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Abstract. A fully coupled solver for the solution of steady laminar incompressible flow
problems on locally refined non-matching block-structured grids that promises improved
convergence properties is presented. For this a coupled velocity-pressure algorithm devel-
oped by Darwish [1] that solves the momentum and pressure equations simultaneously is
extended correspondingly. The spatial finite-volume discretisation applied is of second-
order accuracy. All blocks are implicitly coupled and the method is fully conservative.
The newly developed method is verified via comparisons with manufactured solutions. Its
performance is evaluated by systematic comparisons with standard segregated pressure-
correction solution techniques for representative test cases.

1 INTRODUCTION

Incompressible flows of Newtonian fluids can be described mathematically by the non-
linear Navier-Stokes equations. To handle these equations in the present approach nu-
merically, they are discretised with a finite volume method on collocated block-structured
grids.
Geometrically complicated flow configurations demand highly adapted grids in order to
achieve the required numerical accuracy. In general the grid should be very fine in re-
gions with larger variations of the dependent variables. Choosing the grid resolution of a
block-structured grid such as large variations of the dependent variables are sufficiently
resolved, can lead to high densities of grid points in regions where they are not required.
One possibility to avoid regions with too high grid resolution are local grid refinement ap-
proaches. Various strategies for local grid refinement have been proposed in literature [3].
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The present approach constitutes a h-method where the grid cells are obtained by dividing
the control volumes (CVs) into four subcells in two dimensions and eight subcells in three
dimensions. The approach can be easily extended to an arbitrary refinement of grid cells.
A block-wise refinement of the block-structured grid is performed.
There are mainly two strategies to couple the local refinement region with the non-refined
regions: The first one treats the refinement region as a different grid level and the result
on a coarse level serves as a boundary condition and an initial guess to the computation
of a finer level. In case of a rather complex multigrid datastructure is already used such
approaches are fairly easy to implement due to the preservation of the grid structure and
straightforward treatment of the coarse-fine interface. Based on the idea of Berger and
Collela [4] Quirk [5] successfully implemented an hierarchical adaptive grid refinement
approach for compressible flows.
The second strategy couples refined and non-refined regions at the same level, computing
the whole grid simultaneously [6, 7]. Special discretisation schemes are required for the
coarse-fine grid interface to ensure a proper coupling of the subdomains. The presented
algorithm follows this second strategy.
There are several ways by which blocks can be interconnected. Arbitrary overlapping
blocks connected to each other can be generated during a grid generation process (so-
called Chimera grids). With these Chimera grids it is difficult to ensure conservation.
Interpolation between overlapping regions may have to be constructed problem depen-
dent, restricting the generality of the algorithm.
In the presented approach the internal block boundaries are patched together, making
them share a common interface line, but allowing a different point distribution for each
block. Compared to Chimera grids redundant regions are avoided. These patched grids
are also called zonal grids or block adaptive grids.
Besides the choice of the grid the velocity-pressure coupling algorithm is an essential part
with respect to the efficiency and robustness of a solution algorithm for the Navier-Stokes
equations. There are mainly two strategies to perform the velocity-pressure coupling on
collocated grids, either a segregated or a coupled approach. In the segregated approach,
the system of equations for all variables are solved sequentially using fixed values from the
last iteration of other dependent variables. A well known representative is the SIMPLE
algorithm [8].
In the coupled approach all discretised equations of all dependent variables are solved in
one system. Pressure based coupled solvers can be divided into two groups. In the first
group the Navier-Stokes equations are discretised in a straightforward manner, i.e., no
pressure variable in the mass-conservation equation is introduced. An example for this
group is Vankas [10] symmetric coupled Gauss Seidel algorithm. These approaches lead to
an ill-conditioned system of equations because of the present zeros in the main diagonal
of the continuity equation. The solution of these stiff algebraic equation systems is rather
difficult.
In the second group, which includes the approach presented here, a pressure equation is
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derived in the same way as in the SIMPLE algorithm. Examples of this group are Lons-
dale’s [11] control-volume finite element method and the method of Webster [12]. In the
presented approach the velocity-pressure coupling on collocated structured grids devel-
oped by Darwish [1] is extended to non-matching block-structured grids. The extention
allows the specific adaptation of the numerical grid for each flow configuration.
The local block refinement (LBR) method described in this paper is aimed at increasing
accuracy and efficiency in the computation of flow problems. The general discretisa-
tion procedure for the coupled approach is first outlined in the next section, followed by
a description of the refinement method in section 3. In section 4 the LBR method is
verified via Manufactured Solutions. In section 5 the performance is evaluated by sys-
tematic comparison with standard segregated pressure-correction solution techniques for
representative test cases.

