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Abstract. We present a technique to extend Jacobian-based distortion (quality) mea-
sures for planar triangles to high-order isoparametric elements of any interpolation degree
on CAD parameterized surfaces. The resulting distortion (quality) measures are expressed
in terms of the parametric coordinates of the nodes. These extended distortion (quality)
measures can be used to check the quality and validity of a high-order surface mesh. We
also apply them to simultaneously smooth and untangle high-order surface meshes by min-
imizing the extended distortion measure. The minimization is performed in terms of the
parametric coordinates of the nodes. Thus, the nodes always lie on the surface. Finally,
we include several examples to illustrate the application of the proposed technique.

1 Introduction

It is well known that computational methods for solving partial differential equations
require domain discretizations composed by valid and high-quality elements [1, 2, 3].
If the mesh contains inverted elements, it can not be used for computational purposes.
Moreover, if the mesh does not have a minimum quality, the accuracy of the finite element
computation is degraded.

In order to improve the quality of a mesh the nodes can be relocated (smoothing)
[4, 5, 6]. Note that in 3D applications, it is of the major importance to ensure a high-
quality surface mesh. If a boundary mesh face is inverted, the corresponding mesh element
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is inverted and cannot be recovered once the surface mesh is fixed. Therefore, in this
work we present a technique to extend any Jacobian-based distortion (quality) for planar
elements to high-order elements with the nodes on CAD surfaces. The resulting measures
are expressed in terms of the parametric coordinates of the surface. We use these measures
in order to develop a simultaneous smoothing and untangling technique for high-order
meshes with the nodes on a parameterized surface. The resulting meshes are composed
by valid and high-quality elements with the nodes on the surface. It is important to
highlight that we can ensure that the optimized nodes lie on the original CAD surface
and not on an approximation, since the optimization process is written in terms of the
parametric coordinates of the mesh nodes.

The proposed technique relies on the framework of algebraic quality measures intro-
duced in [2]. In order to improve the quality of a valid mesh, an optimization approach
based on Jacobian-based measures is proposed in [6]. These optimization approaches
can also be used to untangle inverted elements. On the one hand, references [7, 8] pro-
pose a two-step procedures that first untangle the elements and second smooth the node
location. On the other hand, in Reference [9] a simultaneous smoothing and untan-
gling technique for triangular planar meshes is proposed by means of a modification of a
Jacobian-based distortion measure. It is worth to notice that this technique has been ex-
tended to quadrilateral and hexahedral meshes [10] and to non-planar triangular meshes
[11]. The simulatneous smoothing-untangling is the approach selected in this work.

Several techniques have been developed to optimize meshes on surfaces, generally de-
fined by discrete representations, see [11, 12, 13, 14, 15]. However, in our work we consider
parameterized CAD geometries and our objective is to ensure that during the optimiza-
tion process the nodes are always located on the surface. In [16] we already proposed to
quantify the distortion (quality) of a linear surface element in terms of the coordinates
on the parametric space of the CAD surface. An optimization approach based on the
proposed distortion measure ensures that the nodes always lie on the surface, since the
whole process is developed in the parametric space of the original surface.

Several methods have been proposed to generate high-order planar or 3D meshes,
see [17, 18, 19, 20, 21]. The standard approach to generate a high-order mesh consists
on an a-posteriori procedure composed by three steps: (1) generate a linear mesh; (2)
increase the order of the elements and curve them to fit the boundary; and (3) optimize
the node locations so that the mesh is valid and is composed by high-quality elements.
The method proposed in this paper relies on the work developed for planar high-order
elements presented in [18]. Specifically, we propose to extend the measures for planar high-
order elements presented in [18] to high-order meshes on parametrized surfaces using the
framework presented in [16], where planar measures for linear elements are extended to
surfaces.

The outline of the paper is as follows. First, in Section 2, we review the definition of
distortion measure for planar elements presented in [18]. Next in Section 3, we present the
formulation to extend any Jacobian distortion measure for linear triangles to high-order
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Figure 1: Mappings between the reference, the ideal and the physical elements.

elements with the nodes on parameterized surfaces. Afterwards, in Section 4, we detail
the optimization procedure in terms of the parametric coordinates. We develop a non-
linear least-squares problem in order to enforce the ideal configuration for the elements
of the surface mesh. Finally, we present several examples to show the applications of the
proposed method, Section 5.

