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Abstract. This work presents a methodology for adaptive generation of 3D finite element 

meshes using geometric modeling with multi-regions and parametric surfaces, considering a 

geometric model described by curves, surfaces, and volumes. The adaptive strategy adopted 

in this methodology is based on independent refinements of these entities. From an initial 

model, new sizes of elements obtained from numerical error analysis and from geometric 

restrictions are stored in a global background structure, a recursive spatial composition 

represented by an octree. Based on this background structure, the model curves are initially 

refined using a binary partition algorithm. The discretization of curves is then used as input 

for the refinement of adjacent surfaces. The surface discretization also employs the 

background octree-based refinement, which is coupled to an advancing front technique for the 

generation of an unstructured triangulation. Surface meshes are finally used as input for the 

refinement of adjacent volumetric domains. In all stages of the adaptive strategy, the 

refinement of curves, surface meshes, and solid meshes is based on estimated numerical errors 

associated with the mesh of the previous step in the adaptive process. In addition, curve and 

surface refinement takes into account curvature information. An example is presented in order 

to validate the methodology proposed in this work. 
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1 INTRODUCTION 

In numerical simulations using the Finite Element Method (FEM), two important aspects 

to be considered are the automatic generation of the model’s finite element mesh and the 

definition of the level of refinement associated with this mesh. For the first aspect, there are a 

variety of algorithms with different techniques to generate planar, surface, and volumetric 

meshes. The second aspect, i.e., the level of refinement, is usually defined manually by a 

specialist based on his/her own experience. However, this refinement should consider the fact 

that the density of the generated elements varies according to the gradient of the obtained 

solution, which is initially unknown. In this context, this work presents a methodology to 

automate the refinement process of three-dimensional meshes based on adaptive technique 

procedures. In this work, the proposed methodology is applied to stress analysis of solid 

structures using a displacement-based finite element formulation. However, since the 

methodology essentially treats geometric modeling and mesh generation aspects of the 

problem, it could be used in other types of 3D finite element simulation. 

Adaptive procedures try to automatically refine and coarsen a mesh, relocate its nodes, or 

adjust its cells to improve response accuracy. Usually, the computation begins with a trial 

solution obtained from a coarse mesh. The discretization error of this solution is estimated. If 

it fails to satisfy a prescribed accuracy metric, adjustments are made to achieve the desired 

solution with minimal effort. Common procedures are [1,2]: local/global refinement and/or 

coarsening of a mesh (h-refinement), relocating or moving a mesh (r-refinement), and locally 

varying the polynomial degree of elements (p-refinement). 

Some strategies have been proposed to efficiently automate the 3D mesh refinement 

process. These strategies can be divided in two approaches: local and global refinement. In 

local refinement, the process uses an initial mesh and locally, using a set of elements, refines 

or coarsens elements in the mesh. Most works in the literature are based on this approach, as 

described ahead. Kallinderis and Vijayant [3] and Muthukrishnan [4] present an adaptive grid 

scheme based on the division/deletion of tetrahedral cells. Golias and Tsiboukis [5] and 

Golias and Dutton [6] employ a set of topological Delaunay transformations of tetrahedral 

elements and a technique for node reposition. Lee and Lo [7, 8] approach mesh refinement by 

inserting additional nodes at the midpoint of the longest or quasi-longest line segment of the 

mesh that bisects the original edges to generate new elements. In Merrouche [9], the mesh 

adaptation is achieved by a 3D bisection method. De Cougny and Shephard [10] present an 

adaptive scheme based on subdivision patterns (for refinement), edge collapsing (for 

coarsening), and mesh optimization (following refinement and coarsening). Lee et al. [9] only 

increase the order and density of 3D finite element meshes. Lee and Xu [11] generate a 

surface mesh for the mid-surface of the thin-walled structure, controlling element size, and 

convert the surface mesh to a 3D solid mesh by extrusion. More recently, Zhang et al. [12, 13] 

generates tetrahedral and hexahedral meshing in multi-material domains using grid-based 

method that employs an octree structure, refining meshes also locally.  

