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Abstract. This work discusses the application of the moment method to a generic form
of kinetic equations, given by the Boltzmann equation, to simplify kinetic models of par-
ticle systems. Implicit to the method of moments is an approximation of moment closure
relations to close the system of equations. The main aim is to explore the opportunities,
pertaining to goal-oriented adaptive modeling, presented by the hierarchical structure of
moment-closure systems.

1 INTRODUCTION

The Boltzmann equation is the classical model in the kinetic theory of (mono-atomic)
fluids, describing rarefied flow by modeling deviations of the velocity distribution from
a local equilibrium, thus, accounting for the transitional molecular/continuum regime.
Boltzmann’s equation provides an evolution equation for the one-particle marginal, viz.,
the probability density of particles in phase (position/velocity) space. The Boltzmann
equation has several fundamental structural properties, notably, conservation of mass,
momentum and energy, Galilean invariance and decay of an entropy functional (the cel-
ebrated H-theorem). These structural properties underly the connection between the
Boltzmann equation and conventional continuum models: all conventional continuum
models, such as the Navier-Stokes-Fourier system [1], can be derived as limits of the
Boltzmann equation.

Boltzmann’s equation poses a formidable challenge for numerical approximation meth-
ods, on account of its high dimensional phase-space setting: for a problem in N spatial
dimensions, the single molecule phase-space is 2N dimensional. Away from the fluid dy-
namical regime numerical approximations of kinetic systems are predominantly based on
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particle methods, such as the Direct Simulation Monte Carlo (DSMC) method. However,
the phase-space description of the system results in the prohibitive computational cost
of DSMC in the fluid dynamical limit. Moreover, from an approximation perspective,
DSMC can be inefficient since it is inherent to Monte-Carlo processes that the approx-
imation error decays only as n−

1
2 for the number of simulation molecules n [2]. Hence,

efficiently modeling gases in the transition regime between the free molecular flow and
fluid dynamics remains difficult.

An alternative strategy to describe deviations from fluid dynamics is by means of
moment-closure approximations [3,4]. In moment-closure approximations, the Boltzmann
equation is projected onto a polynomial space, in the velocity dependence, and the system
is closed by providing an approximation to the one-particle marginal based on the same
polynomial space. This procedure can in fact be conceived of as a Galerkin approximation.
The closure is chosen such that the structural properties of the Boltzmann equation are
retained. Results by Schmeiser and Zwirchmayr [5] show that moment equations converge
to linear kinetic equations as the order of moment approximation tends to infinity and
to a drift-diffusion model in the macroscopic limit, i.e. as the Knudsen number tends to
zero. Furthermore, from an adaptive approximation standpoint, the resulting hierarchical
structure of the the moment closure system presents promising potential for rigorous
model adaptivity. However, fundamental challenges remain to be addressed.

This work discusses the application of the moment method to the Boltzmann equation
to derive a closed hierarchy of moment systems that retain structural features of the sys-
tem in question. In addition opportunities pertaining to goal-oriented adaptive modeling
provided by the hierarchical structure exhibited by the resulting closed system of moment
equations will be explored. The remainder of this paper is arranged as follows, section 2
enlists the structural properties of the Boltzmann equation that are to be retained by the
moment closure approximation; section 3 introduces concepts relevant to moment sys-
tems pertaining to subspace approximations as well as the consequential moment closure
approximation; section 4 discusses the hierarchical structure of the resulting closed sys-
tem of moment equations within a multiscale modeling framework and the oppertunities
this presents for (goal-oriented) model adaptivity; finally, section 5 gives a concluding
summary.

2 THE BOLTZMANN EQUATION: PROPERTIES

Consider a gas composed of a single species of identical classical particles, i.e. a monatomic
gas, contained within a fixed spatial domain Ω ⊂ RD. Based on kinetic theory the
evolution of a non-negative (phase-space) density f = f(t,x,v) over a single particle
phase Ω× RD is governed by the (kinetic) Boltzmann equation expressed as

∂tf + vj∂xjf = C(f) (1)

where the collision operator f 7→ C(f) acts only on the v dependence of f locally at each
(t,x). Let 〈·〉 denote v−integrations of any scalar, vector or matrix valued measurable
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function over the D−dimensional Lesbesgue measure dv. All functions considered in this
work are understood to be Lebesgue measurable in all variables.

