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Abstract. The aim of this paper is to study the possibility of using extended finite ele-
ment methods to model piezoelectric transducers attached to beam structures without the
need for a conforming mesh. The main focus of this study is to propose enrichment func-
tions to represent accurately the strain discontinuities in Euler-Bernoulli and Timoshenko
beams. Further, we evaluate the performance of the enrichment functions on simple static
cases with a special emphasis on the shear locking in the Timoshenko beam.

1 INTRODUCTION

Thin piezoelectric transducers are widely used in applications such as active vibration
control, wave generation in materials and structural health monitoring. The finite ele-
ment modelling of piezoelectric transducers is well established; an overview of the existing
models can be found in [1]. Current practice for the modelling of structures equipped with
flat piezoelectric transducers requires the development of specific beam or plate elements
which are usually not available in commercial codes. The most important criteria when
using the finite element method to model piezoelectric transducers attached to host struc-
tures is that the mesh must exactly match the boundary between the piezoelectric trans-
ducers and the host structure. This requirement of conforming meshes leads to extensive
remeshing of the structure when optimal transducers configurations are investigated.

The need for conforming meshes arises due to the following reasons: the occurrence of
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a strain jump across the interface between the piezoelectric transducer and the host struc-
ture due to the additionnal stiffness of the piezoelectric transducer and the distributed
efforts acting on the edges of the patch when used as an actuator, the continuity of the
displacement field across the interface, and the presence of an electric field only in the
piezoelectric material. To overcome meshing difficulties and capture local phenomenon,
the extended finite element method (XFEM) for weak discontinuities was proposed for
two-dimensional problems [2]. In this paper, we will make use of XFEM to develop en-
riched Euler-Bernoulli and Timoshenko beam elements that can capture jumps in strains
across the interface between two materials using a non-conforming mesh. We identify the
location of the interface using an implicit level-set method. This paper is organized as
follows: Section 2 gives a brief overview about the behaviour of piezoelectric transducers
under actuation and their impact on the host structures. In Section 3, we develop the
enriched Euler-Bernoulli beam element with special emphasis on finding the right enrich-
ment function. In section 4, we develop the enriched Timoshenko beam finite elements.
In section 5, the shear locking problem of the enriched Timoshenko beams are explained
and an assumed natural strain method to avoid shear locking are proposed and tested for
an enriched Timoshenko beam element.

2 PIEZOELECTRIC ACTUATORS ATTACHED TO HOST STRUCTURES

Piezoelectric transducers operate in two modes: sensors and actuators. They are used
as sensors when generation of a surface charge happens as a result of mechanically straining
the piezoelectric material. For instance, this effect is usually used in force and acceleration
sensors. They also function as actuators when the geometry of the piezoelectric material
changes due to an applied electric field. Actuating the piezoelectric transducer produces
equivalent forces on the host structures as described in [3]. A cantilever beam with
attached piezoelectric transducers is considered in this paper as shown in Figure 1.

Actuating the piezoelectric transducers produces bending moments and point-forces
in the host structure at the boundaries of the piezoelectric actuator as shown in Figure
2. These stresses result in jumps in the membrane deformation and curvature of the
beam. In this study, we are interested in capturing these jumps using a non-conforming
mesh. Specifically we will be tackling the jump in the curvature of beams. This case is
similar to two-material beams where deformation jumps occur at the material interfaces.
For the sake of simplicity, a two-material beam considered here in order to develop the
enriched beam finite elements. These enriched finite elements could then be adapted to a
multi-layer coupled electro-mechanical beam model.

3 ENRICHED EULER-BERNOULLI BEAM FINITE ELEMENT

Assuming Euler-Bernoulli theory, the transverse deflection w of the beam is governed
by the fourth order differential equation given by

d2

dx2
(EI

d2w

dx2
) = q(x) (1)
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Figure 1: Cantilever beam with piezoelectric transducers

Figure 2: Equivalent loads on a cantilever beam with piezoelectric transducers

where E is the Young’s Modulus of the beam, I is the area moment of inertia about the
transverse axis of the beam and q is the distributed transverse load. The weak form of
this equation is given for an element by

∫ xe+1

xe

(

EI
d2v

dx2
d2w

dx2
− vq

)

dx+

[

v
d

dx

(

EI
d2w

dx2

)

−

dv

dx
EI

d2w

dx2

]xe+1

xe

= 0 (2)

The essential boundary conditions involve the specification of the deflection w and the
slope dw

dx
. The natural boundary conditions involve the specification of the bending mo-

ment EI d2w
dx2 and the shear force d

dx
(EI d2w

dx2 ) at the boundaries. The curvature of the beam

is given by d2w
dx2 and is considered as the generalized strain measure of the beam. Hermite

shape functions are used to approximate the deflection at any point of the beam using
finite elements, which reads

uFEM = Σ2
i=1(Hiwi +Riθi) (3)

where uFEM represents the deflection of the beam, Hi and Ri are the Hermite cubic
shape functions and wi and θi are the nodal deflections and nodal rotations. Considering
the problem defined in Figure 2, classical finite element modelling requires conforming
meshes in order to capture properly the material interfaces. An extended finite element
method (XFEM) allows the use of non-conforming meshes. In a XFEM approach, the
displacement field is enriched using the partition of unity technique [4] and is given by

uXFEM = Σ2
i=1(Hiwi +Riθi) + Σn

j=1Njψjaj (4)

where Nj are the partition of unity shape functions, n is the total number of functions
forming the partition of unity, ψj are the enrichment functions and aj are the additional
degrees of freedom related to the enrichment.
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3.1 Enriched Nodes