In global refinement, on the other hand, at each refinement step, the entire mesh is deleted 

and another is generated based on new sizes of elements obtained from a discretization error 

estimation analysis. This process is used by Kettil et al. [14] only in regions with complicated 

parts. Hughes et al. [15] refine the structured meshes with NURBS surfaces. Our work 

presents a methodology that employs the global h-refinement approach. 
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A previous paper [16] proposed a two-dimensional self-adaptive strategy that was able to 

perform simulations involving automatic generation of meshes and adaptive methods. Other 

works have considered the same problem through different approaches, such as the study by 

Mark Shephard’s team [17], from the Rensselaer Polytechnic Institute. Cavalcante-Neto [18] 

proposed a technique for the generation of volumetric meshes of tetrahedral elements for 

arbitrary region domains. Combining this technique with the implementation of 3D error 

estimators, the authors defined a prototype of an environment for adaptive generation in three 

dimensions. However, in this previous work, the complete process was not performed 

automatically, i.e., the mesh was generated independently from the error estimation and had to 

be manually combined. Moreover, despite treating multi-regions, it was not very efficient, and 

parametric surfaces, which are used in several types of simulations, were not considered. 

This paper aims to present a methodology for adaptive generation of three-dimensional 

finite element meshes, using geometric modeling with multi-regions and parametric surfaces. 

Basically, the whole mesh adaptive process involves three steps: (1) analysis of a finite 

element (FE) model with discretization error estimation; (2) construction of a background 

structure to store new FE sizes that take into account the estimated discretization error and 

curve and surface curvature; and (3) hierarchical refinement of a FE model that is represented 

geometrically by curves, surfaces, and volume regions. This process may be repeated until a 

desired maximum allowed error metric is achieved. The methodology described herein covers 

only the last two steps, since discretization error estimation can be computed through different 

processes [1]. In this work, discretization error estimation is based on a standard technique 

used in the literature [19], in which the error is evaluated through the difference between 

stress field computed using conventional FE procedures and stress field obtained by means of 

more accurate recovery procedures (e.g. ZZ, SPR, or REP) [19-22]. 

The paper is organized as follows. Next section explains the proposed adaptive refinement 

strategy. Section 3 describes all the steps required to generate the background data structure 

that is used to define FE sizes in the adaptive process. The following section presents the 

hierarchical refinement of curves, surfaces, and volumes. An example of adaptive refinement 

is presented in Section 5. Finally, in Section 6, there is a conclusion. 

2 ADAPTIVE REFINEMENT STRATEGY 

The three-dimensional geometric model has a topological description of the vertices, 

curves, surfaces, and regions, as well as an associated geometric description, which consists 

of the coordinates of the vertices and the mathematical representation of the curves and 

surfaces. The geometric model can contain many regions. In this environment, the attributes 

of the simulation, such as the properties of the materials, loads and restrictions, are associated 

with the geometric entities. In this framework, the entities of finite element mesh (nodes and 

elements) automatically receive the attributes of the geometric entities that are related to. 

Using this approach, it is possible to create new meshes without losing the attributes. 

Figure 1 illustrates the automatic adaptive strategy of the proposed refinement process. The 

input data are the initial volumetric mesh of problem in question and the geometric entities 

(curves and surfaces), and as well as their associated attributes. Initially, this mesh is 

numerically analyzed, the information required to initiate the adaptive procedure. Such 

information basically consists of numerical discretization errors associated with each 
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volumetric element of the mesh. From these errors, the need for adaptive refinement is 

verified. If the results converge, the adaptive process is concluded with a final discretization. 

 

Figure 1: The proposed adaptive refinement process. 

If convergence is not reached, the sizes of the new elements are computed based on the 

estimated discretization error. All the resized data are stored in an auxiliary background 

structure. Although many background structures are published in the literature, as reviewed 

by Quadros [23], the present work uses a background octree structure, which has the 

advantage of not only allowing fast search procedures down to internal leaves but also 

representing the desired size of the elements defined by the size of the internal leaves. For 

these reasons, an octree is used to support the discretization of curves, surface meshes, and the 

volumetric mesh. 

