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Abstract. This work presents a new approach to assess the error in specific quantities
of interest in the framework of linear elastodynamics. In particular, a new type of quan-
tities of interest (referred as timeline-dependent quantities) is proposed. These quantities
are scalar time-dependent outputs of the transient solution which are better suited to
time-dependent problems than the standard scalar ones available in the literature. The
proposed methodology furnishes error estimates for both the standard scalar and the new
timeline-dependent quantities of interest. The key ingredient is the modal-based approxi-
mation of the associated adjoint problems which allows efficiently computing and storing
the adjoint solution.

1 INTRODUCTION

Assessing the reliability and/or improving the efficiency of the finite element based
approximations has motivated the development of a huge variety of error assessment
techniques. The pioneering references on this topic focus in steady-state elliptic problems,
e.g. linear elasticity or steady heat transfer. In the context of elliptic problems, the early
works consider the energy norm as an error measure [1, 2, 3]. Much later, functionals
outputs or quantities of interest are introduced to assess the error [4, 5, 6, 7]. The
estimates assessing the error in quantities of interest are usually referred in the literature
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as goal-oriented. These techniques are extended to deal with other linear and non-linear
problems, as well as to time-dependent problems.

An important issue associated with goal-oriented estimates for elastodynamics (and
also for other time-dependent problems) is the definition of the quantity of interest itself.
Typically, the quantity is expressed in terms of a (linear) functional, which transforms the
solution of the problem into a single representative scalar value. In many cases, a single
scalar value does not provide enough pieces of information about the whole time-space
solution. This suggests introducing a new type of quantities of interest. The output of
such a quantity of interest is not anymore a scalar quantity but a time-dependent function.
The major novelty of this article is the introduction of this new type of quantities. They
are referred as timeline-dependent quantities of interest in contrast with the standard
scalar quantities.

2 PROBLEM STATEMENT

2.1 Governing equations

Consider a visco-elastic body occupying an open bounded domain Ω ⊂ Rd, d ≤ 3,
with boundary ∂Ω. The boundary is divided in two disjoint parts, ΓN and ΓD such
that ∂Ω = ΓN ∪ ΓD and the time interval under consideration is I := [0, T ]. Under the
assumption of small perturbations, the evolution of displacements u(x, t) and stresses
σ(x, t), x ∈ Ω and t ∈ I, is described by the visco-elastodynamic equations,

ρ(ü + a1u̇)−∇ · σ = f in Ω× I, (1a)

u = 0 on ΓD × I, (1b)

σ · n = g on ΓN × I, (1c)

u = u0 at Ω× {0}, (1d)

u̇ = v0 at Ω× {0}. (1e)

where an upper dot indicates partial derivation with respect to time, that is ˙(•) :=
d
dt

(•), and n denotes the outward unit normal to ∂Ω. The problem data are the mass
density ρ = ρ(x) > 0, the first Rayleigh coefficient a1 ≥ 0, the body force f = f(x, t) and
the traction g = g(x, t) acting on the Neumann boundary ΓN × I. The initial conditions
for displacements and velocities are u0 = u0(x) and v0 = v0(x) respectively. For the
sake of simplicity and without any loss of generality, Dirichlet conditions (1b) are taken
as homogeneous.

The set of equations (1) is closed with the constitutive law,

σ = C : ε(u + a2u̇), (2)

where the parameter a2 ≥ 0 is the second Rayleigh coefficient, the tensor C is the stan-
dard 4th-order elastic Hooke tensor and the kinematic relation (corresponding to small
perturbations) ε(w) := 1

2
(∇w + ∇Tw) is considered.
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2.2 Numerical approximation

In the following developments, û is assumed to be an approximation of the solution
of the boundary value problem (1). For technical reasons, û must have C0-continuity in
space and C1-continuity in time. Most typically, the approximation computed with the
standard Newmark method, say uH,∆t, does not fulfill these continuity requirements and
has to be post-processed to obtain a suitable smooth in time function û.

The numerical approximation û is computed here as a post process of the Newmark
solution using the method of the linear accelerations [8]. This post-process consist basi-
cally in integrate in time a piecewise linear interpolation of the Newmark accelerations
furnishing the smooth velocity ˙̂u and then integrating in time again furnishing the smooth
displacement û, see [8, 9] for details.

