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Abstract. This work describes properties of the mixed mesh approach that are especially 
suitable for generating families of meshes to assess the grid refinement convergence of CFD 
solvers. The paper outlines how a regular grid refinement is achieved throughout the domain. 
The distributions of characteristic grid quality metrics are compared and a grid convergence 
study is outlined for a commonly used case for outer aerodynamics, the Boeing CRM 
configuration of the 5th AIAA Drag Prediction Workshop. 
 
1 INTRODUCTION 

The assessment of the accuracy of a simulation method is a crucial step during the 
verification and validation process of the simulation software. Even the best mathematically 
derived formulation has to prove the rate of convergence with increasing mesh resolution for 
designated applications.  

For applications of CFD for aerodynamics of aircrafts a series of five workshops has been 
organized under the governance of the American Institute of Aeronautics and Astronautics 
(AIAA) [1]. A major focus of the comparisons of solvers for simulation accuracy was laid on 
the grid convergence, for which families of grids have been provided, both structured and 
unstructured ones. A major conclusion of all workshops has been the highly demanding 
generation of unstructured mesh families.  

While for structured meshes the generation of self-similar grids with different but regularly 
refined grid resolutions is straight forward, for unstructured hybrid meshes this is a more 
complicated task. Due to the – in most cases – fully automatic generation a distinct control on 
local mesh resolution and its influence into other parts of the mesh is hard to control. 

This paper outlines the usability of the mixed mesh approach for the purpose of generating 
families of meshes for grid convergence assessment. Block-unstructured mixed meshes 
provide structured meshes in the near field of the aerodynamic body where viscous effects 
dominate and a high resolution normal to the wall is needed. In contrast to pure block-
structured meshes, limitations of topologies are overcome by locally using unstructured mesh 
element types, mainly prismatic elements. For the outer field an a priori defined anisotropic 
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field triangulation is applied to allow for maximum flexibility and to minimize the effort of 
user input. 

2 THE MIXED MESH FRAMEWORK 

The meshing framework used is the formerly structured multi-block grid generation 
MegaCads developed at DLR [2]. In recent years unstructured capabilities have been 
introduced. Among these are a parabolic marching procedure to generate prismatic layers 
based on the same mathematical approach as used in the elliptic smoothing of structured 
blocks [3], the linking to a number of volume triangulation codes including the SIMMETRIX 
software [4] used within this work, and a memory efficient way to specify a priori a smooth 
anisotropic metric field for the triangulation smoothly adopting to the underlying structured 
and quasi-structured elements [5]. 

2.1 Mixed mesh approach 

   
 (a) (b) (c) 
 

   
(d) (e) 

 
Figure 1: Generating a mixed mesh: (a) surface description; (b) structured hexahedral grids for boundary 

resolution; (c) surface triangulation of remaining geometry parts; (d) extrusion of prismatic layers; (e) 
anisotropic field triangulation 

The big shortcoming of hybrid unstructured grids is the low anisotropy of surface triangles 
resulting in a large number of grid points, which is agglomerated through the number of 
prismatic layers for the boundary layer resolution. This low anisotropy leads to an 
unnecessary high resolution in span direction, especially for high aspect ratio wings. 
Recovering the experience with the application of structured grids, it is known, that the aspect 
ratios of the surface quadrilaterals can be much higher, additionally resulting in well aligned 
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body conforming meshes. The shortcoming of an overall use of structured meshes is the 
increasing complexity of the targeted configurations, where structured meshing reaches its 
limitations, mainly due to grid topology issues. 

The simple idea of mixed meshes is to make as much use as possible of the advantages of 
structured meshes skipping the disadvantages of complicated topology generation. In Figure 
1 the general procedure is sketched for a transport aircraft high-lift configuration. Boundary 
layer regions are meshed by structured hexahedral mesh blocks, except when the topology 
gets difficult to be generated. The advantageous C-type meshes for wake resolutions are used 
here as far as possible. Whenever the block-structured topology gets too complicated, the 
mixed mesh approach switches to unstructured elements. For the remaining parts of boundary 
layer regions near surfaces, quasi-structured prismatic elements are used. For the outer flow 
field the volume is filled by tetrahedrons. 

In the past the author showed that mixed meshes significantly reduce mesh sizes without 
reduction of accuracy [6],[7]. Since the methods work flow starts with the block-structured 
meshes, the generation method is best described as block-unstructured mixed mesh method. 
Also commercial grid generation software in the meantime has implemented mixed meshing 
capabilities, e.g. ICEM CFD [8] and PointWise [9], but those methods rely on isotropic 
triangulation methods. 

2.2 Mixed mesh family around Boeing CRM 

Figure 2 shows a view on the grid family around the Boeing Common Research Model 
(CRM) [10] in the configuration without tail as used in the 5th Drag Prediction Workshop. The 
coloring depicts the different types of grid elements. For the grid family, three levels of 
different mesh density have been generated using the anisotropic mixed meshing approach. 
The number of cells in the structured part is multiplied by a factor of 1.5 for adjacent grid 
levels in each direction, while the cell sizes are reduced by the same magnitude wherever 
specified. The portion of the fluid volume meshed by structured elements is not changed in 
order to obtain self-similar meshes. 

