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Abstract. We discuss a posteriori and a priori error estimates of filtered quantities for
solutions to some equations of fluid mechanics. For the computation of the solution we use
low order finite element methods with either linear or nonlinear stabilization. The aim is
to make the constants of the estimates independent of the Reynolds number, the Sobolev
norm of the exact solution at time t > 0, or nonlinear effects such as shock formation.
For the case of Burgers’ equation this is possible. It follows that we obtain a complete
assessment of the computability of the solution given the initial data. After a detailed
description of the results in the case of the Burgers’ equation we widen the scope and
discuss transient convection–diffusion equations with rough data and the incompressible
Navier-Stokes’ equations in two space dimensions within the same paradigm.

1 INTRODUCTION

The task of designing adaptive finite element methods for flow problems reamains a
challenging problem. A major bottleneck is the need to find a posteriori error estimators
that are robust with respect to the Reynolds/Péclet number. In engineering practice
a popular approach has been to use dual weighted residual type estimates in order to
capture the stability properties of the problem at hand by solving a dual problem. This
methodology however lacks theoretical underpinning, indicating when the approach is
likely to work or to fail, in particular in the convection dominated regime. The aim of
the present paper is to present some basic results showing that in the one dimensional
case, or for special scale separated solutions in two space dimensions, robustness can be
obtained for estimates of filtered quantities, provided a stabilized finite element method
is used. We will here give an overview of recent results. For full proofs of the given results
we refer to the recent publications [2, 3, 4].
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For the discretization we use finite element methods with piecewise affine continu-
ous approximation and linear, or nonlinear, artificial viscosity or higher order symmetric
stabilization. These methods are strongly related to so called implicit large eddy simu-
lation(ILES) methods where turbulent flows are approximated using the Navier-Stokes’
equations and a discretization scheme augmented with some dissipative operator to guar-
antuee numerical stability, see [1].

In this framework we prove estimates for a regularized error. The interest of these
estimates stems from the fact that the constant of the estimates are of moderate size
and only depends on the regularity of the initial data in one space dimension, and in
several dimensions the gradients of the large, energy carrying vortices. Hence there is no
dependence on the Reynolds number, nor of the global regularity of the exact solution.
The estimates also give a precise rate of convergence in the meshsize h, depending only
on the filter width. This can be seen as a tentative theoretical explanation to the good
performance of ILES methods for two dimensional flows in the absence of backscatter
effects [7]. In this context our scale separation assumption (Assumption 1) acts as a
sufficient condition to eliminate backscatter.

We will consider the following differential filter that sometimes is applied as a regular-
ization in modified Navier-Stokes’ systems for large eddy simulation,

−δ2∆ũ+ ũ = u(·, T ) on Ω (1)

with ũ = 0 on ∂Ω and δ denoting the filter width. Let ẽ := ũ − ũh, where ũh denotes
the regularized approximate solution. The a priori error estimates that we prove typically
take the form

|‖ẽ(T )‖|δ := ‖δ∇ẽ(T )‖Ω + ‖ẽ(T )‖Ω ≤ C(u0, T ) exp
(
T
τF

)
β

1
2

(
h

δ2

) 1
2

(2)

where ũ and ũh are the filtered exact and computational solution respectively. The con-
stant C(u0, T ) in (2) depends only on the intial data, the mesh geometry and the final
time and the coefficient β is an upper bound on the transport velocity. In some estimates
length scales related to the O(1) size of the domain have been omitted. The characteristic
time τF depends on the velocity field in a nontrivial way and a key point in the below
discussion is when τF can be expected to be O(1) so that the exponential growth is mod-
erate for moderate T . Note that the right hand side of (2) is independent of both the
viscosity parameter and the Sobolev regularity of the exact solution. For previous work
on error estimates for filtered solutions see [6], their estimates however are not robust in
the Reynolds number.

The derivation of the estimate (2) uses:

– sharp energy stability estimates for the finite element method,

– L∞-estimates for the finite element solution in the nonlinear cases,
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– a priori stability estimates on a linearized dual problem with regularized data,

– Galerkin orthogonality and approximability.

