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Abstract. The aim of this paper is to extend the global error estimation and control
addressed in Lang and Verwer [SIAM J. Sci. Comput. 29, 2007] for initial value problems
to finite difference solutions of parabolic partial differential equations. The classical ODE
approach based on the first variational equation is combined with an estimation of the
PDE spatial truncation error to estimate the overall error in the computed solution.
Control in a discrete L2-norm is achieved through tolerance proportionality and mesh
refinement. A numerical example illustrates the reliability of the estimation and control
strategies.

1 Introduction

We consider initial boundary value problems of parabolic type, which can be written
as

∂tu(t, x) = f(t, x, u(t, x), ∂xu(t, x), ∂xxu(t, x)) , t ∈ (0, T ] , x ∈ Ω ⊂ Rd , (1)

equipped with an appropriate system of boundary conditions and with the initial condition

u(0, x) = u0(x) , x ∈ Ω. (2)

The PDE is assumed to be well posed and to have a unique continuous solution u(t, x)
which has sufficient regularity.
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The method of lines is used to solve (1) numerically. We first discretize the PDE in
space by means of finite differences on a (possibly non-uniform) spatial mesh Ωh and
solve the resulting system of ODEs using existing time integrators. For simplicity, we
shall assume that this system of time-dependent ODEs can be written in the general form

U ′h(t) = Fh(t, Uh(t)) , t ∈ (0, T ] ,

Uh(0) = Uh,0 ,
(3)

with a unique solution vector Uh(t) being a grid function on Ωh. Let

Rh : u(t, · )→ Rhu(t) (4)

be the usual restriction operator defined by Rhu(t) = (u(t, x1), . . . , u(t, xN))T , where
xi ∈ Ωh and N is the number of all mesh points. Then we take as initial condition
Uh,0 = Rhu(0).

To solve the initial value problem (3), we apply a numerical integration method at a
certain time grid

0 = t0 < t1 < · · · < tn < · · · < tM−1 < tM = T , (5)

using local control of accuracy. This yields approximations Vh(tn) to Uh(tn), which may
be calculated for other values of t by using a suitable interpolation method provided by
the integrator. The global time error is then defined by

eh(t) = Vh(t)− Uh(t) . (6)

Numerical experiments in [5] for ODE systems have shown that classical global error
estimation based on the first variational equation is remarkably reliable. In addition,
having the property of tolerance proportionality, that is, there exists a linear relationship
between the global time error and the local accuracy tolerance, eh(t) can be successfully
controlled by a second run with an adjusted local tolerance. Numerous techniques to
estimate global errors are described in [9].

In order for the method of lines to be used efficiently, it is necessary to take also into
account the spatial discretization error. Defining the spatial discretization error by

ηh(t) = Uh(t)−Rhu(t) , (7)

the vector of overall global errors Eh(t) = Vh(t) − Rhu(t) may be written as sum of the
global time and spatial error, that is,

Eh(t) = eh(t) + ηh(t) . (8)

It is the purpose of this paper to present a new error control strategy for the global
errors Eh(t). We will mainly focus on reliability. So our aim is to provide error estimates
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Ẽh(t) ≈ Eh(t) which are not only asymptotically exact, but also work reliably for moderate
tolerances, that is for relatively coarse discretizations.

The global errors are measured in discrete L2-norms. A priori bounds for the global
error in such norms are well known, see e.g. [6, 10]. However, reliable a posteriori error
estimation and efficient control of the accuracy of the solution numerically computed
to an imposed tolerance level are still challenging. We achieve global error control by
iteratively improving the temporal and spatial discretizations according to estimates of
eh(t) and ηh(t). The global time error is estimated and controlled along the way fully
described in [5]. To estimate the global spatial error, we follow an approach proposed in
[1] (see also [7]) and use Richardson extrapolation to set up a linearised error transport
equation.