2 Preliminaries

In this section, we first review the family of Jacobian-based distortion measures, pre-
sented in [2]. Second, we summarize the definition of distortion measure for planar high-
order elements presented in [18], in which it is shown how to extend the Jacobian-based
measures for linear triangles to planar high-order elements.

Let η be a Jacobian-based distortion measure for planar elements [2], with image
[1,∞), taking value 1 for an ideal configuration of the element, and value ∞ when it is
degenerated or tangled. Let q be the corresponding quality measure, defined as

q =
1

η
. (1)

The image of the quality measure q is [0, 1], taking value 1 for ideal configurations and 0
for degenerated ones. Our goal is to extend these measures to qualify high-order elements
on parameterized surfaces.

2.1 Jacobian-based distortion measures for planar linear triangle elements

In order to determine the quality of a high-order element t on a parameterized surface,
we generalize the Jacobian based quality measures for linear elements [2]. To this end, we
consider a mapping φ from the ideal element tI to the physical element t, see Figure 1. To
determine this mapping, we consider the isoparametric mappings ϕR (from the reference
element tR to t) and ϕI (from tR to tI). For linear triangles, these mappings are affine.
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Name Distortion measure η(S)

Shape measure η(S) =
||S||2

d · σ(S)2/d

Oddy et al. measure η(S) =
3

d
σ−4/d(S)

(
||STS||2 − 1

3
||S||4

)
Table 1: Algebraic distortion measures for linear elements

The mapping between the ideal and the physical element is determined by

φ = ϕR ◦ϕ−1
I . (2)

Note that φ is also an affine mapping, since ϕ−1
I and ϕR are so. For linear elements it

is usual to define a distortion measure in terms of the Jacobian matrix S := Dφ. These
distortion measures, herein denoted by η(S), quantify a specific type of distortion of the
physical element in a range scale [1,∞). Several distortion measures for linear triangles
have been proposed in literature, see [2]. In Table 1 we present two distortion measures
that we use to test the proposed high-order quality. Parameter d is the number of spatial
dimensions, σ(S) is the determinant of S, and ||S|| =

√
tr(StS) is its Frobenius norm.

2.2 Distortion measure for planar high-order elements

Let t be a nodal high-order element of order p determined by np nodes with coordinates
xi ∈ Rdx , for i = 1, . . . , np and being dx the physical space dimension. Given a reference
element tR with nodes ξj ∈ Rdξ , being j = 1, . . . , np and dξ the reference space dimension,
we consider the basis {Ni}i=1,...,np of nodal shape functions (Lagrange interpolation) of
order p. In this basis, the high-order isoparametric mapping from tR to t can be expressed
as:

ϕR : tR ⊂ Rd −→ t ⊂ Rd

ξ 7−→ x = ϕR(ξ; x1, . . . ,xnp) =

np∑
i=1

xiNi(ξ),
(3)

where ξ = (ξ1, . . . , ξdξ)T and x = (x1, . . . , xdx)T . Note that the shape functions {Ni}i=1,...,np

depend on the selection of ξj, for j = 1, . . . , np. In addition, they form a partition of the
unity on tR , and hold that Ni(ξj) = δij, for i, j = 1, . . . , np. In this paper we focus
on nodal high-order triangular elements of order p, but the same approach is valid for
quadrilaterals. Hence, the number of nodes np is 1

2
(p+1)(p+2), and the space dimensions

for planar meshes are dξ = dx = 2. Therefore, the Jacobian of the isoparametric mapping
(3) is a dx × dξ = 2× 2 matrix.

To define the high-order distortion measure of the physical element, we have to select
first the ideal element tI and a distribution of points. Herein, we choose a straight-sided
equilateral triangle as the ideal element. In addition, we select the desired distribution
of the nodes on the ideal element (e.g. equi-distributed or Fekete points). In general the
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mappings ϕI and ϕR, see Equation (3), are not affine. Hence, φ = ϕR ◦ ϕ−1
I is also not

affine, and the Jacobian matrix is not constant. The expression of the Jacobian is:

Dφ(x̃; x1, . . . ,xnp) = DϕR(ϕ−1
I (x̃); x1, . . . ,xnp) ·Dϕ

−1
I (x̃) (4)

where x̃ is a point on the ideal element.
Similar to the linear element case, we define a distortion measure based on the Jaco-

bian matrix of φ. However, the Jacobian of the elements is not constant. Nevertheless,
the Jacobian on a point allows measuring the local deviation between the ideal and the
physical element. Thus, we can obtain an elemental distortion measure by integrating the
Jacobian based distortion measure on the whole ideal element.