2.3 Scalar and timeline-dependent quantities of interest

A quantity of interest is represented by a functional LO(·) extracting a single scalar
value, sT := LO(u) ∈ R, of the space-time solution u. A typical expression for this
functional is given by

LO(u) :=

∫ T

0

(fO(t), u̇(t)) dt+

∫ T

0

(gO(t), u̇(t))ΓN
dt+ (ρvO, u̇(T )) + a(uO,u(T )), (3)

where fO, gO, vO and uO are the data characterizing the quantity of interest. The func-
tions fO and gO extract global or localized averages of velocities in Ω and ΓN, respectively,
over the whole time simulation [0, T ] whereas vO and uO assess averages of velocities and
strains or displacements respectively at the final simulation time T .

The quantity of interest associated with the adjoint solution, namely sT , is obviously
unknown and it is approximated by the quantity of interest associated with the approxi-
mated solution û, that is sT ≈ ŝT := LO(û). Goal oriented error estimates aims at assess-
ing the quality of the approximation ŝT by means of approximating the error se

T = sT− ŝT .
Consequently, the problem of goal-oriented consists in finding approximations of the value
se.

This work extends the paradigm of classical goal-oriented error estimation by intro-
ducing the new concept of timeline-dependent quantities of interest. Timeline-dependent
quantities of interest are defined as an extension of (3) as

LOTL(u)(t) :=

∫ t

0

(fO(τ), u̇(τ)) dτ+

∫ t

0

(gO(τ), u̇(τ))ΓN
dτ+(ρvO, u̇(t))+a(uO,u(t)). (4)

Note that the time-line dependent quantity s(t) := LOTL(u)(t) associated with the function
u is a time dependent function instead of a single scalar value, see figure 1.

The aim of timeline-dependent goal-oriented error estimation strategies is assessing the
quality of ŝ(t) = LOTL(û; t), that is the difference between the exact quantity of interest
s(t) = LOTL(u; t) and the approximation obtained with the numerical simulation ŝ(t).
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Figure 1: Illustration of scalar and timeline-dependent quantities of interest. The functional LO maps the
time-space solution u into a scalar value sT ∈ R. The operator LOTL transforms u into a time-dependent
function s(t).

Thus, the goal of goal-oriented error estimates for timeline-dependent quantities is finding
approximation of the time-dependent function

se(t) := s(t)− ŝ(t).

3 ASSESSING SCALAR AND TIMELINE-DEPENDENT QUANTITIES
OF INTEREST

This section is devoted to present a novel approach to assess the error both in the
scalar quantity of interest, se

T , and in the timeline-dependent quantity, se(t), using the
modal analysis to obtain a proper approximation of the adjoint solution.

3.1 Assessing Scalar quantities

Assessing the error in quantities of interest requires introducing an auxiliary problem
associated with the functional LO(·), usually denoted by adjoint or dual problem [9]. The
strong form of the adjoint problem associated with the quiantity defined in (3) is, see [9]
for details,

ρ(üd − a1u̇
d)−∇ · σd = −fO in Ω× I, (5a)

ud = 0 on ΓD × I, (5b)

σd · n = −gO on ΓN × I, (5c)

ud = uO at Ω× {T}, (5d)

u̇d = vO at Ω× {T}, (5e)
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with the constitutive law
σd := C : ε(ud − a2u̇

d). (6)

Note that the terms affected by a1 and a2 have opposite sign that the ones in the
original problem (1). Consequently, the adjoint problem has to be integrated backwards
in time, starting from the final conditions (5d) and (5e).

