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Abstract. Recently, Goal Oriented Adaptivity (GOA) has been an active research area
because of its advantages in terms of computational cost and accuracy. This technique
consists in solving two Finite Element (FE) problems: the primal one, which is the actual
problem and the dual one, which is an auxiliary problem depending on the Quantity of
Interest (QoI).

To improve the quality of the error estimate in the QoI we consider a recovery-based
procedure which enforces local equilibrium for an accurate stress representation. The
proposed procedure requires the explicit expressions for the dual loads which, traditionally,
are not obtained in the FE framework. Our objective in this paper is to obtain those
explicit expressions for the dual problem for the extraction of linear QoI in the context
of linear elasticity. The ZZ-type error estimator is used to evaluate the error in the QoI
at element level, yielding a high quality, as shown in the numerical tests.

1 Introduction

The Finite Element (FE) solution is a numerical approximation to the unknown exact
solution of a Boundary Value Problem (BVP), thus, there exists an error due to the
discretization. The most widely used way to estimate the discretization error is to evaluate
it in terms of the global energy. A great effort has been devoted since the very beginning
by researchers in order to obtain good approximations or even sharp upper bounds for
the global error measurement in energy norm [1, 2, 3, 4, 5, 6, 7].
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These error estimators were based on the evaluation of an approximation to the true
error in energy norm. However, for practitioners this quantity is, in general, not very
useful from an industrial point of view. In practice, analysts run simulations in order to
evaluate stresses, displacements, etc... in a particular area of the domain. In the late 90s,
a new paradigm appeared [8, 9, 10] where, instead of evaluating the error of the solution
in terms of energy, the error is evaluated in terms of a Quantity of Interest (QoI) in a
Domain of Interest (DoI). That is, some relevant quantity are considered as the main
output. Then, we directly control the error of the QoI in the DoI. The error estimation of
a QoI requires solving two problems simultaneously, the first one is called primal problem
and is the one we are interested in. The second problem, called dual or adjoint problem,
serves to extract the information for the error in the QoI. Both problems are geometrically
identical and differ on the applied loads. Those of the dual problem depend on the DoI
and the QoI. The construction of the dual problem will be explained later in more detail.

Our approach to obtain estimations of the error in the QoI, in contrast to previous
techniques, is based on the use of equilibrated recovered fields obtained for the solution
of both, the primal and the dual problem. The proposed procedure begins with the
evaluation of displacement recovered fields considering: the fulfilment of boundary and
internal equilibrium equations, Dirichlet constraints and, for singular problems, the split-
ting of the displacement and stress fields into singular and smooth parts, as described
in [11]. Similar recovery techniques considering stresses were previously used to obtain
upper bounds of the error in energy norm in [12, 13]. For the recovery procedure we need
the analytical expressions defining the loads for the primal and dual problems. Thus, for
the dual problem, we must obtain the analytical expressions related to the QoI required
during the recovery process.

Numerical tests using 2D benchmark problems with exact solution are used to investi-
gate the quality of the proposed technique. Results for different quantities of interest show
that the technique provides excellent error estimates which can be used in goal oriented
adaptive procedures.

2 Problem Statement

2.1 Primal problem

In this section we briefly present the model for the 2D linear elasticity problem. Denote,
in vectorial form, σ and ε as the stresses and strains, D as the elasticity matrix of the
constitutive relation σ = Dε, and u the unknown displacement field, which take values
in Ω ⊂ R

2. u is the solution of the boundary value problem given by:
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Su = −b in Ω (1)

ǫ(u) = Lu in Ω (2)

Gσ (u) = t on ΓN (3)

u = ū on ΓD, (4)

ΓN and ΓD denote the Neumann and Dirichlet boundaries with ∂Ω = ΓN ∪ ΓD and
ΓN ∩ ΓD = ∅, b are body loads and t are the tractions imposed along ΓN . S = LTDL,
being L the differential operator, and G is the projection operator that projects the stress
field into tractions over any boundary with outward normal vector n = {nx ny}

T :

L =





∂
∂x

0
0 ∂

∂y
∂
∂y

∂
∂x



 (5)

