of the velocity. Indeed, as we are using linear finite element interpolation for the

solution of the Navier-Stokes equations, the interpolation error is equivalent to second

order derivatives and it has been shown that a large proportion of the discretization error

is governed by this error indicator. This second mesh metric is then intersected with the

level-set based anisotropic mesh metric.

We present two incompressible flow problems involving respectively a cylinder and more

complex geometry case, namely an array of cylinders. The overall approach for the CFD

2
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Figure 1: Uniform refined mesh and adaptive refined meshes
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Figure 2: Solution error on uniform refined meshes (left) and geometry error on isotropic adaptive refined
meshes (right)
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problems can be explained as follows: the problem is first solved on a very coarse mesh

with anisotropic elements in the vicinity of the interfaces. The mesh is then successively

adapted to both the geometry and to the flow field. For the unsteady case, the solution at

time steps which correspond to maximal values of the lift coefficient is used for iteratively

adapting the mesh (see Fig. 3).

! ! ! !

Figure 3: Adaptive mesh for steady flow (left) and unsteady flow (right) over a 2D circular cylinder
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Figure 4: Convergence of drag coefficient and reattachment length at Re = 40

While both drag and reattachment length in the steady flow over the cylinder converge

to the expected value in Fig. 4, the unsteady case also demonstrates the accuracy of the

method as can be seen in Fig. 5.

Concerning the application to a complex geometry, we consider the benchmark de-

scribed in Geller et al. [6]. The solution is in good agreement with the reference results.

4 CONCLUSION

The use of the standard finite element solver for solving CFD problems on “nearly

body-fitted meshes” proves that the optimal rate of convergence can be obtained, and

that the methodology yields accurate flow solutions, despite very limited user interaction.
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Abstract. In this contribution adaptive modeling strategies are considered for the
control of modeling errors in so-called partitioned-domain concurrent multiscale models.
In these models, the exact fine model is considered intractable to solve throughout the
entire domain. It is therefore replaced by an approximate multiscale model where the
fine model is only solved in a small subdomain, and a coarse model is employed in the
remainder.

We review two approaches to adaptively improve the approximate model in a general
framework assuming that the fine and coarse model are described by (local) continuum
models separated by a sharp interface. In the classical approach [1] an a posteriori error
estimate is computed, and the model is improved in those regions with the largest contri-
butions to this estimate. In the recent shape-derivative approach [2] the interface between
the fine and coarse model is perturbed so as to decrease a shape functional associated
with the error. Several numerical experiments illustrate the strategies.
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Abstract.

Methods for coupling two compatible models have been developed during the last
decade or so to simulate problems for which one may identify a small subregion where
the assumptions of a coarse-scale model break down and whose physical behavior should
rather be described by some fine-scale model. Examples of blending techniques to couple
continuum models with non-local particle models can be found, for instance, in [1, 2].
The main motivation in using such approaches is that fine-scale models are usually too
expensive to be employed in the entire domain Ω due to their small length- and time-scale
features and their nonlinear behavior. Therefore, the idea is to use the fine model only
in a subdomain ω ⊂ Ω, where it is deemed necessary, and the coarse-scale model in the
remainder of Ω, except in a layer separating these two within which one imposes a gradual
transition, via a so-called weighting or blending function, from the fine-scale to the coarse-
scale model. More concretely, the blending function has value unity in the region of the
fine-scale model, zero in the region of the coarse-scale model, and monotonically varies
from unity to zero between these two regions.

Questions that naturally arise are how to quantify the errors incurred by substituting
a hybrid model for the fine-scale model and how to choose the domain of the fine-scale
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model in an optimal way. Note that errors and optimality should be measured in terms
of a quantity of interest Q = Q(u), a functional of the solution u of the problem, that
characterizes the goal of the simulations. Goal-oriented adaptivity provides a framework
to estimate, and substantially control, these approximation errors. Finding the optimal
configuration of the coupled problem can be achieved by considering the blending func-
tion as an unknown and determining its optimal shape. We develop here a phase-field
formulation to solve for the blending function as the problem drives the solution either
to the value one or to the value zero with a smooth, narrow transition in between. In
addition, a phase-field model satisfies a gradient flow structure, for which an energy is
minimized. By adding to the energy functional the error in the quantity of interest, one
can thus determine the evolution of the blending function that drives down the error with
respect to the goal.

The phase-field formulation for model blending adaptivity will be explored on a simple
problem that couples a fourth-order partial differential equation model (the fine-scale
model that incorporates non-local effects) with a second-order partial differential equation
model (the coarse-scale model that ignores those non-local effects). In particular, we will
present some mathematical properties of the formulation, provide some numerical results,
and discuss the viability of the methodology.
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Abstract. This work presents a new approach to assess the error in specific quantities
of interest in the framework of linear elastodynamics. In particular, a new type of quan-
tities of interest (referred as timeline-dependent quantities) is proposed. These quantities
are scalar time-dependent outputs of the transient solution which are better suited to
time-dependent problems than the standard scalar ones available in the literature. The
proposed methodology furnishes error estimates for both the standard scalar and the new
timeline-dependent quantities of interest. The key ingredient is the modal-based approxi-
mation of the associated adjoint problems which allows efficiently computing and storing
the adjoint solution.

1 INTRODUCTION

Assessing the reliability and/or improving the efficiency of the finite element based
approximations has motivated the development of a huge variety of error assessment
techniques. The pioneering references on this topic focus in steady-state elliptic problems,
e.g. linear elasticity or steady heat transfer. In the context of elliptic problems, the early
works consider the energy norm as an error measure [1, 2, 3]. Much later, functionals
outputs or quantities of interest are introduced to assess the error [4, 5, 6, 7]. The
estimates assessing the error in quantities of interest are usually referred in the literature
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as goal-oriented. These techniques are extended to deal with other linear and non-linear
problems, as well as to time-dependent problems.

An important issue associated with goal-oriented estimates for elastodynamics (and
also for other time-dependent problems) is the definition of the quantity of interest itself.
Typically, the quantity is expressed in terms of a (linear) functional, which transforms the
solution of the problem into a single representative scalar value. In many cases, a single
scalar value does not provide enough pieces of information about the whole time-space
solution. This suggests introducing a new type of quantities of interest. The output of
such a quantity of interest is not anymore a scalar quantity but a time-dependent function.
The major novelty of this article is the introduction of this new type of quantities. They
are referred as timeline-dependent quantities of interest in contrast with the standard
scalar quantities.

2 PROBLEM STATEMENT

2.1 Governing equations

Consider a visco-elastic body occupying an open bounded domain Ω ⊂ Rd, d ≤ 3,
with boundary ∂Ω. The boundary is divided in two disjoint parts, ΓN and ΓD such
that ∂Ω = ΓN ∪ ΓD and the time interval under consideration is I := [0, T ]. Under the
assumption of small perturbations, the evolution of displacements u(x, t) and stresses
σ(x, t), x ∈ Ω and t ∈ I, is described by the visco-elastodynamic equations,

ρ(ü + a1u̇)−∇ · σ = f in Ω× I, (1a)

u = 0 on ΓD × I, (1b)

σ · n = g on ΓN × I, (1c)

u = u0 at Ω× {0}, (1d)

u̇ = v0 at Ω× {0}. (1e)

where an upper dot indicates partial derivation with respect to time, that is ˙(•) :=
d
dt

(•), and n denotes the outward unit normal to ∂Ω. The problem data are the mass
density ρ = ρ(x) > 0, the first Rayleigh coefficient a1 ≥ 0, the body force f = f(x, t) and
the traction g = g(x, t) acting on the Neumann boundary ΓN × I. The initial conditions
for displacements and velocities are u0 = u0(x) and v0 = v0(x) respectively. For the
sake of simplicity and without any loss of generality, Dirichlet conditions (1b) are taken
as homogeneous.

The set of equations (1) is closed with the constitutive law,

σ = C : ε(u + a2u̇), (2)

where the parameter a2 ≥ 0 is the second Rayleigh coefficient, the tensor C is the stan-
dard 4th-order elastic Hooke tensor and the kinematic relation (corresponding to small
perturbations) ε(w) := 1

2
(∇w + ∇Tw) is considered.
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2.2 Numerical approximation

In the following developments, û is assumed to be an approximation of the solution
of the boundary value problem (1). For technical reasons, û must have C0-continuity in
space and C1-continuity in time. Most typically, the approximation computed with the
standard Newmark method, say uH,∆t, does not fulfill these continuity requirements and
has to be post-processed to obtain a suitable smooth in time function û.

The numerical approximation û is computed here as a post process of the Newmark
solution using the method of the linear accelerations [8]. This post-process consist basi-
cally in integrate in time a piecewise linear interpolation of the Newmark accelerations
furnishing the smooth velocity ˙̂u and then integrating in time again furnishing the smooth
displacement û, see [8, 9] for details.

2.3 Scalar and timeline-dependent quantities of interest

A quantity of interest is represented by a functional LO(·) extracting a single scalar
value, sT := LO(u) ∈ R, of the space-time solution u. A typical expression for this
functional is given by

LO(u) :=

∫ T

0

(fO(t), u̇(t)) dt+

∫ T

0

(gO(t), u̇(t))ΓN
dt+ (ρvO, u̇(T )) + a(uO,u(T )), (3)

where fO, gO, vO and uO are the data characterizing the quantity of interest. The func-
tions fO and gO extract global or localized averages of velocities in Ω and ΓN, respectively,
over the whole time simulation [0, T ] whereas vO and uO assess averages of velocities and
strains or displacements respectively at the final simulation time T .

The quantity of interest associated with the adjoint solution, namely sT , is obviously
unknown and it is approximated by the quantity of interest associated with the approxi-
mated solution û, that is sT ≈ ŝT := LO(û). Goal oriented error estimates aims at assess-
ing the quality of the approximation ŝT by means of approximating the error se

T = sT− ŝT .
Consequently, the problem of goal-oriented consists in finding approximations of the value
se.

This work extends the paradigm of classical goal-oriented error estimation by intro-
ducing the new concept of timeline-dependent quantities of interest. Timeline-dependent
quantities of interest are defined as an extension of (3) as

LOTL(u)(t) :=

∫ t

0

(fO(τ), u̇(τ)) dτ+

∫ t

0

(gO(τ), u̇(τ))ΓN
dτ+(ρvO, u̇(t))+a(uO,u(t)). (4)

Note that the time-line dependent quantity s(t) := LOTL(u)(t) associated with the function
u is a time dependent function instead of a single scalar value, see figure 1.

The aim of timeline-dependent goal-oriented error estimation strategies is assessing the
quality of ŝ(t) = LOTL(û; t), that is the difference between the exact quantity of interest
s(t) = LOTL(u; t) and the approximation obtained with the numerical simulation ŝ(t).
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Figure 1: Illustration of scalar and timeline-dependent quantities of interest. The functional LO maps the
time-space solution u into a scalar value sT ∈ R. The operator LOTL transforms u into a time-dependent
function s(t).

Thus, the goal of goal-oriented error estimates for timeline-dependent quantities is finding
approximation of the time-dependent function

se(t) := s(t)− ŝ(t).

3 ASSESSING SCALAR AND TIMELINE-DEPENDENT QUANTITIES
OF INTEREST

This section is devoted to present a novel approach to assess the error both in the
scalar quantity of interest, se

T , and in the timeline-dependent quantity, se(t), using the
modal analysis to obtain a proper approximation of the adjoint solution.