The collision operator C is assumed to be defined over the domain D(C) that is con-
tained within the set of non-negative functions of v. Furthermore, it is assumed that C
has the following properties [4]:

1. Conservation: Mass, Momentum and Energy
Definition A quantity γ is said to be a collision invariant of C if

〈γC(f)〉 = 0, ∀f ∈ D(C) (2)

Denote the collection of collision invariants of C by C and let the basis for an N -
dimensional C be written as {ei : 1 ≤ i ≤ N}. Relation (2) leads to N independent
local conservation laws

∂t〈eif〉+ ∂xj〈vjeif〉 = 0 (3)

It is assumed that the set of collision invariants is given by

C = span{1,v, |v|2} (4)

where the notation in (4), adopted throughout this paper, applies to a collection
of scalars, vectors and tensors, implying that the span consists of all scalar-valued
linear combinations of their components. Assumption (4) implies the Boltzmann
equation (1) conserves mass, momentum and energy, and has no other invariants.

2. Entropy Dissipation: H-Theorem
Definition A convex function H = H(f) over R+ is called an entropy for C if

〈C(f)∂fH(f)〉 ≤ 0, ∀f ∈ D(C) (5)

and if for every f ∈ D(C) the following statements are equivalent

i. 〈∂fH(f)C(f)〉 = 0

ii. C(f) = 0

iii. ∂fH(f) ∈ C
(6)

Relations (5) and (6) are abstractions of Boltzmann’s H-theorem, where (5) assumes
that C dissipates some entropy and (6) characterizes local equilibria of C by vanishing
entropy dissipation. Denoting the Legendre transform of the entropy H by H∗, i.e.

H(y) +H∗(z) = yz (7)
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(5) and (6) suggest that the equilibrium distribution, denoted by feq, is given by

feq = ∂zH∗(z) for z ∈ C (8)

It is assumed that the entropy of C exists. This assumption implies that solutions
of the Boltzmann equation (1) satisfy the local dissipation law corresponding to
entropy dissipation

∂t〈H(f)〉+ ∂xj〈vjH(f)〉 = 〈C(f)∂fH(f)〉 ≤ 0 (9)

where 〈H(f)〉, 〈vjH(f)〉 and 〈∂fH(f)C(f)〉 are referred to as entropy density, en-
tropy flux and entropy dissipation rate, respectively.

3. Symmetry: Galilean Invariance
The operator C is assumed to commute with translational and orthogonal transfor-
mations. Specifically, given any g = g(t,x,v) for every vector u ∈ RD and for every
orthogonal matrix O ∈ RD×D define transformed functions Tuf and TOf by

Tug = Tug(t,x,v) ≡ g(t,x− ut,u− v), TOg = TOg(t,x,v) ≡ g(t, O>x, O>v)
(10)

It is assumed that if f ∈ D(C) then so are Tuf and TOf :

TuC(f) = C(Tuf), TOC(f) = C(TOf) (11)

Assumption (11) implies that if f satisfies (1) so does the image of f under a Galilean
group.

3 MOMENT CLOSURE

Physically, one may be more interested in functions of f (observables), from which macro-
scopic properties can be extracted, than in f itself. Such reasoning motivates the deriva-
tion of equations for such observables instead. That is, rather than resolving equation (1)
for f , one could resolve moment systems (or weighted averages) of f , which would govern
the evolution of a finite set of velocity moments of f . In resolving the moment equations
instead of (1), the velocity dependence of f is replaced by a finite number of parameters,
thus reducing the complexity of the problem [6].

To derive the moment equations, consider a finite linear subspace Θ of functions of
v (taken to be polynomials) with dimension θ and basis {ϑi = ϑi(v)}θi=1. Denote the
column θ−vector of these basis elements by ϑ = ϑ(v), so that every ϑ ∈ Θ has a unique
representation in the form ϑ(v) = α>ϑ(v) for some α ∈ Rθ. Taking the moments, i.e.
weighted average, of equation (1) over the vector ϑ(v) yields

∂t〈ϑf〉+ ∂xj〈vjϑf〉 = 〈ϑC(f)〉 (12)
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thus, a weaker form of equation (1) is formally expressed as a hierarchy of moment systems
of partial differential equations in (12) in the sense that a solution of (1) would also satisfy
(12). In general, it is not known whether the quantities appearing in this equation are
well defined for every solution f of a given kinetic equation. Since, it has been shown
that this is the case for the spatially homogenous equation [7], following Levermore [4] it
shall be assumed here that these quantities are well defined.