G =

[

nx 0 ny

0 ny nx

]

(6)

Consider the initial stresses σ0 and strains ε0, the symmetric bilinear form a : (V +
ū)× V → R and the continuous linear form ℓ : V → R defined by:

a(u,v) :=

∫

Ω

σ
T (u)ε(v)dΩ =

∫

Ω

σ
T(u)D−1

σ(v)dΩ (7)

ℓ(v) :=

∫

Ω

vTbdΩ +

∫

ΓN

vTtdΓ +

∫

Ω

σ
T(v)ε0dΩ−

∫

Ω

ε
T(v)σ0dΩ. (8)

With these notations, the variational form of the problem reads [14]:

Find u ∈ (V + ū) : ∀v ∈ V a(u,v) = ℓ(v) (9)

where V is the standard test space for the elasticity problem such that V = {v | v ∈
[H1(Ω)]2,v|ΓD

(x) = 0}.
Let uh be a finite element approximation of u. The solution for the discrete counterpart

of the variational problem in (9) lies in a subspace (V h + ū) ⊂ (V + ū) associated with a
mesh of finite elements of characteristic size h, and it is such that:

∀vh ∈ V h ⊂ V a(uh,vh) = ℓ(vh). (10)

Consider the linear elasticity problem given in (9) and its approximate FE solution uh ∈
V h ⊂ V . This problem is related to the original problem to be solved, that henceforth
will be called the primal problem.
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2.2 Dual problem

Now, let us define Q : V → R as a bounded linear functional representing some
quantity of interest, acting on the space V of admissible functions for the problem at
hand. The objective is to estimate the error in Q(u) when calculated using the value of
the approximate solution uh:

Q(u)−Q(uh) = Q(u− uh) = Q(e). (11)

As will be shown later, Q(v) may be interpreted as the work associated with a displace-
ment field v and a distribution of forces specific to each type of quantity of interest. If we
particularise Q(v) for v = u, this force distribution will allow us to extract information
concerning the quantity of interest associated with the solution of the problem in (9).

A standard procedure [15] to evaluate Q(e) consists in solving the auxiliary dual prob-
lem (also called adjoint or extraction problem) defined as:

Find w ∈ V : ∀v ∈ V a(v,w) = Q(v). (12)

An exact representation for the error Q(e) in terms of the solution of the dual problem
can be simply obtained by substituting v = e in (12) and remarking that for all wh

Q ∈ V h,
due to the Galerkin orthogonality, a(e,wh

Q) = 0 such that:

Q(e) = a(e,w) = a(e,w)−
�
�
�
�
�:0

a(e,wh) = a(e,w −wh) = a(e, ǫ). (13)

Therefore, the error in evaluating Q(u) using uh is given by:

Q(u)−Q(uh) = Q(e) = a(e, ǫ) =

∫

Ω

(

σp − σ
h
p

)

D−1
(

σd − σ
h
d

)

dΩ, (14)

where σp is the stress field associated with the solution of the primal problem and σd

is the one associated with the dual problem. Using the Zienkiewicz and Zhu (ZZ) error
estimator [16] and (14) we can derive an estimate for the error in the QoI which reads:

Q(e) ≈ Q(ees) =

∫

Ω

(

σ
∗
p − σ

h
p

)

D−1
(

σ
∗
d − σ

h
d

)

dΩ, (15)

where σ
∗
p and σ

∗
d represent the recovered stress fields for the primal and dual problems,

respectively. Here, we expect to have a sharp estimate of the error in the QoI if the
recovered stress fields are accurate approximations to their exact counterparts.