To obtain precise control of all constants we must control the asymptotic growth of the
residual and work with the exact dual adjoint, involving both the approximate and the
exact solution in the nonlinear case. We will frequently use the notation a . b defined
by a ≤ Cb as well as a ∼ b meaning that a . b and b . a with C a constant independent
of h, any essential physical parameters and of the exact solution. Some dependence on
physical parameters may be included in the constants if it may be assumed not to change
the magnitude of the constant.

2 THE BURGERS’ EQUATION

Consider the simple model case of the Burgers’ equation with periodic boundary con-
ditions, on the space-time domain Q := Ω× I, with Ω := (0, 1) and I := (0, T ) for some
T > 0,

∂tu+ 1
2
∂xu

2 − ν∂xxu = 0 in Q
u(0, t) = u(1, t) for t ∈ I
u(x, 0) = u0(x) for x ∈ Ω.

(3)

First we discuss the L∞(I;L2(Ω)) stability of the Burgers’ equation and conclude that the
resulting estimate includes an exponential factor of the type exp(‖∂xu‖L∞T ) reflecting a
possible instability in the L2-norm. Then we introduce the finite element discretization
and briefly discuss the stability properties of the method. Finally we consider filtering of
the final solution and show that the perturbation equation corresponding to the filtered
solution has improved stability properties and the error may therefore be upper bounded
independently of both the regularity of the exact solution and the physical viscosity. As
we shall see, although ‖(u−uh)(·, T )‖Ω, where uh denotes the finite element approximation
of (3), does not appear to allow for error estimates with moderate constants, the L2-error
of the filtered error, ‖(ũ− ũh)(·, T )‖Ω does. Indeed, for the Burgers’ equation in the high
Reynolds number regime we prove the error estimate

|‖ũ− ũh‖|δ ≤ C̃(u0, T ) exp(D0T )

(
h

δ2

) 1
2

(4)

where ũ and ũh are the filtered exact and computational solution respectively and D0 ∼
supx∈Ω |∂xu0|. We will also use the notation U0 ∼ supx∈Ω |u0(x)|. For simplicity we assume
u0 ∈ C∞(Ω), this does not exclude the formation of sharp layers with gradients of order

ν−1 at later times. For fixed filter width (4) results in a convergence rate of order h
1
2 . If

on the other hand the filter width is related to the mesh size δ ∼ hα with α < 1
2

we get

the convergence rate h
1−2α

2 . The parameter δ determines how strong the localization of
the norm is. The choice δ = 1 leads to a norm related to the H−1-norm and the choice
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δ = h leads to a norm similar to the L2-norm. Clearly the estimates proposed here only
makes sense for 0 ≤ α < 1

2
. This indicates that no error bounds in a norm similar to the

L2 case can be obtained in this framework.

3 The Burgers’ equation with viscous dissipation

The wellposedness of the equation (3) for ν ≥ 0 is well known it is also known that for
ν > 0 by parabolic regularization the solution is C∞(Ω). This high regularity however
does not necessarily help us when approximating the solution, since we are interested in
computations using a mesh-size that is much larger than the viscosity and still want the
bounds to be Robust with respect to the Reynolds number.

3.1 L2-stability of Burgers’ equation

Consider a general perturbation η(x) of the initial data of (3).

∂tû+ 1
2
∂xû

2 − ν∂xxû = 0 in Q
û(0, t) = û(1, t) for t ∈ I
û(x, 0) = u0(x) + η(x) for x ∈ Ω.

(5)

Taking the difference of (5) and (3) leads to the perturbation equation for ê := û−u with
a(u, û) := 1

2
(u+ û),

∂tê+ ∂x(a(u, û)ê)− ν∂xxê = 0 in Q,
ê(0, t) = ê(1, t) for t ∈ I
ê(x, 0) = η(x) for x ∈ Ω.

(6)

Multiplying equation (6) by ê and integrating over Q leads to the energy equality

1

2
‖ê(T )‖2

Ω + ‖ν
1
2∂xê‖2

Q =
1

2
‖η‖2

Ω −
∫
Q

(∂xa(u, û))ê2.

