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Abstract. Since the engineering of turbo machines began the improvement of spe-
cific physical behaviour, especially the efficiency, has been one of the key issues.
However, improvement of the efficiency of a turbo engine, is hard to archive using a
conventional deterministic optimization, since the geometry is not perfect and many
other parameters vary in the real approach.

In contrast, stochastic design optimization is a methodology that enables the
solving of optimization problems which model the effects of uncertainty in manufac-
turing, design configuration and environment, in which robustness and reliability are
explicit optimization goals. Therein, a coupling of stochastic and optimization prob-
lems implies high computational efforts, whereby the calculation of the stochastic
constraints represents the main effort. In view of this fact, an industrially relevant
algorithm should satisfy the conditions of precision, robustness and efficiency.

In this paper an efficient approach is presented to assist reducing the number of
design evaluations necessary, in particular the number of nonlinear fluid-structure
interaction analyses. In combination with a robust estimation of the safety level
within the iteration and a final precise reliability analysis, the method presented
is particularly suitable for solving reliability-based structural design optimization
problems with ever-changing failure probabilities of the nominal designs.

The applicability for real case applications is demonstrated through the example
of a radial compressor, with a very high degree of complexity and a large number of
design parameters and random variables.
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Figure 1: Coupled numerical models and different variable spaces of a stochastic design optimiza-
tion of a fluid-structure interaction analysis based on a parametric geometry model (according
Chateauneuf, 2008).

1 INTRODUCTION

1.1 Stochastic design optimization

In engineering problems, randomness and uncertainties are inherent and may be
involved in several stages, for example in the system design with material param-
eters and in the manufacturing process and environment. Stochastic optimization,
also referred to as reliability-based and variance-based optimization is known as the
most adequate and advantageous methodology for system or process design and
aims at searching for the best compromise design between design improvement and
robustness or reliability assurance. Herein, the optimization process is carried out
in the space of the design parameters and the robustness evaluation and reliability
analysis are performed in the space of the random variables. Consequently, during
the optimization process the design variables are repeatedly changed, whereby each
design variable vector corresponds to a new random variable space. Therefore usu-
ally, a high number of numerical calculations are required to evaluate the stochastic
constraints at every nominal design point. This repeated search becomes the main
problem, especially when numerical nonlinear multi-domain simulations and CAD
models are involved.

Unfortunately, in real case applications of the virtual prototyping process, it is not

2



Dirk Roos, Kevin Cremanns & Tim Jasper

always possible to reduce the complexity of the physical models to obtain numerical
models which can be solved quickly. Although progress has been made in identi-
fying numerical methods to solve stochastic design optimization problems and high
performance computing, in cases such as those that have several nested numerical
models, as shown in Fig. 1, the actual costs of using these methods to explore various
model configurations for practical applications is too high. Therefore, methods for
efficiently solving stochastic optimization problems based on the introduction of sim-
plifications and special formulations for reducing the numerical efforts are required.
Note: an extended version of this paper is published in Roos et al. (2013).

1.2 Application to aerodynamic optimization

In comparative studies on the application of the deterministic optimization for
aerodynamic optimization (see e.g. Sasaki et al., 2001, Shahpar, 2000) usually stochas-
tic programming algorithms or response surface methods (see e.g. Pierret and van den
Braembussche, 1999) are used in turbomachinery design, for example in the devel-
opment of engine components, such as at Vaidyanathan et al. (2000). In Shyy et al.
(2001) a comprehensive overview is represented.

Another very comprehensive study of the use of the combination of genetic algo-
rithms and neural networks for two-dimensional aerodynamic optimization of profiles
is presented in Dennis et al. (1999) combine a genetic algorithm with an gradient-
based optimization method.

Furthermore, an increasing application of stochastic analysis on turbo machinery
(e.g. at Garzon, 2003, Garzon and Darmofal, 2003, Lange et al., 2010, Parchem and
Meissner, 2009) underlines the importance of integrating the uncertainty analysis
into the aerodynamic design process.

