A NEW RESIDUAL LEAST SQUARES ERROR ESTIMATOR FOR FINITE VOLUME METHODS – APPLICATIONS TO LAMINAR FLOWS

DUARTE M. S. ALBUQUERQUE, JOSÉ M. C. PEREIRA AND J. C. F. PEREIRA

Instituto Superior Técnico (IST), IDMEC, LASEF Universidade Técnica de Lisboa Av. Rovisco Pais, 1, 1049-001, Lisbon, Portugal e-mail: duartealbuquerque@ist.utl.pt, web page: http://www.lasef.ist.utl.pt/

Abstract. Adaptive refinement is an important technique to reduce the computation time of flows in very refined meshes and increasing the local accuracy of the simulation.

A new a-posteriori error estimator, suitable for h-adaptive methods on unstructured grids, is based on the residual evaluation and a high-order polynomial reconstruction. The results are performed by the authors own Navier-Stokes code, which has been used to solve different adaptive problems [1, 2, 3].

The residual least squares (RLS) estimator is applied to different problems with a known analytic solution to study the numerical error decay with the adaptive algorithm and it is compared with the classic Taylor Series estimator [4, 5]. The proposed adaptive procedure is also applied to 3D flows around a sphere for two different types of grids.

REFERENCES

- [1] J. Magalhães, J. M. C. Pereira and J. C. Pereira. "A New Refinement Criterion Based on Regression Diagnostics for Finite Volume Methods", Int. Conf. on Adaptive Modeling and Simulation, Göteborg, (2007)
- [2] D. M. S. Albuquerque, J. M. C. Pereira and J. C. F. Pereira. "Refinement Least Squares Regression Criteria Applied to Laminar Flows", Int. Conf. on Adaptive Modeling and Simulation, Paris, (2011)
- [3] J. Magalhães, D. M. S. Albuquerque, J. M. C. Pereira and J. C. Pereira. "Adaptive mesh finite- volume calculation of 2D lid-cavity corner vortices", Journal of Computational Physics, Accepted for Publication, (2013)
- [4] H. Jasak and D. Gosman. "Automatic resolution control for the finite-volume method. Part 1: a- posterior error estimates." Numerical Heat Transfer Part B, 38:237-256, (2000)
- [5] H. Jasak and D. Gosman. "Automatic Resolution Control for the Finite-Volume Method, Part 2: Adaptive mesh refinement and coarsening." Numerical Heat Transfer Part B, 38:257–272, (2000)