Definition 1 The high-order distortion measure for a high-order planar element with
nodes x1, . . . ,xnp is

ηφ(x1, . . . ,xnp) :=

(
1

|tI|

∫
tI

η2(Dφ(x̃; x1, . . . ,xnp)) dx

) 1
2

, (5)

where η is a distortion measure for linear elements based on the Jacobian matrix of the
representation of the element, and |tI| is the area of the element element.

The high-order quality measure for a high-order planar element is qφ := 1/ηφ, see [18]
for an extended analysis for planar elements.

3 Distortion measure for high-order elements on parameterized surfaces

In this section, we first develop an analytical formulation to extend any Jacobian-based
distortion measure for planar triangles ηφ, see Equation (5), to high-order elements with
nodes on a parameterized surface Σ. As a result, we obtain a quality measure expressed
in terms of the coordinates of the nodes in the parametric space of the surface.

3.1 Definitions

Assume that the surface Σ is parameterized by a continuously differentiable and in-
vertible mapping

ϕ : U ⊂ R2 −→ Σ ⊂ R3

u = (u, v) 7−→ x = ϕ(u),
(6)

where U is the parametric space of the surface. In this work, we use OpenCASCADE
library [22] to retrieve the parameterization of the surfaces from the CAD model.

Similarly to the planar case, Equation (5), our objective is to quantify the distortion
of the tangent vectors in each point of the surface elements. However, the tangent vectors
on a point of the surface element live in the tangent plane, that is immersed in R3.
Specifically, the Jacobian of the isoparametric mapping is a dx × dξ = 3 × 2 not square
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Figure 2: Diagram of mappings involved in the definition of the quality measure.

matrix. Therefore, we propose to define an embedding T from the tangent space on a
point x = φ(x̃) of the surface element to R2, see Figure 2. Specifically, we define T as:

T : R3 × R2 −→ R2 × R2

Dφ(x̃) −→ M ·Dφ(x̃),
(7)

where M is a matrix composed by the two vectors corresponding to the basis derived
from the Gram-Schmidt process applied to vectors e1 := ∂φ

∂x̃1
and e2 := ∂φ

∂x̃2
. Hence,

M = [ẽ1 γẽ2]T , where ẽi, i = 1, 2 are the Gram-Schmidt orthonormal vectors, and
γ = ±1 is determined to ensure a well oriented basis. Note that T(Dφ) is a 2× 2 matrix
to which we can apply the Jacobian-based distortion measures presented in Section 2.1.

Finally, using the embedding (7) we can express the distortion and quality measures
of the surface elements in terms of the parametric coordinates of the nodes, see Figure 2:

Definition 2 The distortion measure for a high-order element on parametric coordinates
with nodes u1, . . . ,unp ∈ U is

ηU (u1, . . . ,unp) :=

(
1

|tI|

∫
tI

η2
(
T
(
Dφ

(
x̃;ϕ(u1), . . . ,ϕ(unp)

)))
dx

) 1
2

. (8)

Analogously, the quality measure for a high-order element on parametric coordinates is
qU := 1/ηU .

4 Application to high-order mesh optimization

In this section, we present an algorithm to optimize the distortion (quality) measure of
triangular high-order meshes. It is important to point out that we want to ensure that the
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nodes lie always on the surface. Therefore, the optimization approach is developed in the
parametric space and the result is mapped to the surface by means of the parameterization.

The main goal of a simultaneous smoothing and untangling method is to obtain high-
quality meshes composed by valid (non-inverted) elements. Note that the best possible
result, can be characterized in terms of the distortion measure. That is, given a distortion
measure η and a mesh M composed by nN nodes and nE elements, the node location is
ideal if

η(T(Dφj(x̃;ϕ(uj1), . . . ,ϕ(ujnp )))) = 1, ∀x̃ ∈ tIj , j = 1, . . . , nE, (9)

where ej = (ϕ(uj1), . . . ,ϕ(ujnp )) is the jth element, tIj is the ideal element corresponding
to ej, and φj is the mapping between the jth ideal and physical elements. However,
for a fixed mesh topology and a given surface the node location that leads to an ideal
mesh distortion is not in general achievable. That is, the constrains in Equation (9)
cannot be imposed strongly and therefore, we just enforce the ideal mesh distortion in
the least-squares sense.