2 RELIABILITY ANDVARIANCE-BASED DESIGN OPTIMIZATION

2.1 Deterministic optimization

Optimization is defined as a procedure to achieve the best outcome of a given ob-
jective function while satisfying certain restrictions. The deterministic optimization
problem

f(d1, d2, . . . dnd
)→ min

el(d1, d2, . . . dnd
) = 0; l = 1, ne

um(d1, d2, . . . dnd
,γ) ≥ 0; m = 1, nu

dli ≤ di ≤ dui
di ∈ [dli , dui ] ⊂ Rnd

(1)
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Figure 2: Different solution points d̃Ii or d̃i as
result of a deterministic vs. stochastic design
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Figure 3: Comparison of the deterministic op-
timal point d̃Ii and the solution of a stochastic
optimization d̃i with corresponding most proba-
ble failure point x∗j in the space of the randomly
distributed von Mises stress and the yield stress.

is defined by the objective function f : Rnd → R subject to the restrictions, defined
as equality and inequality constraints el and um. The variables d1, d2, . . . dnd

are the
optimization or design variables and the vector of the partial safety factors γ ensures
the system or design safety within the constraint equations um, for example defining
a safety distance u(d, γ) = yg/γ − yd ≥ 0 between a defined limit state value yg and
the nominal design value yd of a physical response parameter y = f(d). In structural
safety assessment, a typical constraint for the stress is given as

u(d, γ) = σy,k/γ − σd ≥ 0 (2)

ensuring the global safety distance

∆γ = σy,k − σd = σy,k −
σy,k
γ

= σy,k

(
1− 1

γ

)
between the defined quantile value σy,k of the yield stress and the nominal design
stress σd with the global safety factor γ, as shown in Fig. 3. Whereby, in the real
approach with given uncertainties, σd corresponds to the mean von Mises equivalent
stress σ̄e at the current design point.
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2.2 Stochastic chance-constrained optimization

Stochastic optimization algorithms use the quantification of uncertainties to pro-
duce solutions that optimize the expected performance of a process or design, en-
suring the target variances of the model responses and failure probability. So, the
deterministic optimization problem (1) can be enhanced by additional stochastic
restrictions. For example, the expression for system reliability

1− P (F)

P t(F)
≥ 0 (3)

ensures that the probability of failure

P (F) = P [{X : gk(x) ≤ 0}] =

∫
nr. . .

∫
gk(x)≤0

fX(x)dx (4)

cannot exceed a given target probability P t(F), considering the vector of all random
influences

X = [X1, X2, ..., Xnr ]
T (5)

with the joint probability density function of the random variables fX(x) and k =
1, 2, ..., ng limit state functions gk(x) ≤ 0.

These enhancements of the problem (1) are usually referred to reliability-based
design optimization, in which we ensure that the design variables di satisfy the given
constraints (3) to some specified probabilities. As a consequence, now the design
parameters

d = E[X] (6)

are the means of the nr random influences X with every changing density function
during the optimization process. As a result of the random influences, now the
objective and the constraints are non-deterministic functions.

2.3 Reliability analysis using adaptive response surface method

For an efficient probability assessment of P (F), according to Eq. (4), a multi-
domain adaptive design of experiment in combination with directional sampling (see
e.g. Ditlevsen et al., 1990) is introduced in Roos (2011) to improve the accuracy
and predictability of surrogate models, commonly used in applications with several
limit state conditions. Furthermore, the identification of the failure domains using
the directional sampling procedure, the pre-estimation and the priori knowledge of
the probability level is no longer required. Therefore this adaptive response surface
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method is particularly suitable to solve reliability-based design optimization prob-
lems considering uncertainties with ever-changing failure probabilities of the nominal
designs.

However, a reliability analysis method based on surrogate models, is generally
suitable for a few random variables only. In case of the proposed probability assess-
ment method, an efficient application is given up to nr = 10, ..., 25, depending on the
number of relevant unsafe domains. Therefore, a variance-based sensitivity analysis
should be used to find a reduced space of the important random influences.

