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Abstract. Adaptive refinement is an important technique to reduce the computation
time of flows in very refined meshes and increasing the local accuracy of the simulation.

A new a-posteriori error estimator, suitable for h-adaptive methods on unstructured
grids, is based on the residual evaluation and a high-order polynomial reconstruction.
The results are performed by the authors own Navier-Stokes code, which has been used
to solve different adaptive problems [1, 2, 3].

The residual least squares (RLS) estimator is applied to different problems with a
known analytic solution to study the numerical error decay with the adaptive algorithm
and it is compared with the classic Taylor Series estimator [4, 5]. The proposed adaptive
procedure is also applied to 3D flows around a sphere for two different types of grids.

The main goal of the present study is to perform the mesh refinement maintaining the
global spatial accuracy to a desired level in the overall computational domain.

1 INTRODUCTION

The reduction of mesh generation effort and the computing time are of outmost rel-
evance for CFD simulations of engineering fluid flow applications. Adaptive techniques
reduce the time of the unstructured mesh generation and potencially the computing time,
because the adaptive mesh has a smaller number of cells than the equivalent uniform
mesh. Adaptive mesh refinement requires an estimator that shows the error distribution
to refine locally the mesh. The information from the error estimator and the stop criterion
should embody numerical accuracy and physical contrains of the numerical solution.

From the point of view of Finite Element Methods FEM the error estimators are
well established and can be divided in three major groups: gradient recovery estimators,
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explicit and implicit residual error estimates. A summary of different error estimators
used in context of FEM was done by several authors [6, 7, 8, 9].

The Richardson Extrapolation [10] is the most popular error estimator in the finite-
volume method (FVM) context and requires the solutions on two meshes with different
spacings, which can be difficult to obtain in 3D industrial flow configurations. There are
some attempts of single-mesh error estimators, based on energy conservation and angular
moment conservation equations, see Haworth et al. [11]. Error estimators based on high
order face interpolation was proposed by Muzaferija and Gosman [12] and later, Jasak
and Gosman [4, 5] proposed an error estimator based in the Taylor series truncation error
and another one based in the conservation of the second moment of the solution. Yahia
et al. [13] has applied the Taylor series truncation to edges integral in the framework of
r-adaptivity. Error estimator based on the residual error from the governing equations
was investigated by Jasak and Gosman [14] and Juretic [15] extended it to a face based
error estimator.

The Residual Least Squares error estimator has two main advantages, when com-
pared to another approaches: the polynomial reconstruction made with the Least Squares
method has the versatility required to be used in the case of unstructured grids which can
have an arbitrary cell distribution and the Residual re-evaluation has information from
the governing equations and the grid quality.

The adaptive grids are treated as unstructured grids, so the same convective and diffu-
sive schemes are used, garantee second order error decay between the cells with different
levels of refinement. In addition the new decision algorithm uses the computed informa-
tion from error estimators without requiring any input parameter from the user or any
previous knowledge of the numerical solution.

2 NUMERICAL METHOD

2.1 Governing Equations and Unstructured Grids Formulation

The steady isothermal flow of an incompressible fluid is governed by the mass and
momentum conservation laws, being expressed by the incompressibility constraint and
the Navier-Stokes equations:

∇ · u = 0 (1)

∇ · (u⊗ u) = ∇ ·
(
ν∇u + ν∇Tu

)
− 1

ρ
∇p (2)

where u is the velocity vector, ν is the kinematic viscosity, ρ is the fluid’s density and p
is the fluid’s pressure. The governing equations are discretized on unstructured meshes
made of cells of arbitrary topology, to address the multiple faces that arise in interfaces
between refined and non-refined cells. Each cell P is a polyhedron with a closed boundary
∂P which is composed by a variable number of faces ∂P = {S1, S2, ..., SF}. Each face Sk

is a plane polygon of arbitrary orientation which connects P and it’s neighbour cell Pk,
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see Figure 1. The computational points are located at the centers of each control volume
corresponding to the so-called “collocated” or “non-staggered” arrangement.