In addition to discretization error estimation, curve and surface discretization is also 

required, especially when the curves and surfaces present high curvatures. In such locations, 

the meshes should be locally refined. Therefore, new element size data, based on the 

geometric information of the curves and surfaces, are computed and stored in the background 

octree. After this procedure, the background octree is internally finalized to provide a better 

transition between regions with elements of highly varying sizes. 

Using the size information from the background octree, the next step consists of a three 

level hierarchical approach to create a new volumetric mesh. First, the curves are refined 

based on the size of the elements stored in the octree structure. This refinement subdivides the 

curves into segments with sizes consistent with those of the discretization error analysis and 

geometric criteria. After refining the curves, the meshes associated with each of the model’s 

surfaces are discretized using an advancing front scheme in parametric space. This meshing 

scheme starts by subdividing curves on the boundary of each surface. Geometric curvature 

information is considered in surface refinement because the background octree takes this 

information into account. The last stage of the adaptive refinement process is related to the 

discretization of the domains of the model’s regions. Such discretization uses a 3D advancing 

front technique that starts from the triangulated meshes associated with the boundary surfaces 

of each 3D region, also considering the sizes of the elements provided by the background 

octree. As can be seen, this adaptive meshing methodology supports multi-regions in a 
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consistent manner, considering curve and surface curvature information in addition to the 

estimated discretization error. Finally, a new discretization error analysis is performed to 

assess the quality of the results. If convergence is not obtained, the whole adaptive process is 

repeated as described above. The next sections summarize the proposed refinement strategy. 

3 THE BACKGROUND OCTREE 

An octree is a tree data structure based on a cell with eight children. Each cell of an octree 

represents a cube in the physical space. Each child represents one octant of its parent. On the 

leaves of the tree are the computational cells of the grid. In this work, the background octree 

has two main objectives. The first is to develop local guidelines used to define the 

discretization of curves and surfaces. The second is to define the sizes of tetrahedral elements 

to be generated during the advancing front procedure. The octree generation includes four 

steps. Figure 2 depicts the external appearance of the background octree of a hypothetical 

model (Figure 2-a). In the first step (Figure 2-b), the octree is initialized based on the input 

mesh data, which are the new element sizes obtained in the discretization error analysis. The 

second step (Figure 2-c) refines the octree based on the geometric curvatures of curves. In the 

third step (Figure 2-d), the octree is refined based on the geometric curvatures of surfaces. 

Finally, in the last step (Figure 2-e), the octree is refined in order to obtain a better transition 

between the sizes of the elements generated in the advancing front surface refinement. 

3.1 Background octree refinement based on error analysis 

Initially, a bounding cube is created based on the maximum range of the three Cartesian 

coordinates of the input model. This cube is the octree’s root cell. In the first step of the octree 

refinement (Figure 2-b), each discretization error result of an element is used to determine the 

local depth of the subdivision. A characteristic size of each element is calculated for the 

estimated error and the octree cell containing the element’s central point is determined. If the 

size of the cell edge is larger than the calculated characteristic size, then this cell is subdivided 

into eight smaller cells. This process is repeated recursively and finishes when the size of the 

cell is smaller than the given size. This process is repeated for every element of the current FE 

mesh. The characteristic size is calculated considering an equilateral tetrahedron with the 

same volume of each element. 

The background octree works as a density function to guide the adaptive process. It could 

be replaced by other functions. It has the advantage of also allowing fast search procedures 

down to internal leaves. It could also have a different orientation to better adapt to models that 

are not parallel to Cartesian coordinates. However, the bounding cube parallel to the Cartesian 

coordinates is easier and faster to implement and usually gives very good results. 

3.2 Octree refinement based on curve curvature 

In some cases, when only the discretization error is considered in the adaptive process the 

new generated mesh (in the following step of the process) does not respect the actual 

geometry of the model’s curves. This behavior occurs when parts of a curve, for example, 

present high curvatures in a region where the discretization error is low. In these situations, it 

is necessary to refine the background octree based on the curvatures of the curves to preserve 

the original geometric characteristics of the model. 
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The methodology used to refine the curves of the model based on their curvatures is a one-

dimensional version of the procedure applied to discretize the background octree. The 

refinement of each curve employs a recursive spatial numbering technique similar to a binary 

tree data structure [24]. 

