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Abstract. We present a p-adaptive method which takes advantage of the ability of
a discontinuity sensor used to quantify the di↵erence between the actual solution and a
projected reduced order solution in order to vary the polynomial resolution in an element.

1 INTRODUCTION

High-order methods have become increasingly more attractive in the field of aero-
dynamics due to their ability to increase the accuracy locally, their minimal numerical
di↵usion and dispersion properties, and the possibility to employ high-order meshes to
better describe the geometry. The present work focuses on a spectral/hp element method
using the Discontinuous Galerkin (DG) formulation [4] that is implemented using the open
source library Nektar

++. The main advantages of the DG method range from its high
accuracy to being highly flexible (allows for higher order meshes and h/p refinement) and
its e�ciency since it is easy to parallelise due to its block diagonal mass matrix structure.
Although the DG formulation has numerous advantages, its main disadvantage is that it
is computationally costly. A second limitation for the DG method is related to the treat-
ment of flow discontinuities which, if approximated by a polynomial of high degree, leads
to oscillations in the solution. As a result, an automatic polynomial adaptive procedure
(p-adaption) is proposed in the present work.

The p-adaptive process can be applied to both inviscid and viscous flows and lead to
a reduction in the computational cost of the simulation that could be significant, without
loss of accuracy. A similar dynamic p-adaptive method is described in [1] and it is applied
to the shallow water equations in [3]. The procedure described in these articles is based
on a sensor that reconstructs the gradient of the solution and updates the polynomial
degree by checking whether the magnitude of the sensor is higher or lower than a certain
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threshold value. The method is applied at each time step and the adaption strategy is
limited to use either p = 1, 2 or p = 2, 3 in each simulation.

The local support of the DG discretisation allows for the application of di↵erent polyno-
mials and di↵erent number of quadrature points in di↵erent zones of the domain. Fur-
thermore it is also possible to define the polynomial degree and the number of points of
each element of the domain independently from each other. This property is intrinsic in
the discontinuous features of the DG method. Since information is propagated between
two elements only through their interface, the expansion within an element depends only
upon its own values and the interface values of adjacent elements.

2 SENSOR-BASED P-ADAPTION STRATEGY

This study proposes an alternative strategy and the adaption procedure is applied af-
ter the current spatial distribution of polynomial degree, p, has converged to a steady
solution. Moreover, the maximum degree is not imposed, but each element is free to
assume any degree and the automatic p-adaptive strategy stops when a stable spatial
p-distribution is reached. This method has been developed for modelling steady problems
but it may be extended to time-dependent problems provided that an e�cient method to
vary the polynomial degree at each time step is implemented.

This procedure takes advantage of the ability of a discontinuity sensor used to quan-
tify the di↵erence between the actual solution (p) and the projected reduced one (p � 1)
in order to vary the polynomial resolution in an element. The value of the sensor in an
element is defined in the same way as described in [6]:
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are the average solutions of degree p and p�1 respectively on the same
element. The polynomial degree is decreased when a discontinuity is present in order to
avoid oscillations and increased when a high gradient is identified to improve the accuracy.
This procedure allows the simulation to adapt to the flowfield, increasing the accuracy of
the solution only where needed and, as a consequence, reducing the computational cost
required for solving the problem. Furthermore, this sensor is used to locally add an extra
di↵usion term to enable shock capturing as described in [5, 6].

Initially, a converged linear solution is obtained after which the sensor in each element
is calculated. Based on the determined sensor value and the pre-defined sensor thresh-
olds, the degree of the polynomial approximation in each element is increased, reduced or
maintained and a new converged solution is obtained. The sensor distribution is divided
into four zones:
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where s

ds

, s
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and s

fl

are the threshold values to identify discontinuities, smooth and flat
solutions respectively. This procedure is carried out iteratively.

In order to determine the solution at p�1 and threat the numerical fluxes at the edges of
the element accordingly, the solution at polynomial order p, determined using a modified
basis, has to be projected onto a hierarchical orthogonal expansion basis. Hence, using a
more general formulation, the solution of a variable u is expressed as:

u

0 = u (3)

where u and u

0 represent the general solution obtained using a modified basis (B) and
orthogonal (B0) respectively, hence:
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where û represents the vector of coe�cients at polynomial p

+. Since a hierarchical basis
is used, it is possible to lower the polynomial order to p

� where p
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> p

�. Since the
coe�cients are not coupled in the hierarchical orthogonal basis and the information about
the mean is contained only in the first coe�cient, it is possible to apply a cut-o↵ filter to
the orthogonal coe�cient vector. This cut-o↵ filter sets all the coe�cients that are higher
than p

� equal to zero. The information contained in the high frequency components
is removed without altering the mean value. The orthogonal coe�cients represent the
solution at p

� using an orthogonal basis, hence the following transformation has to be
applied to obtain the modified filtered coe�cients of the lower polynomial degree:
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The solution ⇢

p�1
e

, is obtained from ⇢

p

e

using this post processing step.