Figure 1: General 2D Polyhedral Control Volume

2.2 Pressure Velocity Coupling Algorithm

The SIMPLE algorithm [16] is used for the pressure velocity coupling. The SIMPLE
algorithm starts by computing an approximate velocity field u∗, which satisfies the mo-
mentum equations using the values from the previous iteration n. The steady equation is
solved implicitly and linearization of the convection contribution is required:

F∑
f=1

Un
f u∗f − ν

F∑
f=1

(∇u∗)f .Sf = −VP
ρ
∇pn (3)

where Un
f is the face velocity defined by un

f .Sf , Sf is the face surface vector defined by
Sfnf , nf is the normal unit vector of the face f and VP denotes the cell P volume. A
system of linear equations is assembled in this form:

1

αu

apu
∗
p +

F∑
l=1

alu
∗
l = −VP

ρ
∇pn +

1− αu

αu

apu
n
p (4)

being αu the under relaxation factor for the momentum equations. The face velocity U∗f
is computed with Rhie-Chow interpolation [17]:

U∗f = u∗p.Sf −
αuVP
ρ ap

((∇pn)f − (∇pn)).Sf (5)

where the over-lined values are obtained by interpolation from the two cells which have
the same face f and ap are the momentum system matrix’s main diagonal elements. This
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face velocity is used to solve the pressure correction equation:

F∑
f=1

αuVP
ρ ap

(∇p′)f .Sf =
F∑

f=1

U∗f (6)

where p′ is the pressure correction. After solving the Poisson equation 6, the velocity
values are corrected with the p′ new values to satisfy the continuity equation 1. The
conservative face velocity is computed by:

Un+1
f = U∗f −

αuVP
ρ ap

(∇p′)f .Sf (7)

the cell velocity is corrected by:

un+1 = u∗ − αuVP
ρ ap

(∇p′) (8)

and the pressure is updated:
pn+1 = pn + αpp

′ (9)

the SIMPLE algorithm requires an under relaxation factor for pressure αp. From this
point the residuals are computed, If they are lower than a prescribed value the cycle ends,
if not the computation advances to the next iteration, back to equation 4.

2.3 Numerical Schemes

The author’s own code SOL has the capability to make different types of regressions
from the discrete cell values by solving a Weighted Least Squares (WLS) problem. Dif-
ferent types of polynomials and cell sets can be used in these regressions. Figure 2 shows
examples of cell sets composed by different types of cell neigbours. The subfigure 2(a)
shows the first and second cell’s neighbours by face in a cartesian grid and the subfigure
2(b) shows the first and second cell’s neighbours by vertex in a grid made by triangles.

The versatility of the regressions is suitable to compute the diffusive and convective
values of the arbitrary unstructured cells and achieve second order accuracy, see Kobayashi
et al. [18, 19] for details. Since the face regressions are centered in the face centroid,
they can deal with the severe orthogonality and skewness deviations which exist in the
interfaces between refined and non-refined cells, increasing the accuracy of the diffusive
and convective schemes.

All the least squares regressions use a weight function WP , given by the inverse square
of the distance:

wP = |xP − xref |−2 (10)

where xP is the cell P centroid coordinates and xref is the coordinates of the regression
reference.
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(a) Cell Neibours by Face (b) Cell Neibours by Vertex

Figure 2: Different Examples of Cell Neibours

Both diffusive and convective values are computed with a single regression, using a
linear polynomial and the various cells that have the face’s vertices. Figure 3 shows
examples of different computational molecules used in the numerical schemes. Where the
cells used for each regression k of the face Sk are marked with the respective number k.

Figure 3: Possible Stencils used in the Convective and Diffusive Terms Computation

To achieve the second order integration with the finite volume method the regression
is centred at the face’s centroid.