(a)  

(b)  (c)  

(d)  (e)  

Figure 2: A hypothetical model to explain the steps of octree construction: (a) Model geometry and loading; 

(b) External appearance of background octree based on discretization error analysis; (c) Refinement after 

considering curve curvatures; (d) Refinement after considering surface curvatures; (e) Refinement after 

considering maximum cell size at boundary cells and maximum difference of one level between adjacent cells. 

The main purpose is to generate a discretization on a curve according to its curvatures. The 

curvatures are calculated for specific curve segments. At first, the whole length of the curve is 

considered as the segment to be tested. If the curvature of the segment is lower than the 

maximum allowed curvature, the process is interrupted. Otherwise, the segment is recursively 

subdivided in two segments, and each one is tested in the same way, until the maximum 

curvature criterion is satisfied. At the end of this process (Figure 2-c), all the curve segment 

sizes and their middle points are transported to the background octree, using the same 

procedure explained in Section 3.1. 
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3.3 Octree refinement based on surface curvature 

After the background octree is refined considering curve curvatures, the octree refinement 

is increased based on surface curvatures. This step (Figure 2-d) captures high curvatures of 

surfaces, computes the required element sizes and their locations, and passes this information 

to the background octree. The reason to perform this step is the same as the previous stage: to 

represent the original geometry of the model. 

As in Section 3.2, the methodology applied to refine the surfaces of the model based on 

their curvatures is a two-dimensional version of the procedure used to discretize the 

background octree: a background quadtree, which is created similarly to the one presented by 

Miranda and Martha [25]. This way of computing the curvatures has shown to be efficient and 

robust, and this is the main reason for its adoption. The background quadtree generation 

follows some steps: 

• Quadtree initialization based on given boundary edges; 

• Refinement to force maximum cell size; 

• Refinement to provide minimum size disparity for adjacent cells; 

• Refinement to force minimum curvature difference between adjacent cells: this stage is 

explained ahead. 

As described in detail by Miranda and Martha [25], the first step has some modifications in 

relation to the original 3D algorithm [26]. The second and third steps have not changed. The 

fourth step was added to take high surface curvatures into account. 

The fourth step of the quadtree generation refines this auxiliary structure to force a 

minimum curvature difference between adjacent cells. Initially, the algorithm stores in each 

cell gradient vectors of the quadtree evaluated at the center of the cell. Then, it computes a 

vector normal to the surface of each cell. Finally, the algorithm obtains the cosine of the angle 

θ between the normal vectors of the two adjacent cells and compares it to a minimum value, 

cosθmin. This kind of comparison is similar to comparing the angle between the normal 

vectors and the maximum angle. If cosθ is smaller than cosθmin, then a new cell size, Hnew, is 

obtained from the current size, Hold, as Hnew = (Hold/cosθmin)⋅cosθ. This new size is used to 

locally refine the adjacent cells of the quadtree. This process is repeated recursively for every 

cell. The new element sizes stored in the auxiliary surface quadtree are transferred to the 

global background octree. At the end of this step, the background octree is refined considering 

the geometric curvatures of all of the model’s surfaces. 

3.4 Octree final refinement 

The previous step can leave large octree cells in the interior of a 3D region. In the first step 

of this final stage, the octree is refined to guarantee that no cell in the interior is bigger than 

the largest cell on the boundary. This will avoid excessively large elements in the domain 

interior. The octree is subsequently processed to force a single difference level between 

neighboring cells (Figure 2-e). This leads to a natural transition between regions with 

different degrees of refinement. This refinement is performed by traversing the octree and 

examining the difference in tree depth between adjacent cells. If the difference is larger than 

one level, the adequate cells are refined until the criterion is satisfied. 
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4 HIERARCHICAL REFINEMENT 

After the construction of the background octree, considering the new element sizes based 

on the discretization error and on curvatures of the geometric model, the final step is to re-

generate the mesh of the whole model. As mentioned previously, it is assumed that the three-

dimensional geometric model has a topological description of the vertices, curves, surfaces, 

and regions, as well as an associated geometric description, which consists of the coordinates 

of the vertices and the mathematical representation of the curves and surfaces. The geometric 

model can contain many regions. Mesh re-generation employs a hierarchical refinement of (1) 

curves, (2) surfaces, (3) and regions. 