For a given mesh topology and a set of fixed nodes (nodes on the boundary of the
domain), we formulate the least-squares problem in terms of the coordinates of a set
of free nodes (nodes in the interior of the domain). To this end, and without loss of
generality, we reorder the coordinates of the nodes, ui, in such a way that i = 1, . . . , nF
are the indices corresponding to the free nodes, and i = nF + 1, . . . , nN correspond to the
fixed nodes. Thus, we can formulate the mesh optimization problem as

min
u1,...,unF

f(u1, . . . ,unF ; unF+1, . . . ,unN ), (10)

where f is the objective function, defined as:

f(u1, . . . ,unF ; unF+1, . . . ,unN ) :=

nE∑
j=1

∫
tIj

(η(T(Dφj(x̃;ϕ(uj1), . . . ,ϕ(ujnp ))))− 1)2dx̃.

In this work we illustrate the distortion and quality measures for high-order elements
using the shape distortion measure presented Table 1. In order to untangle invalid meshes
in a continuous optimization procedure, we use the modification of the Jacobian-based
distortion measure presented in [9, 18].

5 Examples: mesh generation on CAD geometries

In this section we illustrate the overall process to generate a high-order mesh on a CAD
geometry. Specifically, we select two different CAD geometries: a Falcon aircraft, Figure
3, and a component of a gear box, Figure 4. For each example geometry we show the
complete sequence of steps of the a posteriori procedure to generate a valid high-order
mesh:
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A. Gargallo-Peiró, X. Roca, J. Peraire and J. Sarrate

Fig. Min.Q. Max.Q. Mean Q. Std.Dev. Tang.
3(a) 0.21 1.00 0.93 0.09 0
3(c) 0.00 1.00 0.92 0.10 5
3(e) 0.25 1.00 0.97 0.06 0
4(a) 0.53 1.00 0.84 0.16 0
4(b) 0.00 1.00 0.73 0.34 130
4(c) 0.52 1.00 0.84 0.16 0

Table 2: Shape quality statistics of the meshes presented in Figure 3.

1. A linear mesh is generated on the geometry: Figure 3(a) shows the initial
mesh generated on the Falcon aircraft, and Figure 4(a) the mesh generated on the
gear box.

2. The order of the mesh elements is increased: We define a high-order node
distribution for each element on the parametric space, and we map it to the surface.
Note that for each geometry we have selected a different order. For instance, we
use elements of order 3 for the Falcon aircraft, and elements of order 10 for the
component of the gear box. In this step, tangled elements can be generated due to
two main reasons:

• The boundary elements can have auto-intersections due to the fact that in
the parametric space the boundary edges are curved to fit the geometry, but
the inner edges are maintained straight. This phenomena can be observed in
Figure 4(b), .

• If the quality of the parameterization is low, the composition of the high-order
distribution on the parametric space together with the parameterization can
lead to an invalid node distribution on the parametric space. This issue appears
in the nose of the aircraft in Figure 3(d).

3. The high-order mesh is optimized: We apply the smoothing-untangling ap-
proach presented in Section 4 to the meshes. Figures 3(e) and 4(c) show the resulting
meshes for each geometry.

The distortion measure selected in the presented examples is the shape distortion mea-
sure, detailed in Table 1. Table 2 details the quality statistics for each one of the presented
meshes. Note that the obtained meshes are composed of high-quality elements. In all the
cases we have untangled the initial inverted elements, and achieved a final high-quality
configuration.

6 Concluding remarks

In this paper, we first detail a new technique to extend any distortion (quality) measure
defined for planar elements to parameterized surfaces. Next, we develop an optimization
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(a) (b)

(c) (d)

(e) (f)

Figure 3: Order 3 mesh for a Falcon aircraft. The elements are colored according to the shape quality
measure. (a,b) Initial linear mesh. (c,d) Initial order 3 mesh obtained after increase the order of the
initial linear mesh. (e,f) Optimized order 3 mesh.

procedure to smooth and untangle meshes on parameterized surfaces. It is important to
point out that the proposed measure expresses the quality of the elements on the surface
in terms of the parametric coordinates of its nodes. Therefore, the optimization procedure
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(a) (b)

(c)

Figure 4: Order 10 mesh for a component of a gear box. The elements are colored according to the shape
quality measure. (a,b) Initial linear mesh. (c,d) Initial order 10 mesh obtained after increase the order
of the initial linear mesh. (e,f) Optimized order 10 mesh.
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is also written in terms of the parametric coordinates. Hence, it ensures that the nodes
are always placed on the surface. Finally, in the presented examples we have illustrated
the mesh generation procedure with two different CAD geometries and with two different
orders.
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