2 Spatial and time error

By making use of the restriction operator Rh, the spatial truncation error is defined by

αh(t) = (Rhu)′(t)− Fh(t, Rhu(t)) . (9)

From (3) and (9), it follows that the global spatial error ηh(t) representing the accumula-
tion of the spatial discretization error is the solution of the initial value problem

η′h(t) = Fh(t, Uh(t))− Fh(t, Rhu(t))− αh(t) , t ∈ (0, T ] ,

ηh(0) = 0 .
(10)

Assuming Fh to be continuously differentiable, the mean value theorem for vector func-
tions yields

η′h(t) = ∂Uh
Fh(t, Uh(t)) ηh(t)− αh(t) +O(ηh(t)

2), t ∈ (0, T ],

ηh(0) = 0 .
(11)

With Vh(t) being the continuous extension of the numerical approximation to (3), the
residual time error is defined by

rh(t) = V ′h(t)− Fh(t, Vh(t)) . (12)

Thus the global time error eh(t) fulfills the initial value problem

e′h(t) = Fh(t, Vh(t))− Fh(t, Uh(t)) + rh(t) , t ∈ (0, T ] ,

eh(0) = 0 .
(13)

Again, the mean value theorem yields

e′h(t) = ∂Uh
Fh(t, Vh(t)) eh(t) + rh(t) +O(eh(t)

2), t ∈ (0, T ],

eh(0) = 0 .
(14)
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Apparently, by implementing proper choices of the defects αh(t) and rh(t), solving (11)
and (14) will in leading order provide approximations to the true global error. The issue
of how to approximate the spatial truncation error and the residual time error will be
discussed in the next sections.

3 Estimation of the residual time error

We assume that the time integration method used to approximate the general ODE
system (3) is of order p ≤ 3. Following the approach proposed in [5] we define the
interpolated solution Vh(t) by piecewise cubic Hermite interpolation. Let Vh,n = Vh(tn)
and Fh,n = Fh(tn, Vh,n) for all n = 0, 1, . . . ,M . Then at every subinterval [tn, tn+1] we
form

Vh(t) = Vh,n + An(t− tn) +Bn(t− tn)2 + Cn(t− tn)3, tn ≤ t ≤ tn+1, (15)

and choose the coefficients such that V ′h(tn) = Fh,n and V ′h(tn+1) = Fh,n+1. This gives

Vh(tn + θτn) = v0(θ)Vh,n + v1(θ)Vh,n+1 + τnw0(θ)Fh,n + τnw1(θ)Fh,n+1 (16)

with 0 ≤ θ ≤ 1, τn = tn+1 − tn, and

v0(θ) = (1− θ)2(1 + 2θ), v1(θ) = θ2(3− 2θ), w0(θ) = (1− θ)2θ, w1(θ) = θ2(θ− 1). (17)

Now let Yh(t) be the (sufficiently smooth) solution of the ODE (3) with initial value
Y (tn) = Vh,n. Then the local error of the time integration method at time tn+1 is given
by

len+1 = Vh,n+1 − Yh(tn+1) = O(τ p+1
n ). (18)

Combining (16) and (18) and applying a Taylor expansion gives

Vh(tn + θτn)− Yh(tn + θτn) = v1(θ)len+1 +
1

24
(2θ3 − θ2 − θ4)τ 4

nY
(4)
h (tn) +O(τ p+2

n ) . (19)

Recalling Y ′h(t) = Fh(t, Yh(t)) for t ∈ (tn, tn+1] and rewriting the residual time error as

rh(t) = V ′h(tn + θτn)− Y ′h(tn + θτn) + Fh(t, Yh(t))− Fh(t, Vh(t)) , (20)

with θ = (t− tn)/τn, we find by differentiating the right hand side of (19)

rh(tn + θτn) = 6(θ − θ2)
len+1

τn
+

1

12
(3θ2 − θ − 2θ3)τ 3

nY
(4)
h (tn) +O(τ p+1

n ) . (21)