2 DISCRETISATION PROCEDURE

Laminar incompressible steady flows of Newtonian fluids can be described by the fol-
lowing nonlinear partial differential equations describing conservation of mass and mo-
mentum:

∂ui
∂xi

= 0 (1)

∂(ρui uj)

∂xj
=

∂

∂xj

[
µ

(
∂ui
∂xj

+
∂uj
∂xi

)]
− ∂p

∂xi
+ ρfi (2)

where ui denotes the components of the velocity vector, xi is the vector of Cartesian
coordinates, µ the dynamic viscosity, p the pressure and fi the outer force vector.
The governing equations (1) and (2) are solved via the block-structured finite volume
method, whereby the flow domain is divided into blocks and each block is discretised
by a structured grid. Each control volume is associated with a main grid point at its
geometric center. To calculate the balance of the conserved quantities, the governing
equations are integrated over each CV. Through the use of the divergence theorem the
volume integrals of the convection, diffusion and pressure gradient terms are transferred
to surface integrals, which, with the application of the continuity equation and application
of approximation schemes of second order accuracy for the surface and volume integrals
(mid-point rule), results in: ∑

f=nb(P )

ρfui,fni,fSf = 0 (3)

∑
f=nb(P )

[
ρf ui,f uj,f nj,f − µ

(
∂ui
∂xj

)
f

nj,f + pf ni,f

]
Sf = ρ fi,P VP (4)

where variables with subscript f are CV-face variables, variables with subscript P are
CV-center variables, Sf denotes the face area, nf the unit cell-face normal vector and VP
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the cell volume.
To yield an algebraic equation system for the momentum equations the variation of the
dependent variables and its derivatives have to be expressed in terms of grid-point center
values. The diffusive fluxes are discretised by a central differential scheme (CDS), the
convective fluxes are treated with a so called deferred correction approach, i.e. a first-
order-upwind approximation (UDS) is used to calculate the elements of the coefficient
matrix while the explicitly calculated difference between the UDS and CDS approxima-
tion is added on the right hand side of the equation system. The overall approximation
order (formal order of accuracy) is therefore second order.
Starting point for the derivation of the pressure equation is the equation of mass con-
servation. The mass flow through a CV-face emerges from the product of face-velocity,
density and the face-area. The aim is to express the face-velocity by means of pressure and
center-point-velocities. This can be achieved by the construction of a pseudo-momentum
equation at the CV-face. Therefore two momentum equations at, e.g. CV-mid-point P
and the adjacent CV-mid-point F, are Rhie-Chow interpolated [13]. The face-velocity is
obtained as

uf,i = uf,i︸︷︷︸
linear interpolated velocity

−Df

[(
∂p

∂xi

)
f

−
(
∂p

∂xi

)
f

]
︸ ︷︷ ︸

correction term

(5)

where Df is the quotient of the cell volume and the corresponding coefficient of the main
diagnonal of the discretised momentum equation (aup , avp, a

w
p ). The variables with overbar

in equation (5) are linearly interpolated cell face values from the neighboring cell centers.
A detailed explanation of the derivation of the pressure equation can be found in [1]. The
continuity equation then becomes