We know that due to shock formation −∂xa(u, û) ∼ ν−1. Any attempt to obtain control
of ‖ê(T )‖2

Ω in terms of the initial data will rely on Gronwall’s lemma, leading to

‖ê(T )‖2
Ω ≤ Ca‖η‖2

Ω

with the exponential factor

Ca := exp(‖∂xa(u, û)‖L∞(Q)T ) ∼ exp(T/ν).

This estimate tells us that we have stability (and hence computability) only up to the
formation of shocks. Using this type of argument in the analysis of the finite element
method leads to error estimates useful only for solutions with moderate gradients.
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3.2 Maximum principles for Burgers’ equation

It is well known that the equation (3) satisfies a maximum principle on the form:

sup
(x,t)∈Q

|u(x, t)| ≤ sup
x∈Ω
|u0(x)|. (7)

For our purposes we also need some precise information on the derivative. Since the
solution of (3) is smooth we may derive the equation in space to obtain the following
equation for the space derivative w := ∂xu:

∂tw + u∂xw − ν∂xxw = −w2 in Q
w(0, t) = w(1, t) for t ∈ I
w(x, 0) = ∂xu0(x) for x ∈ Ω.

(8)

Assuming that w takes its maximum in some point x ∈ I and noting that ∂xw(x) = 0
and ∂xxw(x) < 0 it follows that ∂tw < 0 at the maximum and we deduce the bound:

max
(x,t)∈Q

∂xu ≤ max
x∈Ω

∂xu0. (9)

It follows by the smoothness of the initial data that the space derivative is bounded above
for all times.

4 Artificial viscosity finite element method

Discretize the interval Ω with N elements and let the local mesh-size be defined by
h := 1/N . We denote the computational nodes by xi := i h, i = 0, . . . , N , defining the
elements Ωj := [xj, xj+1], j = 0, . . . , N − 1. The finite element space is given by

Vh :=
{
vh ∈ H1(Ω) : vh|Ωj ∈ P1(Ωj);uh(0) = uh(1)

}
.

We define the standard L2 inner product on X ⊂ Ω by (vh, wh)X :=
∫
X
vhwh dx. The

discrete form corresponding to mass-lumping reads (vh, wh)h :=
∑N−1

i=0 vh(xi)wh(xi)h. The

associated norms are defined by ‖v‖X := (v, v)
1
2
X , for all v ∈ L2(X), if X coincides with Ω

the subscript may be dropped, and ‖vh‖h := (vh, vh)
1
2
h for all vh ∈ Vh. Note that, by norm

equivalence on discrete spaces, for all vh ∈ Vh there holds ‖vh‖h ∼ ‖vh‖. Using the above
notation the artificial viscosity finite element space semi-discretization of (3) writes, given
u0 ∈ C∞(Ω) find uh(t) ∈ Vh such that (uh(0), vh)Ω = (u0, vh)Ω and

(∂tuh, vh)h +

(
∂x
u2
h

2
, vh

)
Ω

+ (ν̂∂xuh, ∂xvh)Ω = 0, for all vh ∈ Vh and t > 0, (10)

where we propose two different forms of ν̂:
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1. linear artificial viscosity:
ν̂ := max(U0h/2, ν); (11)

2. nonlinear artificial viscosity:
Let 0 ≤ ε and

ν0(uh)|Ωi :=
1

2
‖uh‖L∞(Ωi) max

x∈{xi,xi+1}

|[[∂xuh]]|x|
2{|∂xuh|}|x + ε

, (12)

where [[∂xuh]]|xi denotes the jump of ∂xuh over the node xi and {|∂xuh|}|xi denotes
the average of |∂xuh| over xi. If ε = 0 and {|∂xuh|}|xi = 0 we replace the quotient
|[[∂xuh]]|xi |/{|∂xuh|}|xi by zero.

