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Abstract. The paper presents a goal-oriented strategy in the framework of stochastic
non-intrusive Monte Carlo finite element simulations. The methods consists in a successive
enrichment of a reduced basis. This enrichment is performed on the fly, during the Monte
Carlo process. The error made by the representation on the reduced basis is assessed
introducing a dual problem associated to the quantity of interest. The efficiency of the
proposed approach is illustrated in numerical examples. In particular, an extension of
the work developed in [6] is introduced. It consists in introducing a reduced basis for
solving the dual problem in an efficient way. Different variant are tested for the successive
enrichment of the dual reduced basis.

1 INTRODUCTION

Stochastic Finite Element Methods (FEM) are currently an essential tool for the quan-
titative prediction of the response of mechanical models that include randomness. Both
for the research and industrial players, a key issue is to reduce the computational cost
in order to afford dealing with large scale applications. A state of the art for stochastic
methods can be found for example in [1, 2, 3].

In [4, 5], the authors introduced a reduced basis methodology to reduce the cost of
Monte Carlo simulations, offering an attractive framework for solving stochastic problems
with a large number of parameters. The idea is simple and effective because the different
Monte Carlo shots lead to similar FE problems and therefore the reduced basis approach
is highly performant.
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This paper describes a new approach to generate a reduced basis in the context of
Monte Carlo strategies for stochastic modeling. The reduced basis is constructed auto-
matically, ensuring a prescribed level of accuracy for the output of interest. The proposed
methodology uses standard elements in goal-oriented error assessment and adaptivity [6],.
Here, the error which is assessed is the approximation introduced by the Reduced Basis
with respect to the complete FE solution, for a given mesh. That differs from the usual
practice in the Verification framework, in which the error introduced by the mesh is evalu-
ated. Numerical tests demonstrate the efficiency and robustness of the proposed strategy.
The use of this method for 3D massive industrial examples, where the cost is of primary
importance, is going to be the object of further research.

2 PROBLEM STATEMENT

Let Ω be a bounded domain and ∂Ω its boundary which is divided in two parts ∂DΩ
and ∂NΩ such that ∂DΩ∪ ∂NΩ = ∂Ω, ∂DΩ 6= ∅ and ∂DΩ∩ ∂NΩ = ∅. Displacement ud is
imposed on ∂DΩ and a traction gd is applied on ∂NΩ and a body force field fd is applied
in Ω.

The material is linear elastic, and K(x, θ) is the Hooke tensor random field, where
x ∈ Ω is the position and θ ∈ Θ denotes the randomness. Θ is the set of possible
outcomes of θ.

The problem reads: find the unknown displacement field u(x, θ) such that

div (K(x, θ)ε [u(x, θ)]) + fd(x, θ) = 0 in Ω (1a)

K(x, θ)ε [u(x, θ)] .n = gd(x, θ) on ∂NΩ (1b)

u(x, θ) = ud(x, θ) on ∂DΩ (1c)

The corresponding standard weak form reads as follows: find u(x, θ) such that

a(u(x, θ),w(x)) = `(w(x)) ∀w(x) ∈ U (2)

where a(·, ·) is a bilinear form , `(·) is a linear form and U the set of admissible displace-
ments, satisfying (1c).

3 MONTE CARLO NON INTRUSIVE SOLVING SCHEME

The non-intrusive approach decouples the discretization of the physical space and the
stochastic space, represented here by Ω and Θ. This can be described in two steps.

� Step 1: finite element discretization.
In this first phase, the problem is considered as deterministic (for a given value of θ.)

The discretisation of the space is characterized by the standard finite element functions
Ni(x), i = 1, 2 . . . NFE Uh ⊂ U

Uh = span {N1, N2, . . . NNFE
} (3)
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The numerical approximation in the space defined in (3) is uh such that

u(x, θ) ≈ uh(x, θ) =

NFE∑
i=1

ui(θ)Ni(x) = NT (x)U(θ), (4)

with U = [u1 u2 · · · uNFE
]T and N(x) = [N1(x)N2(x) · · · NNFE

(x)]T . The corresponding
discretized form of (2) is the linear system of equations

K(θ)U(θ) = F(θ), (5)

where K is the classical finite element stiffness matrix and classical F nodal forces.

� Step 2: Monte Carlo simulation.
The Monte Carlo technique consists in generating a number NMC of realizations of θ.

Note that these realizations are generated using the actual Probability Density Function
(PDF) of θ. This is equivalent to determine NMC realizations of K(θ) and therefore,
solving NMC linear systems of equations (5), obtaining NMC realizations of U(θ).

Thus, the PDF of U(θ) or some specific Quantity of Interest (linearly dependent with
U) is approximated from these realizations.

This non-intrusive strategy is extremely simple because it decouples the approximation
of the stochastic behavior and the solution of the deterministic mechanical model. The
main drawback is that the numerical cost is can be very large.