In order to obtain accurate representations of the exact stress fields both for the primal
and dual solutions, we propose the use of a locally equilibrated displacement recovery
technique, called SPR-CD, based on the ideas in [17, 11, 13]. This technique, which is
an enhancement of the Superconvergent Patch Recovery (SPR) proposed in [18], enforces
the fulfillment of the internal, boundary equilibrium equations and Dirichlet boundary
conditions locally on patches. For problems with singularities the stress field is also
decomposed into two parts: smooth and singular, which are separately recovered.
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3 Quantities of Interest

The recovery procedure based on the SPR technique and denoted as SPR-CD, fully
described in [19], relies on the a priori known values of b, t, ε0, σ0 and Dirichlet boundary
conditions to impose the internal and boundary equilibrium equations and the exact
displacements over ΓD. Regarding the loads, these values are already available for the
primal problem (bp and tp). However, the body forces bd, boundary tractions td, etc...
are not known for the dual problem. We can easily derive expressions associated to certain
linear QoIs, e.g. the mean values of displacements and stresses in a sub-domain of interest
Ωi, which can be interpreted in terms of bd and td. This approach was first introduced in
[20] and presented later in [21]. Similarly, in [22] the authors defined the relation between
the natural quantities of interest and dual loading data.

3.1 Mean displacement in Ωi

Let us assume that the objective is to evaluate the mean value of the displacements
along the direction α in a sub-domain of interest Ωi ⊂ Ω. The functional for the quantity
of interest can be written as:

Q(u) = ūα|Ωi
=

1

|Ωi|

∫

Ωi

uTcuα
dΩ, (16)

where |Ωi| is the volume of Ωi and cuα
is a vector used to select the appropriate combina-

tion of components of u. For example, cuα
= {1, 0}T if α is parallel to the x-axis. Now,

considering v ∈ V in (16) results in:

Q(v) =

∫

Ωi

vT

(

cuα

|Ωi|

)

dΩ =

∫

Ωi

vTbddΩ. (17)

Note that the term cuα
/|Ωi| formally corresponds to a vector of body forces in the problem

defined in (9). Therefore, we can say that bd = cuα
/|Ωi| is a constant vector of body loads

that applied in the sub-domain of interest Ωi can be used in the dual problem to extract
the mean displacements.

3.2 Mean displacement along Γi

For the case where the quantity of interest is the functional that evaluates the mean
value of the displacements along a given boundary Γi the expression reads:

Q(u) = ūα|Γi
=

1

|Γi|

∫

Γi

uTcuα
dΓ, (18)

|Γi| being the length of Γi and cuα
a vector used to select the appropriate component of

u. Again, considering v ∈ V in (18) we have:

Q(v) =

∫

Γi

vT

(

cuα

|Γi|

)

dΓ =

∫

Γi

vTtddΓ (19)
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Note that the term cuα
/|Γi| can be interpreted as a vector of tractions applied along

the boundary in the problem defined in (9). Thus, td = cuα
/|Γi| is a vector of tractions

applied on Γi that can be used in the dual problem to extract the mean displacements
along Γi.

3.3 Mean stresses and strains in Ωi

In the case that our QoI is the mean stress (or strains) in Ωi we can define the QoI (20)
where cTσα

is a vector to choose any linear combination of the stress (strain) components.

Q(u) = σ̄α|Ωi
=

1

|Ωi|

∫

Ωi

cTσα
σdΩ =

∫

Ωi

cTσα

|Ωi|
σdΩ (20)

Comparing the last integral in (20) with (8) we can define ǫ0,d = cTσα
/|Ωi| corresponding

to the term of initial strains that we need to apply in the dual problem to extract the
value of σ̄α|Ωi

. A similar formulation can be derived for the case of the mean strains in
Ωi such that σ0,d = cTǫα/|Ωi|. Note that the loads for the dual problem of this QoI could
also be obtained applying the divergence theorem, yielding tractions along the boundary
of the DoI which are equivalent to the initial strains.

3.4 Mean tractions along Γi

Let t = {tn, tt}
T , with tn and tt the normal and tangential components of the tractions

vector t. Let us assume that we want to evaluate, for example, the mean normal tractions
along boundary Γi. The functional that defines the mean tractions along the boundary
Γi can be expressed as

Q(u) = t̄n =
1

|Γi|

∫

Γi

tTcdΓ (21)

Using (21) and considering the extraction vector c and the rotation matrix RΓ that
aligns the tractions normal to the boundary Γi we have:

t̄n =
1

|Γi|

∫

Γi

tTcdΓ =
1

|Γi|

∫

Γi

{

tn tt
}

{

1
0

}

dΓ =

=
1

|Γi|

∫

Γi

{

tx ty
}

RT
Γ

{

1
0

}

dΓ =

∫

Γi

{

tx ty
} RT

Γ

|Γi|

{

1
0

}

dΓ =

∫

Γi

{

tx ty
}

uddΓ

(22)

In (22) the term ud = RT
Γc/|Γi| corresponds to a vector of displacements used as

Dirichlet boundary conditions for the dual problem used to extract the mean value of the
normal tractions along Γi.

