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Abstract. In this work we propose a dual weighted error estimator with respect to
modelling and discretization error based on time-averages for evolutionary partial differ-
ential equations. This goal-oriented estimator measures the error of linear functionals
averaged in time. It takes advantage of time averages and circumvents the solution of
a nonstationary adjoint problem. We use the proposed estimator to solve convection-
diffusion-reaction equations containing e.g. atmospheric chemistry models as reaction.
This kind of equations are of major interest in meteorology.

1 Introduction

We present a goal-oriented duality based a posteriori error estimator and an adaptive
strategy for the computation of functionals averaged in time for nonlinear time dependent
problems. Error estimation with respect to a quantity of interest instead of the classical
energy norm was presented in e.g. [8]. The concept of dual-weighted residual based
(DWR) error estimation for the discretization error presented in [2] has entered to various
fields, e.g. fluid dynamics [6] and optimization [1], [3]. Adaptvie modelling for free-surface
flows was presented in [9], the concept of dual-weighted error estimation was extended to
model error estimation e.g. in [5].

Functionals averaged in time are typically relevant for periodic or quasi-periodic solu-
tions in time. Applications arise, e.g., in systems of convection-diffusion-reaction equa-
tions including a large amount of chemical reactions. In order to reduce the numerical
complexity, we use simultaneously locally refined meshes and adaptive (chemical) models.
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Such strategies come along with the question of how to control the discretization error
and the model error.

These error parts are expressed in terms of output functionals. Hence, consideration
of adjoint problems measuring the sensitivity of the functional output are needed. In
contrast to the classical dual-weighted residual method we favor a fixed mesh and model
strategy in time. Taking advantage of the (quasi-)periodic behaviour, only a stationary
dual problem has to be solved. This implies that the computation of an evolutionary
adjoint problem is circumvented. Storing the primal solution at every timestep is also
not necessary. Only averaging in time is needed which is usually possible without serious
problmes.

This a posteriori estimation technique is applied, e.g., to a system of convection-
diffusion-reaction equations. The performance is checked by evaluating and comparing
the estimated and exact errors for the mesh and the used model.

2 Variational problems and time-averages

Problem specification. We seek solutions u ∈ W so that

(∂tu, ψ)Q +

∫
I

B(u)(ψ) dt = (f, ψ)Q ∀ψ ∈ W, (1)

for given data f ∈ L2(I,W ′) with

B(u)(ψ) := A(u)(ψ) +R(u)(ψ),

where A describes e.g. diffusion and convection and R describes a reaction model. Ω ⊂ Rd,
d ∈ {2, 3} is a Lipschitz domain and I := [0, T ] the time interval with T > 0. We consider
the abstract variational problem in the Bochner space W := H1(I, V ) with a Hilbert
space V . Hence, functions in W are weakly differentiable with image in V .
By (·, ·)Q we denote the L2-scalar product in the time-space slabQ := I×Ω, A : V×V → R
and R : V ×V → R are semilinear forms supposed to be Frechét differentiable with respect
to the first argument. The form R is the expensive part to solve, hence, a simplified model
Rm ≈ R introducing less couplings is preferred.

Therefore, we seek an approximate solution um ∈ W of the reduced system

(∂tum, ψ)Q +

∫
I

Bm(um)(ψ) dt = (f, ψ)Q ∀ψ ∈ W, (2)

with
Bm(u)(ψ) := A(u)(ψ) +Rm(u)(ψ). (3)

By uh and uhm we denote the semidiscrete solutions corresponding to (1) and (2) in
H1(I, Vh) with a conforming finite element space Vh ⊂ V , respectively.
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Time-averages. We are interested in an accurate determination of a linear functional
output

J : V → R

for a time averaged solution, e.g., in J(u), where u denotes the time average

u =
1

T

∫ T

0

u dt.

The main goal of this work is the construction of an error estimator η in terms of this
given functional:

η ≈ J(u− uhm).