2.4 Global variance-based sensitivity analysis

In general, complex nested engineering models, as shown in Fig. 1 contain not only
first order (decoupled) influences of the design parameters or random variables but
also higher order (coupled) effects on the response parameter of a numerical model.
A global variance-based sensitivity analysis, as introduced by Saltelli et al. (2008),
can be used for ranking variables X1, X2, . . . , Xnr with respect to their importance
for a specified model response parameter

Y = f(X1, X2, . . . , Xnr)

depending on a specific surrogate model Ỹ . In order to quantify and optimize the
prognosis quality of these meta models, in Most and Will (2008) and Most (2011)
the so-called coefficient of prognosis

COP =

(
E[YTest · ỸTest]

σYTest
σỸTest

)2

; 0 ≤ COP ≤ 1 (7)

of the meta model is introduced. In contrast to the commonly used generalized
coefficient of determination R2 based on a polynomial regression model, in Eq. (7)
variations of different surrogate models Ỹ are analyzed to maximize the coefficient of
prognosis themselves. This procedure results in the so-called meta model of optimal
prognosis, used as surrogate model Ỹ with the corresponding input variable subspace
which gives the best approximation quality for different numbers of samples, based
on a multi-subset cross validation obtained by latin hypercube sampling (see e.g.
Huntington and Lyrintzis, 1998).

The single variable coefficients of prognosis are calculated as follows

COPi = COP · S̃Ti (8)

with the total sensitivity indices

S̃Ti =
E(V (Ỹ |X∼i))

V (Ỹ )
(9)
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Figure 5: Convergence of a sequential stochastic
chance-constrained optimization with successive in-
terpolation of the nominal response limit yd to en-
sure a target sigma level σt

L.

which have been introduced by Homma and Saltelli (1996), where E(V (Ỹ |X∼i)) is
the remaining variance of Ỹ that would be left, on average, if the parameter of Xi

is removed from the model. In Eq. (9) X∼i indicates the remaining set of input
variables.

2.5 Probability estimation based on moments

For an accurate calculation of the reliability it would be interesting to expand
the probability density function of the model responses about a critical threshold.
Unfortunately, the density functions are unknown, especially close to the unsafe do-
main with high failure probability. Existing methods such as polynomial expansions,
maximum entropy method or saddlepoint expansion, as reviewed in Hurtado (2008),
are frequently used within the reliability-based structural optimization replacing the
expensive reliability analysis.

A more simple, non-intrusive approach for a rough estimation of the failure prob-
ability is the calculation of the minimal sigma level σL for a performance-relevant
random response parameter Y defined by an upper and lower limitstate value yu,lg :=
{Y |g(X) = 0} as follows

E[Y ]± σL · σY
!

≶ yu,lg

The sigma level can be used in conjunction with standard deviation to measure the
deviation of response values Y from the mean E[Y ]. For example, for a pair of
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quantiles (symmetrical case) and the mean value we obtain the assigned sigma level

σL =
yg − E[Y ]

σY
(10)

of the limit state violation, as explained in Fig. 4. Therewith, the non-exceedance
probability results in

P (E) = P ({Y |Y≶yu,lg }) = f(σL)

as a function of the sigma level, depending on the current distribution type of Y . In
the same manner failure probability

P (F) = P ({Y |Y > yg}) = f(σL) (11)

is given as a function of the sigma level. For example, assuming a normal distribution
of the random response Y with µY = 0 and σY = 1, as shown in Fig. 6, the failure
probability is given as a nonlinear function

P (F) = Φ(−σL) = Φ(−yg)
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of the sigma level, as illustrated in Fig. 7. Therewith, a probability of P t(F) =
3.4 · 10−6 is achieved when the performance target σtL is 4.5 σ away from the mean
value.

Other values of acceptable annual probabilities of failure P t(F) depending on the
consequence of failure, significance warning or without warning before occurrence of
failure and (non-)redundant structures can be found in engineering standards, e.g.
in DNV (1992).

2.6 Methods solving stochastic optimization problems

Sensitivity analysisInitial design

Sensitive parameters
Iteration 0

Optimization

Optimal design
Iteration I, II, III, IV, ...