The convective and diffusive schemes used in this work may originate a non positive
definite matrices, so a deferred correction approach (Ferziger [20]) was used where a
stable scheme is computed implicitly and the least squares scheme is computed explicitly.
As stable schemes, the central differences scheme is used for the diffusive term and the
convective fluxes are approximated by the first order upwind.
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3 ADAPTIVE ALGORITHM AND ERROR ESTIMATORS

3.1 Adaptive Algorithm

Error estimators are required for the adaptive decision algorithm and they give a good
approximation of the numerical error and its distribution in the computational domain.
With this information is possible to compute an estimation of the ideal hydraulic radius
hi distribution for a desired local error E0. For a second order method in space, the
following equations are valid:

|E| ∼ Kh2 (11)

|E0| ∼ Kh2
i (12)

where E is the error estimation and K is an unknown constant. After some algebraic
manipulation:

hi ∼ h
√
E0/E (13)

Ideally, the formula 13 can be used to create adaptive grids with approximately constant
error if combined with an automatic grid generator.

The adaptive procedure used in this work is based in the maximum value of the error
estimator. The cells with an error higher than λ max(|E|) are selected for h-refinement,
where λ is a factor that depends of the method’s order. In the case of second order method
this value λ is equal to 0.25, which is the reduction factor (hL/hL+1)2 of the local error,
in each grid refinement.

3.2 Taylor series truncation error

The Taylor series error estimator [4] is derived by the 2nd order term of the Taylor
series and it is computed by:

ET =
1

2VP

∣∣∣∣( ∂2φ

∂xi∂xj

)
P

∣∣∣∣ (Mij)P (14)

where (Mij)P is the inertia tensor of the cell P . The Hessian matrix values are computed
from a regression made with a 2nd order polynomial from the cell’s first and second
neighbours. Due to the assumption of linear variation inside the computational cells,
zones with lower errors will have lower values of the Hessian matrix.

3.3 Residual Least Squares

A regression is done with a 3rd order polynomial and considering the cell’s first and
second neighbors. New face’s values and gradients are computed and compared with the
values from the convection and diffusion schemes. One way to do this, is by recomputing
new residual values, which indicate if the values satisfies the governing equations. The
Residual Least Squares (RLS) vector is computed for each cell by the following formula:
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ER =

∑F
f=1 U

n
f uf − ν

∑F
f=1(∇u)f .Sf +

VP
ρ
∇pn

ap
(15)

where the values uf and (∇u)f are computed from the 3rd order polynomial, ap is the
matrix value used for the momentum equations, which is required to give the RLS error
the same dimensions of the dependent variable. This error gives the indication for local
refinement if the differences between 3rd order profile and the numerical discretization
affect the governing equations. Unlike the Taylor series the RLS criteria depends on the
governing equations discretization and the grid quality.

4 RESULTS

4.1 Poisson Equation in a L-Shaped Domain

For this test case the Poisson equation ∇2φ = 0.0 was solved in a L-shaped domain
[−1, 1]2 \ ([0, 1]× [−1, 0]) Dirichlet boundary condition is prescribed in all boundaries and
the analytic solution is given by the following equation:

φ(x, y) = r2/3sin(2ϕ/3) with (x, y) = r(cos ϕ, sinϕ) (16)

The computations started with a grid of 12 triangles, three types of refinement are ap-
plied to this grid: one with uniform refinement and other two with the adaptive procedure
using the classic Taylor series or the RLS as error estimators. The goal is to study the
main differences between the two error estimators and evaluate their effectiveness. Fig-
ure 4 shows the mean and maximum error for the three types of grids, after 15 levels of
refinement for the Taylor series and 22 levels of refinement for the RLS errors estimators:

(a) Mean Error over Number of Cells (b) Maximum Error over Number of Cells

Figure 4: Poisson Equation: Mean and Maximum Error for the Uniform and Adaptive Grids
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For the uniform grid case, the mean and maximum error slope has an order of 4/3 and
2/3, respectively. Although, at the singularity point (x, y) = (0, 0) the analytic solution is
zero, the analytic gradient is infinite which causes the method to have an order accuracy
lower than 2 for uniform grids.