∑
f=nb(P )

ρf

[
uf,i −Df

(
∂p

∂xi

)
f

]
ni,fSf = −

∑
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ρfDf

(
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∂xi

)
f

ni,fSf . (6)

The variables on the left hand side of equation (4) and (6) are treated implicitly. This is
the cornerstone of the coupled algorithm and can accelerate the convergence.
The discretised momentum equations (4) are linearized using values for mass fluxes from
the previous iteration. The PETSc linear algebra library [14] (preconditioned Generalized
Minimal Residual Krylov method) is used to solve the resulting sparse linear system.

3 LOCAL BLOCK REFINEMENT

At the interior of each block each CV has four neighbors in two dimensions or six neigh-
bors in three dimensions which share a common face. At non-matching block interfaces
this is not necessarily the case (see Figure 3). The aim is now to solve the conservation
equations on a global grid, while the non-matching block interfaces should be treated
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Figure 1: A typical CV and notation used.

implicitly, i.e. not by means of boundary conditions. The non-matching block interface
treatment described below is based on Lilek’s work [6] and was adjusted accordingly for
the coupled approach of Darwish [1]. Since both surface and volume integrals are approx-
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Figure 2: A typical non-matching block interface in two dimensions.

imated using the mid-point rule, nothing has to be changed for the calculation of volume
integrals when non-matching block interfaces are present. However some adaptions have
to be performed in order to approximate the surface integrals. When non-matching block
interfaces are present a CV can have several adjacent neighboring CVs (see Figure 3, L2
has R2, R3 and R4 as neighbor) at the interface. According to the number of adjacent
CVs, face value approximations (see Figure 3, l1, l2, l3) for the convective, diffusive and
pressure terms in the equations (4) and (6) have to be calculated. Details on various
options to calculate these approximations can be found in Ferziger and Peric [15]. Here
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only methods used in the present approximations will be described for the east side. The
other CV-faces are treated accordingly. CV-face variables (u,v,w,p) are approximated us-
ing linear interpolation with a correction term to restore second-order accuracy on skewed
grids (see Figure 1):

σe ≈ σE γe + σP (1− γe) + (gradσ)e′ · (re − re′) (7)

with the linear interpolation factor γe, the linearly interpolated CV-face gradient in the
CV-center (grad σ)e′ and the position vectors re and re′ . The CV-center gradient can be
calculated explicitly using the midpoint-rule approximation based on the Gauss theorem:(

∂σ

∂xi

)
P

≈
∑

k σk S
i
k

V
with (k = e, w, n, s, . . . ) (8)

where σk is calculated in the same way as in equation (7). For the diffusive term the
following second order accurate approximation is applied:

(gradσ)e · ne ≈
σE − σP
|rE − rP |

− (gradσ)e
old
(
rE − rP
|rE − rP |

− ne

)
(9)

The underlined term is calculated using prevailing values of the variables. The explicitly
calculated gradient at the CV face (denoted by the overbar) is obtained by linear inter-
polation of the CV-center gradients.
Correspondingly to the finite volume discretisation these approximations are multiplied
by the overlapping CV area of the adjacent CVs, so that the conservativity is fulfilled.

4 VERIFICATION

Figure 3: Manufactured Solution left: geometry and boundary conditions, right: applied blocking.