Modification of
safety factors γ and
constraints um(d,γ)

Robustness evaluation

σL ∼= σt
LσL ≶ σt

L

Reliability analysis

P (F) ∼= P t(F)P (F) ≶ P t(F)
Robust and safety

optimal design

Figure 8: Basic concept of a decoupled loop of a reliability-based and variance-based stochastic
design optimization using global variance-based sensitivity analysis and robustness evaluation to
reduce the design parameter and random variable space.

In general, problem (1) to (6) is solved as a combination of a deterministic op-
timization in the nd-dimensional design space and a stochastic analysis in the nr-
dimensional random space. Derivative-free global optimization methods are typically
recommended to solve the sequential deterministic optimization problem, according
to Eq. (1) for highly nonlinear numerical models, especially fluid-structure interaction
models with probability-based constraints, whose objective and constraint function
value may be computed with some noise or are non-computable in any design points.
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Evolutionary computation, as a special class of global optimization strategies, im-
itates the natural processes like biological evolution or swarm intelligence. Based on
the principle “survival of the fittest” a population of artificial individuals searches
the design space of possible solutions in order to find a better solution for the opti-
mization problem. In this paper an evolution strategy using a class of evolutionary
algorithms is used. This strategy uses normally distributed mutations, recombina-
tion, selection of the best offspring individuals, and the principle of self-adaptation
of strategy parameters, as described in Bäck (1995).

As an alternative derivative-free optimization method, especially useful for ex-
pensive numerical computations, we use the adaptive response surface methodology,
as introduced in Etman et al. (1996), Toropov and Alvarez (1998), Abspoel et al.
(1996), Stander and Craig (2002), Kurtaran et al. (2002).

Mainly, there are three methods for solving these kinds of coupled problems (1) to
(6). The simplest and most direct solution method is a coupled approach in which a
full reliability analysis is performed for every optimization function evaluation (see
e.g. Choi et al., 2001). This involves a nesting of two distinct levels of optimization
within each other, one at the design level and one at the reliability analysis level.
This coupled procedure leads in general to an inefficient double loop with a large
number of design evaluations.

The single-loop method (see e.g. Kharmanda et al., 2002) simultaneously mini-
mizes the objective function and searches for the β-point, satisfying the probabilistic
constraints only at the optimal solution, but needs a sensitivity analysis to analyti-
cally compute the design gradients of the probability constraint.

An alternative method, used in the following, is the sequential approach (see e.g.
Chen et al., 2003). The general concept is to iterate between optimization and uncer-
tainty quantification, updating the constraints based on the most recent probabilistic
assessment results, using safety factors or other approximation methods. This effec-
tive iterative decoupled loop approach can be enhanced by updating the constraints
during the internal optimization using sigma levels and statistical moments

σLk

σtL
− 1 ≥ 0; σLk

=
ygk − E[Yk]

σYk
; k = 1, ng

in place of the exceedance probability of the Eq. (3). Essentially, by means of trans-
formation in Eq. (11) of the probability-based highly nonlinear and non-differentiable
constraints to linear ones, these functions may be more well conditioned for the op-
timization approach and we can expect a better performance of the solution process.
Of course, the transformation in Eq. (11) can only be used as a rough estimation
of the safety level and we have to calculate the probabilities of failure using the
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Figure 9: Parametric CAD model of a one stage radial compressor, consisting of a impeller and
returnvane

reliability analysis, at least at the iteration end.
As shown in Fig. 8, in the initial iteration step a variance-based sensitive analysis

identifies the most important multivariate dependencies and design parameters. Af-
ter this, the deterministic optimization step results in an optimal solution for which
the sigma level is calculated using a robustness evaluation, based on a latin hyper-
cube sampling. The size of violation of the target sigma level is used to interpolate
the constraints using modified safety factors. Whereby, as an important fact, the
interpolation order increases continuously with each iteration step, so in practice
three or four iteration steps may meet our optimization requirements in terms of
robustness and safety. Fig. 5 shows a typical convergence of a sequential stochastic
chance-constrained optimization.