Further let

ξ(uh)|Ωi :=


1 if ∂xuh|Ωi > 0, ∂xuh|Ωi > ∂xuh|Ωi+1

> 0
and ∂xuh|Ωi ≥ ∂xuh|Ωi−1

> 0
0 otherwise

ν1(uh)|Ωi := ξ(uh)|Ωi max
(
ν0|Ωi−1

∂xuh|Ωi−1

∂xuh|Ii
, ν0|Ωi+1

∂xuh|Ωi+1

∂xuh|Ii

)
. (13)

Finally define:
ν̂(uh)|Ωi := max(ν, h(ν0|Ωi + ν1|Ωi)). (14)

The rationale for the nonlinear viscosity is to add first order viscosity at local extrema
of the solution uh so that (7) holds also for the discrete solution and enough viscosity
at positive extrema of ∂xuh, making (9) carry over to the discrete setting. Using the
properties of the numerical viscosity we may prove the following discrete stability estimate.

The solution uh of the formulation (10) with either the linear artificial viscosity given
by (11) or the nonlinear one of (14) with ε = 0, satisfies the upper bounds

‖uh(T )‖+ ‖ν̂
1
2∂xuh‖Q . ‖u0‖, ‖∂tuh‖Q . (U0T

1
2h−

1
2 + ν

1
2 )‖∂xu0‖. (15)

4.1 Error estimates for the Burgers’ equation

To derive error estimates in the norm |‖·‖|δ we introduce the linearized adjoint problem

−∂tϕ+ a(u, uh)∂xϕ− ν∂xxϕ = 0 in Q,
ϕ(0, t) = ϕ(1, t) for t ∈ I,
ϕ(x, T ) = ψ(x) for x ∈ Ω.

(16)

The following stability estimate for (16) follows easily by standard energy methods since
both the discrete and the continuous solutions satisfy maximum principles of the type (7)
and (9),

sup
t∈(0,T )

‖∂xϕ(·, t)‖2 + ν‖∂xxϕ‖2
Q . exp(D0T )‖∂xψ‖2. (17)
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The rationale for the dual adjoint is the following derivation of a perturbation equation
for the functional of the error |(e(T ), ψ)Ω|, where e(T ) := u(T )− uh(T ).

|(e(T ), ψ)Ω| = |(e(T ), ψ)Ω +

∫ T

0

(e,−∂tϕ+ a(u, uh)∂xϕ− ν∂xxϕ)Ω dt|

= |(e(0), ϕ(0))Ω −
∫ T

0

(∂tuh + uh∂xuh, ϕ)Ω dt−
∫ T

0

(ν∂xuh, ∂xϕ)Ω dt|. (18)

This relation connects the error to the computational residual weighted with the solution
to the adjoint problem and can lead both to a posteriori error estimates and to a priori
error estimates, provided we have sufficient information on the stability properties of the
numerical discretization methods and of the dual problem. Observing that

|‖ẽ(T )‖|2δ = (δ∂xẽ(T ), ∂xẽ(T ))Ω + (ẽ(T ), ẽ(T ))Ω = (e(T ), ẽ(T ))Ω (19)

we deduce that the choice ψ = ẽ(T ) in (16) leads to an error representation for the filtered
error. Using this error representation, Galerkin orthogonality and the stability of the dual
solution (17) we may prove the following a posteriori error estimate. The associated a
priori error estimate is a direct consequence of the a posteriori error bound, the maximum
principles satisfied by the discrete solution and the bounds of (15).

Theorem 1 Let u be the solution of (3), uh be the solution of (10). Then the following
a posteriori and a priori bounds hold:

|‖ẽ(T )‖|δ . exp(D0T )

(
h

δ2

) 1
2 (
h

1
2‖(u− uh)(0)‖+ h

1
2

∫ T

0

inf
vh∈Vh

‖vh + uh∂xuh‖ dt

+ h
3
2

∫ T

0

‖∂x∂tuh‖ dt+

∫ T

0

‖max(0, ν̂ − ν)
1
2∂xuh‖ dt+ h

(∫ T

0

ν‖[[∂xuh]]‖2
N dt

) 1
2
)
, (20)

where ‖[[∂xuh]]‖N :=
(∑N−1

i=0 (∂xuh(xi)|Ωi+1
− ∂xuh(xi)|Ωi)2

) 1
2
, with ΩN identified ith Ω0 by

periodicity.

|‖ẽ‖|δ . exp(D0T )

(
h

δ2

) 1
2 ((

h
1
2 + U

1
2

0

√
T
)
‖u0‖ + (TU0 + h

1
2ν

1
2 )‖∂xu0‖

)
. (21)

