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Abstract. This paper presents a numerical study of a recent technique that consists

in modeling embedded geometries by a level-set representation in combination with local

anisotropic mesh refinement. This method proves beneficial in CFD simulations involving

complex geometries, as it suppresses the need for the tedious process of body-fitted mesh

generation, without altering the finite element formulation nor the prescription of bound-

ary conditions. The first part of the study deals with a simple Laplace problem featuring a

planar interface on which a Dirichlet boundary condition is imposed. It is shown that the

appropriate amount of local isotropic refinement yields the optimal convergence, unlike

uniform refinement. Anisotropic refinement further ensures geometric convergence and

limits the growth of the number of unknowns. The second part deals with the adaptive

strategy for CFD problems. We show that the methodology yields accurate flow solutions,

despite very limited user interaction.

1 INTRODUCTION

Because of the increasingly complex geometries involved in flow problems of industrial

relevance, numerical methods based on unstructured meshes have become popular in CFD.

However, the corresponding meshing methods require a high-quality CAD description of

the geometry, which is not part of the traditional workflow in fields like architecture or

medicine. Many professionals also lack the expertise required to build appropriate meshes

for flow problems. Nevertheless, recent progresses in meshing technology could overcome

these barriers.

In this work, we use anisotropic adaption to generate a nearly body-fitted mesh. The

mesh is locally refined depending on a level-set function that describes the geometry
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without resorting to a CAD model [1, 2]. Dirichlet boundary conditions can then be

imposed in a strong manner by node collocation, just as with classical body-fitted meshes.

Unlike other treatments of embedded geometries, this technique only requires a standard

finite element formulation, without basis enrichment or Lagrange multipliers that alter

its numerical properties.

2 ADAPTIVE STRATEGY FOR NEARLY BODY-FITTED MESHES

A metric-based anisotropic mesh adaptation procedure is performed. It generates a

uniform unit mesh [3] in a prescribed Riemannian metric space that corresponds to an

anisotropic adapted mesh in the Euclidean space. Anisotropic mesh adaptation is per-

formed in the vicinity of the interface Γ described by the level-set function φ(x), i.e. in a

band {x s.t. |φ(x)| ≤ E} of thickness 2E around Γ. With a linear discretization, the ap-

proximation error on the level-set function φ(x) is of second order. An appropriate metric

field M can thus be constructed from the gradient vector ∇φ(x) = (φx φy φz)
T
and the

Hessian matrix H(φ(x)) of φ(x). More details about the construction of the metric can

be found in [4].

In a first step, we apply this method to an academic 2D Laplace problem in a square

with an embedded planar surface [5]. The solution is compared to the results obtained on

anisotropic meshes with results obtained on uniform refined meshes and isotropic adaptive

refined meshes (see Fig. 1). We show that an appropriate level of local refinement around

the geometry recovers the optimal grid convergence rate for the solution, whereas uniform

refinement yields first-order convergence as can be seen in the left plot of Fig. 2.

We also show in the right plot of Fig. 2 that controlling the anisotropic character of

the adaption further enables the error of the geometrical discretization to decrease at

optimal rate, which is not the case for isotropic refinement. This affects particularly the

computation of integral quantities, such as lift and drag in CFD. Anisotropic adaptive

refinement also slows down the growth of the number of unknowns, which limits the

computational overhead.

3 ADAPTIVE MESHES FOR CFD

The adaptive strategy for CFD combines the presented nearly body-fitted adaptive

mesh strategy with an iterative anisotropic adaption to the flow solution. A second mesh

metric is constructed by calculating a scaled eigenspace of the Hessian matrix of the

norm of the velocity. Indeed, as we are using linear finite element interpolation for the

solution of the Navier-Stokes equations, the interpolation error is equivalent to second

order derivatives and it has been shown that a large proportion of the discretization error

is governed by this error indicator. This second mesh metric is then intersected with the

level-set based anisotropic mesh metric.

We present two incompressible flow problems involving respectively a cylinder and more

complex geometry case, namely an array of cylinders. The overall approach for the CFD
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Figure 1: Uniform refined mesh and adaptive refined meshes
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Figure 2: Solution error on uniform refined meshes (left) and geometry error on isotropic adaptive refined
meshes (right)
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problems can be explained as follows: the problem is first solved on a very coarse mesh

with anisotropic elements in the vicinity of the interfaces. The mesh is then successively

adapted to both the geometry and to the flow field. For the unsteady case, the solution at

time steps which correspond to maximal values of the lift coefficient is used for iteratively

adapting the mesh (see Fig. 3).

! ! ! !

Figure 3: Adaptive mesh for steady flow (left) and unsteady flow (right) over a 2D circular cylinder
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Figure 4: Convergence of drag coefficient and reattachment length at Re = 40

While both drag and reattachment length in the steady flow over the cylinder converge

to the expected value in Fig. 4, the unsteady case also demonstrates the accuracy of the

method as can be seen in Fig. 5.

Concerning the application to a complex geometry, we consider the benchmark de-

scribed in Geller et al. [6]. The solution is in good agreement with the reference results.

4 CONCLUSION

The use of the standard finite element solver for solving CFD problems on “nearly

body-fitted meshes” proves that the optimal rate of convergence can be obtained, and

that the methodology yields accurate flow solutions, despite very limited user interaction.
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Figure 5: Lift and drag coefficients at Re = 100
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Figure 6: Computational mesh for flow over array of cylinders at ReE = 200
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Figure 7: Lift and drag coefficients at ReE = 200
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