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Abstract. In this paper we present an error estimator for unilateral contact problem
solved by a Neumann-Neumann domain decomposition algorithm. We also propose er-
rors indicators that take into account the different approximation errors introduced by
the computation: the finite element spatial discretisation and the domain decomposition
algorithm.

1 INTRODUCTION

Contact problems are frequent in structural analysis. They are characterized by in-
equality constraints such as non-interpenetration conditions, sign condition on the normal
constraints, and an active contact, an area that is a priori unknown. Several approaches
exist for solving the non linear equations issued from the finite element discretization of
frictionless contact problems. In this work, we consider a natural Neuman-Neumann do-
main decomposition algorithm, in which each iterative step consists of a Dirichlet problem
for the one body, a contact problem for the other one and two Neumann problems to coor-
dinate contact stresses. Two main approximation errors are introduced by this algorithm:
a discretization error due to the finite element method (FEM) and an algebraic error due
to the Neuman-Neuman domain decomposition algorithm (NNDD).

The objective of this paper is to present an a posteriori global error estimator for a
frictionless contact problem, solved by a NNDD algorithm and two errors indicators which
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allow to estimate the part of the error due to the spatial discretization and the part of
the error due to the domain decomposition algorithm. We show how to extend the error
measure in the constitutive relation developed in [4] for contact problems solved by a
Neumann-Dirichlet domain decomposition algorithm and how to modify the construction
of the admissible fields. The proposed errors estimators and indicators are studied on
2D-examples.

2 CONTACT PROBLEM

We consider the problem of two elastic bodies Ω1 and Ω2 in unilateral contact along
an interface Γc as shown on Figure (1). We choose the orientation of the contact zone Γc
by setting: nc = n1. Then, we introduce on the interface ΓC the functions w1, w2, repre-
senting two displacement fields (one on each side of the interface), t1, t2, representing two
fields of surface density forces (stresses transmitted to Ω1 and Ω2) and tc an interior field
of surface density forces. The problem of unilateral contact consists of finding (uα,σα) de-
fined on Ωα (α = 1, 2) and (w1,w2, t1, t2, tc) defined on ΓC such that (uα,wα,wc) satisfy
the kinematic conditions (1), (σα, tα, tc) satisfy the equilibrium equations (2), (uα,σα)
satisfy the elastic constitutive relation (3), (wc, tc) satisfy the contact constitutive relation
(4) (for the sake of simplicity we do not consider volumic forces).

Figure 1: Notations

u ∈ Vα, uα −wα = 0 and wc = w1 −w2 on Γc (1)

∀v ∈ Vα0 , −
∫

Ωα
σαε(v) dV +

∫
ΓαN

Fαv dS +

∫
Γc

tαv dS = 0 (2)

tc − t1 = 0 and tc + t2 = 0 on Γc

σα = Kαε(uα) in Ωα, (3)
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φ(−wc) + φ∗(tc) + tc.wc = 0 on Γc, (4)

where Vα = {v ∈ H1(Ωα); u = uαD on ΓαD}, Vα0 = {v ∈ H1(Ωα); v = 0 on ΓαD}, and
for any vector v, the normal and the tangential components are defined according to
vn = v.nc and vt = v − vn nc and the convex potentials φ and φ∗ are defined by

φ(v) =

{
0 if vn ≥ 0
+∞ otherwise

and φ∗(g) =

{
0 if gn ≤ 0 and gt = 0
+∞ otherwise

(5)

moreover for any pair (w, t) defined on Γc, the Legendre-Fenchel inequality leads to

φ(−wc) + φ∗(tc) + tc.wc ≥ 0 (6)

Remark: Following [2], the relation defined by equation (4) is equivalent to the Coulomb’s
constitutive law (7) in a frictionless case.

wc
n ≤ 0, tcn ≤ 0, tcnw

c
n = 0 and tct = 0 on Γc, (7)

3 DOMAIN DECOMPOSITION ALGORITHM

In this section we briefly recall the Neumann-Neumann domain decomposition algo-
rithm used to solve the unilareral contact problem defined by equations (1)–(4). Given a
non-negative parameter θ and an initial arbitrary normal displacement λ1 defined on Γc,
we define two sequences of displacements uαp on each solid Ωα, α = 1, 2. Each iteration p
of the NNDD algorithm is divided in two successive steps.

