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Abstract. In an obstacle problems with an affine obstacle, homogeneous Dirichlet boundary
conditions, and standard regularity assumptions, the Crouzeix-Raviart non-conforming finite
element method (FEM) allows for linear convergence as the maximal mesh-size approaches
zero. The residual-based a posteriori error analysis leads to reliable and efficient control over
the error with explicit constants. It involves the design of a new discrete Lagrange multiplier and
allows for the computation of a guaranteed upper error bound. A novel energy control for non-
conforming FEMs lead to a computable guaranteed lower bound for the minimal energy. The
paper presents numerical experiments to investigate the theoretical results empirically and so to
explore the possibilities of the non-conforming finite element method with respect to adaptive
mesh refinement in practice.

1 INTRODUCTION

Given a bounded polygonal Lipschitz domain Ω ⊂ R2 with boundary ∂Ω, the energy product
a : H1(Ω) × H1(Ω)→ R on the Hilbert space H1(Ω) reads

a(u, v) =

∫
Ω

∇u · ∇vdx for all u, v ∈ H1(Ω)

and induces the energy semi-norm |||·||| := a(·, ·)1/2, which is a norm on the vector space V :=
H1

0(Ω) := {v ∈ H1(Ω)| v = 0 on ∂Ω}. Given some source term f ∈ L2(Ω) set F ∈ L2(Ω)∗ by

F(v) :=
∫

Ω

f vdx for all v ∈ L2(Ω).

The obstacle χ ∈ H2(Ω) ∩W1,∞(Ω) satisfies χ ≤ 0 along ∂Ω in order to ensure that the closed
and convex subset

K := {v ∈ H1
0(Ω) | χ ≤ v a.e.} of H1

0(Ω)
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is non-empty. The well established weak formulation of the obstacle problem seeks u ∈ K such
that

F(v − u) ≤ a(u, v − u) for all v ∈ K. (1.1)

It is well known [KS80], that a unique weak solution u of (1.1) exists. The a priori conver-
gence analysis of [Fal74] provides linear convergence of the error in the H1 semi-norm |||•|||
for u ∈ H2(Ω) approximated by a P1 conforming finite element method. The more recent
analysis of [Wan03] for a non-conforming P1 FEM requires u ∈ W s,p(Ω) for some 2 < p and
2 < s < 2 + 1/p.
The non-conforming finite element method seeks some approximation in the set KNC where the
obstacle condition is tested at the midpoints of the edges in a regular triangulation of the poly-
gonal domain into triangles. Hence the term non-conforming refers to the fact that the discrete
solution is not a Sobolev function as well as to the additional fact that the discrete solution uCR

does not satisfy the obstacle condition almost everywhere in the domain.
This paper announces some theoretical results which guarantee linear convergence for the error
in the discrete energy norm for any weak solution u in H2(Ω) which is in parallel analogy to the
classical result [Fal74] for conforming FEMs. The adaptive mesh-refinement is based on some
a posteriori analysis and the first reliable and efficient error estimators are introduced and tested
in this paper; cf. [BC04], [Vee01], [CM10], and [Bra05] for conforming first-order methods.
Three computational benchmarks are revisited to empirically verify the theoretical predictions.
The aim is to provide numerical evidence for the guaranteed error control and for the superiority
of adaptive over uniform mesh-refinements.
The rather technical proofs for the underlying theoretical statements utilise the medius analysis
in that they combine arguments from the a priori and a posteriori error analysis and will appear
elsewhere.
The remaining parts of this paper are organised as follows. Section 2 introduces the discreti-
sation of the obstacle problem. Section 3 presents a new a priori error analysis under minimal
regularity assumptions and an a posteriori error result. The paper concerns three computational
benchmark examples in Section 4. The first example discusses a typical corner singularity on
an L-shaped domain. The second concerns a smooth obstacle on a square domain and the third
has a piecewise affine obstacle also on a square domain.
Throughout this paper, the standard notation for Lebesgue and Sobolev spaces and their norms
‖•‖L2(Ω), |||•||| = ‖∇•‖L2(Ω) and |||•|||NC := ‖∇NC•‖L2(Ω) and their local variants are used. Moreover
A . B abbreviates A ≤ CB for some generic constant C and A ≈ B abbreviates A . B . A.