4 METHOD DEVELOPPED

4.1 Reduced Basis

The reduced basis method allows to reduce computational costs when solving a large
number of problems, but introduce an error linked with the size of the reduced basis size.
Monte Carlo sampling requires solving many instances of problem (5) and Reduced Basis
Strategy can help. A collection of NRB linearly independent solutions creates a approxi-
mated subset of the FE space :

{
uh(1), uh(2), . . . , uh(NRB)

}
described by the corresponding

vectors of nodal values {U1,U2, . . . ,UNRB
},

URB := span
{
uh(1), uh(2), . . . , uh(NRB)

}
⊂ Uh (6)

Then, the solution of a new instance of (5) is seek in URB instead of in Uh as a linear
combination of the elements of the reduced basis:

URB =

NRB∑
i=1

aiUi = URB a (7)

where the matrix URB = [U1 U2 · · ·UNRB
] (with NFE rows and NRB columns) describes

the change of basis and aT = [a1 a2 · · · aNRB
] is the vector of unknowns.

The solution a can be found as the solution of a linear system :(
UT

RBK(θ)URB

)
a =

(
UT

RBF(θ)
)

readily rewritten as KRB(θ)a(θ) = FRB(θ) (8)
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4.2 Goal oriented error

At every instance θk of the Monte Carlo process, the error introduced in the reduced
basis phase is measured by

ERB := URB −U, (9)

This error vector, expressed in the standard FE basis, corresponds to the approximation
introduced by the reduced basis with respect to the complete FE solution. It does not
represent the error due to the Finite Element discretization, but the error uniquely do to
the reduced basis process.

The squared norm of the residual, RT
RBRRB is in fact a good error indicator for the

energy norm of the error with
RRB := KURB − F (10)

If interested by a QoI denoted QRB associated with the reduced basis solution URB,

QRB = GTURB (11)

it is classical to introduce a dual problem and its solution V and where G defines the
quantity of interest. Using the same spatial discretisation for dual problem as the direct
problem (5), it results a similar system for V

K(θ)V(θ) = G(θ), (12)

This dual solution V can be used to assess the error in the evaluation of the QoI
associated with the reduced basis. The error in the QoI associated with the reduced basis
approach writes:

eQRB := VTRRB. (13)

5 Adaptive Strategies

5.1 Algorithms

Note that if V is known, the error in the QoI associated with the reduced basis is
computed explicitly using the right-hand side term of (13), once the reduced basis solution
is available. The problem is that solving (12) leads to a similar computational cost that
for solving 5. The local error 13 can be used to control the enrichment of an adapted
reduced basis. Indeed, this allows assessing the error committed in every shot with a low
computational cost and decide on the fly if the reduced basis is rich enough or if it has to
be enriched further.

Two adaptation strategies, corresponding to different level of randomness are proposed.
� Algo 1: Dual unique resolution

From the practical viewpoint it is assumed that the variation of V with the randomness
is small in such a way that V is kept constant in order to estimate the error in the QoI.
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Thus, the solution of the dual system (12) is performed just once and leads to V0. The
criterion used to estimate error is then:

eQRB1 = V0
TRRB (14)

This algorithm is presented in [6].
� Algo 2: Dual Reduced Basis Resolution

For problem with higher level of randomness, the solution V0 can be very different of
the actual value V. Then, the idea correspond to a resolution of the dual problem using
a reduced basis representation.

VRB =

NRBD∑
i=1

biVi = VRB b (15)

where the matrix VRB = [V1 V2 · · ·VNRB
] (with NFE rows and NRBD columns) describes

the change of basis and bT = [b1 b2 · · ·BNRBD
] is the vector of unknowns.

Then the solution b can be found as the solution of a linear system :(
VT

RBK(θ)VRB

)
b =

(
VT

RBG(θ)
)

readily rewritten as KRB(θ)b(θ) = GRB(θ) (16)

The criterion used to estimate error is then:

eQRB2 = (VRB b)TRRB (17)

Remark 1: The choice of a unique vector in the basis VRB = V0 correspond exactly to
algorithm 1. In this sense, this resolution correspond to a generalization of the algorithm 1.

Remark 2: A particular case correspond to the same reduced basis to obtain the
approximated solution of both primal an dual problem.

URB = VRB (18)

Remark 3: Different variants that correspond to the decision to enrich independently
URB and VRB or not can be performed. The decision to enrich VRB can be based on a
dual error criterion :

eQD
RB2 = (URB a)T (KVRB −G) (19)

5.2 Results

Results of algorithm 1 and algorithm 2 are compared to a full Monte Carlo simulation
which is considered as the reference. In [6] the results illustrates the capabilities of algo-
rithm 1 for a 2D mechanical problem. This work focuses on the different possibilities to
solve the problem using algorithm 2 which is an extension of the work presented in [6]
and the results illustrate the algorithm 2 developed here. Results are given in Table 1,
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Table 1: Results for algorithm 2

ε0 NRB NRB ε
102 1 1 1.3E+1
10 8 6 2.4E+0
1 18 16 2.0E-1

10−1 38 38 1.9E-2
10−2 93 79 2.5E-3
10−3 139 122 2.2E-4

for a given level of prescribed local error ε0 on the QoI, the actual error ε is given and is
to be compared to the prescribed one ε0. The size of the Reduced basis NRB and NRBD

is also given. The results are showing that the algorithm makes it possible to respect a
given level of error on the quantity of interest. The employed reduced basis for solving
primal and dual problems are automatically adapted by enrichment on the fly.

6 CONCLUSIONS

Next step is to implement this algorithm and its variant on 3D large scale examples
where the problem of computational costs are of primary importance.
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