Furthermore, the optimization steps and the final reliability analysis run mostly
efficiently in the space of the current significant parameters. So every size of problem
definition (number of design and random parameters) is solvable within all sigma
levels.

The following numerical example with a very high degree of complexity is given
to demonstrate the solving power of this sequential stochastic chance-constrained
optimization by adapting the constraint um(d, γ) depending on interpolated nominal
response values yd.

11



Dirk Roos, Kevin Cremanns & Tim Jasper

3 NUMERICAL EXAMPLE

3.1 Fluid-structure interaction model

The stochastic optimization method presented here is applied to a CAD and CAE
parameter-based design optimization of a radial compressor shown in Fig. 9, including
material, process and geometry tolerances. In the example presented the target of
the optimization process is to maximize the efficiency of the turbine engine with
respect to a limitation of the maximal v. Mises stress. Additional constraints are
defined by resonance of any eigen frequency with the rotational velocity of the rotor.
In total 36 optimization parameters and 49 random influences are defined.

The Calculations were done with the software ANSYS Workbench and the proba-
bilistic and optimization tasks were performed with the optiSLang software package.

As the method was already explained in Sec. 2, the results of the example are
summarized. For a extended version see Roos et al. (2013).

3.2 Decoupled stochastic optimization loop

Through the sensitivity analysis the design parameters were reduced to 10 design
variables with a relevant coefficient of optimal prognosis. The mean efficiency of the
initial radial compressor was 86%. The best design of the latin hypercube sampling
with an efficiency of 88.9% is used as start design of an evolutionary optimization
based on the surrogate model of the meta model of optimal prognosis and gives with
one additional design evaluation an efficiency of 89.3%. The distance of the design
stress to the 5% quantile of the yield strength is a result of the first global safety
factor of γI = 1.5 of the first iteration step. The target sigma level is σtL = 4.5 to
ensure a probability of failure P (F) = 3.14 · 10−6. In the following, only the results
of each iteration are shown in the Tab. 1.

Of course, the probability levels of violation of the limit state conditions or of
the initial efficiency are only a rough estimation and at least a reliability analysis
of the final design is recommended, especially for small probability levels. With the
identification of the random sub domain directional sampling on adaptive moving
least square is used for reliability analysis (see Sec. 2.3). The moving least square
approximation is based on N = 56 design evaluations of an adaptive D-optimal
design of experiment, as shown in Figs. 10 and 11. The assigned failure probability
P̄ (F) = 2.5 · 10−6 ≤ P t(F) = 3.4 · 10−6 indicates an optimized six sigma design.

Finally, the Figs. 12 and 13 show the flow along the return vane blades. It is
distinctly and visibly how the separations have been reduced in the optimized design
and a more uniform flow is present.
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Safety factor γi,
sigma level σi

L, σi
d and efficiency ηi

i γi σi
L σi

d ηi

0 2.4 - 1.27 · 108 86%

1 1.5 5.13 1.67 · 108 90.5%

2 1.32 3.6 1.75 · 108 90.8%

3 1.426 4.1 1.71 · 108 90.0%

4 1.46 4.48 91%

Table 1: Results for each iteration step i.

Figure 10: Anthill plot of the analyzed N =
56 design evaluations of the reliability analysis
within iteration step IV between efficiency η
and yield stress σy.

Figure 11: Response surface plot of the reliabil-
ity analysis design IV.

4 CONCLUSIONS

In this paper an efficient iterative decoupled loop approach is provided for reducing
the necessary number of design evaluations. The applicability of this method for
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Figure 12: Flow angle of the initial design at
the returnvane blades with separations along
the blades

Figure 13: Flow angle of the optimized design
at the returnvane blades with a much more uni-
form flow

real case applications is demonstrated for a radial compressor. Using the approach
presented, it is possible to improve the efficiency by about 5%. In addition we obtain
an optimized design which is insensitive to uncertainties and considers the target
failure probability.
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