The used method derives a smooth anisotropic metric field based on the anisotropy of the 
adjacent structured hexahedrons and quasi-structured prisms. This anisotropic metric field is 
inherently responsible to achieve the self-similarity and grid family properties in the 
unstructured domain of the meshed volume, since all information of grid resolution is directly 
derived from the structured and quasi-structured grid parts. 

 
Table 1: Characteristics of the mesh family around the Boeing CRM configuration 

CRM mesh size coarse scaling 
 medium scaling

 fine 

grid points 1,368,229 2.68 3,666,721 2.85 10,450,269 
surface triangles 38,548 2.20 84,686 2.20 186,370 
surface quadrilaterals 27,753 2.24 62,680 2.28 142,134 
tetrahedrons 4,222,454 2.19 9,267,026 2.18 20,276,862 
Prisms 340,935 3.16 1,078,816 3.26 3,513,840 
hexahedrons 419,756 3.46 1,452,208 3.46 5,019,198 
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Figure 2: Family of grids around the Boeing CRM configuration, left to right: coarse – medium – fine; colors 
indicate cell type: red=hexahedrons, blue=prisms, green=tetrahedrons 

 
In Table 1 some characteristic features with respect to grid family properties are shown. 

The number of surface elements scales between the grid levels close to the theoretical value of 
1.52=2.25. Prisms and hexahedrons counts scale also close to the theoretical value of 
1.53=3.375. Interestingly, the scale of the number of tetrahedrons is close to the theoretical 
value for surface elements. Therefore, also the overall point number scales less than 
theoretically expected or achieved in pure structured meshes. But, interestingly the inverse of 
the point number to the power of two-third, which is later used for Richardson extrapolation, 
scales almost exactly by a factor of 2 between grid levels, thus indicating a doubling of grid 
density. 

3 GRID CONVERGENCE OF THE BOEING CRM CASE 

3.1 Grid quality indicators 

The selection of indicators for a priori grid quality assessment has to respect the type of 
solver later on used for the simulation. For finite element methods (FEM) most commonly 
used are indicators that look for the shape of single elements and detecting badly shaped cells 
like slivers, needles, and hats that inherently disrupt the numerical accuracy of the solution. 
For the targeted finite volume (FVM) flow solver these element based metrics are of less 
significance since for the flux computations needed the relationship of neighboring elements 
is at least as important. Knupp [11] introduced algebraic grid quality metrics based on the 
Jacobian of elements, which are the transformation matrices from computational into physical 
space. They are more representative, since the averaging of the cell based Jacobians for a 
common grid node provide an indication for the smoothness of the surrounding cells. In the 
following two of the metrics provided by Knupp’s MESQUITE library are used to show the 
comparability of the generated grids in the sense of self-similarity for a family of grids. 

Figure 3 shows the histogram of the variations of the “local size” quality metric for the 
three generated meshes around the Boeing CRM. A value of one indicates that all elements 
surrounding a grid node have the same size. The counts of grid nodes in the histogram are 
normalized by the number of overall grid points and are plotted on a logarithmic axis to more 
precisely inspect the behavior of the different grid levels at values of the lower quality metric 
values. The figure shows that the distributions of the “local size” quality metric is nearly 
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identical for all three mesh levels indicating that the characteristics of the grid are not 
depending on the grid size in this respect.  
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Figure 3: histograms of local size variation of the cells around a grid node for three mesh levels of the grids 
around the Boeing CRM. 

Figure 4 shows a histogram for the vertex based condition number, which is an average of 
the condition numbers of the Jacobians of the elements surrounding a grid node. Since the 
targeted meshes are anisotropic high values of are expected since the value directly reflects 
the anisotropy of the grid. The histogram shows that the generated grids show similar 
distributions of anisotropy in the mesh and therefore the needed self-similarity.  
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Figure 4: Histogram of the vertex based condition number variation for three mesh levels of the grids around the 
Boeing CRM. 

 
Another important indicator of the suitability of a grid for CFD is the local number of 

neighbors to a grid node. Meshes often degrade the simulation quality by having local hot-
spots of the neighboring node count. Especially hybrid meshes where the anisotropy of quasi-
structured cells is not respected can have up to 200 neighboring nodes and the flux 
computations are comprised by this. Figure 5 shows the distribution of the number of 
neighboring nodes and – again – shows that the characteristics of the three mesh levels are 
very similar. 
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Figure 5: Histogram of the variation of the number of neighbors of a grid node for three mesh levels of the grids 
around the Boeing CRM. 