The solution of the adjoint problem ud allows representing the error in the quantity of
interest in terms of residuals. That is

LO(ê) = R(ud) (7)

where R(·) := L(·)− B(û, ·) is the weak residual associated with the numerical approxi-
mation û. The forms B(·, ·) and L(·) are defiend as

B(v,w) :=

∫
I

(ρ(v̈+a1v̇), ẇ) dt+

∫
I

a(v+a2v̇, ẇ) dt+(ρv̇(0+), ẇ(0+))+a(v(0+),w(0+)),

and

L(w) :=

∫
I

l(t; ẇ(t)) dt+ (ρv0, ẇ(0+)) + a(u0,w(0+)).

where the standard linear and bilinear forms are introduced

a(v,w) :=

∫
Ω

ε(v) : C : ε(w) dΩ , l(t; w) := (f(t),w) + (g(t),w)ΓN
,

along with the scalar products

(v,w) :=

∫
Ω

v ·w dΩ and (v,w)ΓN
:=

∫
ΓN

v ·w dΓ.

Note that the error representation (7) allows obtaining the error in the quantity of
interest provided that the exact solution of the adjoint problem is available. Conversely,
if an accurate approximation of the adjoint solution is available, say ũd, the error in the
quantity of interest is estimated as

seT = LO(ê) ≈ R̂(ũd) =: s̃eT . (8)

As previously announced, the adjoint problem (5) is of the same type as the original
one (1). Thus the adjoint approximation ũd can be solved with any of the approximation
methods available for elastodynamics. Here, the adjoint approximation is computed with
modal analysis. For particular quantities of interest, modal analysis is a very efficient way
to compute the adjoint problem. Moreover, the modal description of the adjoint solution
is a key ingredient in assessing the error in timeline-quantities of interest.
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The modal analysis requires computing the M fist vibration modes qH
i and frequencies

ωH
i of the problem, i = 1, . . . ,M , solution of the generalized eigenvalue problem: find

qH
i ∈ VH

0 such that
a(qH ,w) = (ωH)2(ρqH ,w) ∀w ∈ VH

0 , (9)

where VH
0 is the finite element space (H stands for characteristic element size of the

underlying computational mesh). Eigenpairs are sorted from low to high frequencies,
namely ωH

1 ≤ ωH
2 · · · ≤ ωH

Ndof
, and eigenvectors are normalized to be orthonormal with

respect the product (ρ·, ·), i.e.

(ρqH
i ,q

H
j ) = δij, 1 ≤ i, j ≤ Ndof. (10)

For thechnical reasons (Galerkin cancellation), the adjoint approximation ũd cannot
be computed by means of the eigenpairs (qH

i , ω
H
i ). The reason in the eigenvectors have to

belong to a richer space than VH
0 . For that reason, new enhanced eigenpairs (q̃i, ω̃i) are

computed starting form the original ones (qH
i , ω

H
i ) using the post-processing technique

proposed in [10]. Once the enhanced eigenpairs are available, the adjoint approximation
is computed as the expansion of the enhanced eigenvectors

ũd(x, t) :=
M∑
i=1

q̃i(x)ỹi(t). (11)

Finaly, the time dependent coeficciets are computed solving the scalar ordinary differential
equations

¨̃yi − [a1 + a2(ω̃i)
2] ˙̃yi + (ω̃i)

2ỹi = l̃i, (12a)

ỹi(T ) = ũi, (12b)

˙̃yi(T ) = ṽi, (12c)

where l̃i(t) := (fO(t), q̃i) + (gO(t), q̃i)ΓN
, and ũi and ṽi are the coefficients best fitting uO

and vO in the enhanced eigenvector basis, that is

uO ≈
Ndof∑
i=1

q̃i(x)ũi and vO ≈
Ndof∑
i=1

q̃i(x)ṽi. (13)

Once the approximation ũd is available, the error in the quantity of interest is assessed
using equation (8).

3.2 Assessing timeline-dependent quantities

Recall that, for a given time t ∈ I, s(t) = LOTL(u)(t). In that sense, for this particular
value of t, s(t) is seen as a scalar quantity of interest taking t as the final time. This
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scalar quantity of interest is characterized as LO(·) = LOTL(·)(t). The associated adjoint
problem is analogous to the one presented for the scalar quantity of interest and reads:

ρ(üd
t − a1u̇

d
t )−∇ · σd

t = −fO in Ω× [0, t], (14a)

ud
t = 0 on ΓD × [0, t], (14b)

σd
t · n = −gO on ΓN × [0, t], (14c)

ud
t = uO at Ω× {t}, (14d)

u̇d
t = vO at Ω× {t}, (14e)

with the constitutive law
σd

t := C : ε(ud
t − a2u̇

d
t ). (15)

Note that the solution of this problem is denoted by ud
t emphasizing that there is a different

solution for each time t. Consequently, equation (14) describes a family of problems, one
for each time t.