In this section it is demonstrated, that (i) the LBR method is correctly integrated in
the coupled approach, (ii) the implemented LBR approach is stable for a higher refinement
rate than two, (iii) it is possible to improve the solution accuracy with the implemented

6



Ulrich Falk, Michael Schäfer

LBR method and (iv) the obtained solution accuracy is identical to a segregated LBR
approach presented in [6]. These mentioned points can be examined in a simple way using
the Method of Manufactured Solutions (MMS) in a code verification process. The MMS
is used to obtain exact solutions for the governing equations to determine whether the
calculated solution is converging and the discretisation error is reduced at the expected
rate (observed order equals formal order of accuracy). The form of the Manufactured
Solution was chosen to be infinitely differentiable:

Figure 4: Examples of used grids in verification process; left: 2 blocks grid spacing 1/4, middle: 2 blocks
grid spacing 1/4 & 1/8, right: 2 blocks grid spacing 1/4 & 1/16

u(x, y) = − cos(2πx) sin(2πy)

v(x, y) = sin(2πx) cos(2πy) (10)

p(x, y) = −1

4
(cos(4πx) + cos(4πy))

with x, y ∈ [−1, 1]2. Additional source terms after applying the Manufactured Solutions
to the governing equations with density ρ and viscosity µ set to one are:

su(x, y) = −8π2 cos(2πx) sin(2πy)

sv(x, y) = 8π2 sin(2πx) cos(2πy) (11)

where su(x, y) is the source term for the u-momentum equation and sv(x, y) is the source
term for the v-momentum equation. The flow geometry, boundary conditions and the
applied blocking are shown in Figure 3. Examples of applied grids are shown in Figure 4.
Results obtained with different sequences of meshes are given in Tables 1 and 2. Due to
the symmetry of the velocity components and therefore identical results concerning error
and observed order of accuracy in the following the v-velocity component is omitted. The
observed order of accurary is calculated by the following equation:

observed order =
log
(
εN/2/εN

)
log (2)

(12)
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Table 1: Solution error and observed order (OO) of accuracy of u-velocity.

grid spacing εN coupled OO coupled εN segregated OO segregated

1/16 0.7643E-02 - 0.7646E-02 -
1/16 & 1/32 0.3840E-02 - 0.3842E-02 -
1/16 & 1/64 0.2001E-02 - 0.2015E-02 -

1/32 0.1906E-02 2.01 0.1906E-02 2.00
1/32 & 1/64 0.9621E-03 2.00 0.9596E-03 2.00
1/32 & 1/128 0.5043E-03 1.99 0.5069E-03 1.99

1/64 0.4761E-03 2.00 0.4761E-03 2.00
1/64 & 1/128 0.2395E-03 2.00 0.2399E-03 2.00
1/64 & 1/256 0.1265E-03 2.00 0.1272E-03 1.99

where N is the number of grid points and ε is the error defined by

εN =

√∑
i=1,NT (σi − σi,exact)2

NT
. (13)

NT is the total number of grid cells and σ stands for the velocity-components and pressure.
The results confirm, that (i) the approach is correctly implemented, (ii) the observed order

Table 2: Solution error and observed order (OO) of accuracy of pressure.

grid spacing εN coupled OO coupled εN segregated OO segregated

1/16 0.6261E-01 - 0.8658E-01 -
1/16 & 1/32 0.5287E-01 - 0.6019E-01 -
1/16 & 1/64 0.6575E-01 - 0.6789E-01 -

1/32 0.2015E-01 1.63 0.2062E-01 2.06
1/32 & 1/64 0.1421E-01 1.89 0.1541E-01 1.96
1/32 & 1/128 0.1398E-01 2.23 0.1470E-01 2.20

1/64 0.5287E-02 1.93 0.5317E-02 1.95
1/64 & 1/128 0.3687E-02 1.94 0.3808E-02 2.01
1/64 & 1/256 0.3344E-02 2.06 0.3844E-02 1.93

and formal order of accuracy agree independent of the refinement rate, (iii) it is possible
to improve the numerical accuracy by local block-refinement and (iv) the solution error
of the coupled and segregated approach is almost identical independent of the refinement
rate.
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5 APPLICATION

Separated flows behind a backward facing step have become an important test for CFD
code developers. We use such a configuration to investigate possible performance gains
through the application of LBR.
The geometry and applied blocking of the two-dimensional backward facing step flow is
shown in Figure 5, where all length scales are given relative to the inflow height D = 1 m.
The kinematic viscosity ν = 10−3 m2s−1 and density of ρ = 1.0 kg m−3 is prescribed.
At the inlet boundary a parabolic velocity profile is defined resulting in a steady flow at
Re=200. Examples of applied grids are shown in Figure 6.