5 EXTENSION TO FLOW IN HIGHER DIMENSION

In higher dimension the difficulty compared to the Burgers equation, is that the gra-
dient tensor of the velocity can not be expected to have any sign, even when the flow
is incompressible. If strong vortices or separation is present in the flow the diverging
streamlines may cause exponential growth of perturbations with factor proportional to
the maximum velocity gradient in the energy estimates. This reflects that two particles
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that initally are close may be separated very quickly by the flow, hence giving rise to sensi-
tivity to perturbations. Below we will discuss how the idea of estimating filtered quantities
can be used for the derivation of robust error estimates, first for passive transport with
rough data and then for the two-dimensional Navier-Stokes equation. A key assumption
in the below argument is a large eddy hypothesis, stating that the velocity field allows
for an a priori decomposition where the main energy is carried by large eddies with mod-
erate gradients and that remaining component can have arbitrary oscillation, but energy
comparable to the diffusive/viscous dissipation, as made precise in this assumption.

Assumption 1 (Large eddy scale separation)
Let β ∈ [W 1,∞(Ω)]2. Given µ ∈ R+, assume that there exists a decomposition of the
velocity field,

β = β + β′,

where, for all t, ‖β‖W 1,∞(Ω) ∼ 1 and ‖β′‖2
L∞(Ω) ∼ µ.

Under this assumption we may define a global timescale for the flow relating to both the
coarse scale spatial variation and the fine scale amplitude,

τF := min(‖β̄‖−1
W 1,∞(Ω), µ/‖β

′‖2
L∞(Ω)) ∼ 1. (22)

Of course for any given β and viscosity µ one can find the optimal decomposition β +
β′ that maximizes τF , which gives a measure of the computability of that particular
flow problem. Essentially we assume that the velocity vectorfield can be decomposed
in a coarse scale, responsible for transport, that is slowly varying in space and a fine
scale, responsible for mixing, that has small amplitude but may have very strong spatial
variation. Expressed in Péclet numbers this means that the coarse scale Péclet number
may be arbitrarily high, whereas the fine scale Péclet number must be of order one.

The Assumption 1 may now be used to derive a posteriori and a priori error estimate
that are robust in the multidimensional case. We will briefly review the cases of passive
transport and two dimensional Navier-Stokes’ below.

5.1 Transient convection–diffusion equations

The problem that we will consider takes the following form. Let Ω be an open
polygonal/polyhedral subset of Rd, with boundary ∂Ω, u0, f ∈ L2(Ω) and let β ∈
[C0(I;W 1,∞(Ω))]d, µ ∈ R+, then formally we may write, for t > 0 find u ∈ H1

0 (Ω)
such that u(x, 0) = u0(x) in Ω and

∂tu+ β · ∇u− µ∆u = f, in Ω. (23)

For the boundary conditions let u|∂Ω = 0 and assume that the velocity field satisfies non-
penetration boundary conditions β · n∂Ω|∂Ω = 0. We also consider the associated dual
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problem, for t > 0 find ϕ ∈ H1
0 (Ω) such that

−∂tϕ− β · ∇ϕ− µ∆ϕ = 0 in Ω
ϕ = 0 on ∂Ω

ϕ(·, T ) = ψ(·) in Ω.
(24)

Using energy methods and the Assumption 1 we may prove the following stability estimate
for the dual solution

sup
t∈I
|‖ϕ(·, t)‖|δ + T−1‖δ1/2∇ϕ‖Q + T−1‖δ1/2∂tϕ‖Q + ‖(δµ)1/2∆ϕ‖Q . CτF ,T |‖ψ‖|δ, (25)

with CτF ,T ∼ e

(
T
τF

)
, where τF is given by (22).

5.1.1 Finite element discretization

Let {Th}h be a family of nonoverlapping conforming, quasi uniform triangulations,
Th := {K}h where the triangles K have diameter hK and that is indexed by h := maxhK .
We let the set of interior faces {F}h of a triangulation Th be denoted by F .

