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Abstract. A new technique for efficiently solving parametric nonlinear reduced order
models in the Proper Generalized Decomposition (PGD) framework is presented here.
This technique is based on the Discrete Empirical Interpolation Method (DEIM)[1], and
thus the nonlinear term is interpolated using the reduced basis instead of being fully
evaluated. The DEIM has already been demonstrated to provide satisfactory results in
terms of computational complexity decrease when combined with the Proper Orthogonal
Decomposition (POD). However, in the POD case the reduced basis is a posteriori known
as it comes from several pre-computed snapshots. On the contrary, the PGD is an a priori
model reduction method. This makes the DEIM-PGD coupling rather delicate, because
different choices are possible as it is analyzed in this work.

1 INTRODUCTION

The efficient resolution of complex models (in the dimensionality sense) is probably
the essential objective of any model reduction method. This objective has been clearly
reached for many linear models encountered in physics and engineering [2, 3]. However,
model order reduction of nonlinear models, and specially, of parametric nonlinear mod-
els, remains as an open issue. Using classic linearization techniques such Newton method,
both the nonlinear term and its Jacobian must be evaluated at a cost that still depends on
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the dimension of the non-reduced model [1]. The Discrete Empirical Interpolation Method
(DEIM), which the discrete version of the Empirical Interpolation Method (EIM) [4], pro-
poses to overcome this difficulty by using the reduced basis to interpolate the nonlinear
term. The DEIM has been used with Proper Orthogonal Decomposition (POD) [5, 1]
where the reduced basis is a priori known as it comes from several pre-computed snap-
shots. In this work, we propose to use the DEIM in the Proper Generalized Decomposition
(PGD) framework [5, 6], which is an a priori model reduction technique, and thus the
nonlinear term is interpolated using the reduced basis that is being constructed during
the resolution.

2 DEIM-based PGD FOR NONLINEAR MODELS

Consider a certain model in the general form:

L(u) + FNL(u) = 0 (1)

where L is a linear differential operator and FNL is a nonlinear function, both applying
over the unknown u(x),x ∈ Ω = Ω1 × . . . × Ωd ⊂ Rd, which belongs to the appropriate
functional space and respects some boundary and/or initial conditions. Using the PGD
method implies constructing a basis B = {φ1, . . . , φN} such that the solution can be
written as:

u(x) ≈
N∑
i=1

αi · φi(x)

where αi are coefficients, and

φi(x) = Pi1(x1) · . . . · Pid(xd) , i = 1, . . . , N

being Pij(xj), j = 1, . . . , d, functions of a certain coordinate xj ∈ Ωj. In the linear case,
the basis B can be constructed sequentially by solving a nonlinear problem at each step
in order to find functions Pij. In the nonlinear case a linearization scheme for Eq. (1)
is compulsory, but evaluating the nonlinear term is still as costly as in the non-reduced
model. The DEIM method proposes to circumvent this inconvenient by performing an
interpolation of the nonlinear term using the basis functions. In a POD framework, these
functions come from the precomputed snapshots, but in a PGD framework these functions
are constructed by using the PGD algorithm. Here we propose to proceed as follows:

1. Solve the linear problem: find u0 such that L(u0) = 0 → B0 = {φ0
1, . . . , φ

0
N0
}

2. Select a set of points X 0 = {x0
1, . . . ,x

0
N0
}. Later on we explain how to make an

appropriate choice.

3. Interpolate the nonlinear term FNL using functions B0 in the points X 0. Or in other
words, find the coefficients ϕ0

i such as:

FNL

(
u0
m

)
≡ FNL

(
u0(x0

m)
)
=

N0∑
i=1

ϕ0
i · φ0

i (x
0
m) , m = 1, . . . , N0
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The previous equation represents a linear system which will be invertible if B0 is
linearly independent (and it is because it comes from the solution of the linear
problem) and all points of X 0 are different.

4. Once we have computed {ϕ0
1, . . . , ϕ

0
N0
}, the interpolation of the nonlinear term reads:

FNL(u) ≈ b0 = −
N0∑
i=1

ϕ0
i · φ0

i

And therefore, the linearized problem writes:

L(u) = b0 (2)

5. At this point, three options can be thought:

(a) Restart the separated representation, i.e., find u1 such that:

L(u1)− b0 = 0

Applying the PGDmethod we will obtain a new reduced basis B1 = {φ1
1, . . . , φ

1
N1
}.

(b) Reuse the solution u0, i.e. u1 = u0 + ũ. Then, we seek ũ such that:

L(ũ) = b0 − L(u0)

We solve this problem by applying the PGD method, i.e. B̃ = {φ̃1, . . . , φ̃Ñ}
and then B1 = B0 ⊕ B̃ and N1 = N0 + Ñ .