3.2 Grid convergence assessment 

The assessment of the grid convergence is calculated using the DLR TAU-code [12], a 
second order finite volume CFD solver. The assessment is made based on overall 
aerodynamic characteristics and on the contributions of local parts to show the suitability of 
the mixed mesh approach for such studies in global and local effects. Data for comparison is 
included from wind tunnel tests in the NASA National Transonic Facility [13] and from the 
result of the 5th AIAA Drag Prediction Workshop (DPW5) [14]. 
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Figure 6: Grid convergence of the total drag coefficient compared to experimental data and the average of CFD 
calculations performed for the 5th AIAA Drag Prediction Workshop. 
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Figure 6 shows the grid convergence of the overall drag coefficient compared to 
experimental data and the average result of DPW5. The value of the drag coefficient is plotted 
against the inverse of the number of nodes to the power of two-third, according to the 
Richardson extrapolation for 2nd order CFD codes. Along with the average the standard 
deviation of the CFD results is shown by error bars. It should be highlighted that the error bar 
is also derived from the values obtained by Richardson extrapolation to infinite grid density. 
It is worth to highlight that for the presented meshing strategy already the medium mesh is 
only slightly off the standard deviation of the CFD calculations and the extrapolated value of 
the drag coefficient (CD = 0.0250) is only 0.4% off the experimental value. The comparison of 
the drag coefficients for the distinct grid refinements shows a slight deviation from the 
theoretical 2nd order behavior of the CFD method. 
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Figure 7: Grid convergence of the pitching moment coefficient and the angle of attack. 

Figure 7 shows the grid convergences of the pitching moment coefficient and the angle of 
attack to obtain a lift coefficient of CL = 0.5. Experimental data is omitted here, since already 
in the description of DPW5 a large deviation between CFD and experiment was observed. An 
evaluation of the CFD results similar to the analysis of the drag coefficient is not available, 
but from the data available it is confirmed that both characteristics fall well into the scatter of 
CFD results. The pitching moment shows a similar accordance to the 2nd order trend as the 
drag coefficient, while the angle of attack shows a larger deviation form a 2nd order behavior. 

There are in a first view two aspects that can be addressed to more deeply analyze the 
slight deviation from the theoretical grid convergence in order to see whether the mesh 
sequence is well suited for the grid convergence study. First, it is worth to differentiate 
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between the partial contributions the total aircraft drag is composed from. Figure 8 shows the 
grid convergence of the drag coefficient separated into pressure and viscous parts. Comparing 
the trend lines against the distinct values there is no obvious difference in the behavior 
between the two principal contributors to the overall drag coefficient. This result is especially 
important to conclude on the meshing strategy to generate the grid family. The grid 
refinement regarding the structured and quasi-structured parts to resolve the viscous layers of 
the flow behave the same way, otherwise the grid convergence of the distinct contributions to 
the drag coefficient would show a behavior different from the pressure part. 
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Figure 8: Grid convergence of the drag coefficient divided into pressure and viscous parts. 

The second influence to analyze concerns the contribution of the different model bodies to 
the overall drag estimate. In terms of the meshing strategy this reflects the choice of 
structured hexahedrons or quasi-structured prisms. Figure 9 shows the drag split for the two 
bodies, wing and fuselage respectively. As formerly described, the wing surrounding aside the 
most outboard wingtip is meshed with structured hexahedrons including the wake of the win 
while the fuselage is covered by layers of prismatic cells. The figure shows that the deviation 
from the ideal 2nd order trend line is significantly larger for the fuselage body, while the wing 
is very close to the 2nd order behavior. This result is not as astonishing as the grid conformity 
between grid levels can be easily achieved for the structured parts, which includes the 
complete structured mesh parts as well as the quasi-structured direction of the prism stacks. 
So this result is not contradictory to the missing influence of the mesh type on the previous 
shown differentiation between pressure and viscous parts. The behavior observed here 
highlights that the self-similarity is already limited to some extent within the surface 
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triangulation of the body. 
The behavior observed for the drag coefficient is even more pronounced regarding the 

contributions of the different bodies to the pitching moment coefficient shown in Figure 10. 
For the contribution of the wing the grid convergence shows a nearly exact 2nd order behavior. 
It can be therefore concluded that the deviation from the theoretical order can be attributed 
mainly to the contribution of the fuselage. This confirms the observations obtained for the 
drag coefficient even more pronounced.  
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Figure 9: Grid convergence of the drag coefficient separated to contributions of wing and fuselage. 

It can be concluded that the formal conformance of grid levels for a grid family can be 
obtained by the presented meshing approach, but special attendance must be paid to the 
unstructured parts of the mesh. The generated mesh family fulfills the requirements for a grid 
convergence study. The results confirm that a basic recommendation for the grid size require 
that the number of surface element and unstructured tetrahedrons scale with a power of 2 
between the grid levels, while the number of structured and quasi-structured elements scale 
with the power of 3 depending on the refinement ratio. 

4 CONCLUSIONS 

The mixed meshing approach allows for the generation of mesh families for the assessment 
of grid convergence behavior of CFD solvers. The use of block-structured cells in near wall 
regions inherently possesses this capability. The derivation and usage of an adjacent smooth 
anisotropic metric field for the flow field triangulation promotes the self-similarity of the 
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structured part of the mesh into the unstructured part. Nevertheless, the result obtained for the 
differentiation between wing and fuselage indicates that the appropriate meshing of the 
fuselage is not negligible for the accuracy of the CFD simulation of wing body 
configurations. 
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Figure 10: Grid convergence of the pitching moment coefficient separated to contributions of wing and fuselage 
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