Note that in this case w̄Q = ud 6= 0, then (13) does not hold. We redefine the dual
problem in (12), ∀v ∈ V , such that:

a(v,wQ) = 0 in Ω

wQ = ud on Γi

(23)
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The dual solution can be expressed aswQ = w0
Q+w̄Q, wherew

0
Q = 0 on Γi. Assuming that

w̄Q = ud is in the FE solution space, the FE approximation for (23) is also decomposed
into two parts wh

Q = wh0
Q + w̄Q where, again, wh0

Q = 0 on Γi. Therefore, we have for the
dual problem:

∀v ∈ V a(v,w0
Q) = −a(v, w̄Q) (24)

Substituting v = e in (24), using the Galerkin orthogonality property, a(e,wh0
Q ) = 0, and

considering that e0Q = eQ we write:

a(e,w0
Q −wh0

Q ) = a(e, e0Q) = a(e, eQ) = −a(e, w̄Q) (25)

Similarly, the QoI can also be rewritten by means of the divergence theorem. Thus,
generalizing (22) ∀v ∈ V we have:

Q(v) =

∫

Γi

(Gσ(v))Tud dΓ =

∫

Ωi

σ(v)Tǫ(ud) dΩ = a(v,ud) (26)

Thus, Q(e) = a(e,ud) = a(e, w̄Q) and substituting in (25) we obtain the error for this
QoI: Q(e) = −a(e, eQ).

3.5 Generalized stress intensity factor in Ωi

The Generalized Stress Intensity Factor (GSIF) K is the characterizing parameter in
problems with singularities. The GSIF is a multiplicative constant that depends on the
loading of the problem and linearly determines the intensity of the displacement and stress
fields in the vicinity of the singular point. In the particular case that the corners that
produce the singularities have an angle of 2π, this parameter is called the Stress Intensity
Factor (SIF).

Let us consider the general singular problem of a V-notch domain subjected to loads
in the infinite. The analytical solution for this singular elasticity problem can be found in
[23] where, considering a polar reference system centred in the corner, the displacement
and stress fields at points sufficiently close to the corner can be described as:

u(r, φ) = KIr
λIΨI(λI, φ) +KIIr

λIIΨII(λII, φ) (27)

σ(r, φ) = KIλIr
λI−1ΦI(λI, φ) +KIIλIIr

λII−1ΦII(λII, φ) (28)

where r is the radial distance to the corner, λm (with m = I, II) are the eigenvalues that
determine the order of the singularity, Ψm and Φm are sets of trigonometric functions that
depend on the angular position φ, and Km are the Generalised Stress Intensity Factors
(GSIFs). For the evaluation of the GSIF we consider the expression shown in [24]:

K(1,2) = −
1

C

∫

Ω∗

[(

u(2)
x

∂q

∂x

)

σ(1)
xx +

(

u(2)
y

∂q

∂y

)

σ(1)
yy +

(

u(2)
x

∂q

∂y
+ u(2)

y

∂q

∂x

)

σ(1)
xy

−

(

σ(2)
xx

∂q

∂x
+ σ(2)

xy

∂q

∂y

)

u(1)
x −

(

σ(2)
xy

∂q

∂x
+ σ(2)

yy

∂q

∂y

)

u(1)
y

]

dΩ, (29)
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where u(1), σ(1) are the displacement and stress fields from the FEM solution, u(2), σ(2)

are the auxiliary fields associated with the extraction functions for the GSIFs in mode I
or mode II, q is an arbitrary function used to define the extraction zone, which is one at
the singular point and 0 on the boundaries. xj refers to the local coordinates system at
the crack tip. For more details we refer the reader to [24].