Setting θ = 1/2 in (21) will reveal

rh(tn+1/2) =
3

2

len+1

τn
+O(τ p+1

n ) . (22)
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Thus the cubic Hermite defect halfway the step interval can be used to retrieve in leading
order the local error of any one-step method of order 1 ≤ p ≤ 3 (see also [5], Section 2.2).
Following the arguments given in [5], Section 2.1, we consider instead of (14) the step size
frozen version

ẽ′h(t) = ∂Uh
Fh(tn, Vh,n) ẽh(t) + 2

3
rh(tn+ 1

2
), t ∈ (tn, tn+1], n = 0, . . . ,M−1,

ẽh(0) = 0
(23)

to approximate the global time error eh(t). Using

Vh(tn+1/2) =
1

2
(Vh,n + Vh,n+1) +

τ

8
(Fh,n − Fh,n+1) (24)

and

V ′h(tn+1/2) =
3

2τ
(Vh,n+1 − Vh,n)− 1

4
(Fh,n + Fh,n+1) (25)

we can compute the residual time error halfway the step interval from (12)

rh(tn+1/2) = 3
2τ

(Vh,n+1 − Vh,n)− 1
4
(Fh,n + Fh,n+1)

−Fh
(
tn+ 1

2
, 1

2
(Vh,n + Vh,n+1) + τ

8
(Fh,n − Fh,n+1)

)
.

(26)

Remark 3.1 From (21) we deduce

1

τn

∫ tn+1

tn

rh(t) dt =
len+1

τn
+O(τ p+1

n ) , (27)

showing, in the light of (22), that 2
3
rh(tn+1/2) is in leading order equal to the time-averaged

residual. Thus, we can justify the use of the error equation (23) without the link to the
first variational equation. ♦

4 Estimation of the spatial truncation error

An efficient strategy to estimate the spatial truncation error by Richardson extrapola-
tion is proposed in [1]. We will adopt this approach to our setting.

Suppose we are given a second semi-discretization of the PDE system (1), now with
doubled local mesh sizes 2h,

U ′2h(t) = F2h(t, U2h(t)) , t ∈ (0, T ] ,

U2h(0) = U2h,0 .
(28)

In practice, one first chooses Ω2h and constructs then Ωh through uniform refinement.
The following two assumptions will be needed. (i) The solution U2h(t) to the discretized
PDE on the coarse mesh Ω2h exists and is unique. (ii) The spatial discretization error
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ηh(t) is of order q with respect to h. We define the restriction operator Rh
2h from the fine

grid Ωh to the coarse grid Ω2h by the identity R2h = Rh
2hRh and set

ηch(t) = Rh
2hηh(t), U c

h(t) = Rh
2hUh(t), V c

h (t) = Rh
2hVh(t) . (29)

From the second assumption it follows that

ηch(t) = 2−qη2h(t) +O(hq+1) (30)

and therefore

R2hu(t) =
2q

2q − 1
U c
h(t)−

1

2q − 1
U2h(t) +O(hq+1) . (31)

The relation U c
h(t)− U2h(t) = ηch(t)− η2h(t) together with (30) gives

U c
h(t)− U2h(t) =

1− 2q

2q
η2h(t) +O(hq+1) . (32)

The spatial truncation error on the coarse mesh Ω2h is analogously defined to (9) as

α2h(t) = (R2hu)′(t)− F2h(t, R2hu(t)) . (33)

Substituting R2hu(t) from (31) into the right-hand side, using the ODE system (28) to
replace U ′2h(t), and manipulating the expressions with (32) we get after Taylor expansion

α2h(t) =
2q

2q − 1

(
(U c

h)
′(t)− F2h(t, U

c
h(t))

)
+O(hq+1) . (34)

Analogously to (6), we set ech(t)=V c
h (t)− U c

h(t). Substituting (U c
h)
′(t) by Rh

2hFh(t, Uh(t))
and using again Taylor expansion it follows that

α2h(t) = 2q

2q−1

(
Rh

2hFh(t, Vh(t))− F2h(t, V
c
h (t))

)
+O(hq+1)

− 2q

2q−1

(
Rh

2h

(
∂Uh

Fh(t, Vh(t)) eh(t)
)
− ∂Uh

F2h(t, V
c
h (t))ech(t)

)
+O(eh(t)

2) .

