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Summary. This paper is concerned with establishing the nature of the kinematic instabilities 

that arise in tetrahedral hybrid equilibrium models when the elements are formulated with 

polynomial approximation functions of a general degree. The instabilities are due to the 

spurious kinematic (or zero energy) modes, and these modes are first derived for a single 

element. The paper continues by identifying those spurious modes that can be propagated 

from one element to another via an interface. It is shown that at least three such modes exist 

for all degrees. 

1 INTRODUCTION 

     Hybrid equilibrium elements have been used to generate dual analyses for error estimation 

of conforming models
[1]

. Dual analyses may involve reanalysis of a complete mesh, or may 

involve local analyses of star patches
[2]

. In any event it becomes important to know whether 

spurious kinematic modes associated with hybrid equilibrium models may exist, and if so, 

whether they will affect the dual analyses. These questions have been studied for plate 

elements
[3-5]

. In this paper, we investigate the form taken by spurious kinematic modes for a 

single tetrahedral element of general polynomial degree, and consider the propagation of these 

modes between a pair of adjacent elements of the same degree. The results of this 

investigation should help to determine the general kinematic stability of patches of tetrahedral 

elements
[6,7]

, thereby setting the basis for robust implementations of these approaches.  The 

definition of spurious modes associated with an edge and an interface of an element exploit an 

orthogonal basis of polynomials for a triangular face
[8]

 that are expressed in terms of area 

coordinates. These enable the spurious modes to be generated in a hierarchical fashion which 

takes advantage of cyclic symmetry. 
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2 GENERAL FEATURES OF SPURIOUS KINEMATIC MODES OF TETRAHEDRA 

     Spurious kinematic modes refer to boundary displacements that have the nature of pseudo-

mechanisms and cause no internal stress. They do zero work with admissible boundary 

tractions, which are those that equilibrate with internal stress fields. Displacements of a face 

of a tetrahedron are described by complete polynomials of degree d, and this implies that the 

dimensions of the spaces of displacements and rigid body modes for an element are defined in 

Equation (1). Internal stress fields are described by polynomials of the same degree, and 

complete within the constraints set by equilibrating with zero body forces. In this case the 

dimensions of the stress and hyperstatic stress spaces are given by
[9]

 Equation (2). 

( )( )4 3 0.5 1 2 ;  6v rbmn d d n= × × + + =                                          (1) 

( )( )( ) ( )( ) ( )0.5 1 2 6 ;  0.2 3 2 2  for 2s hypn d d d n d d d d= + + + = − − + >                (2) 

and then the number of independent spurious kinematic modes is given by Equation (3). 

                               ( ) ( ) ( )6 1  for 2skm v rbm s hypn n n n n d d= − − − = + > .                                        (3)                                   

When d ≤ 2, the element is isostatic and then: 

 ( )( )( )0.5 1 2 6skm rbmn d d d n= + + − − .                                          (4) 

     Tractions applied to the boundary are considered as belonging to a space dual to that of 

displacements. Admisible tractions are those that equilibrate with an internal stress field, and 

the necessary and sufficient conditions for admissibility correspond to the need for 

complementary shear stresses along an edge of a tetrahedral element. With reference to Figure 

1, the complementary shear stress condition along edge 3-4 has the form in Equation (5).  

1 1 2 2sin cos sin cos 0n nϕ τ ϕ σ ϕ τ ϕ σ⋅ − ⋅ + ⋅ + ⋅ = ,                                                      (5) 

where φ is the dihedral angle between faces adjacent to the edge. For traction fields of degree 

d ≥ 2, (d+1) independent conditions associated with each edge lead to the homogeneous 

admissibility conditions on generalised element tractions represented by vector g, i.e. A
T
g = 0 

where the dimensions of A are nv × nskm. The spurious kinematic modes are then defined in 

terms of the dual basis for displacements by the columns of A. 

3 SPURIOUS KINEMATIC MODES FOR A TETRAHEDRAL ELEMENT OF 
GENERAL DEGREE 

     A convenient basis for polynomial displacement or traction functions over a triangular face 

is derived from the functions in the Digital Library of Mathematical Functions
 [8]

. These n = 

0.5(d+1)(d+2) functions have the properties of orthogonality and the benefit of a hierarchical 

structure. When expressed in terms of area coordinates Li they can be organised in a vector h 

to give Legendre polynomials along a particular edge, which leads to a very simple form of A 

when it is restricted to the two faces adjacent to that edge. This form, with dimensions 

(4n×(d+1)), is defined by A  in Equation (6), e.g. for the edge where L1 = 0. 
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where ∆1 and ∆2 are the areas of faces 1 and 2 in Figure 1, J = I(d+1) with even numbered 

diagonal coefficients = -1, and the n×(d+1) matrix H and the n dimensional vector h are 

defined in Equation (7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Traction components on a tetrahedron relative to edge connecting vertices 3 and 4. The right hand view 

is projected from vertex 3 to vertex 4. 
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Similar bases of h for other edges of the face are obtained using cyclic symmetry. Then the 

m
th

 column of H defines a signature function 2
m
ek  for face 2 corresponding to edge e as a 

combination of the basis functions in h. The total displacement vector of a point in face 2 due 

to the spurious kinematic modes associated with its three edges, oriented as in Figure 1, is 
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given by Equation (8), where ne is the unit outward normal vector to the other face adjacent to 

edge e, and m
ea  is the amplitude of the mth spurious mode associated with edge e. 