Integration in time (by taking a test function constant in time) of equations (1) and (2)
leads to the time averaged equations for u, um ∈ H1(I,W ):

σT (u, ϕ) +B(u)(ϕ) = (f, ϕ) ∀ϕ ∈ V, (4)

σT (um, ϕ) +Bm(um)(ϕ) = (f, ϕ) ∀ϕ ∈ V, (5)

where we use the linear forms σ : W × V → R and the semilinear form B : W × V → R
defined by

σT (u, ϕ) :=
1

T
(u(T )− u(0), ϕ),

B(u)(ϕ) :=
1

T

∫ T

0

B(u)(ϕ) dt.

The time average of Bm, denoted by Bm, is defined analogous to B. The (time averaged)
residual of the reduced problem (5) is denoted by

%m(u, ϕ) := (f, ϕ)− σT (u, ϕ)−Bm(u)(ϕ). (6)

Using these prerequisites we can now formulate the estimator using stationary dual prob-
lems.

3 A posteriori estimation of discretization and model error

We will now present a dual-weighted error estimator. Using the time-averaged equa-
tions of the the primal problems (4) and (5) we formulate stationary dual problems
as

z ∈ V : B′(ξ)(ϕ, z) = J(ϕ) ∀ϕ ∈ V, (7)

zm ∈ V : B′m(ξm)(ϕ, zm) = J(ϕ) ∀ϕ ∈ V. (8)
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If B(·)(·) or Bm(·)(·) are nonlinear in the first argument, z = z(ξ) and zm = zm(ξm)
depend on the choices ξ, ξm ∈ V . The resulting error estimator is based on fluctuations
in time due to possible nonlinearities of B and Bm defined by

K(u)(ϕ) := B(u)(ϕ)−B(u)(ϕ),

Km(u)(ϕ) := Bm(u)(ϕ)−Bm(u)(ϕ),

These nonlinearities in t result from nonlinearities in the reaction parts R and Rm and
nonlinearities of A in u, e.g. due to nonstationary coefficients in A

Using the definitions of these dual problems we can formulate a dual weighted error
estimator with respect to a linear functional J : V → R.

Theorem 3.1. If B and Bm are continuously Gâteaux differentiable, the discretization
and model error with respect to the linear functional J can be represented by

J(u− uhm) = J(u− um) + J(um − uhm), (9)

where

J(u− um) = −σT (u− um, z)−K(u)(z) +K(um)(z)−R(um)(z) +Rm(um)(z),

J(um − uhm) = %m(uhm)(zm − ihzm)− σT (um − uhm, zm)

+Km(uhm)(zm)−Km(um)(zm),

and z = z(ξ) ∈ V , zm = zm(ξm) ∈ V are the dual solutions of (7) and (8), respectively,
to the linearizations at ξ = λu+(1−λ)um and ξm = λmum +(1−λm)uhm with appropriate
λ, λm ∈ [0, 1].

Proof. We split the proof into the derivation of the model error and the discretization
error and start with the model error J(u− um).

The mean value theorem ensures the existence of at least one λ ∈ [0, 1] so that for
ξ := λu− (1− λ)um ∈ V and em := u− um it holds

B′(ξ)(em, ϕ) =

∫ 1

0

B′(um + sem)(em, ϕ) ds

= B(u)(ϕ)−B(um)(ϕ) ∀ϕ ∈ V.

Let z = z(ξ) ∈ V be the associated dual solution of equation (7). Then it holds with (3),
the time-averaged equations (4), (5) and the definition of K(·)(·):

J(u− um) = B′(ξ)(u− um, z)

= B(u)(z)−B(um)(z)

= −σT (u− um, z)−K(u)(z) +K(um)(z)−R(um)(z) +Rm(um)(z).
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The discretization error J(um − uhm) can be derived in a similar way: We use again the
mean value theorem for ξm := λum − (1 − λ)uhm ∈ V and denote by zm = zm(ξm) ∈ V
the associated dual solution of equation (8). By ih : V → Vh we denote an arbitrary
interpolation operator. Using the time averaged residual (6) it holds

J(um − uhm) =B′m(ξm)(um − uhm, zm)

=Bm(um)(zm)−Bm(uhm)(zm)

=(f̄ , zm)− σT (um, zm)−Bm(uhm)(zm) +Km(uhm)(zm)−Km(um)(zm)

=%m(uhm)(zm − ihzm)− σT (um − uhm, zm) +Km(uhm)(zm)−Km(um)(zm).