The methodology used to refine the model’s curves is similar to the one mentioned in 

Section 3.2. At the beginning of the process, a curve is defined by its mathematical geometric 

description and by two nodes (initial and final points). Then, the curve length and middle 

node are obtained. From the middle node, one can determine the cell in the background octree 

where this node is located. A comparison is then made to verify whether the segment size is 

smaller than that of the corresponding cell. If the criterion is satisfied, the curve refinement 

process ends considering the nodes generated so far. Otherwise, the new node is inserted on 

the curve, this curve is subdivided in two partitions, and each one is tested in the same way, 

until the criterion is met. 

Surface mesh generation is based on the algorithm presented by Miranda and Martha [25]. 

This algorithm is applied to the generation of triangular meshes on each surface with arbitrary 

geometry, using its parametric description. The parametric description is used because it is 

common and efficient, since the surface mesh is generated using two-dimensional 

triangulation techniques. However, additional length and angle corrections are needed to 

consider metric distortions between parametric and 3D Cartesian spaces. With this procedure, 

generated triangles present good shape in 3D space. 

3D mesh generation in each closed region of the model is based on a technique presented 

by Cavalcante-Neto [26] and is used to obtain tetrahedral elements in arbitrary domains. 

Similarly to the procedure applied to generate surface meshes, this one is based on an 

advancing front technique coupled to a recursive spatial decomposition technique (octree). 

Originally, the algorithm employed an independent background octree in each 3D region to 

control the distribution of the node points generated in the interior. In the adaptive 

methodology proposed here, the global background octree is used for this purpose. 

The algorithm was designed to meet four specific requirements: to avoid producing 

elements with poor aspect ratios; to generate meshes conforming to existing triangular meshes 

at the boundary of a domain; and to generate meshes exhibiting good transitions between 

regions of different element sizes. The input to the algorithm is a triangular surface mesh, 

which describes the domain to be meshed. This mesh is obtained from the surface meshes on 

the boundary of a 3D region to be meshed. The algorithm steps are as follows: 

• A two-pass advancing front procedure is applied to generate elements. In the first pass, 

elements are generated based on geometric criteria, producing well-shaped elements. 

The background octree presented in Section 3 is used to control the sizes of the 

elements and the position of the interior nodes. The octree determines an ideal position 

for an optimal node to form a new element. This ideal position defines a search region 

where an optimal node for the new element may be located. This region is a sector of a 
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sphere whose center is the ideal position and whose radius is proportional to the octree 

cell size. If one or more existing nodes are inside this region, they are ranked based on 

a solid angle criterion, in order to get the best node for the new element. However, if no 

existing node is found, a new node is inserted at the ideal position and an element is 

generated using this node. In the second pass, elements are generated based only on the 

criterion that they have valid topology. Here, any existing node that forms a valid new 

element can be used, regardless of whether it is close to the ideal position or not. 

However, the same quality criterion is used and the node that forms the best solid angle 

is chosen for the generation of the new element. 

• If the advancing front procedure cannot progress, a back-tracking strategy [27] is 

employed to delete some elements, and the procedure is restarted. It consists basically 

of back tracking a few steps in the mesh generation and deleting faces that hinder the 

front from converging. This creates better regions where valid elements can be then 

generated. It is possible that the process of finding better regions may fail, for instance, 

if faces to be removed are part of the original boundary. When this occurs, other 

elements are deleted instead and the procedure is restarted. If a mesh still cannot be 

generated for this region, the algorithm fails and terminates. In principle, it is possible 

to create a boundary input mesh that forces the failure of the volume mesh generation. 

Such failure, however, has not yet been observed in “non-contrived” input, i.e., in any 

realistic input boundary meshes in many examples tested so far. 

• Once a valid mesh is created, the quality of the element shapes is improved by using 

the standard Laplacian smoothing technique and locally deleting poorly shaped 

elements and those adjacent to them. The boundary contraction is then restarted. 