Rearranging terms of the integral in (29), we can obtain:

K(1,2) =

∫

Ω

u(1)T
(

−
1

C

)

[

σ
(2)
xx q,1 + σ

(2)
xy q,2

σ
(2)
xy q,1 + σ

(2)
yy q,1

]

+ σ
(1)T

(

−
1

C

)







u
(2)
x q,1

u
(2)
y q,2

u
(2)
y q,1 + u

(2)
x q,2






dΩ (30)

where q,1 = ∂q/∂x and q,2 = ∂q/∂y. Rewriting the previous expression we obtain:

K(1,2) =

∫

Ω

(

u(1)TA+ σ
(1)TB

)

dΩ (31)

Thus, if we replace u by a vector of arbitrary displacements v, the quantity of interest
can be defined as:

Q(v) =

∫

Ω

vTbddΩ +

∫

Ω

LvTDε0ddΩ (32)

where A has been replaced by the dual body forces bd and the term B has been replaced
by the vector of initial strains ε0d. It must be taken into account that these expressions
can be used either for mode I or mode II.

4 Numerical examples

To verify the influence of the analytical dual loads we compare the standard SPR with
our new approach, called SPR-CD, using a singular problem. Plane strain and 2D linear
elastic behavior are considered. A bilinear (Q4) h-adaptive refinement process, guided
by the error in the quantity of interest, has been considered in all examples. To assess
the performance of the recovery procedure and error indicators we have considered some
quantities: i) the global effectivity θ that indicates the relation between the exact error
Q(e) and the estimated error Q(ees):

θ =
Q(ees)−Q(e)

|Q(e)|
, (33)

with positive values meaning overestimation of the error and negative values underesti-
mation, and ii) the error in the QoI ηQoI which is the relation between the estimated and
exact value of the QoI according to the next expression:

ηQoI =
Q(uh) +Q(ees)

Q(u)
(34)

8



J.J. Ródenas, E. Nadal, O.A. González-Estrada, F.J. Fuenmayor, S.P.A. Bordas, and P. Kerfriden

4.1 Problem 1. L-Shape plate

The problem model is in Figure 1a. The model is loaded on the boundary with the
tractions corresponding to the first symmetric term of the asymptotic expansion that
describes the exact solution under mode I or II loading conditions around the singular
vertex. The exact displacement and stress fields for the singular elastic problem can
be found in [23]. Material parameters are elastic modulus E = 1000 and Poisson’s ratio
ν = 0.3. As we are solving a singular problem, for the recovery we use the singular+smooth
technique described in [11]. For this problem we consider the GSIF as the QoI, that is KI

or KII. When KI is the QoI the primal problem is loaded with KI = 1 and KII = 0, and
with KI = 0 and KII = 1 when KII is the QoI. In Figure 1 we present a set of h-adapted
meshes for KI. We represent in Figure 2, for KI and KII, the results of the proposed

x

y

2
2

1

1

(a) Problem model (b) Mesh 2 (c) Mesh 3 (d) Mesh 4

Figure 1: Problem 1. L-Shape plate. Sequence of the h-adaptive refinement process
guided by the error in the QoI KI.

recovery procedure (SPR-CD) using the analytical expressions of the dual loads, and the
standard SPR. The smoother and more accurate behavior of the novel procedure,is clearly
shown in both the effectivity of the error estimator and the indicator for the QoI.

5 Conclusions

In this work we have presented a methodology to obtain the analytical expressions
for the loads of the dual problem, which are required by the equilibrated displacement
recovery technique we are using to locally equilibrate the recovered dual stress field.
The error estimation is performed by using a ZZ-type error estimator, thus, the quality
of the recovered solutions is critical. Numerical results have shown the importance of
equilibrating the recovered solutions for the primal and dual problem in order to provide
the sharp error estimates presented.
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Figure 2: Problem 1. KI and KII. Evolution of the global effectivites
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[23] Szabó BA, Babuška I. Finite Element Analysis. John Wiley & Sons: New York, 1991.
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