• Step 1 – Two independent elasticity problems are solved on Ω1 and Ω2:

1. In Ω1, the variational problem writes: Find (u1
p,σ

1
p) defined on Ω1 and (w1

p, t
1
p)

defined on Γc such that

u1
p = u1

D on Γ1
D, u1

p −w1
p = 0 and w1

pn
1 = λp on Γc (8)

∀v ∈ V1
0 , −

∫
Ω1

σ1
p : ε(v) dV +

∫
Γ1
N

F1v dS = 0 (9)

t1
p = σ1

pn
1 on Γc

σ1
p = K1ε(u1

p) in Ω1, (10)

2. In Ω2, with the given λp normal displacement defined on Γc, we solve the
following variational problem corresponding to a unilateral frictionless contact
problem on Γc :

u2
p = u2

D on Γ2
D, u2

p −w2
p = 0 and wc

p = λpn
1 −w2

p on Γc (11)
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∀v ∈ V2
0 , −

∫
Ω2

σ2
p : ε(v) dV +

∫
Γ2
N

F2v dS +

∫
Γc

t2
pv dS = 0 (12)

tcp + t2
p = 0 on Γc

σ2
p = K2ε(u2

p) in Ω2, (13)

φ(−wc
p) + φ∗(tcp) + tcp.w

c
p = 0 on Γc, (14)

• Step 2 – With t1
p and t2

p obtained in step 1, we solve two independent “Neumann
type” problems:

In Ω1, we solve{
Find w1 ∈ V1 such that
−
∫

Ω1 K
1ε(w1) : ε(v) dV = −

∫
Γc

1
2
(t1
p + t2

p).(u
∗ −w1) ∀u∗ ∈ V1.

(15)

In Ω2, we solve{
Find w2 ∈ V2 such that
−
∫

Ω2 K
2ε(w2) : ε(v) dV =

∫
Γc

1
2
(t1
p + t2

p).(u
∗ −w2) ∀u∗ ∈ V2.

(16)

Let εt be the precision of the algorithm, we have the alternative :

1. If ετ is small enough, the algorithm stops.

2. Else, the normal displacement λp is updated :

λp+1 := λp + θ(w1 −w2).n

and we return to step 1 for iteration p+ 1.

If t1
p + t2

p = 0, it means that the equilibrium is satisfied on the contact interface, in other
words the solutions u1 and u2 of step 1 constitute the unique solution of the reference
problem (1)– (4).

The convergence is obtained when |w1 −w2| −→ 0. The proof of convergence of the
NNDD algorithm (1)-(16) is given in [5] for any sufficiently small θ > 0: There is a θ0 > 0
such that for any 0 < θ ≤ θ0, the NNDD algorithm for unilateral frictionless contact
converges.

At each step p, the approximate solution of problems (8-10) and (11-14) are computed
using a classical F.E. method. The finite element spaces are denoted Vαh (⊂ Vα) and
the approximate solution (dp,h, sp,h) with dp,h = (u1

p,h,w
1
p,h,u

2
p,h,w

2
p,h,w

c
p,h) and sp,h =

(σ1
p,h, t

1
p,h,σ

2
p,h, t

2
p,h, t

c
p,h).
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4 ERROR ESTIMATION

4.1 Error in the constitutive relation

To develop an error estimation for a contact problem we use a method based on the
constitutive relation error [6]. We recall here the error measure proposed in [1] for a global
unilateral contact problem. Let us consider an approximate solution of problem defined
by equations (1-4), denoted (û, ĉ). The pair (d̂, ŝ) is said to be an admissible solution if
(d̂, ŝ) ∈ Uad × Sad with