For both error estimators, the mean error of the adaptive grids has second order slope,
due to the difference between the slopes of the adaptive and uniform grids, the mean error
from the adaptive grids is much lower than the mean error from the uniform grid.

In the subfigure 4(b), the maximum error for the three types of grids is shown. The
adaptive grid with the TS estimator has an maximum error 100 times lower than the error
of the uniform grid and the adaptive grid with the RLS estimator shows an maximum error
1000 times lower, showing an improvement when compared with TS estimator. The ratio
between the maximum and mean error, which is a measurement of adaptivity efficiency,
is 0.053 for the TS estimator and 0.2336 for the RLS estimator.

Figure 5 shows the final adaptive grids obtained with the TS and RLS error estimators.
The adaptive grid with TS has more refined cells and a circular pattern in the grid
interface, this happens due to the loss of accuracy of the TS error estimator after some
adaptive levels. The adaptive grid with RLS has a lower number of cells and a rectangular
pattern is observed, there is an increase in the error estimator accuracy as it was observed
in the subfigure 4(b), there is an over estimation of the numerical error in the boundaries
of the computational domain.

(a) Adaptive Grid using the Taylor Estimator (b) Adaptive Grid using the RLS Estimator

Figure 5: Poisson Equation: Adaptive Grids for the Taylor and RLS Estimators
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4.2 Convection-Diffusion Equation - Point Source in Cross-Flow

For this test case, the convection-diffusion equation U
∂φ

∂x
= Γ∇2φ is solved. The

selected analytical solution was used in previous works by Jasak and Gosman [4, 5] and
is defined by:

φ(x, y) =
S

2πΓ
K0(

U
√
x2 + y2

2Γ
)e(0.5xU/Γ) (17)

where S = 16.67 [φ/s] is the source magnitude, Γ = 0.05 [m2/s] is the diffusion coefficient,
U = 1.0 [m/s] is the imposed velocity in the x axis and K0 is the modified Bessel function
of the second kind and zero order.

This problem is solved in a rectangular domain [0.0, 4.0] × [−0.5, 0.5], the line-source
is located at 0.05m of the left boundary to avoid numerical problems from this singular-
ity. Dirichlet boundary conditions are prescribed in all boundaries, except for the right
boundary (x = 4.0), where a null gradient is imposed.

The same refinement test were done for this solution, a Cartesian grid of 16× 4 is used
as initial grid and the adaptive algorithm is used until 20 levels of refinement are reached.
The mean and maximum error, for the uniform and adaptive grids are shown in figure 6.

(a) Mean Error over Number of Cells (b) Maximum Error over Number of Cells

Figure 6: Line Source: Mean and Maximum Error for Uniform and Adaptive Grids

The curves of the mean error (subfigure 6(a)) show the same slope for the three grids,
the adaptive grids doesn’t show any improvement in the mean error when compared with
the uniform refinement. For both error estimators, the maximum error of the adaptive
grids is lower than for the uniform grid case. The final adaptive grid has a maximum
error 10 times much lower than for the case of the uniform grid.

In this case, the error slope is not always constant due to the grid interface correc-
tion, which prevents the accumulation of the grid interfaces between different levels of
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refinement, avoiding the loss of the grid quality and the solution overall accuracy.
When comparing the results from the subfigure 6(b) with the ones obtained by Jasak

and Gosman [5] there is a significant improvement. This happens due to the grid interface
correction and the different decision algorithm of the cells for refinement.

4.3 Flow over a Sphere

The three dimension flow over a sphere is computed as the final test of the RLS
estimator and the adaptive code, two initial meshes were made one with hexahedrons
and another one with tetrahedrons. The initial hexahedron grid has 46800 cells and its
domain has a cylinder form, the computational domain of the initial tetrahedral grid is a
squared prism with 39× 13× 13 diameters and has 126182 cells.