The physical quantity for comparison is the reattachment length XRL of the flow behind

Figure 5: Backward facing step flow configuration left: geometry and boundary conditions, right: applied
blocking.

Figure 6: Examples of used grids backward facing step flow configuration left top: 2 blocks grid spacing
1/4, right top: 2 blocks grid spacing 1/8 & 1/4, bottom: 2 blocks grid spacing 1/16 & 1/4

the backward facing step. The results are summarized in Table 3 for various grids, where
the coupled solver is called CP and the segregated solver is called SG. LBR indicates
the application of local block refinement. Besides the reattachment length, the memory
requirement, the total computing time and the computing time per CV are listed in Table
3 to allow a realistic comparison of the performance of both algorithms and the benefits
through LBR. All computations were carried out on a workstation with Intel Core i7-960
CPU, 3.2 GHz and 5979 Mbyte memory. Since no exact solution for the stated flow prob-
lem is available, no quantitative statement about the error in the reattachment length can
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Table 3: Results for backward facing step flow.

Code Grid spacing XRL [m] Memory [MB] CPU time [sec] CPU time/CV [sec]

CP 1/8 4.8597 16.71 1.20 0.0007839
1/16 5.1599 48.06 4.50 0.0007325
1/32 5.2585 189.76 22.78 0.0009273
1/64 5.3003 822.35 130.67 0.0013293

CP LBR 1/16 & 1/8 5.1589 32.33 3.29 0.0008574
1/32 & 1/16 5.2584 119.15 14.38 0.0009360
1/64 & 1/32 5.2983 509.41 75.97 0.0012365

CP LBR 1/16 & 1/4 5.1515 29.44 4.42 0.0013543
1/32 & 1/8 5.2572 105.82 15.27 0.0011701
1/64 & 1/16 5.2989 448.52 74.30 0.0014228

SG 1/8 4.8613 3.14 2.15 0.0013985
1/16 5.1612 4.21 23.54 0.0038309
1/32 5.2601 8.56 308.12 0.0125375
1/64 5.3008 25.41 4155.18 0.0422687

SG LBR 1/16 & 1/8 5.1593 3.70 12.49 0.0032512
1/32 & 1/16 5.2595 6.82 151.28 0.0098488
1/64 & 1/32 5.3008 18.92 2149.76 0.0349901

SG LBR 1/16 & 1/4 5.1521 3.56 9.51 0.0029156
1/32 & 1/8 5.2572 5.77 123.47 0.0094570
1/64 & 1/16 5.3002 14.81 1711.89 0.0327798

be given. However, the results show a good convergence behaviour. To access the benefit
through LBR block one (see Figure 6) is always refined. Ideally, the reattachment length
should be the same as if the fine grid spacing is applied for the entire domain.
The results in Table 3 demonstrate that the reattachment length XRL is nearly indepen-
dent of the grid refinement rate at the block interface. That means the reattachment
length XRL with the application of LBR is nearly the same as if the fine grid spacing
is applied for the entire domain. This represents a saving of at most 46 per cent in the
total number of CVs for a refinement rate of four. Therefore, the memory requirement,
which can be a limiting factor for the application of the coupled approach, can be almost
halved. Due to the smaller number of CVs and hence smaller computational effort needed
per iteration, the computational time is reduced to 57 per cent of the computational time
for a conventional grid. Therefore, the performance of the already highly efficient coupled
approach could be increased significantly through the integration of the LBR approach.
According to the results in Table 3 for the coupled approach a refinement rate greater two
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offers no great benefit with respect to the computation time. It seems that an excessive
non-orthogonality at the block interface for refinement rates greater two reduces the linear
solver convergence to an extend that it cancels the advantage of the saving of CVs.
For completeness the results for the segregated solver are presented in Table 3 also. Gener-
ally speaking, the results are consistent with those of the coupled approach. The memory
requirement and computing time can be reduced drastically through LBR in contrast to
the coupled approach even for higher refinement rates.
The superiority of the coupled approach compared to the segregated approach could also
be demonstrated for the integrated LBR approach. The results show that the CPU time
per control volume are at least one magnitude shorter compared to the segregated ap-
proach.

