
VI International Conference on Adaptive Modeling and Simulation
ADMOS 2013

J. P. Moitinho de Almeida, P. Dı́ez, C. Tiago and N. Parés (Eds)

ADAPTIVE TIMESTEP CONTROL FOR THE
GENERALISED-α METHOD

JOACHIM RANG∗

∗Institute of Scientific Computing
TU Braunschweig

Hans-Sommer Str. 65, 38106 Braunschweig, Germany
e-mail: j.rang@tu-bs, web page: http://www.wire.tu-bs.de

Key words: Adaptivity, generalised-α methods

Abstract. In this article an adaptive timestep control for the generalised-α methods
is introduced. If the methods for first and second order ODEs are formulated as onestep
schemes a second solution can be computed with the backward Euler method, which costs
no additional computing time. If the generalised-α methods are formulated as multistep
methods an adaptive timestep control is only introduced for first order ODEs. In this
case the method is formulated with variable coefficients and a second solution is computed
with the Leapfrog method. Numerical examples show in the case of the onestep versions
the advantages of the adaptive algorithms.

1 INTRODUCTION

In this article we consider the generalised-α methods, which are introduced for first
order ODEs in [JWH00] and for second order ODEs in [CH93]. The generalised-α methods
are usually of second order and allow the damping of high frequencies, which can be
controlled by certain parameters. An analysis for first order problems can be found
in [DP03]. In the case of second order ODEs many papers can be found, which analyse
the generalised-α method, for example [EBB02]. It is well known that the generalised-α
method for first order problems can be formulated as onestep and multistep methods. In
the case of second order methods this statement is only true if the ODE is linear in the
first derivative (see [EBB02]). For both classes of multistep methods second order can
be achieved if a further order condition is satisfied. Together with stability conditions
(see [EBB02]) a robust and effective class of methods is obtained. If these parameter
sets are used for onestep methods theoretically only first order can be reached. But the
error constant is very small so that the observed numerical order of convergence is two.
Moreover in our experience the onestep versions achieve better results than the multistep
versions.

1

Joachim Rang

For solving ODEs or DAEs a good time integration method needs an error estimator
to increase efficiency. This error estimator suggests a new timestep size to reach a given
accuracy. If the timestep size is too small a lot of unnecessary computational work has
to be done. Otherwise, if the timestep size is too large, the results become less accurate.
In [HNW93] two approaches for time-adaptive one-step methods are presented. The first
one is called Richardson extrapolation and can be applied to every one-step method. In
this case the calculations for computing an approximation of the solution at the next
timestep are repeated with the timestep size τ/2 and compared with the first result, i.e.
the computational work increases by a factor of 3. Thus, the question of efficiency arises.

A more effective control of timesteps can be achieved with the so-called embedding
technique, which can be used for many Runge–Kutta and Rosenbrock–Wanner meth-
ods [HW96, SW92]. In this case a second solution can be computed with almost the
same coefficients and without solving a further linear or non-linear solution, i.e. there
are almost no further computational costs. Applications can be found in [HHR12, JR10,
Lan01, Ran04].

In this article different approaches are considered. In the case of the onestep formula-
tion of the generalised-α method the backward Euler method can be used to compute a
second solution without any further computation. As the numerical examples will show
this is an effective way of computing adaptive timestep sizes.

In the case of the multistep formulation we need methods, which have variable coeffi-
cients. In the case of second order ODEs we get a formulation, which involves potentials
of the mass and the damping matrix. Therefore we only develop for the onestep version a
formulation with variable coefficients. In this case a second solution can be computed with
the Leapfrog method. This approach can be found in [GS00] for a backward difference
formular.

This paper is structured as follows. First we introduce the generalised-α methods
for first and second order ODEs. A short analysis about convergency and stability is
given. Then adaptive algorithms are explained and numerical examples illustrate the
adavantages of the new adaptive methods.