2 Preliminaries

2.1 Discretisation

Let Ω ⊂ R2 be a bounded polygonal Lipschitz domain partitioned in a shape-regular trian-
gulation T into triangles with the set of edges E and interior edges E(Ω). Any edge E ∈ E has
length |E|, the midpoint mid(E), the unit normal νE and the tangent τE; mid(E) := {mid(E)| E ∈
E} denotes the set of all midpoints. The subdivision of each triangle T ∈ T into four congruent
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sub-triangles by straight lines through the edges midpoints results in the red-refined triangula-
tion red(T ). For any k ∈ N0, set

Pk(T ) := {vk : T → R| vk is a polynomial of degree ≤ k},

Pk(T ) := {vk ∈ L2(Ω)| ∀T ∈ T , vk|T ∈ Pk(T )},

CR1(T ) := {vCR ∈ P1(T )| vCR continuous at mid(E)},

CR1
0(T ) := {vCR ∈ CR1(T )| ∀E ∈ E(∂Ω), vCR(mid(E)) = 0},

KNC := {vCR ∈ CR1
0(T )| ∀E ∈ E(Ω),

?
E
χds ≤ vCR(mid(E))}.

The triangulation T is shape regular in the sense that any interior angle of any triangle is
bounded from below by some universal positive constant ω0 and all the generic constants hid-
den in the notation . may depend on ω0 > 0. The triangulation T is regular in the sense
that any two distinct triangles in T with non-empty intersection are either identical or share
exactly one common node or one common edge. For any triangulation T , define the (local)
mesh-size hT ∈ P0(T ) and L2-projection Π0 : L2(Ω) → P0(Ω) by hT |T := hT := diam(T ) and
Π0|T f :=

>
T

f dx for all T ∈ T and f ∈ L2(Ω), with the integral mean
>

T
• dx :=

∫
T
• dx/|T |.

With the piecewise gradient ∇NCvCR of any discrete function vCR ∈ CR1(T ), the discrete energy
product aNC : CR1(T ) × CR1(T )→ R reads

aNC(uCR, vCR) :=
∫

Ω

∇NCuCR · ∇NCvCRdx for all uCR, vCR ∈ CR1(T )

and induces the discrete energy semi-norm |||·|||NC := aNC(·, ·)1/2 in CR1(T ). Owing to the
discrete Friedrichs inequality ‖vCR‖L2(Ω) . |||vCR|||NC for all vCR ∈ CR1(T ) (cf. [BS08]) this is a
norm in CR1

0(T ).
The discrete analogue to the variational inequality (1.1) seeks uCR ∈ KNC with

F(vCR − uCR) ≤ aNC(uCR, vCR − uCR) for all vCR ∈ KNC . (2.1)

The abstract results on variational inequalities in the Hilbert space
(
CR1(T ), aNC

)
guarantee the

unique existence of a discrete solution uCR. Each edge E ∈ E(Ω) is associated with its edge-
oriented basis function ψE ∈ CR1(T ) such that ψE ≡ 1 along E while ψE(mid(F)) = 0 for any
other edge F ∈ E\{E}, and its support ωE := ∪{T ∈ T | E ∈ E(T )}. For each edge E ∈ E(Ω),
the solution uCR to the discrete variational inequality (2.1) satisfies the discrete consistency
condition

0 ≤ uCR(mid(E)) −
?

E
χds ⊥ F(ψE) − aNC(uCR, ψE) ≤ 0. (2.2)

This follows from direct considerations with the degrees of freedom in (2.1) and is the discrete
analogue of the well known (continuous) consistency condition [KS80] for u ∈ H2

loc(Ω) which
satisfies

0 ≤ u − χ ⊥ f + ∆u ≤ 0 almost everywhere in Ω. (2.3)
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3 Error Analysis

This section provides an a priori and a posteriori error estimate for the error |||u− uCR|||NC for
the solutions u and uCR of the continuous and discrete obstacle problem (1.1) and (2.1) as well
as lower bounds of the minimal energy E(u) based on the discrete energy ENC(uCR).