Figure 7: Example of Refinement in the Sphere Flow with Hexahedral and Tetrahedral Grids

Figure 7 shows the adaptive grids for two levels of refinement, with both the hexahedral
and tetrahedral grids, for a Reynolds number of 200. The final meshes have 1331216 and
2707026 cells, respectively, which corresponds to a mesh with less 55.555% and 66.479%
than compared to uniform refinement case. Both adaptive grids are refined near the
sphere wall and in the flow’s wake which are the primary features of this problem. The
cone formed by the refined cells in the flow’s wake is bigger in the tetrahedral grid, since
the cells far away of the sphere have a higher hydraulic radius than in the hexahedral
grid.
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5 CONCLUSIONS

- The Residual Least Squares (RLS) error estimator has been shown to be suitable for
adaptive refinement of Finite-Volume methods on unstructured grids. Unlike other
error estimators, the RLS has information of the governing equations discretization
and information of the grid quality.

- The new adaptive decision algorithm is independent on user defined parameters and
can deal with the problem of the grid quality loss in the cell interface, making it
more suitable than other algorithms from the literature.
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Duarte M. S. Albuquerque, José M. C. Pereira and José C. F. Pereira

[8] T. Gratsch and K. Bathe. A posteriori error estimation techniques in practical finite
element analysis. Computers and Structures, 83:235–265, 2005.

[9] K. Segeth. A review of some a posteriori error estimates for adaptive finite element
methods. Mathematics and Computers in Simulation, 80:1589–1600, 2008.

[10] M. J. Berger and J. Oliger. Adaptive mesh refinement hyperbolic partial differential
equations. J. Comp Phys., 53:484–512, 1984.

[11] D. C. Haworth, E. L. Thary, and M. S. Huebler. A global approach to error estimation
and physical diagnostics in multidimensional fluid dynamics. Int. J. Numer. Meth.
Fluids, 17:75–97, 1993.

[12] S. Muzaferija and D. Gosman. Finite-volume CFD procedure and adaptive error
control strategy for grids of arbitrary topology. J. Comp Phys., 138:766–787, 1997.

[13] Djaffar Ait-Ali-Yahia, Guido Baruzzi, Wagdi G. Habashi, Michel Fortin, Julien Dom-
pierre, and Marie Gabrielle Vallet. Anisotropic mesh adaptation: towards user-
independent, mesh-independent and solver-independent CFD. part i: general princi-
ples. International Journal of Numerical Methods in Fluids, 32(6):725–744, 2002.

[14] H. Jasak and A. D. Gosman. Residual error estimate for the finite-volume method.
Numer. Heat Transfer, Part B, 39(1):1–19, 2001.

[15] F. Juretic. Error analysis in finite volume CFD. PhD thesis, Imperial College,
University of London, 2004.

[16] S. V. Patankar and D. B. Spalding. A calculation procedure for heat, mass and
momentum transfer in three dimensional parabolic flows. Int. Journal Heat and
Mass Transfer, 15:1787, 1972.

[17] C. M. Rhie and W. L. Chow. Numerical study of the turbulent flow past an airfoil
with trailing edge separation. AIAA Journal, 21:1525–1532, 1983.

[18] M. Kobayashi, J. M. C. Pereira, and J. C. F. Pereira. A second-order upwind least-
squares scheme for incompressible flows on unstructured hybrid grids. Num. Heat
Transfer B, 34:39–60, 1998.

[19] M. Kobayashi, J. M. C. Pereira, and J. C. F. Pereira. A conservative Finite-Volume
second-order accurate projection method on hybrid unstructured grids. J. Comp.
Phys., 150:40–75, 1999.

[20] J. H. Ferziger and M. Peric. Computational method for Fluid Dynamics. Springer-
Verlag, Berlin/New York, 1996.

12