3.1 Assessing Scalar quantities

Assessing the error in quantities of interest requires introducing an auxiliary problem
associated with the functional LO(·), usually denoted by adjoint or dual problem [9]. The
strong form of the adjoint problem associated with the quiantity defined in (3) is, see [9]
for details,

ρ(üd − a1u̇
d)−∇ · σd = −fO in Ω× I, (5a)

ud = 0 on ΓD × I, (5b)

σd · n = −gO on ΓN × I, (5c)

ud = uO at Ω× {T}, (5d)

u̇d = vO at Ω× {T}, (5e)
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with the constitutive law
σd := C : ε(ud − a2u̇

d). (6)

Note that the terms affected by a1 and a2 have opposite sign that the ones in the
original problem (1). Consequently, the adjoint problem has to be integrated backwards
in time, starting from the final conditions (5d) and (5e).

The solution of the adjoint problem ud allows representing the error in the quantity of
interest in terms of residuals. That is

LO(ê) = R(ud) (7)

where R(·) := L(·)− B(û, ·) is the weak residual associated with the numerical approxi-
mation û. The forms B(·, ·) and L(·) are defiend as

B(v,w) :=

∫
I

(ρ(v̈+a1v̇), ẇ) dt+

∫
I

a(v+a2v̇, ẇ) dt+(ρv̇(0+), ẇ(0+))+a(v(0+),w(0+)),

and

L(w) :=

∫
I

l(t; ẇ(t)) dt+ (ρv0, ẇ(0+)) + a(u0,w(0+)).

where the standard linear and bilinear forms are introduced

a(v,w) :=

∫
Ω

ε(v) : C : ε(w) dΩ , l(t; w) := (f(t),w) + (g(t),w)ΓN
,

along with the scalar products

(v,w) :=

∫
Ω

v ·w dΩ and (v,w)ΓN
:=

∫
ΓN

v ·w dΓ.

Note that the error representation (7) allows obtaining the error in the quantity of
interest provided that the exact solution of the adjoint problem is available. Conversely,
if an accurate approximation of the adjoint solution is available, say ũd, the error in the
quantity of interest is estimated as

seT = LO(ê) ≈ R̂(ũd) =: s̃eT . (8)

As previously announced, the adjoint problem (5) is of the same type as the original
one (1). Thus the adjoint approximation ũd can be solved with any of the approximation
methods available for elastodynamics. Here, the adjoint approximation is computed with
modal analysis. For particular quantities of interest, modal analysis is a very efficient way
to compute the adjoint problem. Moreover, the modal description of the adjoint solution
is a key ingredient in assessing the error in timeline-quantities of interest.
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The modal analysis requires computing the M fist vibration modes qH
i and frequencies

ωH
i of the problem, i = 1, . . . ,M , solution of the generalized eigenvalue problem: find

qH
i ∈ VH

0 such that
a(qH ,w) = (ωH)2(ρqH ,w) ∀w ∈ VH

0 , (9)

where VH
0 is the finite element space (H stands for characteristic element size of the

underlying computational mesh). Eigenpairs are sorted from low to high frequencies,
namely ωH

1 ≤ ωH
2 · · · ≤ ωH

Ndof
, and eigenvectors are normalized to be orthonormal with

respect the product (ρ·, ·), i.e.

(ρqH
i ,q

H
j ) = δij, 1 ≤ i, j ≤ Ndof. (10)

For thechnical reasons (Galerkin cancellation), the adjoint approximation ũd cannot
be computed by means of the eigenpairs (qH

i , ω
H
i ). The reason in the eigenvectors have to

belong to a richer space than VH
0 . For that reason, new enhanced eigenpairs (q̃i, ω̃i) are

computed starting form the original ones (qH
i , ω

H
i ) using the post-processing technique

proposed in [10]. Once the enhanced eigenpairs are available, the adjoint approximation
is computed as the expansion of the enhanced eigenvectors

ũd(x, t) :=
M∑
i=1

q̃i(x)ỹi(t). (11)

Finaly, the time dependent coeficciets are computed solving the scalar ordinary differential
equations

¨̃yi − [a1 + a2(ω̃i)
2] ˙̃yi + (ω̃i)

2ỹi = l̃i, (12a)

ỹi(T ) = ũi, (12b)

˙̃yi(T ) = ṽi, (12c)

where l̃i(t) := (fO(t), q̃i) + (gO(t), q̃i)ΓN
, and ũi and ṽi are the coefficients best fitting uO

and vO in the enhanced eigenvector basis, that is

uO ≈
Ndof∑
i=1

q̃i(x)ũi and vO ≈
Ndof∑
i=1

q̃i(x)ṽi. (13)

Once the approximation ũd is available, the error in the quantity of interest is assessed
using equation (8).

3.2 Assessing timeline-dependent quantities

Recall that, for a given time t ∈ I, s(t) = LOTL(u)(t). In that sense, for this particular
value of t, s(t) is seen as a scalar quantity of interest taking t as the final time. This
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scalar quantity of interest is characterized as LO(·) = LOTL(·)(t). The associated adjoint
problem is analogous to the one presented for the scalar quantity of interest and reads:

ρ(üd
t − a1u̇

d
t )−∇ · σd

t = −fO in Ω× [0, t], (14a)

ud
t = 0 on ΓD × [0, t], (14b)

σd
t · n = −gO on ΓN × [0, t], (14c)

ud
t = uO at Ω× {t}, (14d)

u̇d
t = vO at Ω× {t}, (14e)

with the constitutive law
σd

t := C : ε(ud
t − a2u̇

d
t ). (15)

Note that the solution of this problem is denoted by ud
t emphasizing that there is a different

solution for each time t. Consequently, equation (14) describes a family of problems, one
for each time t.

For a particular instance of time t, the error representation of the timeline-dependent
quantity of interest se(t) is similar to the standard scalar case but taking the adjoint
solution ud

t related with the particular value t ∈ I, namely

se(t) = R̂t(u
d
t ), (16)

where R̂t(w) := Lt(w; t)−Bt(û,w) and

Bt(v,w) :=

∫ t

0

(ρ(v̈(τ) + a1v̇(τ)), ẇ(τ)) dτ +

∫ t

0

a(v(τ) + a2v̇(τ), ẇ(τ)) dτ

+ (ρv̇(0+), ẇ(0+)) + a(v(0+),w(0+)),

Lt(w) :=

∫ t

0

l(τ ; ẇ(τ)) dτ + (ρv0, ẇ(0+)) + a(u0,w(0+)).

Hence, an estimate for se(t) is obtained injecting an enhanced adjoint approximation
ũd
t in equation (16)

se(t) ≈ R̂t(ũ
d
t ). (17)

Obviously, it is not possible in practice to independently compute the infinite solutions
ũd
t (one for each time t ∈ I) and then using them in equation (16) to assess se(t). However,

taking fO and gO constant in time (which accounts for a number of interesting cases), the
different functions ud

t corresponding to different time instances are all equivalent after a
time translation. Thus, if ud

t is properly computed for a particular value of t, for instance
t = T , the general functions ud

t for t 6= T are easily recovered as a direct post-process of
ud
T . This fundamental result, shown in the following theorem, is the crucial observation

that allows the error estimation technique to be brought to fruition.

7

667

lacan
Rectangle



F. Verdugo, N. Parés and P. Dı́ez

Theorem 1 For a given t, let ud
t be the solution of the adjoint problem defined by equa-

tions (14). Assume that data fO and gO in (4) are constant in time, i.e. fO(x, t) = fO(x)
and gO(x, t) = gO(x).

Then, ud
t is related with the adjoint solution associated with the final time T , ud

T , via
the time translation

ud
t (τ) = ud

T (τ + T − t). (18)

Theorem (1) allows to efficiently recover the family of enhanced approximations ũd
t

from the enhanced approximation ũd
T as

ũd
t (τ) = ũd

T (τ + T − t). (19)

Consequently, the approximation ũd
T is the base for assessing the error both in the scalar

and timeline-dependent quantities, providing in the latter case more meaningful informa-
tion. The translation (19) is done very efficiently by means of the modal description of
ũd
T :

ũd
t (τ) =

M∑
i=1

q̃iỹi(τ + T − t). (20)

Recall that, functions ỹi may be known analytically in many cases and therefore computing
the translation yi(τ + T − t) is inexpensive in that cases.

Finally, the error in the timeline-dependent quantity is assessed using the computed
adjoint approximations ũd

t in equation (16).

4 NUMERICAL EXAMPLE

This example illustrates the performance of the proposed error estimates in a 2D wave
propagation problem. The problem definition is taken from [9] where it is used to test an
error estimate providing error bounds in quantities of interest.

(a) Problem geometry (b) Time-dependent external load

Figure 2: Example 1: Problem statement.
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The problem geometry is the rectangular plate sketched in figure 2(a). The plate is
initially at rest (u0 = v0 = 0) and loaded with the time dependent traction

g =

{
−g(t)e2 on Γg,

0 elsewhere,
(21)

where e2 := (0, 1) and g(t) is the impulsive time-dependent function defined in figure 2(b)
with parameters gmax = 30 Pa and tg = 0.005 s. No body force is acting in this example
(f = 0).

Table 1 details the geometrical parameters and material data, where E and ν are the
Young’s modulus and Poisson’s ratio respectively and the parameter ξ is the dimensionless
damping factor. In the examples included her we take a1 = 0, and its corresponding
value is ξ := 1

2
ω1a2, see [9, 11]. Three different values of the viscosity parameter a2 are

considered. The solution of the problem consists of elastic waves propagating along the
plate, see [9] for a qualitative description of the solution.

Table 1: Example 1: Problem parameterization

Geometry

Ω (−0.5, 0.5)× (0, 0.5) m2

Γg [(0.075, 0.125) ∪ (−0.075,−0.125)]× (0.5) m
T 0.25 s

Material properties

E 8/3 Pa
ν 1/3
ρ 1 kg/m3

a1 0 s
a2 {0, 10−4, 10−2} s
ξ {0, 0.0247, 2.47} %

The timeline-dependent quantity considered in this example is

s(t) = (ρq1, u̇(t)).

The quantity sT is associated with the exact first eigenvector of the generalized eigenvalue
problem (9) in the Sobolev space V0. In the following, the unknown function q1 is replaced
by a reference eigenvector qH,p+1

1 solution of the eigenvalue problem (9) in the discrete
space VH,p+1

0 . The space VH,p+1
0 is obtained increasing by one the interpolation order of

VH
0 .
Figure 3 shows the reference and approximated timeline quantities s(t) and ŝ(t) :=

(ρq1, ˙̂u(t)) and the reference and estimated errors se(t) and ŝe(t) for mesh id. 1 and time
step id. 3, see table 2. The proposed estimate s̃e(t) is really close to the reference value
se(t) in all cases, also for a2 = 0. It can be observed that, in this example, the quantity of
interest associated to the lowest eigenvector q1 is nearly unaffected by the change in the
damping coefficient a2. However, the time dependent errors se(t) and its approximations
s̃e(t) are smoothed out as the coefficient a2 increases.
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Table 2: Example 1: Space and time discretizations

Mesh id. Nnod # Elements Type H [m]

1 3051 5899 Triangle 3.2 · 10−3

2 12000 23596 ” 1.6 · 10−3

3 47595 94384 ” 7.9 · 10−4

Time step id. # steps ∆t [s]

1 100 2.5 · 10−3

2 200 1.3 · 10−3

3 400 6.2 · 10−4

4 800 3.1 · 10−4

5 CONCLUSIONS

This article presents a new type of goal-oriented error estimates assessing the error
in timeline-dependent quantities of interest. Timeline-dependent quantities are outputs
of the solution describing the time evolution of some space-post-processed functional.
Compared to the traditional scalar quantities of interest, this approach fits better the
requirements of end-users in dynamic problems. Assessing the error in timeline-dependent
quantities involves a family of infinite adjoint problems (one for each time instant in
the time interval under consideration). However, all these adjoint problems are similar
and they can be recovered from a common parent problem (associated with the a scalar
quantity of interest) by means of a simple translation (shift) of the time variable.