(35)
Assuming the term on the right-hand side involving the global time error to be sufficiently
small, we can use

α̃2h(t) =
2q

2q − 1

(
Rh

2hFh(t, Vh(t))− F2h(t, V
c
h (t))

)
(36)

as approximation for the spatial truncation error on the coarse mesh. To guarantee
a suitable quality of the estimate (36) we shall first control the global time error for
attempting that afterwards the overall error is dominated by the spatial truncation error
(see Section 6).

An approximation α̃h(t) of the spatial truncation error on the (original) fine mesh
is obtained by interpolation respecting the order of accuracy (see Section 5). Thus, to
approximate the global spatial error ηh(t) we consider instead of (11) the step-size frozen
version

η̃′h(t) = ∂Uh
Fh(tn, Vh,n) η̃h(t)− α̃h(t), t ∈ (tn, tn+1], n = 0, . . . ,M−1,

η̃h(0) = 0 .
(37)
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5 The example discretization formulas

In order to keep the illustration as simple as possible we restrict ourselves to one
space dimension. For the spatial discretization of (1) we use standard second-order finite
differences. Hence we have q=2. The discrete L2-norm on a non-uniform mesh

x0 < x1 < . . . < xN < xN+1 , hi = xi − xi−1 , i = 1, . . . , N + 1 , (38)

for a vector y = (y1, . . . , yN)T ∈ RN is defined through

‖y‖2 =
N∑
i=1

hi + hi+1

2
y2
i . (39)

Here, the components y0 and yN+1 which are given by the boundary values are not con-
sidered.

The example time integration formulas are taken from [5]. For the sake of completeness
we shall give a short summary of the implementation used. To generate the time grid
(5) we use as an example integrator the 3rd-order, A-stable Runge-Kutta-Rosenbrock
scheme ROS3P, see [3, 4] for more details. The property of tolerance proportionality [8]
is asymptotically ensured through working for the local residual with

Est =
2

3
(Ih − γτnAh,n)−1rh(tn+1/2) , Ah,n = ∂Uh

Fh(tn, Vh,n) , (40)

where γ is the stability coefficient of ROS3P. The common filter (Ih − γτnAh,n) serves
to damp spurious stiff components which would otherwise be amplified through the Fh-
evaluations within rh(tn+1/2).

Let Dn = ‖Est‖ and Toln = TolA + TolR‖Vh,n‖ with TolA and TolR given local toler-
ances. If Dn > Toln the step is rejected and redone. Otherwise the step is accepted and
we advance in time. In both cases the new step size is determined by

τnew = min
(
1.5,max(2/3, 0.9 r)

)
τn , r = (Toln/Dn)1/3 . (41)

After each step size change we adjust τnew to τn+1 = (T − tn)/b(1 + (T − tn)/τnew)c so as
to guarantee to reach the end point T with a step of averaged normal length. The initial
step size τ0 is prescribed and is adjusted similarly.

The linear error transport equations (23) and (37) are simultaneously solved by means
of the implicit midpoint rule, which gives approximations ẽh,n and η̃h,n to the global time
and spatial error at time t= tn. We use the implementations

(Ih −
1

2
τnAh,n) δen+1 = 2ẽh,n +

2

3
τnr(tn+1/2) , ẽh,n+1 = δen+1 − ẽh,n , (42)

and

(Ih −
1

2
τnAh,n) δηn+1 = 2η̃h,n − τnα̃h(tn+1/2) , η̃h,n+1 = δηn+1 − η̃h,n . (43)
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Clearly, the matrices Ah,n already computed within ROS3P can be reused. The spatial
truncation error α̃2h(t) at t= tn+1/2 is given by

α̃2h(tn+1/2) =
4

3

(
Rh

2hFh
(
tn+1/2, Vh(tn+1/2)