δ2 = 2
2

1 m m
e e

m e

k a
∆

 
 − ⋅
 
 

∑∑ .ne                                                                       (8) 

4 PROPAGATION OF “MALIGNANT” SPURIOUS MODES BETWEEN 
TETRAHEDRAL ELEMENTS. 

     Propagation of spurious kinematic modes can occur between a pair of elements A and B 

when they result in compatible displacements at the interface. The displacements are resolved 

into in-plane and normal components as indicated in Figure 2 at a point P. For each signature 

function m
jek  displacements are evaluated at a set of n grid points with a common set of rigid 

body constraints. This leads to the displacement Equation (9) for element A. 

 A Au E a= ⋅   and  w = A AC a⋅                                                              (9)   

where E
A
 and C

A
 contain displacement components corresponding to spurious modes of unit 

amplitude, and have dimensions (2n×3(d+1)) and (n×3(d+1)) respectively. The amplitudes of 

the spurious modes are collected in the vector a
A
. The matrices can be expressed as in 

Equation (10), where  the diagonal matrices are defined in terms of the Kronecker products in 

Equation (11) and ϕ A
e  denotes the dihedral angle at edge e of element A. 

1 2 3
A A A

s sE E E E D E D= = ⋅   , and  1 2 3
A A A

c cC C C C D C D= = ⋅              (10) 

 

 

 

 

 

 

 

 

 

 

Figure 2: Interface between elements A and B. 

     Matrices E and C are partitioned in Equation (10) to match the coefficients from edges 1 to 

3. Since these matrices are only dependent on the signature functions, which are expressed in 

terms of area coordinates, they are independent of the shape of the interface or the dihedral 

angles. 
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     Compatibility conditions take the form in Equation (12), where the vector 

 
 

T
A Ba a contains the amplitudes of the 6(d+1) spurious modes associated with the edges 

of the interface belonging to elements A and B. The diagonal matrices  and B B
s cD D  for 

element B are similar to those for element A, but involve the dihedral angles ϕ B
e .  

   −       =   
         

A B A
s s

A B B
c c

ED ED a

CD CD a

0

0
                                                         (12) 

     It is found that generally (d ≥2) E has full column rank and so any spurious mode involves 

in-plane deformation of the interface, and compatibility requires ⋅ = ⋅A A B B
s sD a D a . 

Eliminating a
A
 from the second set of Equation (12), leads to Equation (13). 

cot cot
   + =
   

A B B B
sC D D D a 0                                                         (13) 

where the suffix “cot” implies that cotφe replaces cosφe or sinφe in the diagonal matrices. The 

consequence of Equation (13) is that compatibility can be satisfied: 

• when C is column rank deficient, and/or 

• the geometrical configuration is degenerate in the sense that cot cot 0ϕ ϕ+ =A B
e e  for one or 

more dihedral angles, i.e. faces in adjacent elements are coplanar. 

     Numerical trials involving singular value decomposition reveal that, when d > 3, C has 

column rank 3d and hence 3 spurious kinematic modes can be propagated via the interface in 

the non-degenerate case. These modes are linearly related to independent solutions of the 

homogeneous equations Ca = 0, and such solutions are given by the 3×3(d+1) matrix in 

Equation (14).  

0 1 0 1 1 0 1 0 1 0 1 0

1 0 1 0 0 1 0 1 1 0 1 0

1 0 1 0 1 0 1 0 0 1 0 1

T
a

− − 
 

= − − 
 − − 

� � �

� � �

� � �

.            (14) 

The corresponding spurious mode amplitudes for element A can then be defined in Equation 

(15). 

 
1 1

cot cot2

1A A A B
sa D D D a

∆

− −
   = +
   

.                                            (15) 

This solution can also be expressed, using the Kronecker matrix product in Equation (16). 
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It is observed from the form of a
T
 that the three modes can be characterised by a single one, 

which generates two more independent ones by using cyclic symmetry. When the pair of 

elements are symmetrical about the interface, cot cot=A BD D  and in this case A A
cCD a⋅ = 0  and 

consequently the interface remains plane. The characteristic mode for a pair of regular 

tetrahedra of degree 4 is illustrated by the in-plane displacements shown in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Characteristic spurious kinematic mode that can be propagated between a pair of regular tetrahedral 

elements of degree 4. 

     The number of malignant modes for non-degenerate cases increases for d < 4, and the 

complete set of numbers is presented in Table 1. 

Table 1: Number of malignant modes for a general degree. 

d 0 1 2 3 ≥ 4 

number of malignant modes 3 6 6 5 3 
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     It should be noted that when: 

 

 d = 1, rank( E) = 3, and the 6 spurious modes associated with the interface of one of the 

elements can freely exist in a state of constant strain coupled with a rigid body displacement. 

Thus only 3 of the combined modes can be propagated to involve deformations. 

 

d = 0, the 3 spurious modes associated with the interface of one of the elements can freely 

exist as rigid body translations. Thus all the modes can be freely propagated as rigid body 

modes. 

5. CLOSURE 

     A pair of tetrahedral hybrid equilibrium elements always has the potential for at least three 

spurious kinematic modes to be propagated from one element to the other. This feature of 3D 

tetrahedral models is more complicated than the case with 2D models with triangular 

elements, where such propagation is normally blocked for degrees greater than two. 

Thus establishing the existence of spurious kinematic modes in a pair of tetrahedral elements 

is just the first stage in understanding when and how these modes can propagate in a more 

general mesh. Whilst experience has shown
[6]

 that assemblies of four tetrahedra into a single 

macro-element is free of spurious kinematic modes, it is intended to pursue further research to 

address the stability of more general configurations. 
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