The second novelty in this paper is the approximation of the adjoint problem using a
decomposition into vibration modes. This allows efficiently precomputing and storing the
adjoint solution. Thus, the error estimate is computed along the time integration of the
original problem. This approach applies both for the scalar and timeline quantities, but
it is specially indicated for the latter because it simplifies the implementation of the time
shift.

The error estimation strategies proposed in this work are based on an explicit ap-
proach. The error estimate is computed injecting an enhanced approximation of the
adjoint solution into the residual of the direct problem. The enhancement is based on a
local postprocess of the computed eigenvectors, performed only once and not at each time
step. This approach is very efficient for some quantities of interest in which the adjoint
solution is fairly represented in a modal description.

The numerical examples show that the proposed estimates have a good effectivity for
both the scalar and timeline quantities of interest, accounting both for space and time
discretization errors. Contrary to other error estimates for linear visco-elastodynamics,
the proposed estimates do not degenerate in the limit case of pure elasticity (i.e. when
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a2 = 0 s a2 = 0 s

a2 = 10−4 s a2 = 10−4 s

a2 = 0−2 s a2 = 10−2 s

Figure 3: Example 1: Approximated and reference timeline-dependent quantity (left) and estimated and
reference errors in the timeline-dependent quantity (right) for the three values of the damping parameter
a2 (a2 = 0 s, top; a2 = 10−2s, center; a2 = 10−4s, bottom).

no damping is introduced in the formulation).
In current ongoing work, the proposed error estimation techniques are used as driving

indicators for mesh adaptivity.
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Abstract. An initial study is made of the possibilities for goal-oriented error estimation
and anisotropic grid refinement in the simulation of water flow around ships. A finite-
volume discretisation for the adjoint solution is presented together with least-squares
computation of the local residuals. The paper shows the difficulties in the computation
of adjoints and residuals for high-Reynolds flows, but indicates that error estimation and
grid refinement for such flows may be possible.

1 INTRODUCTION

Goal-oriented flow simulation, for the purpose of this article, denotes simulation meth-
ods where numerical or physical parameters and techniques can be automatically adjusted
by the solver in order to provide accurate and efficient computation of a given single out-
put parameter. The concept originates from the idea that flow computations are often
performed to answer a specific question and that computational resources should therefore
be applied for answering this question, and for nothing else. And also, if non-expert users
are to base crucial design decisions only on the results of CFD computations, they need
simulation software which provides reliable results at least partially in an automatic way.
Thus, goal-oriented simulation has two key aspects: the simulation has to be adaptive
to provide efficient results and the precision of these results must be estimated to guar-
antee reliability. In this paper, we shall study both error estimation and adaptive grid
refinement.

While adjoint-based error estimation and mesh refinement is common for the simulation
of structures [1] and has been successfully applied to compressible Euler flow [5], its use
for incompressible Reynolds-averaged Navier-Stokes flows at high Reynolds numbers is
not straightforward and few results have been reported. Notably, Stück and Rung [8] use
the adjoint solution for hull form optimisation. Particular difficulties for these flows are:
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• The RANS equations contain turbulence models which are often not taken into
account for the computation of the adjoint solution. This may have an influence on
the quality of the error estimation.

• To model turbulent boundary layers, meshes are used with very high aspect-ratio
cells near the walls. The adjoint equations and especially the evaluation of the local
truncation error used in the error estimation are sensible to these meshes.

• The flow is incompressible, which is very hard for grid refinement. There are no
obvious local zones which require great precision (such as shock waves and contact
discontinuities in compressible flow); to get accuracy, the flow needs to be more or
less well resolved everywhere. Finding the resulting optimum grid sizes requires a
delicate balance which puts strong requirements on the quality of the refinement
criterion.

The goal of this article is to provide an initial investigation of the possibilities for
adjoint-based error estimation and grid refinement for the computation of water flow
around ships. A continuous adjoint solver is under development for ISIS-CFD, the un-
structured Navier-Stokes solver developed by ECN-CNRS. This solver is combined with
local truncation error estimation by high-order integration of the RANS equations over
the grid cells [4] for error estimation. In the light of the difficulties outlined above, these
techniques are investigated critically. Grid refinement for the flows of interest and the
unstructured hexahedral meshes that we use, is necessarily anisotropic [10]: grid cells to
be refined can be divided in only one direction, as well as in several. For goal-oriented
anisotropic refinement, we show a first test with an approximate implementation of the
technique proposed by [5] where the criterion is based on the Hessians of the fluxes.

Section 2 describes the ISIS-CFD flow solver. Then section 3 introduces the contin-
uous adjoint equations and briefly describes their discretisation. Sections 4 and 5 give,
respectively, an overview of the error estimation and grid refinement techniques. Finally,
section 6 shows initial tests on laminar and turbulent flows which shed some light on the
possible efficiency of these methods.

2 THE ISIS-CFD FLOW SOLVER

ISIS-CFD, available as a part of the FINETM/Marine computing suite, is an incom-
pressible unsteady Reynolds-averaged Navier-Stokes (RANS) method [3, 7]. The solver
is based on the finite volume method to build the spatial discretisation of the transport
equations. Pressure-velocity coupling is obtained through a Rhie & Chow SIMPLE-type
method: in each time step, the velocity updates come from the momentum equations and
the pressure is given by the mass conservation law, transformed into a pressure equation.

The discretisation is face-based. While all unknown state variables are cell-centered,
the systems of equations used in the implicit time stepping procedure are constructed face
by face. Fluxes are computed in a loop over the faces and the contribution of each face is
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then added to the two cells next to the face. This technique poses no specific requirements
on the topology of the cells. Therefore, the grids can be completely unstructured, cells
with an arbitrary number of arbitrarily-shaped faces are accepted. The code is fully
parallel using the MPI (Message Passing Interface) protocol.

An automatic adaptive grid refinement technique is included in the solver ISIS-CFD
[9, 10]. The method supports the isotropic and anisotropic refinement of unstructured
hexahedral meshes. Earlier refinements can be undone in order to adapt the grid to un-
steady problems. The refinement criterion, which indicates where the grid must be refined,
can be modified very easily; different refinement criteria have already been tested. And
finally, the grid refinement is performed in parallel and includes an automatic dynamic
load balancing in order to redistribute the refined grid over the processors when some
partitions have been refined more than the others.

3 ADJOINT EQUATIONS AND DISCRETISATION

This section discusses briefly the adjoint to the incompressible RANS equations and
its discretisation. The RANS system of equations itself, N (U) = 0 can be expressed as
follows:

[uiuj + pδi,j − µ ((ui)j + (uj)i)]j = 0, (1a)

(uj)j = 0, (1b)

with ui the velocity components, p the pressure, µ the (variable) viscosity coming from
a turbulence model, and δ the Kronecker delta function. The Einstein summation con-
vention is used, indices outside brackets denote differentiation. U = [u1, u2, u3, p]

T is the
exact solution of this system. Finally, Uh denotes an approximate (numerical) solution
of (1).

We are interested in the error for an output functional on the solution J(U), when it
is computed from Uh instead of U. Linearisation gives:

J(Uh)− J(U) ≈ (g,Uh −U)Ω, with g = [
∂J

∂u1

,
∂J

∂u2

,
∂J

∂u3

,
∂J

∂p
]. (2)

(·, ·)Ω denotes an inner product, integrated over the flow domain. The adjoint solution z
is then defined by:

(z,N (Uh)−N (U))Ω = (g,Uh −U)Ω, ∀(Uh −U). (3)

For the RANS equations, the adjoint system reads:

−ui(zj)i − ui(zi)j + (zp)j − µ ((zi)j + (zj)i)j = gj, (4a)

(zj)j = gp, (4b)

where z = [z1, z2, z3, zp]
T .
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Like the primal system, the adjoint equations are discretised with a finite-volume tech-
nique and a segregated Rhie & Chow method; this is possible because the continuity
equation (4b) is the same as in the primal system. Space is lacking here to describe the
discretisation in full, but a few remarks are given:

• The term −ui(zi)j makes these equations non-conservative and impossible to put in
conservative form. Therefore, the standard finite-volume technique where the equa-
tions are integrated over the cells to produce expressions containing only the fluxes
over the cell faces, cannot be used. To construct a finite-volume like discretisation,
we use constant cell-centred values for the velocities ui when integrating over a cell.
Thus, for all convective terms, the fluxes over a face are different for the left and
right cells, since the ui on the two sides of the face are different.

• The convective term −ui(zj)i is discretised with upwind reconstruction. However,
the term −ui(zi)j originates from the linearisation of the mass fluxes which, in the
primal system, use the Rhie & Chow reconstruction that is closer to the central
discretisation. We found that, for the adjoint system to be stable, also the ad-
joint terms −ui(zi)j require a central discretisation. Despite this discretisation, the
current formulation lacks robustness for high-Reynolds flows in regions of very low
velocity, where iterative errors sometimes increase very slowly leading to an even-
tual divergence of the computation. This is a problem which could come either from
the discretisation or from the segregated solution procedure; we are working on its
solution.

• The velocities in the convective operators are the velocities ui coming from the
primal system, but due to the minus signs in (4a) the adjoint ’flow’ is backwards.
This must be taken into account in the upwind discretisations.

As for the primal system, the zi-equations are solved with Gauss-Seidel while PGCStab is
used for the zp-equation. The zi-corrections are underrelaxed, but not the zp-correction.

4 ESTIMATING RESIDUALS

Equation (3) can be used directly to estimate the error in J(Uh) or even to obtain an
improved approximation by subtracting the error estimation from the computed value of
J . For this, besides the adjoint solution, we need to compute the residuals N (Uh), the
result of applying the exact RANS equations to the approximate numerical solution. Since
we cannot evaluate these exact equations, the residuals are approximated with a higher-
order finite-volume discretisation, similar to [4]. This approximation, valid on structured
and unstructured grids, is performed as follows:

• Flux vectors in the face centres and in the nodes of the faces are computed with least-
squares polynomials. For each node, third-order polynomials for each component
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a) b) c)

Figure 1: Stencils used in the residual estimation, for reconstruction in nodes (a), face centres (b), and
for extrapolating two layers of ghost cells on the boundary (c). Examples on structured grids.

of Uh are fitted through the values in the neighbour cells of the nodes and the
neighbours’ neighbours (figure 1a). For the faces, the two cells next to the face
are used as well as their neighbours and neighbours’ neighbours (figure 1b). These
are the minimum stencil sizes which ensure that sufficient points are available for
fitting third-order polynomials, i.e. four points in all directions. From these fitted
polynomials, we get the state vector and derivatives in the nodes and face centres,
which are used to compute fluxes.

• Then, third-order accurate quadrature integration of the flux over the faces is per-
formed with the face centre and nodal values. In 2D, third-order accuracy is obtained
by assigning a weight of 2

3
to the face and 1

6
to each of the two face nodes. Weighting

coefficients for arbitrary faces in 3D are under study.

Since the least-squares polynomials are fourth-order accurate, the resulting finite-volume
approximation ofN (Uh) is at least third-order accurate for the convection (which involves
one differentiation) and second-order for the diffusion (which requires two differentiations).
This is an order more than the primary discretisation of ISIS-CFD, so it is sufficient.
Theoretically, the same order of accuracy can be obtained more easily by fitting third-
order polynomials through the cell centres and extracting first and second derivatives
from these polynomials, which are then substituted directly in (1) to find the residuals.
In practice, we have found that this alternative procedure is less accurate so it is not used.