)
− F2h

(
tn+1/2, R

h
2hVh(tn+1/2)

))
. (44)

Since Vh(tn+1/2) and Fh(tn+1/2, Vh(tn+1/2) are available from the computation of rh(tn+1/2)
in (26), this requires only one function evaluation on the coarse grid. The vector α̃2h(tn+1/2)
on the coarse mesh is prolongated to the fine mesh and is then divided by 2q = 4 if the
neighboring fine grid points are equidistant, otherwise it is divided by 2q−1 = 2. The
remaining α̃h(tn+1/2) on the fine mesh are computed by interpolation respecting the order
of the neighboring spatial truncation errors.

Due to freezing the coefficients in each time step, the second-order midpoint rule is a
first-order method when interpreted for solving the linearised equations (14) (or likewise
the first variational equation) and (11). Thus if all is going well, we asymptotically have
ẽh,n=eh(tn) +O(τ 4

max) and η̃h,n=ηh(tn) +O(τmaxh
q
max) +O(hq+1

max).
After computing the spatial truncation errors we can solve the discretized error trans-

port equations (43) for all η̃h,n. We restrict here to globally uniform refinement. A locally
adaptive refinement strategy can be found in [2]. Although the uniform strategy may
be less efficient, it is very easy to implement and therefore of special practical interest if
software packages which do no allow dynamic adaptive mesh refinement are used.

Let Tol be a given tolerance. Then our aim is to guarantee ‖ηh(T )‖ ≤ Tol. From
(43), we get an approximate value η̃h,M for the spatial discretization error at T . If the
desired accuracy is still not satisfied, i.e., ‖η̃h,M‖ > Tol, we choose a new (uniform) spatial
resolution

hnew = q

√
Tol

‖η̃h,M‖
h (45)

to account for achieving ‖ηhnew(T )‖ ≈ Tol. From hnew we determine a new number of
mesh points. The whole computation is redone with the new spatial mesh.

6 The control rules

Like for the ODE case studied in [5] our aim is to provide global error estimates and to
control the accuracy of the solution numerically computed to the imposed tolerance level.
Let GTolA and GTolR be the global tolerances. Then we start with the local tolerances
TolA = GTolA and TolR = GTolR.

Suppose the numerical schemes have delivered an approximate solution Vh,M and global
estimates ẽh,M and η̃h,M for the time and spatial error at time tM = T . We then verify
whether

‖ẽh,M‖ ≤ CTCcontrolTolM , T olM = GTolA +GTolR‖Vh,M‖, (46)

where Ccontrol ≈ 1, typically > 1, and CT ∈ (0, 1) denotes the fraction desired for the
global time error with respect to the tolerance TolM . If (46) does not hold, the whole
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computation is redone over [0, T ] with the same initial step τ0 and the adjusted local
tolerances

TolA = TolA · fac, TolR = TolR · fac, fac = CTTolM/‖ẽh,M‖. (47)

Based on tolerance proportionality, reducing the local error estimates with the factor fac
will reduce eh(T ) by fac [8].

If (46) holds, we check whether

‖ẽh,M + η̃h,M‖ ≤ CcontrolTolM . (48)

If it is true, the overall error Eh(T ) = Vh(T )−Rhu(T ) = eh(T ) + ηh(T ) is considered
small enough relative to the chosen tolerance and Vh,M is accepted. Otherwise, the whole
computation is redone with the (already) adjusted tolerances (47) and an improved spatial
resolution.

We use the new mesh size computed from (45) with Tol = (1 − CT )TolM . To check
the convergence behaviour in space and therefore also the quality of the approximation
of the spatial truncation error, we additionally compute the numerically observed order

qnum = log

(
‖η̃h,M‖
‖η̃hnew,M‖

)/
log

(
h

hnew

)
. (49)

If qnum computed for the final run is not close to the expected value q used for our
Richardson extrapolation, we reason that the approximation of the spatial truncation
errors has failed due to a dominating global time error, which happens, e.g., if the initial
spatial mesh is already too fine. Consequently, we coarsen the initial mesh by a factor two
and start again. If the control approach stops without a mesh refinement, we perform an
additional control run on the coarse mesh and compute qnum from (49) with hnew=2h. It
turns out that this simple strategy works quite robustly, provided that the meshes used
are able to resolve the basic behaviour of the solution.