Theorem 3.1 (a priori error estimate) The continuous and discrete solutions u ∈ K and uCR ∈

KNC to the obstacle problem with u ∈ H2(Ω) satisfy

|||u − uCR|||NC . ‖hT f ‖L2(Ω) +
∥∥∥hTD2u

∥∥∥
L2(Ω)

+ ‖χ − INC χ‖L∞(Ω) + ‖hT∇(χ − INC χ)‖L∞(T ) . �

Given the discrete Crouzeix-Raviart solution uCR ∈ KNC, define some function

λCR :=
∑

E∈E(Ω)

ρE
ψE

‖ψE‖
2
L2(Ω)

with ρE := F(ψE) − aNC(uCR, ψE) (3.1)

for the edge-oriented basis function ψE ∈ CR1(T ) associated to the edge E ∈ E(Ω). It holds

ΛCR(vCR) =

∫
Ω

λCRvCRdx for all vCR ∈ CR1
0(T ).

In the sequel, ΛCR(v) always denotes the L2 scalar product of any Lebesgue function v ∈ L2(Ω)
with the above λCR ∈ CR1

0(T ). The following a posteriori error estimate involves the continuous
Lagrange multiplier

Λ := F − a(u, •) ∈ V∗

with the L2 representation λ = f + ∆u. Define |||Λ − ΛCR|||∗ by

|||Λ − ΛCR|||∗ := sup
v∈V\{0}

∫
Ω

(λ − λCR)(v)dx/|||v|||.

Theorems 3.2-3.3 utilise the subset T ′ :=
{
T ∈ T

∣∣∣ 0 < |{x ∈ T |λCR(x) > 0}|
}

of T with the 2D
Lebesgue measure | • | and the oscillations of a function g given by

osc(g,T ) :=
√∑

T∈T

h2
T ‖g − Π0g‖2L2(T ).

Theorem 3.2 (guaranteed upper error bound) Any v ∈ K satisfies

ja 1/2|||u − uCR|||
2
NC + Λ(u − v) +

∫
T ′

(χ − u)Π0λCRdx +

∫
T\T ′

(χ − u)λCRdx

≤ 1/2
(
κCR ‖hT ( f − λCR)‖L2(Ω) + osc(λCR,T

′)/ j1,1

)2
+ 1/2|||v − uCR|||

2
NC

+

∫
T ′

(χ − v)Π0λCRdx +

∫
T\T ′

(uCR − v)λCRdx;

jb |||Λ − ΛCR|||∗ ≤ |||u − uCR|||NC + osc( f − λCR,T )/ j1,1

+ 1/2 ‖Π0( f − λCR) (• −mid(T ))‖L2(Ω) + |||uCR − v|||NC. �
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The universal constant κCR ≤ 0.298217419 is derived from an interpolation error estimate for
the non-conforming interpolant INC as in [CGR12]. The lower bound for the exact energy E(u)
is given in the following theorem.

Theorem 3.3 (lower bound for the minimal energy) The discrete solution uCR and the con-
tinuous solution u to the obstacle problem satisfy

ja ENC(uCR) −
κ2

CR

2
‖hT f ‖2L2(Ω) ≤ E(u);

jb ENC(uCR) −
(
κCR ‖hT ( f − λCR)‖L2(Ω) + osc(λCR,T

′)
)2
/2

−

∫
T ′

(χ − uCR)Π0λCRdx +

∫
T\T ′

(INC χ − χ)λCRdx ≤ E(u). �

For any v ∈ K, the a posteriori error estimate of Theorem 3.2 leads to a computable global upper
bound GUB(v) of the five non-negative error terms in LHS (v)

LHS (v) :=|||u − uCR|||NC + Λ(u − v)1/2 +

(∫
T ′
λCRΠ0(χ − u)dx

)1/2

+

(∫
T\T ′

(INC χ − u)λCRdx
)1/2

+ |||Λ − ΛCR|||∗ . GUB(v)

GUB(v) := ‖hT ( f − λCR)‖L2(Ω) + osc(λCR,T
′) + |||v − uCR|||NC

+

(∫
T ′
λCRΠ0(χ − v)dx

)1/2

+

(∫
T\T ′

λCR(uCR − v)dx
)1/2

+ osc( f − λCR,T ) + ‖Π0( f − λCR)(• −mid(T ))‖L2(Ω) .

This reliable error bound is efficient in the sense that the converse inequality holds up to some
generic factor hidden in the notation . and up to data oscillations.