2 THE GENERALISED-α METHOD FOR 1ST ORDER ODES

In the following we consider the ODE

u̇ = f(t,u), u(0) = u0. (1)

To determine the numerical solution of (1) we use the generalised-α method, which is
given by the formulas (see [JWH00, DP03])

u̇n+αm = f(tn+αf
,un+αf

), (2)

un+1 = un + τ u̇n + τγ(u̇n+1 − u̇n), (3)

u̇n+αm = u̇n + αm(u̇n+1 − u̇n), (4)

un+αf
= un + αf (un+1 − un). (5)

2

Joachim Rang

It is well known that the generalised-α method can be formulated as a onestep and a
twostep method.

2.1 The formulation as onestep method and its analysis

First we manipulate the formulas (2)–(5) to obtain a non-linear system consisting of
two decoupled equations. For simplification we define fn+αf

:= f(tn+αf
,un+αf

). A simple
calculation gives us

un+1 = un + τ

(
1− γ

αm

)
u̇n +

τγ

αm
fn+αf

, (6)

u̇n+1 =
1

τγ
(un+1 − un − τ(1− γ)u̇n) , (7)

if αm 6= 0. We call the scheme (6)–(7) the onestep generalised-α method. The starting
value u̇0 can be computed from the ODE (1). Next we want to determine the order of
consistency. Therefore the numerical solution un+1 can be expanded in a Taylor series as
follows

un+1 = un + τ u̇n +
τ 2γαf
αm

ün +O(τ 3).

For consistency of order 2 we get the condition
γαf
αm

=
1

2
. Since un+1 depends on u̇n we

use equation (7) for expanding u̇n+1 in a Taylor series and get

u̇n+1 = u̇n +
ταf
αm

ün +O(τ 2),

i. e. u̇n+1 is of order 1 if
αf
αm

= 1. Summarising our results we have consistency of order

2 if αm = αf and γ = 1/2. It can be easily shown that the generalised-α method is
zero-stable if αm > 1/2. In other words our method is convergent if αm > 1/2.

2.2 Formulation as multistep method and its analysis

The generalised-α method can be formulated as a twostep method as follows

un+1 =
2αm − 1

αm
un −

αm − 1

αm
un−1 +

τ(1− γ)

αm
fn−1+αf

+
τγ

αm
fn+αf

. (8)

For αm = 3/2, αf = 1 and γ = 1 we obtain the backward difference formula (BDF) from
Gear (see [HW96]). Next we expand un+1 in a Taylor expansion and compare it with the
exact solution. Then we have

un+1 = un + τ u̇n +
τ 2

2

2αf − αm + 2γ − 1

αm
ün +O(τ 3).

3

Joachim Rang

Comparing the Taylor expansions for u(tn+1) and un+1 leads to the condition for second
order consistency

γ =
1

2
− αf + αm, (9)

which is already known from [JWH00, DP03]). The generalised-α method in form (8) is
convergent of order 2 if αm > 1/2 and condition (9) holds. For stability the setting

αf = γ =
1

1 + ρ∞
, αm =

3− ρ∞
2(1 + ρ∞)

. (10)

is used (see [JWH00, DP03]). Note that condition (9) is automatically satisfied. For
ρ∞ = 0 we get the BDF-2 method.

3 THE GENERALISED-α METHOD FOR SECOND ORDER ODES

3.1 The formulation as onestep method

In the following we consider the second order ODE

ü = f(t,u, u̇), u(0) = u0, u̇(0) = u̇0. (11)

The generalised-α method can be written as

un+αf
= αfun+1 + (1− αf)un, (12)

u̇n+αf
= αf u̇n+1 + (1− αf)u̇n, (13)

ün+αm = αmün+1 + (1− αm)ün, (14)

un+1 = un + τ u̇n + τ 2

[(
1

2
− β

)
ün + βün+1

]
, (15)

u̇n+1 = u̇n + τ [(1− γ)ün + γün+1] , (16)

ün+αm = f(tn+αf
, αfun+1 + (1− αf)un, αf u̇n+1 + (1− αf)u̇n), (17)

where tn+αf
= tn + ταf . To abbreviate we write

fn+αf
:= f(tn+αf

, αfun+1 + (1− αf)un, αf u̇n+1 + (1− αf)u̇n).