Finally, tests on manufactured solutions revealed strong errors near curved boundaries
with large aspect-ratio cells, which are typical for high-Reynolds flows. These errors
appear because the cells on the surface are missing the neighbours’ neighbour cells in the
wall direction; they can be reduced by using symmetric stencils for the least-squares fits,
even in the boundary cells. To obtain these, two layers of ghost cells are created at the
boundaries whose values are set by extrapolation using 1D third-order polynomials fitted
to three cell values and the known value on the face (figure 1). These ghost cells are
then used like standard cells for the reconstruction in the nodes and faces. While no new
information is added through the extrapolation, this procedure significantly reduces the
errors near boundaries.
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5 GOAL-ORIENTED REFINEMENT

Apart from error estimation, the adjoint solution can be used for grid refinement. A
straightforward way to do this would be to use the local integrand z · (N (Uh)−N (U))
from equation (3) as a refinement criterion. However, this expression is a scalar so it
cannot be used for anisotropic grid refinement, as it cannot specify different cell sizes in
different directions.

A method for anisotropic grid refinement which is suitable for our metric-tensor re-
finement criteria [10] is presented by Loseille et al. [5] for the Euler equations. They
express the local residuals in terms of projection errors for the fluxes. Using this, they
show that these projection tensors can be minimised if a refined mesh is based on metric
tensors that are the Hessian matrices of second spatial derivatives of the flux components.
The optimum mesh for computing J is obtained by weighting these Hessians with the
gradients of the adjoint solution.

Loseille et al. show excellent results for their method applied to compressible Euler
flow. We have made an approximate implementation of this method for RANS flows: the
viscous terms are added to the fluxes without further analysis, while separate treatment
is advised [2]. For the computation of the flux Hessians, we use third-order cell-centred
polynomials which are least-squares fitted to the fluxes computed in the cell centres. An
initial test for RANS will be presented in the next section.

6 NUMERICAL TESTS

6.1 Error estimation for 2D profiles

The quality of the adjoint error estimation is tested with two 2D wing section test cases.
The first, laminar case is the NACA0012 profile at 4o angle of attack and Re = 1000.
Turbulent flow is computed around the Nakayama B profile [6] at 4o angle of attack and
Re = 1.2 ·106. Adjoints are computed for two functionals: the drag force and the integral
of u1 over a rectangle in the wake, which resembles the evaluation of the propeller plane
flow. The rectangle is centred at [0.9,−0.02] and has dimensions 0.02×0.04 for the NACA
wing and 0.01 × 0.02 for Nakayama. The computed functionals are corrected with the
estimated error in order to improve the estimate.

For both cases, computations have been performed on structured C-topology and un-
structured HEXPRESS grids with low-Reynolds boundary layers. Figure 2 gives an im-
pression of the solutions. While the boundary layer is of course much thinner for the
turbulent case, both flows are similar. No particular problems were encountered for the
computation of the primal and the adjoint solutions. However, the computations of the
residuals have significant errors near the walls (section 4). Also, the evaluation of the disk
integral is complicated because the meshes are not specially refined in the disk zone, so on
the coarser structured grids there were too few cells in the disk to perform the integration.

Computed and corrected functional values are given in figure 3. The adjoint error
estimation is based on linearisation (section 3) so it is only valid near the asymptotic
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a)

b)

Figure 2: Flow around the NACA0012 (a) and Nakayama B (b) airfoil: pressure, horizontal velocity, and
z1 for the drag functional.

range. True asymptotic convergence is only reached for the NACA0012 drag functional
on structured meshes; here the correction seems to improve the solution on the finer
meshes even though the influence of near-wall errors in the residuals is non-negligible.
Also for the turbulent Nakayama case, improvement may be obtained on the two finest
meshes despite the catastrophic failure on the coarser meshes. On unstructured meshes
in the laminar case, the error is systematically overestimated by a factor two. And while
the solution is not improved for the turbulent case, the estimation is of the same order as
the numerical error.

For the rectangle integral, the solutions are not in the asymptotic range so it is difficult
to say whether the solutions are improved by the correction or not. However, also here
the magnitude of the corrections is the same as the difference between the solutions.

In conclusion, it seems unrealistic to improve functional computations by error correc-
tion. However, the adjoint technique might be useful as an error estimator, certainly if
the reliability of the residual computation is further improved.

6.2 Goal-oriented grid refinement for the KVLCC2

As an initial test of adjoint-based refinement, we compute the flow without free-surface
effects around the KVLCC2 tanker at model scale, Re = 6.4 · 106, (see figure 4). The
turbulence model is EASM without rotation correction [3]. The refinement criterion
consists of the flux Hessians, weighted by the gradients of the adjoint solution (section 5).
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Figure 3: Original and corrected functionals for the NACA0012 airfoil: drag (a) and rectangle integral
(b); for the Nakayama B airfoil: drag (c) and rectangle integral (d).

To prevent the divergence of the adjoint solver in low-velocity regions (section 3) which
increases on finer grids, the adjoint solution is computed on the original coarse grid (265k
cells), based on the converged primal solution for this grid. Automatic refinement is then
performed in several steps until the solution and the mesh are converged; for these steps
the flux Hessians are computed on the refined grid but the original adjoint solution is
kept. In the future, we plan to compute also the adjoint solution on the refined mesh.
The final mesh has about 1M cells, an automatic procedure in the solver was used to
adjust the threshold for the criterion in order to obtain this number of cells.

The functional is the integral of the axial velocity over the propeller disk with (non-
dimensional) radius 0.01541 and thickness 0.01, centered at x/L=0.0175 and z/L=-
0.04688. This functional is chosen due to its importance for propeller design, however
it does not guarantee that all flow details in the propeller plane are well captured: only
the integral value has to be right!

The flow solution is presented in figure 5 and compared with a reference solution

Figure 4: Hull of the KVLCC2 tanker, with the stern facing left and the propeller plane indicated.
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Figure 5: Goal-adaptive refinement for the KVLCC2: axial velocity, z1 for the propeller plane functional,
and the refined mesh in x-cross sections at the propeller plane x/L = 0.0175 (a), x/L = 0.05 (b),
x/L = 0.17 (c), and near the bow at x/L = 1.0 (d).

9

681

lacan
Rectangle



Jeroen Wackers, Ganbo Deng and Michel Visonneau

Table 1: Computed values of the disk integral functional for the KVLCC2 test case.

Refined grid Original grid Reference fine grid
−3.141 · 10−6 −2.621 · 10−6 −3.053 · 10−6
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Figure 6: KVLCC2 reference fine grid solution: axial velocity at the propeller plane x/L = 0.0175,
x/L = 0.05, and x/L = 0.17.

obtained on a very fine non-adapted grid (7M cells, figure 6). We see how the adjoint
solution on the refined grid is non-uniform in the propeller plane, then gets high values
around the rear of the ship and continues upstream at the ship’s side. Near the bow it
has diminished but it is still noticeable. This is reflected in the refined grid, which has
fine cells mainly in the boundary layer region. Compared with refined grids created using
a pressure Hessian criterion (see [9, 10]) the refinement is concentrated very close to the
ship. Also, of course, there is little refinement at the front of the ship, although some
refinement below the hull is visible in figure 5d.

The velocity profile in the propeller plane contains the correct ‘hook’ shape of low
velocity around y/L = 0.01, z/L = −0.04, even though this hook is less noticeable than
for the reference solution. Note that, according to the adjoint solution, the flow near
the propeller hub has a much bigger influence on the integral than the hook. Further
upstream, the velocity in the boundary layer is well resolved, but the velocity away from
the hull is only computed approximately, since this velocity is unimportant for the integral
according to the adjoint solution. The value of the disk integral functional is computed
well (table 1), it is much closer to the fine-grid solution than the value computed on the
original coarse grid without refinement. Thus, despite the difficulties in the computation
of the adjoint, this initial result is promising.

7 CONCLUSION

This paper investigates the use of goal-oriented error estimation and adaptive grid
refinement for high-Reynolds incompressible RANS flows. Error estimates and corrections
for a functional are obtained by weighing the local residuals with an adjoint solution to
the RANS equations. Tests on 2D airfoils show that it is probably unrealistic to improve
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computed functionals by adding the error estimate, but that the estimations are of the
same order as the actual errors and could thus be used as error estimators. Notable
difficulties are the evaluation of the residuals near walls and the correction of functionals
that are far away from asymptotic convergence.

An example is shown of anisotropic grid refinement based on the weighing of flux
Hessians with the gradient of the solution. Whether this is the optimal choice for goal-
oriented refinement and whether significant gains in efficiency can be made with respect
to non goal-oriented grid refinement, remains to be investigated.
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Abstract. The steady improvement of the performances of high temperature super-
conductors (HTS) brings them within reach of new applications, such as HTS motors,
transformers and fault current limiters. To optimize the design of these devices, one must
be able to predict the magnetic and electric fields in complex 3-D geometries, but doing
so efficiently and accurately is still a challenging task. Within the engineering commu-
nity, phenomenological models relating the electric field and current density of HTS lead
to a novel nonlinear evolutionary monotone PDE based on Maxwell’s equations, which
is effectively a generalization of the classical p-Laplacian problem. Unfortunately, these
models possesses sharp moving fronts that lead to the use of prohibitively small time steps
in numerical simulations, even in 2-D domains.

In this work, we propose a new numerical space-time method that allows for local space
and time adaptivity without the restrictive global timestep constraint. We present an a
posteriori error estimator for the computation of the AC loss, a key design parameter for
HTS devices. Numerical results are presented in one and two space dimensions attesting
to the efficiency of the numerical method.
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Abstract. In past decades, many adaptive mesh schemes have been developed and
become important tools for designers to simultaneously increase accuracy of their com-
putations and reduce the cost of numerical computations in many engineering problems.
In most of the cases the adaptation is done by subdividing cells or elements into finer
cells or elements. Maintaining mesh quality during optimization procedure is still a crit-
ical constraint to satisfy for accurate design. In the discretized approach using meshless
methods, there are no cells or elements but only a cloud of points which flexibility is an
advantage compared to the mesh topology constraint. This attractive property facilitates
the coupling of meshless methods with adaptive techniques for inverse or optimization
problems.

In this paper, an algebraic adaptive meshless scheme based on a weighted reference
radius equi distribution is presented. Cloud nodes adaption combined to meshless methods
are used to solve inverse and drag minimization Computational Fluid Dynamics (CFD)
problems.

The adaptive meshless method coupled with advanced Evolutionary Algorithms (EAs)
is considered as a first test case to rebuild via prescribed surface pressure target the shape
of the circular arc bump or ogive operating at supersonic shocked flow regimes. The
objective functions could be chosen as the distance between candidate and prescribed
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pressure coefficients minimized in L2 norm and uniform level of errors minimized in L2

norm.
Numerical results demonstrate numerically that adaptive meshless methodology pre-

sented in this paper can provide efficiently optimization solutions with a desired accuracy
in aerodynamics. Results will be compared with other adaption methods, namely the so
called goal oriented method.

1 METHODOLOGY

Based on the success of developing an efficient dynamic cloud technique which main-
tains the primary clouds of points qualities with rigid moving boundary problems, it is
expected to obtain reliable results maintaining the same number of points in the compu-
tational domain at each time step or at each modified body shape or position in a design
optimization procedure. It is therefore very important to bring an adaptive meshless
method to adjust clouds of points automatically.

In past decades, many adaptive mesh schemes have been developed and become im-
portant tools for designers to increase the reliability and reduce the cost of numerical
computations in many engineering problems. Through an effective adaptive scheme, the
discretization error can be reduced via an automatic refinement of the computational
region where the accuracy of the numerical solution is low, and therefore the prescribed
accuracy [1, 2, 3] is achieved. Hsu et al. [4] proposed an algebraic mesh adaptation scheme
based on the concept of arc equidistribution.