Furthermore, it is observed that in equations (12) the flux in one equation appears as
the density in the subsequent one, i.e. the expansion at some order n contains the moments
at orders n± 1. Moreover, the equations contain the production terms which are related
to the distribution function f through the collision term C(f). Therefore, in order to have
a complete set of equations for the moments, constitutive relations are needed to express
the densities 〈ϑf〉, fluxes 〈vϑf〉 and collisional terms 〈ϑC(f)〉 as a function of θ variables,
thus forming a closed system. Generally, this is achieved by finding a relation between
the moments and the distribution function. Deriving such a relation is called the moment
closure problem.

A subspace Θ will be called admissible if it satisfies (see [4])

i. C ⊆ Θ:
In this condition, the collection of collision invariants C is contained within Θ.
More specifically, the constant functions are included in Θ so that any moment
closure will include the conservation law for mass. It also includes multiples of the
polynomial v, which gives a balance law for momentum. Multiples of |v|2 give a
balance law for the energy. This is needed if any fluid dynamical approximation is
to be recovered.

ii. Θ is invariant under actions of Tu and To:
More specifically, this means that Θ is unchanged when v 7→ O>v or v 7→ v − u,
for every vector u ∈ RD and for every orthogonal matrix O ∈ RD×D. This is a
prerequisite of classical dynamics, in particular, that Galilean invariance holds.

Closure of (12) is attained if there exists a function F (and is made known) such that
f(t,x,v) = F(〈f,ϑ〉,v). Then the flux terms 〈vϑf〉 and the collision terms 〈ϑC(f)〉 can
be related to the densities 〈ϑF〉 to provide a closed system of the form

∂t〈ϑF〉+ ∂xj〈vjϑF〉 = 〈ϑC(F)〉 (13)

Note that f is an element of an infinite dimensional vector space and typically cannot be
expressed by any finite number of components. Therefore, any closure will require the
approximation of f . The aim is to devise an approximation that, in addition to providing
well-posedness of (13), maintains the aforementioned structural features of (1) listed in
section 2. Moreover, the closure relation should result in a tractable system.
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Remark Considering the smallest admissible subspace Θ ≡ C reduces (13) to the Euler
equations for a monatomic gas.

Previous studies of moment closure approximations can be found in [3, 4, 6, 8]. Grad’s
moment closure [3] is based on an expansion of the one-molecule marginal using Hermite
polynomials, modulated by the local equilibrium distribution. A deficiency of Grad’s
moment closure system is the potential occurrence of locally negative and therefore in-
admissible phase-space distributions, and potential loss of hyperbolicity [9, 10]. Later,
Levermore [4] developed a moment closure system based on entropy minimization, which
leads to an exponential closure. However, it was subsequently shown by Junk [11] that
Levermore’s moment closure system suffers from a realizability problem, i.e. there ex-
ist moments for which the minimum entropy solution is undefined. On the other hand,
results by Junk [11, 12], Schneider [13] and Pavan [14], show that a relaxation of the en-
tropy minimization problem is well-posed while retaining exponential closure. However,
employing the relaxed minimization problems leads to loss of the one-to-one correspon-
dence between the entropy minimizing distribution and the moments of the single-particle
phase-space densities. An additional deficiency of Levermore’s entropy-based closure is
the potential occurrence of singularities owing to the fact that densities describing lo-
cal thermodynamic equilibrium may belong to the boundary of the set containing all
degenerate densities [11,12,15]. Another fundamental complication pertaining to the im-
plementation of the moment-closure systems based on exponential closure, is that the
resulting formulation requires the evaluation of moments of exponentials of polynomials
of, in principle, arbitrary orders. It is generally accepted that the derivation of closed-form
expressions for such moments is intractable, and accurate approximation of the moments
is a notoriously difficult problem [16] .