These equations can be simplyfied to

un+1 = un + τ u̇n + τ 2

[(
1

2
− β

αm

)
ün +

β

αm
fn+αf

]
, (18)

u̇n+1 = u̇n + τ

[(
1− γ

αm

)
ün +

γ

αm
fn+αf

]
. (19)

ün+1 =
1

αm
[ün+αm − (1− αm)ün] =

1

αm

[
fn+αf

− (1− αm)ün
]
. (20)

4

Joachim Rang

Next we expand these three expression into Taylor expansions and get

un+1 = un + τ u̇n +
1

2
τ 2ün +O(τ 3),

u̇n+1 = u̇n + τ ün + γ
αf
αm

τ 2ün +O(τ 3),

ün+1 = ün + τ
αf
αm

...
un +O(τ 2).

It follows that the method is of order 2 if αf/αm = 1 and γαf/αm = 1/2. This is the
same result as in the previous section.

3.2 Formulation as multistep method

As in the previous section the generalised-α method can be written as a multistep
method if the ODE (11) is linear in u̇. Therefore we consider the problem as in [EBB02]

M ü + Cu̇ + S(u) = F(t),u(0) = u0, u̇0 = v0. (21)

Then equation (17) reads as

M ün+αm = F(tn+αf
) − S(αfun+1 + (1 − αf)un) − C(αf u̇n+1 + (1 − αf)u̇n). (22)

The generalised-α method can be formulated as a multistep method with the help of (15),
(16), and (22). These formulas are evaluated at time tn, tn+1, and tn+2 (see for exam-
ple [EBB02]). Then we get

3∑
j=0

[Mαj + τCγj]un+j + τ 2

2∑
j=0

δj[Sn+j+αf
− F(tn+j+αf

)] = 0, (23)

where

α0 = 1− αm, α1 = 3αm − 2, α2 = 1− 3αm, α3 = αm,

γ0 = (1− αf)(γ − 1), γ1 = 1− 2αf − 2γ + 3γαf , γ2 = αf + γ − 3γαf , γ3 = αfγ,

δ0 =
1

2
+ β − γ, δ1 =

1

2
− 2β + γ, δ2 = β

and

Fn+j−αf
= F(αf tn+j+1 + (1− αf)tn+j) = F(tn+j + αfτ)

Sn+j+αf
= αfS(un+j+1) + (1− αf)S(un+j).

The method has consistency order 2 if γ =
1

2
+ αm − αf . The method is zero-stable and

convergent if αm ≥ 1/2, αf ≤ 1/2 and γ ≤ 1/2 (see [EBB02]). For stability often the
setting

β =
(1 + αm − αf)2

4
, αf =

1

1 + ρ∞
, αm =

2− ρ∞
1 + ρ∞

is used (see [CH93]).

5

Joachim Rang

4 ADAPTIVITY

4.1 Adaptivity for the onestep version

If the generalised-α methods are formulated as onestep methods the so-called PI-
controller from Gustafsson et. al. [GLS88] can be used. To suggest a new timestep size
we need solutions of order p and p − 1. The approximation of the generalised-α method
can be used as a second order approximation since the error constant is very small and the
methods behave in our numerical experiments as a second order method. As the second
solution with order 1 we use the backward Euler method. The next timestep size τn+1 is
proposed to be

τn+1 = ρ
τ 2
n

τn−1

(
TOL · rn
r2
n+1

)1/2

, (24)

where ρ ∈ (0, 1] is a safety factor, TOL > 0 is a given tolerance, and rn+1 := ‖un+1−ûn+1‖.
In [HNW93, HW96, SW92] different error measures can be found, which use a combination
of relative and absolute errors. For further details about the numerical error and the
implementation of automatic steplength control we refer to [HW96, Lan01]. The algorithm
reads as follows:

• Compute the numerical solution (un+1, u̇n+1)> with the help of the generalised-α
method (6), (7).