1.1 An adaptive meshless method

In this research, an algebraic adaptive meshless scheme based on a weighted reference
radius equidistribution is presented. To illustrate this, the difference in 2D Cartesian
coordinate system between center point i and its satellite point k can be written as:{

∆xij = xj − xi
∆yij = yj − yi

(1)

For each satellite point j, the distance between center point i and point j is

Rij =
√

∆x2
ij + ∆y2

ij (2)

and the reference radius of cloud Ci is defined as the longest distance between the point
i and its satellite point j as

Ri = max(Ri1, Ri2, ..., RiMi
) (3)

where Mi is the total number of satellite points around point i. By using the concept
of a weighted reference radius equidistribution for mesh from Hsu et al. [4], a weighted
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reference radius equidistribution for clouds of points based on the pressure gradient in the
flow field can be expressed as:

R̃i =
1

1 + β | ∇P |i
Ri (4)

where β is a constant that controls the sensitivity to the pressure gradient. Thus, the
movement of point j should be: ∆x′j =

(
1

1+β|∇P |i − 1
)

∆xj + ∆xi

∆y′j =
(

1
1+β|∇P |i − 1

)
∆yj + ∆yi

(5)

considering the movement in point i(∆xi,∆yi).
The adaptive meshless method with a moving technique is implemented and tested on

a circular arc bump geometry. The geometry of the channel is depicted in Figure 1 and
discretized with 2940 clouds of points distributed in the computational domain. Super-
sonic flow conditions are Mach number 1.6 and angle of attack 0.0◦. These flow conditions
are high enough to form a normal shock slightly in front of the bump. This shock bends
into an oblique shock, which eventually becomes the foremost oblique shock in a lambda
shock structure near the upper wall of the channel. The normal shock segment of the
lambda shock has a region of subsonic flow behind it, and the rear-most oblique part of
the lambda shock downward intersects the lower wall near the trailing edge of the bump.
The pressure contours are shown in Figure 2.

After three rounds of moved points adaptation based on the gradient of pressure in the
flow field, Figure 3 presents the moved clouds of points distribution in the computational
domain. A higher resolution of the shock can be observed in Figure 4. This comparison
demonstrates the advantages of the adaptive meshless method.

1.2 Application to shape reconstruction problems

Since the adaptive meshless method achieves higher solution without adding any points
in the flow field, one shape reconstruction test case with the above circular arc bump

Figure 1: Original clouds of points for the channel with a circular arc bump.
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Figure 2: Original pressure contours for the channel with a circular arc bump.

Figure 3: Adapted clouds of points for the channel with a circular arc bump.

Figure 4: Adapted pressure contours for the channel with circular arc bump.

using adaptive clouds of points is considered in this study. The flow conditions and
computational points are the same as in Section 1.1.

Let the thickness of the circular arc bump h be selected as one design parameter. The
objective function is defined according to surface pressure coefficients as:

min f(h) =
M∑
i=1

|Cp(h)− Cp(h∗)|2i (6)

where M is the total number of points distributed on the surface of the upper and the
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lower channel. The search space for the reconstruction is the interval h ∈ [2.0, 8.0], and
h∗ is the targeted design parameter. The parameters value in the GA software are the
following: 30 the size of population, 0.85 for the probability of crossover and 0.01 for the
probability of mutation. The stopping criteria are the fitness value f(h) < 10−06 and the
number of generation as 50.

Figure 5 shows the convergence history of the objective function reconstruction pro-
cedure. Convergence to zero of the fitness function means that GAs coupled with cloud
movement have, within 40 generations, successfully rebuilt the circular arc bump with
the targeted thickness. Figure 6 is the comparison of surface pressure coefficients of the
targeted value and the obtained result. The red solid line stands for the targeted pres-
sure distribution of 5% bump, and blue dots present the obtained pressure distribution
of 5.01% bump. The obtained result is in good agreement with the targeted pressure
distribution.

Figure 5: Convergence history of the objective function.

2 CONCLUSIONS

To conclude, the adaptive meshless method coupled with GAs has rebuilt the shape
of the targeted circular arc bump based on the prescribed surface pressure. The results
presented in this chapter are preliminary and will be consolidated by a measure of the
uniformity of level of errors in the flow field to be minimized using sub-clouds and Nash
algorithms as a multi-objective problems. The objective functions could be chosen as
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f1, the distance between candidate and prescribed pressure coefficients minimized in L2

norm, and f2, uniform level of errors minimized in L2 norm. Furthermore, distributed op-
timization coupled with distributed levels of errors can both be run on High Performance
Computing (HPC) in the future.

Figure 6: Comparison of pressure distribution of the targeted value and the obtained result.
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Abstract. This work describes properties of the mixed mesh approach that are especially 
suitable for generating families of meshes to assess the grid refinement convergence of CFD 
solvers. The paper outlines how a regular grid refinement is achieved throughout the domain. 
The distributions of characteristic grid quality metrics are compared and a grid convergence 
study is outlined for a commonly used case for outer aerodynamics, the Boeing CRM 
configuration of the 5th AIAA Drag Prediction Workshop. 
 
1 INTRODUCTION 

The assessment of the accuracy of a simulation method is a crucial step during the 
verification and validation process of the simulation software. Even the best mathematically 
derived formulation has to prove the rate of convergence with increasing mesh resolution for 
designated applications.  

For applications of CFD for aerodynamics of aircrafts a series of five workshops has been 
organized under the governance of the American Institute of Aeronautics and Astronautics 
(AIAA) [1]. A major focus of the comparisons of solvers for simulation accuracy was laid on 
the grid convergence, for which families of grids have been provided, both structured and 
unstructured ones. A major conclusion of all workshops has been the highly demanding 
generation of unstructured mesh families.  

While for structured meshes the generation of self-similar grids with different but regularly 
refined grid resolutions is straight forward, for unstructured hybrid meshes this is a more 
complicated task. Due to the – in most cases – fully automatic generation a distinct control on 
local mesh resolution and its influence into other parts of the mesh is hard to control. 

This paper outlines the usability of the mixed mesh approach for the purpose of generating 
families of meshes for grid convergence assessment. Block-unstructured mixed meshes 
provide structured meshes in the near field of the aerodynamic body where viscous effects 
dominate and a high resolution normal to the wall is needed. In contrast to pure block-
structured meshes, limitations of topologies are overcome by locally using unstructured mesh 
element types, mainly prismatic elements. For the outer field an a priori defined anisotropic 
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field triangulation is applied to allow for maximum flexibility and to minimize the effort of 
user input. 

2 THE MIXED MESH FRAMEWORK 
The meshing framework used is the formerly structured multi-block grid generation 

MegaCads developed at DLR [2]. In recent years unstructured capabilities have been 
introduced. Among these are a parabolic marching procedure to generate prismatic layers 
based on the same mathematical approach as used in the elliptic smoothing of structured 
blocks [3], the linking to a number of volume triangulation codes including the SIMMETRIX 
software [4] used within this work, and a memory efficient way to specify a priori a smooth 
anisotropic metric field for the triangulation smoothly adopting to the underlying structured 
and quasi-structured elements [5]. 

2.1 Mixed mesh approach 

   
 (a) (b) (c) 
 

   
(d) (e) 

 
Figure 1: Generating a mixed mesh: (a) surface description; (b) structured hexahedral grids for boundary 

resolution; (c) surface triangulation of remaining geometry parts; (d) extrusion of prismatic layers; (e) 
anisotropic field triangulation 

The big shortcoming of hybrid unstructured grids is the low anisotropy of surface triangles 
resulting in a large number of grid points, which is agglomerated through the number of 
prismatic layers for the boundary layer resolution. This low anisotropy leads to an 
unnecessary high resolution in span direction, especially for high aspect ratio wings. 
Recovering the experience with the application of structured grids, it is known, that the aspect 
ratios of the surface quadrilaterals can be much higher, additionally resulting in well aligned 
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body conforming meshes. The shortcoming of an overall use of structured meshes is the 
increasing complexity of the targeted configurations, where structured meshing reaches its 
limitations, mainly due to grid topology issues. 

The simple idea of mixed meshes is to make as much use as possible of the advantages of 
structured meshes skipping the disadvantages of complicated topology generation. In Figure 
1 the general procedure is sketched for a transport aircraft high-lift configuration. Boundary 
layer regions are meshed by structured hexahedral mesh blocks, except when the topology 
gets difficult to be generated. The advantageous C-type meshes for wake resolutions are used 
here as far as possible. Whenever the block-structured topology gets too complicated, the 
mixed mesh approach switches to unstructured elements. For the remaining parts of boundary 
layer regions near surfaces, quasi-structured prismatic elements are used. For the outer flow 
field the volume is filled by tetrahedrons. 

In the past the author showed that mixed meshes significantly reduce mesh sizes without 
reduction of accuracy [6],[7]. Since the methods work flow starts with the block-structured 
meshes, the generation method is best described as block-unstructured mixed mesh method. 
Also commercial grid generation software in the meantime has implemented mixed meshing 
capabilities, e.g. ICEM CFD [8] and PointWise [9], but those methods rely on isotropic 
triangulation methods. 

2.2 Mixed mesh family around Boeing CRM 
Figure 2 shows a view on the grid family around the Boeing Common Research Model 

(CRM) [10] in the configuration without tail as used in the 5th Drag Prediction Workshop. The 
coloring depicts the different types of grid elements. For the grid family, three levels of 
different mesh density have been generated using the anisotropic mixed meshing approach. 
The number of cells in the structured part is multiplied by a factor of 1.5 for adjacent grid 
levels in each direction, while the cell sizes are reduced by the same magnitude wherever 
specified. The portion of the fluid volume meshed by structured elements is not changed in 
order to obtain self-similar meshes. 

The used method derives a smooth anisotropic metric field based on the anisotropy of the 
adjacent structured hexahedrons and quasi-structured prisms. This anisotropic metric field is 
inherently responsible to achieve the self-similarity and grid family properties in the 
unstructured domain of the meshed volume, since all information of grid resolution is directly 
derived from the structured and quasi-structured grid parts. 

 
Table 1: Characteristics of the mesh family around the Boeing CRM configuration 

CRM mesh size coarse scaling 
 medium scaling

 fine 
grid points 1,368,229 2.68 3,666,721 2.85 10,450,269 
surface triangles 38,548 2.20 84,686 2.20 186,370 
surface quadrilaterals 27,753 2.24 62,680 2.28 142,134 
tetrahedrons 4,222,454 2.19 9,267,026 2.18 20,276,862 
Prisms 340,935 3.16 1,078,816 3.26 3,513,840 
hexahedrons 419,756 3.46 1,452,208 3.46 5,019,198 
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Figure 2: Family of grids around the Boeing CRM configuration, left to right: coarse – medium – fine; colors 
indicate cell type: red=hexahedrons, blue=prisms, green=tetrahedrons 

 
In Table 1 some characteristic features with respect to grid family properties are shown. 

The number of surface elements scales between the grid levels close to the theoretical value of 
1.52=2.25. Prisms and hexahedrons counts scale also close to the theoretical value of 
1.53=3.375. Interestingly, the scale of the number of tetrahedrons is close to the theoretical 
value for surface elements. Therefore, also the overall point number scales less than 
theoretically expected or achieved in pure structured meshes. But, interestingly the inverse of 
the point number to the power of two-third, which is later used for Richardson extrapolation, 
scales almost exactly by a factor of 2 between grid levels, thus indicating a doubling of grid 
density. 

3 GRID CONVERGENCE OF THE BOEING CRM CASE 

3.1 Grid quality indicators 
The selection of indicators for a priori grid quality assessment has to respect the type of 

solver later on used for the simulation. For finite element methods (FEM) most commonly 
used are indicators that look for the shape of single elements and detecting badly shaped cells 
like slivers, needles, and hats that inherently disrupt the numerical accuracy of the solution. 
For the targeted finite volume (FVM) flow solver these element based metrics are of less 
significance since for the flux computations needed the relationship of neighboring elements 
is at least as important. Knupp [11] introduced algebraic grid quality metrics based on the 
Jacobian of elements, which are the transformation matrices from computational into physical 
space. They are more representative, since the averaging of the cell based Jacobians for a 
common grid node provide an indication for the smoothness of the surrounding cells. In the 
following two of the metrics provided by Knupp’s MESQUITE library are used to show the 
comparability of the generated grids in the sense of self-similarity for a family of grids. 