When dealing with di↵erent polynomial degrees, it is important to ensure an adequate
treatment of the two following operations: the change of the polynomial degree of the so-
lution in one element and the computation of the numerical flux on the interface. Hence,
after the sensor is applied and the polynomial order of the element is changed, a similar
filtering procedure is performed to compute the advective numerical fluxes on the inter-
face of two elements with di↵erent expansions since the appropriate number of quadrature
points has to be used. The number of quadrature points has to be equal to the number
used by the highest polynomial degree of the two adjacent elements to avoid numerical
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instabilities [2]. To ensure conservation and stability, the continuity of the total flux is
required and therefore: Z
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Where Fu

� and Fu

+ represent the numerical flux on the edge between two elements with
a lower and a higher polynomial order respectively. If the order or the quadrature points
is di↵erent, the coe�cients are copied directly on the higher resolved side, but fewer
coe�cients have to be set on the other side. The interface flux is then projected on the
space of orthogonal polynomials and then filtered to delete the high-order frequencies.
Once the degree of the orthogonal expansion is decreased to the lower degree, a reverse
projection is carried out and modified coe�cients are found.

3 RESULTS

The performance of the p-adaptive method is illustrated for the solution of the tran-
sonic flow (M = 0.8) over a NACA0012 aerosol under an angle of attack of ↵ = 1.25�.
Two shocks are generated on the aerofoil: a strong shock on the top, at about x = 0.6 and
a weaker shock on the bottom of the aerofoil at x = 0.3. The reference C

p

distribution
used for comparison is taken from [8], in which the numerical solution is obtained with a
finite volume method, the aerofoil wall is discretised by 320 cells and the farfield bound-
ary is placed at 25 chords. Figure 1 depicts the density and Mach distribution around
the aerofoil, the final spatial p distribution and the sensor distribution. Even though the
grid is very coarse, the shock is well resolved, it is captured in only one cell and it does
not create oscillations in the neighbour cells. The discontinuity sensor is active only at
the shock waves and the rest of the flow field is di↵usion free. The p-adaptive procedure
increases the polynomial degree of the discretisation close to the aerofoil and maintains
p = 3 on the shock in order to avoid oscillations of the solution. Since the mesh is very
coarse, most of the error in the C

p

calculation is introduced at the shock position on
the top of the aerofoil. Since the p-adaptive procedure does not increase the polynomial
degree in the elements where the shock is present.

The e�ciency of the p-adaptive procedure comes from the reduction in the number of op-
erations required to solve the equations, but also the initial condition of each 1  p  p

max

simulation is a converged solution obtained with a lower degree (1  p  p

max

�1). How-
ever, the smaller CFL time restriction associated with p

max

has to be imposed over all
the domain, thus reducing the time step also in the regions with lower polynomial order.
A possible improvement could be the application of a domain decomposition technique or
variable timestepping to deal with di↵erent values of �t through the domain.

Current work is performed on the extension of the illustrated p-adaption technique to
time-dependent 3D problems in Nektar

++ provided that an e�cient method is developed
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to vary the polynomial degree at each time step. Furthermore, ongoing investigation is
performed on the topic of shock capturing in 3D compressible flow and results of both
topics will be discussed during the ADMOS conference.

7. p-adaption
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Figure 7.8: Solution of the inviscid transonic flow past a NACA0012 aerofoil. (a)
Density distribution; (b) Mach distribution; (c) Polynomial degree

distribution: blue: p = 1, green: p = 2, yellow: p = 3, red: p = 4; (d)
Sensor distribution.

the shock is present, the accuracy of the solution presents little improvement when the

polynomial degree is increased above p = 3, as Table 7.1 shows.

Transonic viscous flow

Finally a transonic viscous flow with free-stream conditions corresponding to a Mach

number Ma= 0.8, a Reynolds number of Re= 73 and at an angle of attack of ↵ = 10�

136

Figure 1: Solution of the inviscid transonic flow past a NACA0012 aerosol. (a) Density distribution; (b)

Mach Distribution; (c) Polynomial degree distribution: blue: p = 1; green: p = ; yellow: p = 3; red: p

= 4; (d) Sensor distribution.
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