We will consider a standard finite element space of piecewise affine, continuous functions
Vh := {vh ∈ H1(Ω) : vh|K ∈ P1(K), ∀K ∈ Th}, where P1(K) denotes the set of affine
polynomials on K also let V 0

h := Vh ∩H1
0 (Ω).

For t > 0 find uh ∈ V 0
h such that uh(x, 0) = πhu0(x) and

(∂tuh, vh) + a(uh, vh) + sh(uh, vh) = (f, vh), ∀vh ∈ V 0
h , (26)

where a(·, ·) is defined by:

a(u, v) := (β · ∇u, v) + (µ∇u,∇v)

and
sh(uh, vh) := γ

∑
F∈F

〈
h2
F‖β · nF‖L∞(F )[[∇uh · nF ]], [[∇vh · nF ]]

〉
F
. (27)

The finite element method (26) satisfies the estimate

sup
t∈I
‖uh(t)‖Ω + ‖µ∇uh‖Q +

(∫ T

0

sh(uh, uh) dt

) 1
2

.
∫ T

0

‖f‖Ω dt+ ‖u0‖Ω. (28)

Theorem 2 (A posteriori error estimate) Let ẽ := ũ− ũh. Then there holds

|‖ẽ‖|δ . CτF ,T

(
h

δ2

)1/2 (∫
I

inf
vh∈Vh

‖h1/2(β · ∇uh − vh)‖Ω dt

+

∫
I

∑
F∈F

(
‖µ[[∇uh]]‖2

F

)1/2
dt

+

∫
I

sh(uh, uh)
1
2 dt+ h1/2

∫
I

‖f − πhf‖Ω dt+ h1/2‖u0 − πhu0‖Ω

)
, (29)
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where we recall that CτF ,T ∼ e

(
T
τF

)
.

Theorem 3 (A priori error estimate) Assume that
‖β‖L∞(Q))h

µ
> 1, with ‖β‖L∞(Q)) ∼ 1,

then there holds

|‖ẽ‖|δ . CτF ,T

(
h

δ2

)1/2

(h1/2 + T
1
2

(∫ T

0

‖f‖Ω dt+ ‖u0‖Ω

)
. (30)

The right hand side of (30) is independent of µ and Sobolev norms of the solution. It only
depends on the L2-norm of data, showing that even for cases with rough source terms
and initial data, such as those encountered in environmental flows, this estimate holds.

Note that the stability of the dual problem holds regardless of the numerical method
used. The stabilization in the numerical method allows us to control the first residual
in the a posteriori error estimate, by using the discrete stability estimate (28). If no
stabilization is present there is no control of the streamline derivative, making it impossible
to obtain uniformity in µ. If the domain is convex so that elliptic regularity can be used
one may prove an optimal estimate valid also in the low Reynolds number regime

5.2 The Navier-Stokes’ equations in two space dimensions

We will consider the Navier-Stokes’ equations written on vorticity-velocity form. Let Ω
be the unit square and assume that the boundary conditions are periodic in both cartesian
directions. The equations then writes, ω(x, 0) = ω0(x) and

∂tω +∇ · (uω)− ν∆ω = 0, in Q,

−∆Ψ = ω in Q, (31)

u = rot Ψ in Q.

Let L∗ := {q ∈ L2(Ω);
∫

Ω
q = 0}. The associated weak formulation takes the form for

t > 0, find (ω,Ψ) ∈ H1(Ω)×H1(Ω)∩L∗(Ω), with ω(x, 0) = ω0(x) and such that for t > 0
and ∀(v,Φ) ∈ H1(Ω)×H1(Ω) ∩ L∗(Ω),

(∂tω, v) + (∇ · (uω), v) + (ν∇ω,∇v) = 0,

(∇Ψ,∇Φ) = (ω,Φ), (32)

u = rot Ψ in Q.

6 Finite element discretization

Define Vh to be the standard space of piecewise affine, continuous periodic functions.
Let V∗ := Vh ∩ L∗. We consider continuous finite elements with equal-order to discretize
in space the vorticity ω and the stream function Ψ. The discrete velocity is given by
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uh|K := rot Ψ := {∂yΨ,−∂xΨ}. Note that using this definition ∇ · uh = 0 in Ω, i.e. the
discrete velocity is globally divergence free. For t > 0 find ωh,Ψh ∈ Vh × V∗ such that

(∂tωh, vh)M + (∇ · (uhωh), vh) + (ν∇ωh,∇vh) + s(uh;ωh, vh) = 0

(∇Ψh,∇Φh)− (ωh,Φh) = 0 (33)

uh − rot Ψh = 0, ∀vh,Φh ∈ Vh × V∗.