• Compute the second solution with the backward Euler method and use u̇n+1 as
approximation for f(tn+1,un+1), i. e. ûn+1 = un + τnu̇n+1.

• Compute the numerical error with rn+1 and approximate the new timestep length
τn+1 with (24).

• If the numerical error is smaller than the given tolerance the timestep is accepted,
otherwise it is rejected and has to be recomputed with the new timestep length τn+1.

In case of second order ODEs we use equations (12)–(17) to compute the numerical
approximation un+1. As in the case of the first order ODEs the backward Euler can be
used for computing the first order solution.

The chemical reaction E5 This chemical reaction problem is called E5 and can be
found in the collection by Enright, Hull, and Lindberg [EHL75]. The equations are given
by

u̇1 = −Au1 −Bu1u3,

u̇2 = Au1 −MCu2u3,

u̇3 = Au1 −Bu1u3 −MCu2u3 + Cu4,

u̇4 = Bu1u3 − Cu4

6

Joachim Rang

with the initial conditions u1(0) = 1, 76× 10−3 and ui(0) = 0, i ∈ {2, 3, 4}. Moreover we
set as in [HW96] A = 7, 89× 10−10, B = 1, 1× 107, C = 1, 13× 103, and M = 106. The
equations should be solved in the time interval [0, 1013]. Note that the variables u2, u3,
and u4 satisfy the equation u2 − u3 − u4 = 0. The parameter ρ is chosen to be 0, 1/4,
1/2, 3/4, and 9/10, resp. For ρ tending to 1 the algorithm becomes instable. We compare
the generalised-α methods with other implicit and linear-implicit second order solvers like
ROS2 (see [VSBH99]), ROS2S (see [HHR12]), and the method of Ellsiepen (see [EH01]).
It can be observed from Figure 1 that the generalised-α methods with the new stepsize
controller are more effective than the other second order methods.

Figure 1: Comparison of generalised-α methods for first order ODEs: CPU time versus error

Kepler’s problem Consider the second order ODE

ÿi = − yi
(y2

1 + y2
2)3/2

, i = 1, 2.

The initial conditions are given by u0 =

(
0,

√
1 + e

1− e
, 1− e, 0

)>
, where e ∈ [0, 1) is a

given parameter. In our numerical example we choose e = 1/2. We solve the problem
in the interval [0, 20000] with the generalised-α methods for second order ODEs and use
the new adaptive timestep control. The parameter ρ is chosen to be 0, 1/4, 1/2, 3/4, and
9/10, resp. We compare the generalised-α methods with other implicit and linear-implicit
second order solvers like ROS2 (see [VSBH99]), ROS2S (see [HHR12]), and the method of

7

Joachim Rang

Ellsiepen (see [EH01]). It can be observed from Figure 2 that the generalised-α methods
with the new stepsize controller are more effective than the other second order methods.
In this case we get better results for a larger ρ.

Figure 2: Comparison of generalised-α methods for second order ODEs: CPU time versus error

4.2 Adaptivity for the multistep version

In this section we derive first a multistep formula for the generalised-α method, which
has variable coefficients. Note that this idea works only for the generalised-α method for
first order problems. In the case of the generalised-α method for second order problems
matrix potentials must be computed.

Let us start with the generalised-α method for first order problems. We want to formu-
late this method as a twostep method with variable coefficients. We consider equations (6)
for tn and tn+1 and (7) for tn. A simple calculation leads to

un+1 = un +
τn+1

τn

αm − 1

αm
(un − un−1)− τn+1

γ − 1

αm
fn−1+αf

+ τn+1
γ

αm
fn+αf

.

The BDF-2 method with variable timesteps is a special case with the setting γ = αf = 1
and αm = (2τn−1 + τn)(τn−1 + τn).