6 CONCLUSIONS

The coupled approach introduced by Darwish [1] was successfully extended by a lo-
cal grid refinement procedure. By means of Manufactured Solutions it was exemplified
that the method proved to preserve second order accuracy of the underlying numerical
scheme. Moreover, the local grid refinement was found to be robust even for higher re-
finement rates and provided substantial gains in performance and reduction of memory
requirements. In the considered backward facing step case, computing time gains of 43
per cent and reduction of memory requirements up to 45 per cent could be verified.
Although the implementation and results presented correspond to the two-dimensional
version of the code, the extension of the procedure to three dimensions is straight for-
ward. For the three-dimensional local block refinement procedure even larger gains in
performance and reduction of memory requirements are expected.
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[3] Lange C. F.; Schäfer M. and Durst F., Local refinement with a multigrid flow solver.
International Journal for Numerical Methods in Fluids (2002) 38:21-41.

[4] Berger M.J. and Collela P., Local adaptive mesh refinement for shock hydrodynamics.
Journal of Computational Physics (1989) 82:64-84.

[5] Quirk J.J., A cartesian grid approach with hierarchical refinement for compressible
flows. Proceedings of the Second European Computational Fluid Dynamic Conference,
Stuttgart (1994) Wiley: Chichester:200-209.

11



Ulrich Falk, Michael Schäfer

[6] Lilek Z.; Muzaferija S. and Peric M., An implicit finite-volume method using non-
matching blocks of structured grid. Numerical Heat Transfer, Part B: Fundamentals
(1997) 32,4:385-401.

[7] Coelho P.; Pereira J.C.F. and Carvalho M.G., Calculation of laminar recirculating
flows using local non-staggered grid refinement system. International Journal for
Numerical Methods in Fluids (1991) 12:535-557.

[8] Patankar S.V. and Spalding D.B., A calculation procedure for heat, mass and mo-
mentum transfer in three-dimensional parabolic flows. International Journal Heat
and Mass Transfer (1972) 15:1787-1806.

[9] Moukalled F. and Darwish M., A unified formulation of the segregated class of algo-
rithms for fluid flow at all speeds. Numerical Heat Transfer B (2000) 37:103-139.

[10] Vanka S.P., Fully coupled calculation of fluid flows with limited use of computer
storage. Argonne National Laboratory Technical Report (1983) ANL:83-87.

[11] Lonsdale R.D., An algebraic multigrid scheme for solving the Navier-Stokes equations
on unstructured meshes. Proc. 7th International Conference on Numerical Methods
in Turbulent abd Laminar Flows (1991) Stanford,CA 1432-1442.

[12] Webster R., An algebraic multigrid solver for Navier-Stokes problems. International
Journal Numerical Methods Fluids (1994) 18:761-780.

[13] Rhie C.M. and Chow W.L., A numerical study of the turbulent flow past an isolated
airfoil with trailing edge separation AIAA (1983) 21:1525-1532.

[14] Balay S.; Brown J.; Buschelman K.; Gropp W.D.; Kaushik D.; Knepley M.G.;
McInnes L.C.; Smith B.F. and Zhang H., PETSc Web page, (2012).

[15] Ferziger J.H. and Peric M., Computational Methods for Fluid Dynamics, Springer,
Berlin, 1996.

12