(c) Reuse by projecting. In this case we consider

u0,1(x) =

N0∑
i=1

η0i · φ0
i (x)

which introduced into Eq. (2) allows computing coefficients η0i . Then the
approximation is enriched by considering u1 = u0,1 + ũ. In this case, we seek ũ
such that:

L(ũ) = b0 − L(u0,1)

Once this problem is solved by applying the PGDmethod, i.e. B̃ = {φ̃1, . . . , φ̃Ñ}
and then B1 = B0 ⊕ B̃ and N1 = N0 + Ñ .

6. From this point we repeat the precedent steps: let us assume that we have already
computed uk. Then select a set of points X k = {xk

1, . . . ,x
k
Nk
}, interpolate the non-

linear term using Bk, and find uk+1, until a certain convergence criteria is reached.
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3 ELECTION OF THE INTERPOLATION POINTS

An open question is how to choose the points X k = {xk
1, . . . ,x

k
Nk
}. Consider that a

certain computation step we know the reduced approximation basis:

Bk = {φk
1, . . . , φ

k
Nk
}

Following [1, 4], we consider:
xk
1 = argmax

x∈Ω
|φk

1(x)|

Then we compute c1 from
c1 · φk

1(x
k
1) = φk

2(x
k
1)

which allows defining:
r2(x) = φk

2(x)− c1 · φk
1(x)

from where we can compute the following point, xk
2 as:

xk
2 = argmax

x∈Ω
|r2(x)|

As by construction r2(x
k
1) = 0, we can ensure that xk

1 6= xk
2. This process can be

generalized and thus, if we are looking for xk
j , j ≤ k, the following function can be

constructed:

rj(x) = φk
j (x)−

j−1∑
i=1

ci · φk
i (x)

where coefficients ci, 1 ≤ i ≤ j − 1, need to be computed. It can be done by imposing
that:

rj(x
k
l ) = 0 = φk

j (x
k
l )−

j−1∑
i=1

ci · φk
i (x

k
l ) , l = 1, . . . , j − 1

that constitutes a linear system whose solution results the coefficients ci. And then we
compute the sought point:

xk
j = argmax

x∈Ω
|rj(x)| (3)

It must be pointed out that, in principle, Eq. (3) implies reconstructing the solution,
that is to say, to compute explicitly the functions φk

l , l = 2, . . . , j − 1 from the separated
functions P k

l,s(xs) with s = 1, . . . , d. For l = 1, notice that things are much simpler:

xk
1 =

(
xk
1,1, . . . , x

k
1,d

)
with

xk
1,s = arg max

xs∈Ωs

|P k
1,s(xs)| , s = 1, . . . , d

For l > 1 some simplifying procedures must be defined for avoiding the solution recon-
struction and improve the performance in the multi-parametric case. The analysis of such
procedures constitutes a work in progress.
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4 NUMERICAL EXAMPLE

Aiming to prove the ability of the DEIM-based PGD method for solving nonlinear
problems, we consider the transient heat equation with a quadratic nonlinearity:

∂u

∂t
−∆u+ u2 = 0 , (x, t) ∈ Ω× (0, T ] (4)

being Ω = [0, 1]×[0, 1] ⊂ R2. The initial condition reads u(x, t = 0) = 0 and the boundary
conditions are given by u(x = 0, y = 0, t) = u(x = 1, y = 0, t) = 0 and ∇u ·n (x = 0.5, y =
1, t) = 1. Outside these boundaries, a zero-flux condition is considered.

A space-time separated representation is sought in this case:

u(x, t) =
N∑
i=1

Xi(x) · Ti(t) (5)

We use here the reuse option, that is to say, the reduced basis is enriched without projec-
tion. Using the notation introduced in the previous section the convergence was reached
after the construction of k = 4 reduced bases in which the nonlinear term was inter-
polated, for a relative error less than 1% to the reference solution. However, a relative
error of 0.5% cannot be attained in spite of the number of basis enrichment. The final
solution involved N = 52 functional products φi = Xi(x) · Ti(t). Fig. 1 compares the
time evolution at different locations obtained with the DEIM based PGD and the exact
solution. Then Fig. 2 and 3 depict the four fist space and time modes respectively. From
these results we can conclude on the potentiality of the proposed technology for solving
non-linear eventually multi-parametric models.

5 CONCLUSIONS

This work presents the DEIM-based PGD technique for solving efficiently reduced
nonlinear models. The improvement is achieved by interpolating the nonlinear term using
the reduced basis, computed as usual with the PGD method, instead of performing its
complete evaluation. As the PGD is an a priori model reduction technique, a progressive
reduced basis enrichment must be considered, and thus up to three different choices can
be done: restart the reduced basis, reuse the previous reduced basis by enrichment and
reuse the reduced basis by projecting. A deep analysis of the different alternatives is in
progress.
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Figure 1: Comparison of the DEIM-based PGD solution (on the left) to the FEM reference
solution (on the right), for three different times, t = 0.32, 0.66, 1.00 sec
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Figure 2: First four space normalized modes of the DEIM-based PGD solution
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Figure 3: First four time normalized modes of the DEIM-based PGD solution
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