Here s(·; ·, ·) denotes a stabilization operator that is linear in its last argument and
(∂tωh, vh)M denotes the bilinear form defining the mass matrix, this operator either co-
incides with (·, ·)Ω or is defined as the scalar product (·, ·)Ω approximated using nodal
quadrature, i.e. so called mass lumping. We will assume the stabilization term satisfies
the bounds

‖h[[uh · ∇ωh]]‖F . s(uh, ωh;ωh)
1
2 . h

1
2 (U0 + ‖uh‖L∞(Ω))‖∇ωh‖,

s(uh, ωh; vh) . h
1
2 (U

1
2

0 + ‖uh‖
1
2

L∞(Ω))s(uh, ωh;ωh)
1
2‖∇vh‖.

This typically holds for (27) or for standard linear artificial viscosity with coefficient (11).
The dual adjoint problem associated to the perturbation equation of (32) and (33) takes
the form

−∂tϕ1 − u · ∇ϕ1 − ϕ2 − ν∆ϕ1 = 0 in Q,

−∆ϕ2 −∇ωh · rot ϕ1 = 0 in Q, (34)

ϕ1(x, T ) = ψ(x) in Ω.

A key result for the present analysis is the following stability estimate for the dual
adjoint solution.

Proposition 1 Assume that the exact velocity u satisfy the Assumption 1 with µ = ν.
Then there holds for the solution (ϕ1, ϕ2) of (34),

sup
t∈I
‖∇ϕ1(·, t)‖+ ‖ν

1
2D2ϕ1‖Q . CτF ,T‖∇ψ‖ (35)∫

I

‖∇ϕ2(·, t)‖ dt ≤ CτF ,T

∫
I

‖ωh‖L∞(Ω) dt ‖∇ψ‖. (36)

Using the dual problem with ψ = ω̃− ω̃h we may prove the following a posteriori estimate,

Theorem 4 (A posteriori error estimates)

|‖ω̃ − ω̃h‖|δ . e
T
τF

(
h

δ2

) 1
2 (
‖(ω − ωh)(·, 0)‖+

∫ T

0

‖h[[uh · ∇ωh]]‖F dt

+

∫ T

0

‖ν
1
2 [[nF · ∇ωh]]‖F dt+ h

1
2 sup
t∈I
‖ωh(·, t)‖

∫ T

0

‖ωh(·, t)‖L∞(Ω) dt

+

(
h

3
2

∫ T

0

‖∂t∇ωh‖ dt

)∗
+

∫
I

s(uh;ωh, ωh)
1
2 dt

)
(37)
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where the term marked with a ∗ is omitted if the consistent mass matrix is used. For the
velocities we have the estimate

‖(u− uh)(·, T )‖ ≤
(
‖h

1
2 [[nF · ∇Ψh(·, T )]]‖F + |‖(ω̃ − ω̃h)(·, T )‖|1

)
(38)

where |‖(ω̃ − ω̃h)(·, T )‖|1 may be a posteriori bounded by taking δ = 1 in (37).

If we assume that sh(uh, ωh, vh) is strong enough so that ‖ωh‖L∞(Q) . ‖ωh(·, 0)‖L∞(Ω) then
Theorem 4 together with the stability properties of the finite element method leads to
the following a priori error estimates, that are independent of the Reynolds number and
Sobolev norms of the exact solution,

|‖(ω̃ − ω̃h)(T )‖|δ . e
T
τF

(
h

δ2

) 1
2

and ‖(u− uh)(·, T )‖ . e
T
τF h

1
2 .

This can be achieved for instance using a linear artificial viscosity, similar to (11), or
nonlinear diffusion of shock-capturing type (see [5] for precise definitions) on meshes for
which the Laplacian produces an M-matrix, as detailed in [4].
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