Summarizing, the first check (46) and the possibly second control computation serve
to significantly reduce the global time error. This enables us to make use of the approx-
imation (36) for the spatial truncation error, which otherwise could not be trusted. The
second step based on suitable spatial mesh improvement attempts to bring the overall
error down to the imposed tolerance. Using the sum of the approximate global time and
spatial error inside the norm in (48), we take advantage of favourable effects of error can-
cellation. These two steps are successively repeated until the second check is successful.
Additionally, we take into account the numerically observed order in space to assess the
approximation of the spatial truncation error.

7 Numerical illustration

To illustrate the performance of the global error estimators and the control strategy,
we consider the Allen-Cahn equation modelling a diffusion-reaction problem. For results
on further test problems and adaptive mesh refinement, see [2].
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The bi-stable Allen-Cahn equation is defined by

∂tu = 10−2 ∂xxu+ 100u (1− u2) , 0 < x < 2.5 , 0 < t ≤ T = 0.5 , (50)

with the initial function and Dirichlet boundary values taken from the exact wave front
solution u(x, t) = (1 + eλ (x−α t))−1, λ = 50

√
2, α = 1.5

√
2. This problem was also used

in [5].
We set GTolA = GTolR = GTol for GTol = 10−l, l = 2, . . . , 7 and start with one and

the same initial step size τ0 = 10−5. Equally spaced meshes of 25, 51, 103, 207, 415,
831, and 1663 points are used as initial mesh. The control parameters introduced above
for the control rules are CT = 1/3 and Ccontrol = 1.2. All runs were performed, but for
convenience we only select a representative set of them for our presentation, which can
be found in Table 1.

Table 1: Selected data for the Allen-Cahn problem.

Tol N TolM ‖Ẽh,M‖ ‖ẽh,M‖ ‖η̃h,M‖ Θest Θctr qnum

1.00e-2 103 2.05e-2 1.84e-0 1.45e-1 1.98e-0 9.89 0.11
4.69e-4 103 2.05e-2 5.78e-1 1.26e-3 5.79e-1 2.69 0.10
4.69e-4 677 2.02e-2 6.04e-3 1.11e-3 7.15e-3 1.19 3.98 2.34

1.00e-2 415 2.02e-2 7.69e-2 1.44e-1 6.73e-2 3.05 0.80
4.66e-4 415 2.02e-2 1.86e-2 1.11e-3 1.97e-2 1.23 1.34
4.66e-4 207 2.03e-2 9.17e-2 1.15e-3 9.29e-2 1.47 0.32 2.24

1.00e-3 207 2.03e-3 9.82e-2 2.97e-3 1.01e-1 1.60 0.03
2.27e-4 207 2.03e-3 8.80e-2 4.93e-4 8.85e-2 1.39 0.03
2.27e-4 1683 2.02e-3 6.14e-4 4.71e-4 1.09e-3 1.11 3.67 2.10

1.00e-3 831 2.02e-3 2.26e-3 2.87e-3 5.12e-3 1.33 1.19
2.35e-4 831 2.02e-3 4.01e-3 4.91e-4 4.50e-3 1.12 0.57
2.35e-4 1521 2.02e-3 8.42e-4 4.90e-4 1.33e-3 1.12 2.68 2.02

1.00e-4 1663 2.02e-4 8.89e-4 1.86e-4 1.08e-3 1.07 0.24
3.63e-5 1663 2.02e-4 9.88e-4 6.14e-5 1.05e-3 1.05 0.21
3.63e-5 4643 2.02e-4 7.30e-5 6.14e-5 1.34e-4 1.04 2.89 2.00

Table 1 contains the following quantities, Tol = TolA = TolR from (47), the number
of mesh points N , TolM = GTol (1 + ‖Vh,M‖) from (46), the estimated global error
Ẽh,M = ẽh,M + η̃h,M at time t = T , the estimated time error ẽh,M , and the estimated
spatial truncation error η̃h,M . Note that we always start with Tol = GTol in the first run.