4 Approximation of the estimator

Finite element approximation. We propose a discretization based on conforming
finite elements for dimensions d = 2 or d = 3. According to this the mesh Th of Ω
consists of quadrilaterals or hexahedrals. By hK we denote the diameter of a cell K ∈ Th

and by Qr(Th) the finite element space resulting from transformations FK : K̂ → K of
polynomials ϕ̂ on a reference cell K̂ of maximal degree r ≥ 0 in each coordinate direction:

Qr(Th) :=
{
ϕ ∈ H1(Ω) : ϕ|K ◦ FK ∈ Qr(K̂) ∀K ∈ Th

}
.

Hence, the finite element approximation of um is uhm ∈ Vh := Qr(Th)s. The formulation
for vector-valued problems is straight forward.

Assuming that Th results from a globally coarser mesh T2h, we can define the higher
order nodal interpolation operator to the coarser mesh T2h:

i
(2)
2h : Qr(Th)→ Q2r(T2h). (10)

By u
(2)
2h we denote the result of applying i

(2)
2h to uh.

In order to get an evaluable error estimator we have to approximate the exact formula-
tion of theorem (3.1). More precisely we have to define approximations ηh ≈ J(um−uhm)
and ηm ≈ J(u− um).
By zh and zhm we denote the solutions of the discrete problems corresponding to (7)
and (8).

Definition of ηh. The numerically evaluable approximation ηh to J(um − uhm) reads

ηh := %m(uhm)(z
(2)
2hm − zhm)− σT (u

(2)
2hm − uhm, zhm)

+Km(uhm)(zhm)−Km(u
(2)
2hm)(zhm).
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We cannot expect that σT (u
(2)
2hm−uhm, zhm) is a good approximation to σT (um−uhm, zhm),

because u
(2)
2hm at one point of time contains errors of uhm accumulated over time. Neglect-

ing this part is justified for long time averaging (T >> 1) and/or periodic solutions.
To refine the mesh locally this global estimator has to be localized to get cell- or

nodewise contributions to the error. Techniques to localize the different parts of the
estimator can be found in [4].

Definition of ηm. Neglecting σT (·, ·) again and by the definition of KRm(·)(·) we propose
the following approximation to J(u− um):

ηm := −R(uhm)(zh) +Rm(uhm)(zh). (11)

Solving the primal discrete problem we get uhm and zh, zhm solving the discrete dual
problems. To evaluate the pure model error −K(u)(z) +K(um)(z) a solution to a model
better than Rm is needed. For that the primal problem has to be solved again which is
too costly. However, neglecting this part leads to pretty good estimates as we show in the
numerical results.

Remark 4.1. Computing the solutions z of problem (7) and zm of problem (8), respec-
tively zh and zhm, is not costly because the adjoint problems are linear and stationary.
Nevertheless one may replace zm by z to reduce numerical costs. A comparison of the two
approaches can be found in the numerical examples of [7].

5 Numerical Examples

In this section we present two numerical examples. In the first example we only measure
the model error using 3 different models for atmospheric chemistry. In the second example
we apply the estimator of theorem 3.1 to a simple test case and refine the mesh and adapt
the model simultaneously.

We solve a system of coupled convection-diffusion-reaction equations

∂tu− ν∆u + β · ∇u−Rm(u) = f,

with the viscosity ν, the flow field β and the reaction model Rm.
In order to switch locally between these models, we introduce a non-overlapping par-

titioning of Ω into subdomains Ωi, i = 1 . . .M ,

Ω =
M⋃
i=1

Ωi.

Then in Ωi the reduced model Ri is used and the reaction part Rm is defined by

Rm(u)(ϕ) :=
M∑
i=1

Ri(u)(ϕ)|Ωi
.
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To check the gentleness of the error estimator we introduce the efficiency index

Ieff =
η

J(u− uhm)
,

which compares the estimated and the exact error. Hence, an efficiency index near to 1
implies that the error is estimated very well.