Next we want to derive the condition for order 2. Therefore we compute a Taylor
expansion of un+1 and obtain

un+1 = un + τn+1u̇n +
τn+1

αm

[
−τn

2
(αm − 1)− τn(γ − 1)(αf − 1) + τn+1γ

]
ün +O(τ 3

n+1)

8

Joachim Rang

It follows
tn(1− αm)− 2τn(γ − 1)(αf − 1) + 2γαfτn+1 = τn+1αm. (25)

Next we consider the problem u̇ = 0. Applying the adaptive generalised-α method we
obtain

un+1 −
(

1 + ωn
αm − 1

αm

)
un + ωn

αm − 1

αm
un−1 = 0.

It follows

ξ2 −
(

1 + ωn
αm − 1

αm

)
ξ + ωn

αm − 1

αm
= 0,

which has the solutions ξ1 = 1 and ξ2 = ωn(αm − 1)/αm. It follows

ωn
ωn + 1

≤ αm ≤
ωn

|ωn − 1|
.

For the A-stability of the method we consider the problem u̇ = λu, λ < 0. Using the
adapative generalised-α method we get

un+1 =

(
1 + ωn

αm − 1

αm

)
un − ωn

αm − 1

αm
un−1 +

τn+1(1− γ)

αm
λ((1− αf)un−1 + αfun))

+
τnγ

αm
λ((1− αf)un + αfun+1).

We are interested in the case λ→ −∞ and get

0 = τnγαfξ
2 + (τn+1(1− γ)αf + τnγ(1− αf)) ξ + τn+1(1− γ)(1− αf).

The solutions of this equation are given by

ξ1 =
αf − 1

αf
, ξ2 = τn+1

γ − 1

τnγ
.

As in the case of constant coefficients we solve ξ1 = −ρ∞ and ξ1 = −ρ∞ together with (25)
and get

γ =
τn+1

τn+1 + ρ∞τn
, αf =

1

ρ∞ + 1
, αm =

2τn+1τn − τnρ∞
τn + ρ∞τn + τn+1 + τn+1ρ∞

.

For adaptivity we want to use a so-called predictor-corrector scheme (see for exam-
ple [GS00]). The predictor is a scheme, which needs no solution of a linear or nonlinear
system, for example an explicit method. The corrector is the desired method, in our case
the generalised-α-method.

9

Joachim Rang

Let us assume that the predictor and the corrector are of order p, i. e. it holds

upn+1 − u(tn+1) = Cp
τ p+1
n+1

(p+ 1)!
f (p+1)(tn), (26)

ucn+1 − u(tn+1) = Cc
τ p+1
n+1

(p+ 1)!
f (p+1)(tn), (27)

where upn+1 is the approximation of the predictor and ucn+1 is the approximation of the
corrector. In the system (26)–(27) the quantities u(tn+1) and f (p+1)(tn) are unknown.
Therefore we solve equation (26) w.r.t. u(tn+1) and insert it into equation (27). Then we
get the following approximation of the local truncation error

dn+1 = ucn+1 − u(tn+1) = Cc
τ p+1
n+1

(p+ 1)!
f (p+1)(tn) =

Cc
Cc − Cp

(ucn+1 − upn+1). (28)

As predictor we want to use the leapfrog method (see [GS00]) given by

upn+1 = un +

(
1 +

τn
τn+1

)
τn+1u̇n −

(
τn+1

τn

)2

(un − un−1).

Expanding this formula into a Taylor expansion gives us the constant Cp, which reads as

Cp = −
(

1 +
τn
τn+1

)
.

The error constant Cc we receive from the Taylor expansion of the generalised-α method.
We obtain

Cc =

(
τn
τn+1

)2
αm − 1 + 3(1− γ)(αf − 1)2

αm
+ 3

γα2
f

αm
− 1.

The chemical reaction E5 As numerical example we again choose the chemical reac-
tion problem E5. The parameter ρ is chosen to be 0, 1/4, and 1/2, resp. For ρ > 1/2 we
obtain too many stepsize rejections and the algorithm becomes ineffective. We compare
the generalised-α methods with other implicit and linear-implicit second order solvers like
ROS2 (see [VSBH99]), ROS2S (see [HHR12]), and the method of Ellsiepen (see [EH01]).
It can be observed from Figure 3 that the generalised-α with the new stepsize controller
is not as effective as the other second order methods.