Figure 3 shows the histogram of the variations of the “local size” quality metric for the 
three generated meshes around the Boeing CRM. A value of one indicates that all elements 
surrounding a grid node have the same size. The counts of grid nodes in the histogram are 
normalized by the number of overall grid points and are plotted on a logarithmic axis to more 
precisely inspect the behavior of the different grid levels at values of the lower quality metric 
values. The figure shows that the distributions of the “local size” quality metric is nearly 
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identical for all three mesh levels indicating that the characteristics of the grid are not 
depending on the grid size in this respect.  
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Figure 3: histograms of local size variation of the cells around a grid node for three mesh levels of the grids 
around the Boeing CRM. 

Figure 4 shows a histogram for the vertex based condition number, which is an average of 
the condition numbers of the Jacobians of the elements surrounding a grid node. Since the 
targeted meshes are anisotropic high values of are expected since the value directly reflects 
the anisotropy of the grid. The histogram shows that the generated grids show similar 
distributions of anisotropy in the mesh and therefore the needed self-similarity.  
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Figure 4: Histogram of the vertex based condition number variation for three mesh levels of the grids around the 
Boeing CRM. 

 
Another important indicator of the suitability of a grid for CFD is the local number of 

neighbors to a grid node. Meshes often degrade the simulation quality by having local hot-
spots of the neighboring node count. Especially hybrid meshes where the anisotropy of quasi-
structured cells is not respected can have up to 200 neighboring nodes and the flux 
computations are comprised by this. Figure 5 shows the distribution of the number of 
neighboring nodes and – again – shows that the characteristics of the three mesh levels are 
very similar. 
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Figure 5: Histogram of the variation of the number of neighbors of a grid node for three mesh levels of the grids 
around the Boeing CRM. 

3.2 Grid convergence assessment 
The assessment of the grid convergence is calculated using the DLR TAU-code [12], a 

second order finite volume CFD solver. The assessment is made based on overall 
aerodynamic characteristics and on the contributions of local parts to show the suitability of 
the mixed mesh approach for such studies in global and local effects. Data for comparison is 
included from wind tunnel tests in the NASA National Transonic Facility [13] and from the 
result of the 5th AIAA Drag Prediction Workshop (DPW5) [14]. 
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Figure 6: Grid convergence of the total drag coefficient compared to experimental data and the average of CFD 
calculations performed for the 5th AIAA Drag Prediction Workshop. 
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Figure 6 shows the grid convergence of the overall drag coefficient compared to 
experimental data and the average result of DPW5. The value of the drag coefficient is plotted 
against the inverse of the number of nodes to the power of two-third, according to the 
Richardson extrapolation for 2nd order CFD codes. Along with the average the standard 
deviation of the CFD results is shown by error bars. It should be highlighted that the error bar 
is also derived from the values obtained by Richardson extrapolation to infinite grid density. 
It is worth to highlight that for the presented meshing strategy already the medium mesh is 
only slightly off the standard deviation of the CFD calculations and the extrapolated value of 
the drag coefficient (CD = 0.0250) is only 0.4% off the experimental value. The comparison of 
the drag coefficients for the distinct grid refinements shows a slight deviation from the 
theoretical 2nd order behavior of the CFD method. 
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Figure 7: Grid convergence of the pitching moment coefficient and the angle of attack. 

Figure 7 shows the grid convergences of the pitching moment coefficient and the angle of 
attack to obtain a lift coefficient of CL = 0.5. Experimental data is omitted here, since already 
in the description of DPW5 a large deviation between CFD and experiment was observed. An 
evaluation of the CFD results similar to the analysis of the drag coefficient is not available, 
but from the data available it is confirmed that both characteristics fall well into the scatter of 
CFD results. The pitching moment shows a similar accordance to the 2nd order trend as the 
drag coefficient, while the angle of attack shows a larger deviation form a 2nd order behavior. 

There are in a first view two aspects that can be addressed to more deeply analyze the 
slight deviation from the theoretical grid convergence in order to see whether the mesh 
sequence is well suited for the grid convergence study. First, it is worth to differentiate 
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between the partial contributions the total aircraft drag is composed from. Figure 8 shows the 
grid convergence of the drag coefficient separated into pressure and viscous parts. Comparing 
the trend lines against the distinct values there is no obvious difference in the behavior 
between the two principal contributors to the overall drag coefficient. This result is especially 
important to conclude on the meshing strategy to generate the grid family. The grid 
refinement regarding the structured and quasi-structured parts to resolve the viscous layers of 
the flow behave the same way, otherwise the grid convergence of the distinct contributions to 
the drag coefficient would show a behavior different from the pressure part. 
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Figure 8: Grid convergence of the drag coefficient divided into pressure and viscous parts. 

The second influence to analyze concerns the contribution of the different model bodies to 
the overall drag estimate. In terms of the meshing strategy this reflects the choice of 
structured hexahedrons or quasi-structured prisms. Figure 9 shows the drag split for the two 
bodies, wing and fuselage respectively. As formerly described, the wing surrounding aside the 
most outboard wingtip is meshed with structured hexahedrons including the wake of the win 
while the fuselage is covered by layers of prismatic cells. The figure shows that the deviation 
from the ideal 2nd order trend line is significantly larger for the fuselage body, while the wing 
is very close to the 2nd order behavior. This result is not as astonishing as the grid conformity 
between grid levels can be easily achieved for the structured parts, which includes the 
complete structured mesh parts as well as the quasi-structured direction of the prism stacks. 
So this result is not contradictory to the missing influence of the mesh type on the previous 
shown differentiation between pressure and viscous parts. The behavior observed here 
highlights that the self-similarity is already limited to some extent within the surface 
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triangulation of the body. 
The behavior observed for the drag coefficient is even more pronounced regarding the 

contributions of the different bodies to the pitching moment coefficient shown in Figure 10. 
For the contribution of the wing the grid convergence shows a nearly exact 2nd order behavior. 
It can be therefore concluded that the deviation from the theoretical order can be attributed 
mainly to the contribution of the fuselage. This confirms the observations obtained for the 
drag coefficient even more pronounced.  
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Figure 9: Grid convergence of the drag coefficient separated to contributions of wing and fuselage. 

It can be concluded that the formal conformance of grid levels for a grid family can be 
obtained by the presented meshing approach, but special attendance must be paid to the 
unstructured parts of the mesh. The generated mesh family fulfills the requirements for a grid 
convergence study. The results confirm that a basic recommendation for the grid size require 
that the number of surface element and unstructured tetrahedrons scale with a power of 2 
between the grid levels, while the number of structured and quasi-structured elements scale 
with the power of 3 depending on the refinement ratio. 

4 CONCLUSIONS 
The mixed meshing approach allows for the generation of mesh families for the assessment 

of grid convergence behavior of CFD solvers. The use of block-structured cells in near wall 
regions inherently possesses this capability. The derivation and usage of an adjacent smooth 
anisotropic metric field for the flow field triangulation promotes the self-similarity of the 
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structured part of the mesh into the unstructured part. Nevertheless, the result obtained for the 
differentiation between wing and fuselage indicates that the appropriate meshing of the 
fuselage is not negligible for the accuracy of the CFD simulation of wing body 
configurations. 
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Figure 10: Grid convergence of the pitching moment coefficient separated to contributions of wing and fuselage 
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Abstract. One of the major computational burdens in the application of adjoint tech-
niques to time-dependent nonlinear problems is the need to store the full forward ap-
proximation to define the adjoint of the linearized forward problem and to evaluate the
dual-weighted residual [1, 2]. An approach for mitigating the storage cost is checkpoint-
ing, whereby the forward solution is stored at a series of carefully selected time nodes.
During an adjoint computations these checkpoints are used to reconstruct the forward
solution, recomputing on each subinterval as needed. A notable implementation of the
checkpointing scheme is the REVOLVE [3] algorithm. This method minimizes the num-
ber of recomputations of the forward solution at any timestep allowing for a fixed storage
budget and fixed number of time steps. Recent versions of this algorithm permit a varying
number of timesteps with bounded maximum number of recomputations, albeit with a
slowly growing storage cost [4]. These approaches successfully reduce the storage cost
when the exact solution to the forward problem is required. However, the cost of recom-
puting the forward solution may be to great of a burden for some applications.

We relax the assumption that the computed forward solution is needed to evaluate
the adjoint when used in goal-oriented error estimation. We show that the accuracy of
the forward solution has limited effect on the accuracy of the error estimate, and use
this to develop a method for approximation of the forward solution that gives reasonably
good error estimates. To this end, a number of data compression algorithms are proposed
where the storage cost of the approximate foward solution is small compared to storing
the exact forward solution. Yet the accuracy of the resulting error estimates are of good
quality and no recomputations of the forward solution are required.
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Abstract. Many tumor-growth phenomena can be considered as multiphase problems.
Employing the continuum theory of mixtures, phase-field tumor-growth models can be
derived with diffuse interfaces. The chosen form of the Helmholtz free-energy leads to
equations of the Cahn-Hilliard type. Such nonlinear fourth-order partial-differential equa-
tions are time-dependent, and their solutions exhibit alternating fast and slow variations
in time. It is therefore of prime importance to use adaptive time-stepping to efficiently
simulate the entire dynamics of the system [5].
In this contribution, we consider a thermodynamically consistent four-species model of
tumor growth in which the energy is non-increasing and total mass is conserved [6]. In
order to inherit these two main characteristics of the system at the discrete level, we pro-
pose a gradient-stable time-stepping scheme with second-order accuracy [8]. Mixed finite
elements are used for spatial discretization. For this discretization, we discuss various
adaptive time-stepping strategies in time. Furthermore, we present illustrative numerical
results.

1 INTRODUCTION: DIFFUSE-INTERFACE TUMOR-GROWTHMODEL

We consider the diffuse-interface tumor-growth model proposed in Hawkins-Daarud,
van der Zee and Oden [6] of the form:

1

705

lacan
Rectangle



X. Wu, G.J. van Zwieten, K.G. van der Zee, and G. Simsek

find (u, µu, n, µn) such that

ut = ∆µu + P (u)(µn − µu) for (x, t) ∈ Ω× (0, T ]

µu = −ε2∆u+ Ψ′(u) for (x, t) ∈ Ω× (0, T ]

nt = ∆µn − P (u)(µn − µu) for (x, t) ∈ Ω× (0, T ]

µn =
n

δ
for (x, t) ∈ Ω× (0, T ]

∇u · n = ∇µu · n = ∇µn · n = 0 for x ∈ ∂Ω× (0, T ]

u(x, 0) = u0, n(x, 0) = n0 for x ∈ Ω

where u represents the phase of tumor and at the same time serves to model the interface,
n denotes the phase of nutrients, µu and µn are the chemical potentials corresponding to
u and n, respectively, and P (u) ≥ 0 is a nonnegative proliferation function defined as

P (u) :=

{
δP̂ (1− u2) u ∈ [−1, 1]

0 otherwise
(1)

with δ > 0 and P̂ ≥ 0. It is assumed that the domain Ω is a bounded subset of Rd with
d = 1, 2 or 3, with Lipschitz boundary ∂Ω. For the sake of simplicity we consider natural
boundary conditions, and constant mobility and diffusion (equal to 1). Furthermore, we
do not consider chemotaxis; see [6] for details on chemotaxis.

The nonlinear free-energy density function Ψ(u) is a double well potential. We consider
the following C2,1-continuous Ψ:

Ψ(u) :=


(u+ 1)2 u < −1

1

4
(u2 − 1)2 u ∈ [−1, 1]

(u− 1)2 u > 1

(2)

Notice that when P̂ = 0, the system decouples in a Cahn-Hilliard and a diffusion equation.