Theorem 3.4 (efficiency) Any function v ∈ K with |||u − v||| . |||u − uCR|||NC satisfies

GUB(v) . LHS (v) + osc( f ,T ) + osc(λ,T ). �

4 Computational Benchmarks

This section is devoted to the presentation of a novel adaptive mesh-refinement algorithm
and the empirical investigation of the superiority of adaptive over uniform meshes, the compu-
tational comparison of conforming and non-conforming first-order FEMs and the verification
of the guaranteed error and energy bounds in practice.

4.1 Numerical Realisation

Adaptive Algorithm. INPUT is a coarse mesh T0, and a parameter 0 < θ ≤ 1.
LOOP For level ` = 0, 1, 2, ... until termination do
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COMPUTE the discrete solution uCR on T` with ndof many unknowns with code similar to
[ACF].
ESTIMATE the error |||u − uCR|||

2
NC with any of the estimators ηP1red, ηEnergy, ηJ2 defined below.

Theorem 3.2 leads to an estimator

η2
v(T ) :=

(
κCR ‖hT ( f − λCR)‖L2(T ) + Osc(λCR,T )/ j1,1

)2
+ |||v − uCR|||

2
NC(T ) + 2I(T )

where

Osc(λCR,T ) :=

 osc(λCR,T ) for T ∈ T ′,
0 for T ∈ T \ T ′,

I(T ) :=


∫

T ′
(χ − v)Π0λCRdx for T ∈ T ′,∫

T ′
(uCR − v)λCRdx for T ∈ T \ T ′.

The estimator depends on a function v ∈ K. Three different possibilities ja − jc for v ∈
P1(red(T )) ∩ C0(Ω) ∩ K are presented in this paper all of which follow from linear interpo-
lation once the values at the nodes are defined.ja vP1red is computed in two steps. In a first step a function w2 is defined to equal uCR(mid(E))
at the edges’ midpoints and the values at a node z ∈ N(Ω) are chosen such that on the patch
ω∗z w2 minimises 1/2|||w−uCR|||

2
NC(ω∗z ) +

∫
ω∗z

(χ−w)Π0λCRdx+
∫
ω∗z

(uCR−w)λCRdx over all function
w ∈ P1(red(T ))∩C0(Ω). This is a one dimensional minimisation problem. In a second step set
v := PK(w2) where PK is the projection onto the set of admissible function with respect to the
energy norm.jb vEnergy is computed in two steps. In a first step a function w2 is defined which equals
uCR(mid(E)) at the edges’ midpoints and the values at a node z ∈ N(Ω) are chosen such that on
the patch ω∗z w2 minimises E(w) − ENC(uCR) locally over all function w ∈ P1(red(T )) ∩ C0(Ω).
This is a one dimensional minimisation problem. In a second step set v := PK(w2) where PK is
the projection onto the set of admissible function with respect to the energy norm.jc vJ2 is set to the arithmetic mean of the different values of uCR at the nodes. The values at the
edges’ midpoints are chosen such that

>
E

vJ2 ds = uCR(mid(E)) along any edge E ∈ E.
Those three functions lead to the error estimators ηP1red, ηEnergy, ηJ2.
With Theorem 3.3 estimate the lower bounds µ j, ( j = 1, 2) for the energy defined as

µ1 :=ENC(uCR) −
κ2

CR

2
‖hT f ‖2L2(Ω)

µ2 :=ENC(uCR) −
(
κCR ‖hT ( f − λCR)‖L2(Ω) + osc(λCR,T

′)
)2
/2

−

∫
T ′

(χ − uCR)Π0λCRdx +

∫
T\T ′

(INC χ − χ)λCRdx.

MARK the minimal setM` ⊆ T` such that

θ
∑
T∈T`

η(T ) ≤
∑

T∈M`

η(T ).

REFINE by red-refinement of elements in M` and red-green-blue-refinement of further ele-
ments to avoid hanging nodes and compute T`+1. od
OUTPUT efficiency indices

√∑
T∈T η

2
v(T )/|||u − uCR|||NC.
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4.2 L-Shaped Domain
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Figure 4.1: Convergence history of the exact errors for the non-conforming and conforming FEM on uniform and
adaptive meshes (left) and efficiency indices (right) of the three different error estimators for the non-conforming
scheme as functions of the number of unknowns on adaptive and uniform meshes for the Example 1 with the error
estimators from Theorem 3.2.
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Figure 4.2: Adaptive mesh with refinement indicator ηP1red (left) and E(u)−lower bound for the lower bounds µ1
and µ2 of the exact energy E(u) on uniform and adaptive meshes for Example 1.