Abdel Malik and Van Brummelen [8] have recently investigated moment-closure sys-
tems based on approximations of the exponential of the form given by an even-order
Taylor-series approximation about a Maxwellian. The even-order of the Taylor-series ap-
proximation ensures non-negativity of the approximation. The results in [8] convey that
in this manner, it is possible to construct well-posed moment-closure systems that re-
tain the structural features of the Boltzmann equation listed in section 2, but for which
the evaluation of moments of exponentials of arbitrary polynomials is replaced by the
evaluation of high-order moments of Gaussians. Such high-order moments of Gaussians
can be evaluated in closed form. It has been noted that Grad’s moment closure can be
perceived as a first order approximation of Levermore’s exponential closure [6, 17]. The
results of [8] can be conceived as a refinement of Grad’s moment system as it overcomes
potentially negative densities and potential loss of hyperbolicity by incorporating higher
order approximations.
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4 MULTISCALE HIERARCHY: MODEL ADAPTIVITY

Moment-closure systems potentially offer efficient hierarchical approximations of the Boltz-
mann equation, by exploiting the fact that its solutions converge to functions in a par-
ticular class, the equilibrium distributions. Adaptivity between the Boltzmann equation
(micro model) and the Euler equations (macro model) has been propounded by several
authors, e.g., E and Engquist [18]. However, no methodology to this purpose has been
developed so far. The scale disparity between the Euler equations and the Boltzmann
equations is enormous, which renders direct adaptivity between these two models infeasi-
ble. The hierarchy of moment-closure systems can be conceived of as a gradual transition
from the Euler equations to the Boltzmann equations. The goal-oriented error estimate
provides a systematic refinement criterion.

This section aims to explore the potential opportunities provided by the hierarchical
structure of the moment equations in (13) for numerical approximation of the Boltzmann
equation, more specifically, for goal-oriented model adaptivity.

4.1 Towards Goal-Oriented Model Adaptivity

The general procedure for performing goal-oriented adaptivity consists of repeated appli-
cation of the following operations [19]:

SOLVE→ ESTIMATE→ MARK→ REFINE

Given an initial mesh, the first step concerns the solution of the finite-element problem
on that mesh. The second step is the construction of a computable a-posteriori estimate
of the error in the finite-element approximation, based on the current approximation and
exogenous data. In the third step, the error estimate is decomposed into element-wise
contributions, and the elements which yield the largest contributions to the error in the
goal functional are marked according to some marking strategy. In the final stage, the
marked elements are refined.

In the context of the hierarchy of moment-closure systems, it is envisaged that the
above procedure can be extended to include both mesh-adaptivity and hierarchical-rank
adaptivity. That is, not only estimate the error in the numerical solution, but also the
error in the moment-closure system itself. Accordingly, the adaptive procedure locally
adapts the element size and the hierarchical rank to arrive at an optimal approximation.
The challenges in the development of the a-posteriori error estimate and the adaptive-
refinement procedure, are the construction of a computable error estimate for the moment-
closure hierarchy, and the (nonstandard) decomposition of the error into contributions
from the model error (i.e., the finite rank of the considered moment-closure system) and
the finite-element approximation error (i.e., the finite mesh width). For the a posteriori
error estimation, one could employ duality-based techniques [20–22]. Moreover, by virtue
of the fact that moment-closure systems assume the form of a hierarchy of hyperbolic
systems, the discontinuous-Galerkin formulation is well suited to discretize these systems,
and element-wise refinement indicators can then be derived in a similar manner as in [23].
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5 CONCLUSION

The enormous potential of moment-closure approximations of the Boltzmann equation in
the context of numerical-approximation techniques, lies in the fact that such approxima-
tions assume the form of a hierarchy of systems of hyperbolic partial-differential equations,
which puts the full arsenal of approximation techniques for this class of problems at our
disposal, in particular, (goal-)adaptive finite-element methods based on a-posteriori error
estimates. The hierarchical structure of the moment-closure systems, engendered by the
inclusion relation acting on the polynomials, implies that the solution of each system
can be regarded as an approximation to the solution to the next member in the hierar-
chy. Hence, by virtue of the hierarchical structure, a-posteriori error estimates can be
constructed by evaluating the residual of the next member in the hierarchy. Based on
this observation, we propounded an adaptive numerical approach, in which not only the
mesh width and order of approximation in the finite-element method are locally adapted
for one particular moment-closure system, but in which also the hierarchical rank of the
moment-system is locally adapted, in accordance with an a-posteriori error estimate.
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