5 Summary and Outlook

In this article we gave a short analysis of the generalised-α method for first and second
order ODEs and introduced a new adaptive timestep control. In case of the onestep
versions this controller is better than other adaptive second order methods. For multistep
methods the adaptivity is more complicated. We have seen that only in the case ρ ∈
[0, 1/2] an effective method is achieved. In future works adaptivity should also be possible
if ρ > 1/2.

10

Joachim Rang

Figure 3: Comparison of generalised-α methods for first order ODEs: CPU time versus error

REFERENCES

[CH93] J. Chung and G.M. Hulbert. A time integration algorithm for structural dy-
namics with improved numerical dissipation: The generalized-α method. J.
Appl. Mech., 60(2):371–375, 1993.

[DP03] W. Dettmer and D. Perić. An analysis of the time integration algorithms for the
finite element solutions of incompressible Navier-Stokes equations based on a
stabilised formulation. Comput. Methods Appl. Mech. Engrg., 192(9-10):1177–
1226, 2003.

[EBB02] S. Erlicher, L. Bonaventura, and O. S. Bursi. The analysis of the generalized-α
method for non-linear dynamic problems. Comput. Mech., 28(2):83–104, 2002.

[EH01] P. Ellsiepen and S. Hartmann. Remarks on the interpretation of current non-
linear finite-element-analyses as differential-algebraic equations. International
Journal for Numerical Methods in Engineering, 51:679–707, 2001.

[EHL75] W.H. Enright, T.E. Hull, and B. Lindberg. Comparing numerical methods for
stiff systems of O.D.E:s. BIT, Nord. Tidskr. Inf.-behandl., 15:10–48, 1975.

[GLS88] K. Gustafsson, M. Lundh, and G. Söderlind. A PI stepsize control for the
numerical solution of ordinary differential equations. BIT, 28(2):270–287, 1988.

11

Joachim Rang

[GS00] P.M. Gresho and R.L. Sani. Incompressible Flow and the Finite Element
Method. Wiley, Chichester, 2000.

[HHR12] Ahmad-Wahadj Hamkar, Stefan Hartmann, and Joachim Rang. A stiffly accu-
rate Rosenbrock-type method of order 2. Appl. Num. Math., 62(12):1837–1848,
2012.

[HNW93] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equa-
tions. I: Nonstiff problems., volume 8 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 1993.

[HW96] E. Hairer and G. Wanner. Solving ordinary differential equations. II: Stiff and
differential-algebraic problems, volume 14 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 1996.

[JR10] Volker John and Joachim Rang. Adaptive time step control for the incompress-
ible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng., 199:514–
524, 2010.

[JWH00] Kenneth E. Jansen, Christian H. Whiting, and Gregory M. Hulbert. A
generalized-α method for integrating the filtered Navier-Stokes equations with
a stabilized finite element method. Comput. Methods Appl. Mech. Eng., 190(3-
4):305–319, 2000.

[Lan01] J. Lang. Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems, vol-
ume 16 of Lecture Notes in Computational Science and Engineering. Springer-
Verlag, Berlin, 2001.

[Ran04] Joachim Rang. Stability estimates and numerical methods for degenerate
parabolic differential equations. PhD thesis, Institut für Mathematik, TU
Clausthal, 2004. appeared also as book from Papierflieger Verlag Clausthal-
Zellerfeld.

[SW92] K. Strehmel and R. Weiner. Linear-implizite Runge–Kutta-Methoden und ihre
Anwendung, volume 127 of Teubner-Texte zur Mathematik. Teubner, Stuttgart,
1992.

[VSBH99] J.G. Verwer, E.J. Spee, J.G. Blom, and W. Hundsdorfer. A second-order
Rosenbrock method applied to photochemical dispersion problems. SIAM J.
Sci. Comput., 20(4):1456–1480, 1999.

12