The indicators Θest = ‖Ẽh,M‖/‖Eh(T )‖ for the ratio of the estimated global error and
the true global error, and Θctr = TolM/‖Eh(T )‖ for the ratio of the desired tolerance and
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the true global error serve to illustrate the quality of the global error estimation and the
control. Θctr ≥ 1/Ccontrol = 5/6 indicates control of the true global error.

The numerically observed order qnum for the spatial error is also given. From the
table one can see whether a tolerance-adapted run to control the global time error, a
spatial mesh adaptation step or an additional control run on a coarser grid was necessary.
Especially, the latter is marked by a dashed line.

Table 1 reveals a high quality of the global error estimation and also the control process
works quite well.

Let us pick one exemplary run out to explain the overall control strategy in more
detail. Starting with GTol = Tol = 10−3 and 831 mesh points, which corresponds to
the fourth simulation, the numerical scheme delivers global error estimates ‖ẽh,M‖ =
2.87 × 10−3 and ‖η̃h,M‖ = 5.12 × 10−3 for the time and spatial error of the approximate
solution Vh,M at the final time tM = T . The first check for the time error estimate
‖ẽh,M‖ ≤ CTCcontrolTolM = 8.08 × 10−4 fails and we adjust the local tolerances by a
factor fac = CTTolM/‖ẽh,M‖ = 2.35 × 10−1, which yields the new Tol = 2.35 × 10−4.
The computation is then redone. Due to the tolerance proportionality, in the second run
the time error is significantly reduced and the inequality ‖ẽh,M‖ ≤ 8.08 × 10−4 is now
valid. We proceed with checking ‖Ẽh,M‖ ≤ CcontrolTolM = 2.42× 10−3, which is still not
true. From (45), we compute a new number of spatial mesh points N = 1521. Finally,
the third run is successful and with the numerically observed spatial order qnum = 2.02
the numerical solution is accepted.

The ratios for Θest = ‖Ẽh,M‖/‖Eh(T )‖ lie between 1.04 and 1.23, after the control runs.
Control of the global error, that is ‖Eh(T )‖ ≤ CcontrolTolM , is in general achieved after two
steps (one step to adjust the time grid and one step to control the space discretization),
whereas the efficiency index Θctr = TolM/‖Eh(T )‖ is close to three. This results from
a systematic cancellation effect between the global time and spatial error, which is not
taken into account when computing hnew from (45).

8 Summary

We have developed an error control strategy for finite difference solutions of parabolic
equations, involving both temporal and spatial discretization errors. The global time error
strategy discussed in [5] appears to provide an excellent starting point for the development
of such an algorithm. The classical ODE approach based on the first variational equation
and the principle of tolerance proportionality is combined with an efficient estimation
of the spatial error and mesh adaptation to control the overall global error. Inspired
by [1], we have used Richardson extrapolation to approximate the spatial truncation
error within the method of lines. Our control strategy aims at balancing the spatial and
temporal discretization error in order to achieve an accuracy imposed by the user.

The key ingredients are: (i) linearised error transport equations equipped with suf-
ficiently accurate defects to approximate the global time error and global spatial error
and (ii) uniform or adaptive (see [2]) mesh refinement and local error control in time
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based on tolerance proportionality to achieve global error control. For illustration of the
performance and effectiveness of our approach, we have implemented second-order finite
differences in one space dimension and the example integrator ROS3P [4]. On the basis
of the test problem in this article and two other test problems in [2] we could observe that
our approach is very reliable, both with respect to estimation and control.
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