The first example from [BC04] involves the L-shaped domain Ω := (−2, 2)2\([0, 2] ×
[−2, 0]), the obstacle χ := 0, the Dirichlet data uD := 0, and the source term

f (r, ϕ) := −r2/3sin(2ϕ/3)(7/3(∂g/∂r)(r)/r + (∂2g/∂r2)(r)) − H(r − 5/4)

g(r) := max{0,min{1,−6s2 + 15s4 − 10s3 + 1}} for s := 2(r − 1/4)
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with the Heaviside function H. The exact singular solution reads

u(r, ϕ) = r2/3g(r) sin(2ϕ/3)

and has a typical corner singularity at the re-entrant corner. The experiments on uniform meshes
show an experimental convergence rate of approximately −0.44 in terms of the number of de-
grees of freedom which appears suboptimal when compared with the optimal rate −1/2 for
linear convergence for the conforming and the non-conforming finite element method. The
non-conforming FEM leads to efficiency indices between 1.6 and 3 as shown in Figure 4.1 on
the right. For the calculation of the efficiency index it needs to be taken into account, that the
error estimator does not only estimate |||u − uCR|||NC but also the terms

|||u − uCR|||NC + Λ(u − v)1/2 +

(∫
T ′
λCRΠ0(χ − u)dx

)1/2

+

(∫
T\T ′

(INC χ − u)λCRdx
)1/2

+ |||Λ − ΛCR|||.

The computation of the entire exact error will lead to even better efficiency indices. The adaptive
algorithm for the non-conforming method, with ηP1red as the refinement indicator, leads to an
improved convergence rate of approximately −0.5. An adaptive algorithm for the conforming
scheme shows the same behaviour (see Figure 4.1 on the left). This indicates, that the error
estimators yield good results on unstructured grids as well as on uniformly refined meshes.
The efficiency indices for the non-conforming method on an adaptive mesh are comparable to
the efficiency indices on uniform meshes (see Figure 4.1). Furthermore the mesh displayed in
Figure 4.2 (left) shows, that the contact zone is less refined by the refinement indicator ηP1red

then the area around the re-entering corner at the point (0, 0), although the boundary of the
contact zone is well refined and clearly visible. The lower bounds for the minimal energy
E(u) show very similar behaviour. Both lower bounds converge slightly faster for the adaptive
algorithm with ηP1red as a refinement indicator, than on uniform meshes as demonstrated in
Figure 4.2 on the right.

4.3 Smooth Obstacle

This example from [GK09] on the square domain Ω := (−1, 1)2 involves the smooth obstacle
χ(x, y) := −(x2 − 1)(y2 − 1), the homogeneous Dirichlet data uD|∂Ω := 0 and the source term
f := ∆χ. The exact solution to this problem reads u = χ. On uniformly refined meshes both
the conforming and non-conforming finite element method lead to an experimental convergence
rate of −0.5. Both methods converge with the same convergence rate for an adaptively refined
mesh; cf. Figure 4.3 on the left. The non-conforming scheme leads to good efficiency indices.
Again it needs to be taken into account, that more terms of the exact error are estimated. Figure
4.3 right shows the efficiency indices both for a uniform mesh and an adaptive mesh. For this
example the adaptive algorithm leads to an almost uniform refinement of the entire domain,
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Figure 4.3: Convergence history of the exact errors for the non-conforming and conforming FEM on uniform and
adaptive meshes (left) and efficiency indices (right) of the three different error estimators for the non-conforming
scheme as functions of the number of unknowns on adaptive and uniform meshes for the Example 2 with the error
estimators from Theorem 3.2.

although the central part and the corners are refined more strongly as can be seen in Figure 4.4
on the left. The adaptive refinement does not indicate the contact zone for this problem. The
lower bounds for the minimal energy are comparable for this example as well. They converge
with a very similar behaviour both on uniform meshes and on an adaptively refined mesh with
the refinement indicator ηP1red although the adaptive algorithm leads to slightly better results
(see Figure 4.4 on the right).