After the generation of volumetric elements in all regions of the model as exposed above, a 

new error analysis is performed to assess the quality of the results. If convergence is not 

obtained, the whole adaptive process is repeated as described in the previous sections. The 

next section provides some examples of the proposed adaptive refinement process. 

5 EXAMPLE 

This section presents an example of adaptive 3D finite element mesh that was generated 

using the proposed adaptive methodology. It is important to emphasize that this paper does 

not aim to compute the performance of mesh generators (surface and volume) or assess the 

quality of the elements generated, since these tasks were covered in previous works [25, 26]. 

The adaptive strategy proposed in this paper results from the application of unstructured 

mesh generation techniques in surfaces and regions, combined with numerical errors 

associated with discretization. Numerical error estimators are implemented based on 

procedures developed for two-dimensional models [28] extended to three dimensions. These 

error estimators are supported by error estimation techniques widely adopted in the literature, 

called Superconvergent Path Recovery technique (SPR) [20,21] and Recovery by Equilibrium 

in Patches (REP) [22]. The numerical error estimators were implemented in a finite element 

numerical analysis program [29]. It is worth stressing that these error estimation techniques 

can be easily and directly replaced by any other technique that is more recent or efficient, as 

this is supported by the object-oriented organization of the analysis program. In the present 

example, SPR is employed for error estimation. 
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The presented example is a model of a bike suspension rocker [30], shown in Figure 3, that 

is composed by four cylinders that are connected by a central body. Uniformly distributed 

forces, of unitary intensity in the y direction are applied to the internal faces of the two top 

cylinders. Displacement restrictions are applied to the internal face of the lower cylinder. 

 

Figure 3: Example: bike suspension rocker model and finite element mesh refinement. 

The adaptive refinement of this example (see Figure 3) was carried out until the target 

relative error (3%) was reached. The mesh is refined in the intermediate cylinder and only 

part of the lower cylinder, where there are concentrations of stress. The number of linear 

tetrahedral elements in the initial mesh is 6223 and the number of nodes is 10303. In the final 

mesh, the number of elements is 186238 and the number of nodes is 273633. This example 

demonstrates the importance of considering the curvatures of the supporting surface in the 

adaptive refinement, which is another characteristic of the present methodology. 

6 CONCLUSIONS 

This paper described a methodology for adaptive generation of three-dimensional finite 

element meshes, using geometric modeling with multi-regions and parametric surfaces. The 

mesh adaptive process involves three steps: (1) FE analysis with error estimation; (2) 

construction of a structure to store the new sizes of the FE; and (3) refinement of the FE 

model. The approach adopted is the global refinement of the whole model in each adaptive 

refinement, using a background octree structure. After the construction of the octree, the new 

model is geometrically re-discretized employing a hierarchical curve, surface and volume 

refinement. Some important characteristics of the proposed methodology are: 

• The ability to refine and coarsen in regions of high and low response gradients. 

• The use of only one background octree for all regions of the model, allowing a smooth 

transition between regions and elements. 

• The hierarchical refinement of curves, surfaces, and volumes. 
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• The consideration of curvatures of curves and surfaces in the adaptive refinement. 

A recent article [31] published by the authors compares results of convergence rates of the 

proposed methodology with results presented in the literature. It was demonstrated that the 

current methodology converges faster to a lower relative error, because the 3D mesh 

generator used has more freedom to create new elements based on desired element sizes. This 

characteristic generates a desired mesh with the application of only a few steps of the adaptive 

refinement. In contrast, using a local refinement strategy, (local) element manipulations 

restrict the shape quality of new elements. 

Obviously, the current 3D mesh generation takes more time to create new elements, 

because the whole FE model must be created at each step. In this work, most of meshes were 

generated in less than one minute of clock time. However, in models that require a large 

number of elements (one million or more), time consumption can increases exponentially. 

While in many problems this is not an issue, it can be a limitation of the current approach that 

can be solved in two manners: (1) decomposing the domains into sub-domains and applying 

the mesh generator to each sub-domain; or (2) using a parallel 3D mesh generator. The latter 

option is our future work and is currently under development. 
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