2 ENERGY DISSIPATION AND MASS CONSERVATION

The total free energy of the tumor-growth model is defined as

E(u, n) :=

∫
Ω

(
ε2

2
|∇u|2 + Ψ(u) +

1

2δ
n2

)
(3)

Similar to the Cahn–Hilliard equation, the tumor-growth model dissipates the total free
energy:

d

dt
E(u(t), n(t)) = −‖∇µu‖2 − ‖∇µn‖2 −

∫
Ω

P (u)(µn − µu)2 ≤ 0

2
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which is proved in [6]. Furthermore, the total “mass” is conserved, i.e.

d

dt

∫
Ω

(u+ n) dx =

∫
Ω

(∆µu + ∆µn)dx =

∫
∂Ω

(∇µu · n +∇µn · n)dS = 0

where we employed the homogeneous Neumann boundary conditions.

3 SECOND-ORDER ACCURATE SCHEME

Many problems of interest in the physical and engineering sciences require the under-
standing of dynamical features which evolve over long-time periods. However, most of
standard time-stepping schemes are conditionally energy stable in the sense that the free
energy is dissipated at the discrete level only for small enough time steps. This stability
issue is the motivation for a large amount of literature on the development of schemes
that are provably energy-stable.

Here, we focus on the time-discretization. Therefore we present our ideas without
discretizing in space. Of course, one may obtain fully discrete schemes by using finite-
difference of finite-element methods in space.

Elliott and Stuart [2, Eq. (5.4)] and Eyre [4] proposed a first-order accurate uncondi-
tional energy-stable scheme for gradient-flow systems based on the splitting of E into a
convex (contractive) and concave (expansive) part, i.e.

E = Ec − Ee

where both Ec and Ee are convex.
Following the same idea of energy splitting, we propose in [8] a unconditionally energy-

stable second-order time-accurate schemes for the tumor-growth model as follows:

uk+1 − uk
τ

= ∆µ̃u + P̃k+1/2(µ̃n − µ̃u) (4a)

µ̃u = Ψ̃′(uk, uk+1)− ε2∆
uk+1 + uk

2
− α1τ∆(uk+1 − uk) + α2τ(uk+1 − uk) (4b)

nk+1 − nk

τ
= ∆µ̃n − P̃k+1/2(µ̃n − µ̃u) (4c)

µ̃n =
nk+1 + nk

2δ
(4d)

where

P̃k+1/2 := P

(
3

2
uk −

1

2
uk−1

)
(5)

Ψ̃′(uk, uk+1) = Ψ′c,k+1 −
uk+1 − uk

2
Ψ′′c,k+1 −Ψ′e,k −

uk+1 − uk
2

Ψ′′e,k (6)

This scheme is a modification of the Crank-Nicolson method which includes splitting,
stabilization and extrapolation. In particular Ψ̃′(uk, uk+1) is a novel second-order accurate

3
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splitting employing an implicit Taylor expansion of the convex part Ψ′c and an explicit
Taylor expansion of the concave part Ψ′e. The α1-stabilization is an artificial diffusivitiy,
while the α2-stabilization can be thought of as artificial convexity. Furthermore, we apply
the extrapolation technique for the treatment of P (u), which allows the scheme to be linear
(for quadratic Ψc(u)). The initial step of the scheme done by setting u−1 = u0.

We summarize the properties of the above scheme in the following theorem, whose
proof can be found in [8].

Theorem: Let the free energy density Ψ be C2,1-continuous and have a convex splitting
Ψ = Ψc−Ψe with C2,1-continuous Ψc and Ψe and finite second derivatives, i.e., |Ψ′′c | ≤ Lc

and |Ψ′′e | ≤ Le for some constants Lc, Le ≥ 0. Let the proliferation function P be C0,1-
continuous and satisfy 0 ≤ P ≤ P̄ . If the stabilization is large enough, i.e. α1 ≥
(Lc + Le)

2/16 and α2 ≥ P̄ (Lc + Le)
2/16, then the time-stepping scheme (4) has the

following properties:

1. Unconditional energy-stability: E(uk+1, nk+1) ≤ E(uk, nk)

2. Total mass conservation:

∫
Ω

(uk+1 + nk+1)dx =

∫
Ω

(u0 + n0)dx

3. Second-order accuracy.

Remark: Variable mobilities can also be considered in the tumor-growth model. If they
are treated by extrapolation similar to [8], then this theorem also holds, but with the
constraint:

α1 ≥ M̄(Lc + Le)
2/16

4 ADAPTIVE TIME-STEPPING

In our talk we will consider various adaptive time-stepping strategies: a classical indi-
cator, a comparison indicator and a goal-oriented indicator:

• Classical indicator: ‖uk+1 − uk‖ ≤ TOL
The classical adaptive method has been studied and discussed by Johnson in [7],
and extended in the context of parabolic problems by Eriksson et al in [3]. The
indicator is based on the a posteriori error estimate in [3], controlling the size of the
Galerkin discretization error.

• Comparison indicator: ‖u1st
k+1 − u2nd

k+1‖ ≤ TOL
Based on the optimal a priori error estimates for a class of one-step methods, the
idea of the comparison with a higher order method has been discussed by Johnson
in [7]. The adaptive strategy is to compare the result between our second-order
accurate scheme and the first order accurate scheme in [6]. If the value of the
indicators is larger than some tolerance, we refine the time step size.
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• Goal-oriented indicator
A blockwise adaptive approach using adjoint solutions for time-dependent problems
has been developed by Carey et al in [1]. Here, we will apply the same idea to time
adaptvity, and develop the adjoint-based estimator for the tumor-growth model.
Since energy-dissipation is of significant importance, this is selected as our quantity
of interest.

We demonstrate that, in various cases, the computing time is reduced by more than one
order of magnitude compared to constant time steps.
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e-mail: zboi@imp.gda.pl

†University of Warmia and Mazury
Faculty of Technical Sciences

11 Oczapowskiego Street, 10-719 Olsztyn, Poland

Key words: A Posteriori Error Estimation, Equilibrated Residual Method, hp-Approxi-
mation, Complex Structures

Abstract. This paper recalls our previous research on adaptive modeling and analysis of
structures of complex mechanical description. Such complex description results from the
application of at least two different models for the structure mechanical characterization.
The geometry of the structures can be either complex, i.e. composed of solid, shell
and transition parts, or simple – with one geometrical part employed. The numerical
models applied in such structures’ adaptive modelling and analysis is based on 3D-based
hierarchical modelling and hierarchical hp-approximations. The corresponding control
of the model and discretization adaptivities takes advantage of the a posteriori error
estimation, which is based on the equilibrated residual method (ERM). The method is
generalized for the special needs of 3D-based hierarchical models, and is applied to the
assessment of the total and approximation error estimators/indicators. The modelling
error indicators are obtained as the differences between their total and approximation
counterparts. The necessary modifications of the original ERM are the first subject of
this paper. These modifications concern both theoretical and implementation aspects.
The second subject presented in this paper concerns the parametric studies of the global
estimators or indicators of the total, modeling, and approximation error components.
Various factors affecting effectivity of the estimation are taken into account.
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1 INTRODUCTION

The paper completes our hitherto theoretical research efforts concerning the a posteri-
ori error estimation in the case of complex structures. Such structures include at least two
different mechanical models (theories) applied in mechanical characteristics of the struc-
ture. Within such structures we apply 3D-based approach utilizing only three-dimensional
degrees of freedom. The 3D-based models for complex structures were presented in [1, 2].
The considered estimation method for such models is based on the equilibrated residual
approach (ERM) [3] and is applied to the assessment of the global, total and approxima-
tion errors. The global modeling error is obtained as a difference of the former two errors.
The results from the a posteriori error estimation are assigned for adaptivity control of
hierarchical modeling and adaptive analysis of solid mechanics problems. These problems
may correspond to either simple or complex mechanical description.

The global modeling error estimate and the element contributions to it allow for the
adaptive hierarchical modeling within first order shell, hierarchical shell and the corre-
sponding transition (either shell-to-shell or solid-to-shell) domains of the complex struc-
tures. Both, the change of the mechanical model or q-adaptivity are possible – with q

denoting the transverse order of approximation within the hierarchical shell models. In
the recalled approach also adaptive 2D, 3D or mixed (2D/3D) hp-approximations are
possible in the shell, solid and transition domains of the complex structures, respectively,
with h standing for the averaged element dimension and p denoting the longitudinal or
three-dimensional order of approximation. The element contributions to the estimated
global approximation error serve these two types (h and p) of adaptivity.

Taking the above context into account, it is very important to have the estimation
method which can satisfy the specific needs of the complex structures 3D-based modeling
and analysis and delivers sufficiently accurate estimated values of the global errors, and
acceptable element contributions to them as well. In order to satisfy the mentioned
needs we adopt the existing algorithms of the equilibrated residual method. So far the
method was applied to either the approximation error estimation within three-dimensional
elasticity [4] or the total error estimation of the conventional hierarchical shell models
[5, 6]. Also the approximation error estimation for the 3D-based first-order shell models
is available [1, 7, 8]. Here we extent the application of the residual equilibrated method
onto the estimation of the total error of the 3D-based first-order shell model, as well
as the estimation of the total and approximation errors of the 3D-based hierarchical
shell and transition models, both skipped in our previous works. In particular we show
how to apply this method to the 3D-based (constrained) shell model of the first order
and the corresponding constrained transition models as well. Such an application needs
different equilibration procedure than the three-dimensional equilibration applied to the
3D-elasticity or hierarchical shells, where the equilibration is performed in the global
directions. The adopted approach requires introduction of the local nodal coordinate
systems, and different treatment of the constrained and unconstrained directions. Note
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that some key aspects of this approach were presented in [9]. The present paper provides
readers with some additional, theoretical and algorithmic, remarks or hints which were
not published in the cited paper.

In order to assess the quality of the equilibrated residual method we compare three
versions of the method. The differences between them result from the different definitions
of the element local problems in these three versions. The collection of solutions to
such problems constitutes the estimate of the exact global solution. In the first of the
applied versions, we average the interelement stress fluxes. In the second case we perform
linear (at the element vertex nodes) equilibration of these fluxes. In the third version
we constrain local problems at element vertices by means of the displacement values
obtained from the global numerical solution. Then, for the most effective case (the third
one), we perform unique parametric studies of the modeling, approximation and total
error estimations. These studies include such important factors as: the problem type, the
applied mechanical model, and the mechanical complexity of the model. Our studies are
completed with an analysis of the results. This analysis leads to practical hints concerning
the appropriate definitions of the local problems, so as to assure the most effective error
estimation within complex structures. Note that the numerical results presented here
illustrate some of the tabular data published in [9].

2 MODIFICATION OF THE ERM FOR COMPLEX STRUCTURES

In order to apply the equilibrated residual methods (ERM) to the 3D-based models of
complex structures, one has to include the following changes.

Firstly, the equilibration procedure has to be performed in the local nodal directions for
the shell vertex nodes of the shell elements (see [7, 9]) and such nodes of the shell parts of
the transition elements as well (compare [9]). These nodal directions are consistent with
the shell mid-surface normal and tangent directions. In the normal direction different
shape function definition has to be applied in the equilibration procedure so as to take into
account the Reissner-Mindlin kinematic constraints of lack of elongation of the normals to
the mid-surface. In the case of the solid nodes of the solid or hierarchical shell elements,
and in such nodes of the solid or hierarchical shell parts of the solid-to-shell or shell-to-
shell transition elements as well, the equilibration can be performed in the standard way
[1, 3, 4], i.e. in the global directions. The standard 3D vertex shape functions are applied
in this case.