Model adaptivity for Atmospheric Chemistry Models. In this example we em-
ploy three different models. The used “exact” model R1 is RADM2, a widely used model in
atmospheric chemistry, see [11]. This atmospheric chemistry model contains 63 chemical
species and 201 chemical reactions, where 5 species are major gases, whose concentrations
are fixed. Therefore we have to solve a system of 58 coupled convection-diffusion-reaction
equations. The medium model R2 consists of 32 reactions (see [10]) and a traditional low
model R3 only of 3 reactions.

In this 3D example the computational domain in kilometres is Ω := (0, 20)× (0, 20)×
(0, 1) and the computed time is one day. In order to keep the implementation as simple as
possible temperature, pressure, turbulent viscosity and photolysis rates are fixed in space
and time. The flow field is also fixed in space and time by β := (−50, 100, 0)Tm/min.
The periodicity of the solution comes from a periodic source in the subdomain Ωs :=
(13, 4) × (16, 7) × (0, 0.5) of NO (nitrogen oxide) and NO2 (nitrogen dioxide). Starting
with high emissions, they are reduced to zero at the middle of the day and increased again
til the end of the day.

The goal functional is given by the mean value in time of O3 (ozone) in the subdomain
Ωd := (13, 4)× (16, 7)× (0, 0.5):

J(u) =
1

|Ωd|

∫
Ωd

uO3 ds,

with the exact value
J(u) ≈ 3.144843e-02,

computed by using RADM2 in the complete domain.
The adaption is chosen in a way, that the cells which sum up to 25% of the estimated

error are adapted to R1 and cells that sum up to the next 25% are adapted to the next
better model; more precisely if the model of used at a cell is R3 it is switched to R2

otherwise from R2 to R1. Other adaption strategies can be found in [7].
The results can be found in table 1. We start with the cheap model R3 in the complete

domain, estimate the model error and adapt the model cellwise. As can be seen by the
efficiency index Ieff , the error is estimated pretty good as Ieff is close to 1. The exact
error decreases from step to step. Hence the localization of the estimated error works
very well. The error of step 1 is reduced by a factor of nearly 100 by just using 20% of R1

and 13% of R2 at step 5. This shows that using the cheap model in the main part of the
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Figure 1: Left: Used mesh and area Ωs of source term (red) and area Ωd of goal functional (blue); Right:
Mean solution O3 at adaption steps 1,3 and 5 (above) and corresponding allocation of models R1 (blue),
R2 (green) and R3 (red) (below) of a cut at 250m height.

Table 1: Comparison of real and estimated model error

step %R1 %R2 %R3 J(uh − uhm) ηm Ieff

1 0 0 100 -5.68e-04 -6.04e-04 1.06
2 2 4 94 -1.65e-04 -1.79e-04 1.09
3 7 6 87 -9.29e-05 -1.02e-04 1.10
4 13 8 79 1.12e-05 8.61e-06 0.77
5 20 13 67 6.65e-06 5.86e-06 0.88

domain is absolutely sufficient. In figure 1 the allocation of the mean solution of ozone
and the allocation of the models are pictured. As expected the model is adapted around
Ωs and Ωd and along the route of transport according to the flow field β.

In figure 5 the development of the functional over time is shown. Although the esti-
mator only measures time-averages, it can be seen that the functional output over time
at step 5 is nearly the same as the output using RADM2 in the complete domain.

Combined Mesh and Model Adaptivity In this paragraph we apply the complete
estimator of theorem 3.1 to a test example and simultaneously refine the mesh locally and
adapt the model cellwise. The estimated errors ηh and ηm are equilibrated, so that the
mesh is not refined too much and/or the model is not adapted in too many cells.