• Uad = {d̂ = (û1, û2, ŵ1, ŵ2, ŵc) such that d̂ satisfy Eq. (1) and φ(−ŵc) = 0}

• Sad = {ŝ = (σ̂1, σ̂2, t̂1, t̂2, t̂c) such that ŝ satisfy Eq. (2) and φ∗(t̂c) = 0}

The constitutive relation error on the pair (û, ĉ) is defined by

eCRE(d̂, ŝ) =

[
2∑

α=1

‖σ̂α −Kαε(ûα)‖2
σ,Ωα + 2

∫
Γc

t̂c ŵc dS

]1/2

, (17)

As an extension of the Prager-Synge theorem it was shown in [1] that

eCRE(d̂, ŝ) ≥

[
2∑

α=1

‖σ̂α − σα‖2
σ,Ωα + ‖ûα − uα‖2

u,Ωα

]1/2

(18)

4.2 An a posteriori error estimator for a discretized Neumann-Neumann
domain decomposition algorithm

When the formulation of the contact problem is obtained by a domain decomposition
method the global error depends not only on the FE discretization error but also on the
convergence of the iterative algorithm used (i.e. an algebraic error). Here, we develop an
error measure based on the constitutive relation error for an unilateral contact problem
solved by a Neumann-Neumann domain decomposition algorithm. Let us introduce new
admissible spaces defined at each iteration p of the NNDD algorithm by

• U1
ad(λp) = {d̂1 = (û1, ŵ1) such that d̂1 satisfy Eq. (8)},

• S1
ad = {ŝ1 = (σ̂1, t̂1) such that ŝ1 satisfy Eq. (9)},

• U2
ad(λp) = {d̂2 = (û2, ŵ2, ŵc) such that d̂2 satisfy Eq. (11) and φ(−ŵc) = 0},

• S2
ad(λp) = {ŝ2 = (σ̂2, t̂2, t̂c) such that ŝ2 satisfy Eq. (12) and φ∗(t̂c) = 0}.

The pair (d̂1
p, ŝ

1
p) ∈ U1

ad(λp)× S1
ad is the solution of problem (8-10) if

e1
CRE(d̂1

p, σ̂
1
p) =

[
‖σ̂1

p −K2ε(û1
p)‖2

σ,Ω1

]1/2
= 0 (19)
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The pair (d̂2
p, σ̂

2
p) ∈ U2

ad(λp)× S2
ad(λp) is the solution of problem (11-14) if

e2
CRE(d̂2

p, ŝ
2
p) =

[
‖σ̂2

p −K2ε(û2
p)‖2

σ,Ω2 + 2

∫
Γc

t̂cp ŵ
c
p dS

]1/2

= 0 (20)

However, the pair (d̂p = (d̂1
p, d̂

2
p), ŝp = (ŝ1

p, ŝ
2
p)), is not an admissible solution for the

unilateral contact problem (i.e. /∈ Uad × Sad) because the equilibrium equation (2) is not
necessarily satisfied as t̂cp − t̂1

p = 0 has not been imposed. The quantity eCRE defined by
equation (21) is an error estimator for the problem defined by equations (8-14), when

eCRE(d̂1
p, ŝ

1
p, d̂

2
p, ŝ

2
p) =

[(
e1
CRE(d̂1

p, ŝ
1
p)
)2

+
(
e2
CRE(d̂2

p, ŝ
2
p)
)2
] 1

2

(21)

We have the following property

eCRE(d̂1
p, ŝ

1
p, d̂

2
p, ŝ

2
p) = 0⇔ (d̂1

p, ŝ
1
p, d̂

2
p, ŝ

2
p) is the exact solution of (8-14) for a fixed λp.