4.4 Pyramid Problem

This example from [BC04] has an unknown exact solution u. The experiment is conducted on
the square domain Ω := (−1, 1)2 and involves the pyramidal obstacle χ(x, y) := dist(x, y, ∂Ω).
This experiment has homogeneous Dirichlet data and the constant source term f := 1. The exact
solution is approximated by solving the discrete problem after two additional red refinements
in each step. Both the conforming and the non-conforming scheme lead to the experimental
convergence rate of −0.5 on uniform meshes, as can be seen in Figure 4.5 on the right. The
adaptive algorithm does not show this convergence rate but rather has very bad convergence.
On uniform meshes additional undocumented experiments show that the error estimator for the
non-conforming finite element method only converge with a convergence rate of −0.3. The
efficiency indices in Figure 4.5 on the right confirm this, as they do not tend to a constant value
but continue to rise. This does not contradict Theorem 3.2 as the error estimate is still reliable.
The efficiency in Theorem 3.4 is shown for all the error term |||u−uCR|||NC + |||Λ−ΛCR|||∗+Λ(u−
v) +

∫
Ω
λCRΠ0(χ − u)dx. The numerical experiments only considers the error term |||u − uCR|||NC

and hence indicate that the remaining terms have more impact on the overall error then in the
other examples. Furthermore, the approximation of u by two additional red refinements might
not be a good approximation and can lead to errors. The mesh created by the adaptive algorithm

9



C. Carstensen and K. Köhler
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Figure 4.4: Adaptive mesh with refinement indicator ηP1red (left) and E(u)−lower bound for the lower bounds µ1
and µ2 of the exact energy E(u) on uniform and adaptive meshes for Example 2.

depicted in Figure 4.6 on the left demonstrates very clearly the one-dimensional contact zone,
which is the union of the two diagonals. The area towards the diagonals is much more refined.
Figure 4.6 on the right shows the quality of the lower bounds of the exact energy. As in the
examples before the lower bound µ1 shows the better convergence. This holds true, both for
the adaptive algorithm with the refinement indicator ηP1red and for the calculation on uniform
meshes. In this example the initial mesh is aligned with the obstacle and hence it does not make
a big difference whether the adaptive or the uniform mesh design is employed.

5 Conclusions

The numerical experiments confirm the theoretical results from Section 3. It is clearly shown
that guaranteed upper error bounds are possible even for a non-conforming discretisation of the
non-linear obstacle problem. The accuracy of the non-conforming method differs from those
of the conforming scheme only by a multiplicative constant, but overall they show the same
convergence rate in terms of the number of degrees of freedom. This is in contrast to the state-
ment on page 111 in [Bra07]: In the numerical experiments of this paper, even for a singular
solution, the convergence rate is comparable for conforming and non-conforming FEMs; cf.
[CPS12] and the website [Bra].
The first two benchmark examples show that an adaptive algorithm leads to the optimal conver-
gence rate of −0.5 whereas, in Example 1, the uniform algorithm only leads to a convergence
rate of −0.44. The third benchmark example does not show this improved behaviour with re-
spect to the convergence rate but, nonetheless, the adaptive algorithm leads to an improvement
of the efficiency indices. For uniform refinement the error control for this example is not effi-
cient, but this proves to be the case for adaptive refinement.
The lower bounds of the minimal energy show that the bound µ1 is preferable to the lower
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Figure 4.5: Convergence history of the exact errors for the non-conforming and conforming FEM on uniform and
adaptive meshes (left) and efficiency indices (right) of the three different error estimators for the non-conforming
scheme as functions of the number of unknowns on adaptive and uniform meshes for the Example 3 with the error
estimators from Theorem 3.2.

bound µ2, although in the examples at hand, the difference between the two estimates, as well
as between uniform and adaptive mesh refinement is marginal. All three experiments conducted
for this paper show that an adaptively refined mesh also leads to better lower bounds for the en-
ergies.
All the adaptive refinements were done with the error estimator ηP1red as a refinement indicator.
Undocumented experiments show that the same adaptive algorithm with either ηJ2 or ηEnergy as
refinement indicators establish comparable results.
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