And secondly, in the local ERM problems of the elements of the regular meshes, the
nodal forces due to the equilibrated interelement stress fluxes have to be defined as global
ones. In the case of the solid nodes, one can use the global splitting factors and global
components of the interelement stresses for these forces determination. The applied shape
functions are 3D vertex ones. On the contrary, in the case of the shell nodes, one has to
utilize the local splitting factors and local components of the interelement stresses. One
may apply the same shape functions as before, apart from the third local direction, where
one has to apply the modified vertex shape functions, accounting for the Reissner-Mindlin
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constraints. Finally, the products of the local factors and stresses have to be transformed
to the global system of coordinates.

In the case of the irregular meshes, resulting from the local element subdivisions,
one has to take into account that for the hanging (constrained) vertex nodes of the
element obtained with the subdivision, the splitting factors are expressed through the
corresponding factors of the vertex unconstrained (active) nodes of the undivided parent
(or neighbouring) element. Examples of the corresponding relations, for the solid nodes,
in the case of 2D- and 3D-problems, can be found in [4, 10] and [1], respectively. In this
paper we extend this approach onto the shell nodes of the first-order shell and transition
elements.

3 PARAMETRIC STUDIES OF THE ESTIMATORS

Here we take advantage the benchmark examples used by us elsewhere [1, 2, 9]. The
first two examples concern a bending-dominated plate and a bending-dominated half-
cylindrical shell. Both structures are aligned horizontally. The third example corresponds
to a membrane-dominated cylindrical shell. The length of straight edges of the plate
and shells are equal to 2l = 3.14 · 10−2 m, the curved edges of the shells are equal to
2l = πr = 3.14 · 10−2 m, with r = 1.0 · 10−2 m. The thickness of the structures equals
t = 0.15 · 10−2 m. The plate is clamped. Also the straight edges of the first shell are
clamped, while the curved ones are free. There is no rotation along the curved edges of
the second shell. The two bending-dominated examples are loaded vertically with the
uniform traction p = 4.0 · 104 N/m2, while the membrane-dominated shell is loaded with
the internal pressure of the same magnitude. Due to the symmetry of the geometry,
loading and boundary conditions we analyse only a quarter of the bending-dominated
structures and one-eighth of the membrane-dominated one.

3.1 Dependence of effectivities on the local problem definition

We analyze the residual method local problems of three types in this section. In figs. 1
and 2 we present the results obtained with averaging of the interelement stresses, for two
definitions of the discretization parameters H, P and Q in the local problems. Here H, P

and Q are the local problem counterparts of the global parameters h, p and q. The first
definition is: H = h, P = p, Q = q + 1, while the second one reads: H = h, P = p + 1,
Q = q + 1. Subsequently, figs. 3 and 4 correspond to equilibration of the interelement
tractions in the local problems for the two definitions, while figs. 5 and 6 correspond
to constraining the vertex nodes of the elements with the values of displacements from
the global problem. Note that in the first four cases the elements are constrained with
six global displacements so as to remove three rigid body translations and three rigid
body rotations. The presented results concern the approximation, modeling and total
global error effectivity indices and correspond to the plate example. The calculations
were performed for the hierarchical shell model MI of the second order (I ≡ q = 2) and
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Figure 1: Effectivity indices in the case of stress averaging (H = h, P = p, Q = q + 1)
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Figure 2: Effectivity indices in the case of stress averaging (H = h, P = p + 1, Q = q + 1)

the uniform mesh division into 2m2 prismatic elements (m ≡ l/h = 3).
Analyzing all of the presented results, one can notice the worsening of the approxi-

mation error effectivity indices with low values of p. Also high values of p lead to worse
values of the approximation error effectivities. This two observations can be related to the
presence of the numerical locking for p = 2 and the influence of the boundary layer phe-
nomena for p ≥ 6, respectively. Please note that the total and modelling error effectivities
are affected by the locking phenomenon only.

The second observation is that, even though the equilibration delivers better effectivi-
ties than the averaging, neither the averaging nor the equilibration provide the satisfactory
results of the residual-based global error estimation, as the effectivity indices are far above
the desired value of 1.0. The best results are obtained for the constraining the local prob-
lems with the global displacements, with H = h, P = p + 1 and Q = q + 1. Because of
that, our further numerical tests will be limited to this particular case.
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Figure 3: Effectivity indices in the case of stress equilibration (H = h, P = p, Q = q + 1)
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Figure 4: Effectivity indices in the case of stress equilibration (H = h, P = p + 1, Q = q + 1)

3.2 Influence of the problem type on effectivities

In order to determine the influence of the problem type (plate or shell, bending or
membrane dominance) on effectivities we compare the corresponding results for the plate
(the bending-dominated one), the bending-dominated shell, and the membrane-dominated
shell as well. In the latter case we consider two problems, corresponding to hierarchical
shell models MI of the first (I ≡ q = 1) and second (I ≡ q = 2) order, as for the
membrane-dominated structures the improper solution limit phenomenon does not ap-
pear. In the case of the two bending-dominated examples only I ≡ q = 2 is possible,
because of this phenomenon appearance. In all examples we apply m = 4. The results,
corresponding to the four respective cases, are presented in figs. 7, 8, 9 and 10.

Analyzing the results one can notice that for the bending- and membrane-dominated
shell examples the approximation error effectivity is worse than for the plate. Only, the
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Figure 5: Effectivity indices in the case of vertex constraints (H = h, P = p, Q = q + 1)

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

order p

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

g
lo

b
a
l 
e

rr
o

rs
 e

ff
e

c
ti
v
it
y

M=MI, I=2
t=0.15e-2

m=3

total error

approximation error

modeling error

 

Figure 6: Effectivity indices in the case of vertex constraints (H = h, P = p + 1, Q = q + 1)

bending-dominated shell example is sensitive to the locking (p = 2, 3) and boundary
layer phenomena (p ≥ 6), in the way qualitatively similar to the plate example. Both
membrane-dominated examples produce similar results. No influence of the locking and
the boundary layer is observed.

3.3 Influence of the model on effectivities

Here we compare the results presented in the previous subsection, corresponding to
our three model problems and 3D-based hierarchical shell model MI, with the analogous
results obtained for the 3D-based Reissner-Mindlin model RM of the plate and shells.
The respective results for m = 4, in the case of the plate and bending- and membrane-
dominated shells are shown in figs. 11, 12, 13, respectively.

It can be noticed that the RM model results are less sensitive to the locking phe-
nomenon for the applied density of the mesh, due to better regularity of this model in
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Figure 7: Plate problem effectivities versus the order p (M = M2, t = 0.15 · 10−2 m)
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Figure 8: Half-cylindrical shell problem effectivities vs. p (M = M2, t = 0.15 · 10−2 m)

comparison to the hierarchical MI model. Moreover the influence of the boundary lay-
ers is not present for this model. This observation is consistent with the theory for the
Reissner-Mindlin model.

The second observation is that in the case of the two bending-dominated examples the
total and modeling error effectivities are below 1.0 and equal to about 0.8.

3.4 Effectivities versus model complexity

In this subsection we introduce complex mechanical description of our plate and shell
examples. This means that the hierarchical shell model MI (I ≡ q = 2), the first-
order shell model RM (q = 1) and the 3D-based shell-to-shell transition model MI/RM

(q = 1, 2) are employed for each model structure. In the case of the plate, the RM square
domain is symmetric and located in the interior of the plate. The lengths of a quarter of
this domain are equal to lRM = l/2. In the case of the bending-dominated half-cylindrical
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Figure 9: Cylindrical shell problem effectivities versus p (M = M2, t = 0.15 · 10−2 m)
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Figure 10: Cylindrical shell problem effectivities versus p (M = M1, t = 0.15 · 10−2 m)

shell, the MI zone is aligned along the straight clamped boundary of the shell. The
curved boundary of a quarter of the shell is divided by two, i.e. lRM = l/2 = πr/4. In the
case of the membrane-dominated shell, the straight boundary of one-eighth of the shell
is divided by two, i.e. lRM = l/2, and the MI zone is aligned along the external curved
boundary of the shell. The MI zones of the plate and shells are joined with the RM

zones with one layer of the transition elements MI/RM , forming the transition domain
TR.

Comparing the complex models’ results, presented in figs. 14, 15, 16 and 17, with
the corresponding results for the pure MI models (figs. 7, 8, 9 and 10), one can see
their close similarity. The only difference is that now, in the case of the two bending-
dominated examples, the total and modeling error effectivities are slightly below 1.0, due
to the presence of the RM zones in the complex models of the structures.
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Figure 11: Plate problem effectivities versus the order p (M = RM , t = 0.15 · 10−2 m)

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

order p

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

g
lo

b
a
l 
e

rr
o

rs
 e

ff
e

c
ti
v
it
y

M=RM, q=1
p=var, m=4
t=0.15e-2

total error

approximation error

modeling error

 

Figure 12: Half-cylindrical shell effectivities versus p (M = RM , t = 0.15 · 10−2 m)
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Figure 13: Cylindrical shell problem effectivities versus p (M = RM , t = 0.15 · 10−2 m)
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Figure 14: Plate problem effectivities versus p (TR = M2/RM , t = 0.15 · 10−2 m)
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Figure 15: Half-cylindrical shell effectivities versus p (TR = M2/RM , t = 0.15 · 10−2 m)

4 CONCLUSIONS

The theoretical findings, which concern the algorithms of the residual-based error es-
timation of the structures of 3D-based complex mechanical description, are as follows.

- The equilibration procedure, proposed in the case of the complex structures, needs
distinction between the solid and shell vertex nodes, as in the latter case the ap-
plication of the modified shape functions, which account for the Reissner-Mindlin
constraints, is necessary. Also the application of the local directions, perpendicular
and tangent to the shell mid-surface, is necessary in this case.

- The definitions of the vertex nodal forces, entering the ERM local problems and
representing the equilibrated interelement stress fluxes, are also dependent on the
vertex node type. In the case of the shell nodes, the local directions and the modified
shape functions are applied again.
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Figure 16: Cylindrical shell problem effectivities vs. p (TR = M2/RM , t = 0.15 · 10−2 m)

1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

order p

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

g
lo

b
a
l 
e

rr
o

rs
 e

ff
e

c
ti
v
it
y

M=MI/RM, I=1, q=1/1
p=var, m=4
t=0.15e-2

total error

approximation error

modeling error

 

Figure 17: Cylindrical shell problem effectivities vs. p (TR = M1/RM , t = 0.15 · 10−2 m)

- In the case of the element local problems with hanging (constrained) nodes, the
splitting functions and factors are expressed with the corresponding factors of the
bigger undivided elements. The distinction between the solid and shell nodes may be
in use again, i.e. both the local and global splitting factors may enter the calculation
of the forces acting in the element vertex hanging nodes. Such complex situations
happen for the h-refined transition elements.

The conclusions, concerning parametric studies of the error estimation with the element
residual methods, can be formulated as follows.

- The version of the element residual method based on the constraints defined with
the global problem vertex displacements, with H = h, P = p+1, Q = q +1 applied
in the local element problems, delivers the effectivity results closest to the desired
value of 1.0. This version is better than the two approaches based on the averaging
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or equilibration of the interelement stresses in the local problems.

- In the case of this constrained version of the ERM local problems, all three global
effectivities are above 1.0 for the purely hierarchical models MI of the structures.
In the case of the bending-dominated RM and complex models of the structures,
the total and modelling error effectivities are below 1.0.
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Numerical   Modeling   and   Simulation   is   increasingly   used   as   a   complement  

engineering   applications.   However,   after   more   than   thirty   years   of   worldwide  
research  efforts  around  Adaptive  Modeling  and  Simulation,  the  problem  of  properly  
assessing  and  controlling   the  quality  of   the  numerical   solutions   is   still   relevant,  
as  the  design  of  sophisticated  engineering  systems  requires  increasingly  complex  
and  coupled  modeling,  which  leads  to  increasingly  time-consuming  computations.  

coherent  coupling  of  different  scales  and  mechanisms  in  a  unique  model,  are  more  
strategic  and  indispensable  than  ever.
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