This error measure quantify the error due to the Finite Element discretization at each
step of the algorithm. In order to obtain a global error estimator for the contact problem,

let us define an admissible solution for the unilateral contact problem (
ˆ̂
dp = (

ˆ̂
d1
p,

ˆ̂
d2
p),

ˆ̂sp =

(ˆ̂s1
p,

ˆ̂s2
p)) such that

(
ˆ̂
d1
p,

ˆ̂s1
p) ∈ U1

ad(λp)× S1
ad, (

ˆ̂
d2
p,

ˆ̂s2
p) ∈ U2

ad(λp)× S2
ad(λp) and ˆ̂tcp −

ˆ̂t1
p = 0

The global error estimator for the contact problem is defined by

ηglo = eCRE(
ˆ̂
d1
p,

ˆ̂s1
p,

ˆ̂
d2
p,

ˆ̂s2
p) =

[(
e1
CRE(

ˆ̂
d1
p,

ˆ̂s1
p)
)2

+
(
e2
CRE(

ˆ̂
d2
p,

ˆ̂s2
p)
)2
] 1

2

(22)

We have the following property

eCRE(
ˆ̂
d1
p,

ˆ̂s1
p,

ˆ̂
d2
p,

ˆ̂s2
p) = 0⇔ (

ˆ̂
d1
p,

ˆ̂s1
p,

ˆ̂
d2
p,

ˆ̂s2
p) is the exact solution of the global unilateral contact problem defined by (1-4).

The admissible displacement fields are easily recovered, since the finite element fields
satisfy the kinematic constraints and φ(wc

p,h) = 0.

ˆ̂
d1
p = (u1

p,h,w
1
p,h) and

ˆ̂
d2
p = (u2

p,h,w
2
p,h,w

c
p,h)

However, the stress fields and the traction forces sp,h computed by the algorithm do not

satisfy the equilibrium equations. The pair (ˆ̂s1
p,

ˆ̂s2
p) is recovered from the finite element

solution and the data in 3 steps
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• The first step, consist in recovering admissible traction fields (ˆ̂t1, ˆ̂t2, ˆ̂tc). We built a

traction ˆ̂tc such that φ∗(ˆ̂tc) = 0 and which minimize in the least square sense J(ˆ̂tc)

J(ˆ̂tc) =

∫
Γc

(
ˆ̂tc − 1

2

(
t1
h,p − t2

h,p

))2

dS

• The second step, consist in recovering stress fields σ̃αh,p that satify the FE-equilibrium
equations on each solid Ωα. Let ũαh,p ∈ Vαh such that σ̃αh,p = Kαε(ũαh,p) and

∀v ∈ Vαh,0, −
∫

Ωα
Kαε(ũαh,p) : ε(v) dV +

∫
ΓαN

Fαv dS +

∫
Γc

ˆ̂tαv dS = 0

• The recovery of equilibrated stress fields ˆ̂σα from σ̃αh,p in each subdomain Ωα is the
most technical point. This step is performed with a traction-free recovery technique
developed in [4].

4.3 Error indicators for the NNDD algorithm and for the FE discretization

Following the method proposed in [7, 8], we propose here two error indicators that
allow us to estimate separately the part of the error due to the FE discretization from
the part due to the NNDD algorithm. The discretization error is defined as the limit of
the global error when the convergence criterion of the iterative algorithm tends to zero.
The NNDD algorithm error is defined as the limit of the global error as the mesh size h
tends to zero.