For a particular instance of time t, the error representation of the timeline-dependent
quantity of interest se(t) is similar to the standard scalar case but taking the adjoint
solution ud

t related with the particular value t ∈ I, namely

se(t) = R̂t(u
d
t ), (16)

where R̂t(w) := Lt(w; t)−Bt(û,w) and

Bt(v,w) :=

∫ t

0

(ρ(v̈(τ) + a1v̇(τ)), ẇ(τ)) dτ +

∫ t

0

a(v(τ) + a2v̇(τ), ẇ(τ)) dτ

+ (ρv̇(0+), ẇ(0+)) + a(v(0+),w(0+)),

Lt(w) :=

∫ t

0

l(τ ; ẇ(τ)) dτ + (ρv0, ẇ(0+)) + a(u0,w(0+)).

Hence, an estimate for se(t) is obtained injecting an enhanced adjoint approximation
ũd
t in equation (16)

se(t) ≈ R̂t(ũ
d
t ). (17)

Obviously, it is not possible in practice to independently compute the infinite solutions
ũd
t (one for each time t ∈ I) and then using them in equation (16) to assess se(t). However,

taking fO and gO constant in time (which accounts for a number of interesting cases), the
different functions ud

t corresponding to different time instances are all equivalent after a
time translation. Thus, if ud

t is properly computed for a particular value of t, for instance
t = T , the general functions ud

t for t 6= T are easily recovered as a direct post-process of
ud
T . This fundamental result, shown in the following theorem, is the crucial observation

that allows the error estimation technique to be brought to fruition.
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Theorem 1 For a given t, let ud
t be the solution of the adjoint problem defined by equa-

tions (14). Assume that data fO and gO in (4) are constant in time, i.e. fO(x, t) = fO(x)
and gO(x, t) = gO(x).

Then, ud
t is related with the adjoint solution associated with the final time T , ud

T , via
the time translation

ud
t (τ) = ud

T (τ + T − t). (18)

Theorem (1) allows to efficiently recover the family of enhanced approximations ũd
t

from the enhanced approximation ũd
T as

ũd
t (τ) = ũd

T (τ + T − t). (19)

Consequently, the approximation ũd
T is the base for assessing the error both in the scalar

and timeline-dependent quantities, providing in the latter case more meaningful informa-
tion. The translation (19) is done very efficiently by means of the modal description of
ũd
T :

ũd
t (τ) =

M∑
i=1

q̃iỹi(τ + T − t). (20)

Recall that, functions ỹi may be known analytically in many cases and therefore computing
the translation yi(τ + T − t) is inexpensive in that cases.

Finally, the error in the timeline-dependent quantity is assessed using the computed
adjoint approximations ũd

t in equation (16).

4 NUMERICAL EXAMPLE

This example illustrates the performance of the proposed error estimates in a 2D wave
propagation problem. The problem definition is taken from [9] where it is used to test an
error estimate providing error bounds in quantities of interest.

(a) Problem geometry (b) Time-dependent external load

Figure 2: Example 1: Problem statement.
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The problem geometry is the rectangular plate sketched in figure 2(a). The plate is
initially at rest (u0 = v0 = 0) and loaded with the time dependent traction

g =

{
−g(t)e2 on Γg,

0 elsewhere,
(21)

where e2 := (0, 1) and g(t) is the impulsive time-dependent function defined in figure 2(b)
with parameters gmax = 30 Pa and tg = 0.005 s. No body force is acting in this example
(f = 0).

Table 1 details the geometrical parameters and material data, where E and ν are the
Young’s modulus and Poisson’s ratio respectively and the parameter ξ is the dimensionless
damping factor. In the examples included her we take a1 = 0, and its corresponding
value is ξ := 1

2
ω1a2, see [9, 11]. Three different values of the viscosity parameter a2 are

considered. The solution of the problem consists of elastic waves propagating along the
plate, see [9] for a qualitative description of the solution.