We solve a system of three coupled convection-diffusion-reaction equations in the space-
time slab Ω × I := ((0, 40)× (0, 10)) × [0, 50] with the viscosity ν = 10, homogeneous
Dirichlet condition on the lower boundary, homogeneous Neumann conditions on the
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Figure 2: Comparison of computed ozone concentrations in ppm at adaption steps 1,3 and 5 to output
of RADM2

remaining parts of ∂Ω and the periodic right-hand-side f = (f1, f2, 0)T

f1(t, x) =

{
ψ(t) if x ∈ Ωs,1 ∪ Ωs,2,

0 else,

f2(t, x) =

{
ψ(t) if x ∈ Ωs,3,

0 else.

with

ψ(t) := 1 + sin

(
3

2
π +

2πt

10

)
,

and Ωs,1 := (25, 27.5) × (0, 2.5), Ωs,2 := (32.5, 35) × (5, 7.5), Ωs,3 := (30, 32.5) × (2.5, 5).
Thus the first component has sources in Ωs,1 and Ωs,2 and the second component a source
in Ωs,3. We apply the reaction model R1(u) = (1, 1,−2)Tu1u2 and no reaction R2(u) =
(0, 0, 0)T and start with Rm(u) = R2(u).
The error of the mean solution of u3 is measured with respect to the functional

J(u) =

∫
Ωd

u3 ds,

with the subdomain Ωd = (0, 10)× (5, 10). We apply the time dependent flow field

β := (−10− 30(1 + sin(3/2π + 4πt/10)), 10)T ,

so that the commutator terms K(·)(·) do not vanish.
The exact value J(u) was computed on a uniform mesh with approximately 4 million
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step #cells %R1 J(u− uhm) ηh ηm η Ieff

1 4096 0 1.35e-02 0 2.01e-02 2.01e-02 1.49
2 4096 16 7.24e-03 -1.04e-05 9.87e-03 9.86e-03 1.36
3 9856 42 3.36e-03 -4.05e-06 4.88e-03 4.87e-03 1.45
4 9856 80 -6.65e-06 -6.98e-06 7.15e-07 -6.26e-06 0.94
5 28924 84 -1.68e-06 -2.11e-06 7.18e-07 -1.39e-06 0.83
6 77836 89 -7.86e-07 -9.47e-07 3.26e-07 -6.21e-07 0.79
7 186088 92 -3.31e-07 -4.11e-07 1.56e-07 -2.55e-07 0.77
8 461740 95 -1.56e-07 -1.76e-07 7.30e-08 -1.03e-07 0.66

Table 2: Development of estimated mesh and model error and comparison of estimated to real error

Figure 3: Local refined mesh and allocation of R1 (red) and R2 (blue) at steps 3, 5 and 7.

cells using Q2 finite elements, the timestep ∆t = 0.0025 and using the model R1(u) in the
complete domain to

J(u) ≈ 1.350916847e-02.

In table 2 the results are presented. In the second column the number of cells of the
local refined meshes are given. The mesh is not refined after the first step, because the
discretization error is estimated to zero. The reason is that we start with Rm = 0 in the
complete domain uhm,3 and zh,1,zh,2 are zero after the first step and from this ηh is zero.
That the mesh is not refined after the third step is due to the equilibration of the error
parts.

The overall estimation η gives a good approximation to the exact error as the efficiency
index Ieff varies between 1.49 and 0.66, which shows pretty good behaviour of η. The
estimated mesh and model errors decrease simultaneously. This shows that not only the
estimation is reliable but rather the localization of the estimated terms lead to very good
local estimates. A detailed inspection of the estimated parts compared to the estimation
using higher order elements can be found in [7].

In figure 3 the local refined meshes and the model allocations are pictured. The mesh
is mainly refined at the sources due to the righthandside f and the model is again adapted
at the source, the area of the goal functional and the route of transport of the species. At
step 5 the fine model is already used in nearly the complete domain. This is due to the
problem setting, because the species are transported through large parts of the domain.

10



Malte Braack and Nico Taschenberger

6 Conclusions

We presented a dual weighted a posteriori error estimator based on time-averages.
The estimator circumvents the solution of a dual problem backward in time and uses a
stationary dual problem instead. We can estimate the discretization and the model error
separately and use these localized parts to equilibrate the errors. The numerical examples
show a pretty good behaviour for the error estimation as well as for the used localizations.
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