To define FE discretization error indicator ηFE, let us consider the reference prob-
lem defined by the step p of the NNDD algorithm: Find dp = (u1

p,w
1
p,u

2
p,w

2
p,w

c
p) and

sp = (σ1
p, t

1
p,σ

2
p, t

2
p, t

c
p) that satisfy equations (8-14). The only approximation introduced

between (dp, sp) and the finite element solution (dp,h, sp,h) is the FE discretization. We

have shown in section (4.2) that the error in the constitutive relation eCRE(d̂1
p, ŝ

1
p, d̂

2
p, ŝ

2
p)

defined in equation (21) is an error estimator for this reference problem. The quantity
eCRE(d̂1

p, ŝ
1
p, d̂

2
p, ŝ

2
p) is used to define a FE discretization error indicator for the unilateral

contact problem
ηFE = eCRE(d̂1

p, ŝ
1
p, d̂

2
p, ŝ

2
p) (23)

To define NNDD algorithm error indicator ηNNDD, let us consider the reference problem
defined by finite element discretization of the unilateral contact problem (Eq. (1)–(4)).
The only approximation introduced between the solution of this discretized problem and
the finite element solution (dp,h, sp,h) is the approximation introduced by the NNDD

algorithm. Let (d̂h, ŝh) and admissible solution for this problem (i.e. that satisfy the
discretized version of Eq. (1)–(2)). The error in the constitutive relation eCRE(d̂h, ŝh)
defined by equation (17) is an error estimator for this reference problem, and is used to
define NNDD algorithm error indicator for the unilateral contact problem

ηNNDD = eCRE(d̂h, ŝh) (24)
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5 Numerical results

The considered example is shown on figure (2). The lower boundary of structure Ω1

is clamped, on structure Ω2 the applied force F 2 has a linear distribution (F 2
max = 107)

and the applied displacement is u2
D = −10−4. The Young’s modulus for both structures

is E = 210GPa and the Poisson’s ratio is ν = 0.27. The coefficient θ of the NNDD
algorithm is set to 0.25.

Figure 2: Unilateral contact reference model (left) - distorted structures (right)

We first study the evolution of the global error estimator ηglo, of the FE error indicator
ηFE, and of the NNDD error indicator ηNNDD as a function of the number nDoF of the
degree of freedom (DoF), for a fixed number iterations of the NDDD algorithm nite = 6.
The results are presented on figure (3). The global error ηglo tends to an horizontal
asymptote which is the NNDD error indicator ηNNDD, whereas the convergence of FE
error indicator ηFE as a function of the number of DoF is shown. The ηglo can be
numerically related to ηNNDD and ηFE by relation (25).(

ηglo
)2 ≈

(
ηFE

)2
+
(
ηNNDD

)2
(25)

To evaluate the computed global error, we compute a reference solution denoted by uref
and we define the reference error eref and the effectivity index γ by

eref =

[
2∑

α=1

‖uαref − uαh,p‖2
u,Ωα

]1/2

and γ =
ηglo

eref
(26)

To obtain a reliable reference solution we choose a mesh size href = 1/8h and we set
the convergence criteria of the NNDD algorithm to 10−8. The results are reported on
figure (4). We first study the evolution of the global error estimator ηglo, of the FE error
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Figure 3: Computed errors as a function of the number of DoF

Figure 4: Effectivity index as a function of the number of DoF

indicator ηFE, and of the NNDD error indicator ηNNDD as a function of the number of nite
the number of iterations of the NDDD algorithm for a fixed number of DoF nDoF = 1002.
The results are presented on figure (5). The global error ηglo tends to an horizontal
asymptote which is the FE error indicator ηFE, whereas the convergence of NNDD error
indicator ηNDDD as a function of the number of iterations is shown.

6 CONCLUSION

A global error estimator based on the constitutive relation has been introduced to verify
an approximate computation of an unilateral contact problem based on a Finite Element
discretization associated with a Neumann-Neumann domain decomposition algorithm.
This global error is an upper bound of the exact error and the effectivity index is 1.2
on the studied examples. This error measure takes into account all the errors due to
discretization, i.e. both the errors due to the spatial discretization and those due to the
domain decomposition algorithm. Two error indicators are developed to estimate the

9
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Figure 5: Computed errors as a function of the number iterations of the NNDD algorithm

contributions of each source of error. They are defined in the same way as the error,
except that the reference problem is different. On the first tests, these indicators seem to
behave well.
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