Table 1: Example 1: Problem parameterization

Geometry

Ω (−0.5, 0.5)× (0, 0.5) m2

Γg [(0.075, 0.125) ∪ (−0.075,−0.125)]× (0.5) m
T 0.25 s

Material properties

E 8/3 Pa
ν 1/3
ρ 1 kg/m3

a1 0 s
a2 {0, 10−4, 10−2} s
ξ {0, 0.0247, 2.47} %

The timeline-dependent quantity considered in this example is

s(t) = (ρq1, u̇(t)).

The quantity sT is associated with the exact first eigenvector of the generalized eigenvalue
problem (9) in the Sobolev space V0. In the following, the unknown function q1 is replaced
by a reference eigenvector qH,p+1

1 solution of the eigenvalue problem (9) in the discrete
space VH,p+1

0 . The space VH,p+1
0 is obtained increasing by one the interpolation order of

VH
0 .
Figure 3 shows the reference and approximated timeline quantities s(t) and ŝ(t) :=

(ρq1, ˙̂u(t)) and the reference and estimated errors se(t) and ŝe(t) for mesh id. 1 and time
step id. 3, see table 2. The proposed estimate s̃e(t) is really close to the reference value
se(t) in all cases, also for a2 = 0. It can be observed that, in this example, the quantity of
interest associated to the lowest eigenvector q1 is nearly unaffected by the change in the
damping coefficient a2. However, the time dependent errors se(t) and its approximations
s̃e(t) are smoothed out as the coefficient a2 increases.
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Table 2: Example 1: Space and time discretizations

Mesh id. Nnod # Elements Type H [m]

1 3051 5899 Triangle 3.2 · 10−3

2 12000 23596 ” 1.6 · 10−3

3 47595 94384 ” 7.9 · 10−4

Time step id. # steps ∆t [s]

1 100 2.5 · 10−3

2 200 1.3 · 10−3

3 400 6.2 · 10−4

4 800 3.1 · 10−4

5 CONCLUSIONS

This article presents a new type of goal-oriented error estimates assessing the error
in timeline-dependent quantities of interest. Timeline-dependent quantities are outputs
of the solution describing the time evolution of some space-post-processed functional.
Compared to the traditional scalar quantities of interest, this approach fits better the
requirements of end-users in dynamic problems. Assessing the error in timeline-dependent
quantities involves a family of infinite adjoint problems (one for each time instant in
the time interval under consideration). However, all these adjoint problems are similar
and they can be recovered from a common parent problem (associated with the a scalar
quantity of interest) by means of a simple translation (shift) of the time variable.

The second novelty in this paper is the approximation of the adjoint problem using a
decomposition into vibration modes. This allows efficiently precomputing and storing the
adjoint solution. Thus, the error estimate is computed along the time integration of the
original problem. This approach applies both for the scalar and timeline quantities, but
it is specially indicated for the latter because it simplifies the implementation of the time
shift.

The error estimation strategies proposed in this work are based on an explicit ap-
proach. The error estimate is computed injecting an enhanced approximation of the
adjoint solution into the residual of the direct problem. The enhancement is based on a
local postprocess of the computed eigenvectors, performed only once and not at each time
step. This approach is very efficient for some quantities of interest in which the adjoint
solution is fairly represented in a modal description.

The numerical examples show that the proposed estimates have a good effectivity for
both the scalar and timeline quantities of interest, accounting both for space and time
discretization errors. Contrary to other error estimates for linear visco-elastodynamics,
the proposed estimates do not degenerate in the limit case of pure elasticity (i.e. when
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a2 = 0 s a2 = 0 s

a2 = 10−4 s a2 = 10−4 s

a2 = 0−2 s a2 = 10−2 s

Figure 3: Example 1: Approximated and reference timeline-dependent quantity (left) and estimated and
reference errors in the timeline-dependent quantity (right) for the three values of the damping parameter
a2 (a2 = 0 s, top; a2 = 10−2s, center; a2 = 10−4s, bottom).

no damping is introduced in the formulation).
In current ongoing work, the proposed error estimation techniques are used as driving

indicators for mesh adaptivity.
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