The location of an interface is found using the implicit level-set method. The level-set
is a measure of the signed distance between a node and the considered discontinuity. The
elements where the discontinuity is present are found using level-sets as described in [5].
The kinematics of all the nodes belonging to this element needs to be enriched.
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Figure 3: Enriched beam element

Figure 4: Two-material Cantilever beam with uniform load
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Figure 5: Non-conforming and conforming meshes for the considered problem
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Figure 6: Comparison of Displacements, Rotations and Curvature of two-material Euler-Bernoulli beam

3.2 Enrichment functions for Euler-Bernoulli beams

In the field of XFEM, two-material problems are classified as weak discontinuity prob-
lems because the discontinuity occurs in the derivatives of the primary variables which
remain continuous. The modelling of weak discontinuities using XFEM is explained in
[2] and [5] for two-dimensional problems. In this case, the primary variable is discretized
using linear shape functions and the enrichment functions are therefore not suitable for
the case of Euler-Bernoulli beams which require cubic shape functions. Since two inde-
pendent jumps, a curvature jump and a transverse shear jump, are needed to incorporate
properly a discontinuity in an Euler-Bernoulli beam, two enrichment functions have to be
defined. Their properties are listed as follows
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• The enrichment functions have to be cubic and piece-wise continuous

• They have to vanish at the boundary of the element to avoid problems with blending
elements as documented in [6]

• The first derivative of enrichment functions have to be continuous at the interface

• The first derivative of the enrichment functions should also get to zero at the bound-
ary of the element

• The second and third derivatives of the enrichment functions should be discontinu-
ous at the location of the interface

Considering an element depicted in Figure 3 whose extremities are located at X1 and
X2 with a material discontinuity located at Xa, the enrichment functions are derived by
means of the conditions set forth above. From the admissible space, the following set of
enrichment functions are found

ψ1 =

{

3s21 − 2s31 if x < Xa

1− 3s22 + 2s32 if x > Xa

(5)

ψ2 =

{

ℓ1s
2
1(s1 − 1) if x < Xa

ℓ2s2(s2 − 1)2 if x > Xa

where

s1 =
x−X1

ℓ1
and s2 =

x−Xa

ℓ2
(6)

3.3 Partition of unity for Euler-Bernoulli beams

Partition of unity is formed by a set of shape functions which add up to one. In
case of Euler-Bernoulli beams, the Hi functions sum up to one and form a partition of
unity. With the partition of unity established, we can now write the discretized XFEM
expression for the beam element shown in Figure 3 as

uXFEM = H1w1 ++R1θ1 +H2w2 +R2θ2 +H1ψ1a1 +H2ψ1a2 +H1ψ2a3 +H2ψ2a4 (7)

with degrees of freedom w1,θ1,a1 and a3 at node 1 and the remaining at node 2.

3.4 Implementation

Considering the beam problem defined in Figure 4 and the conforming and non-
conforming meshes depicted in Figure 5, the XFEM solution and the FEM solution on
the same non-conforming mesh are plotted in Figure 6. These solutions are compared
with the conforming mesh solution also given in Figure 6. It can be observed that the
jump in curvature is properly captured by the XFEM using a non-conforming mesh. For
the FEM solution using a non-conforming mesh,the change in material properties is care-
fully accounted for during numerical integration by applying the material property of the
material where the integration point is located.
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4 ENRICHED TIMOSHENKO BEAM FINITE ELEMENT

In this second part, the proposed approach is extended in order to incorporate a weak
discontinuity within a Timoshenko beam theory. The strain energy considering both
bending and shear contributions is given as

U =
1

2

∫

V

σxǫxdV +
1

2

∫

V

τxyγxydV (8)

where the normal stresses are given by the Hooke’s law

σx = Eǫx (9)

and the transverse shear stress is given by

τxy = kGγxy (10)

where k is the shear correction factor that varies according to the cross-section of the
beam and G is the shear modulus given by

G =
E

2(1 + υ)
(11)

where υ is the Poisson’s ratio for the beam material. Considering a Timoshenko beam
theory, the strain energy becomes

U =
1

2

∫ l

0

EI(
∂θ

∂x
)2dx+

1

2

∫ l

0

kAG(−
∂w

∂x
+ θ)2dx (12)

In contrast with the Euler-Bernoulli beam element, independent linear interpolations are
used here for the rotation and the deflection. For the case of a classical finite element,
this reads

wFEM = N1w1 +N2w2 (13)

θFEM = N1θ1 +N2θ2

where N1 = 1− x/l and N2 = x/l where l is the length of the element. As with an Euler-
Bernoulli beam, the Timoshenko beams can be enriched by introducing the partition of
unity based enrichment functions as follows

wXFEM = N1w1 +N2w2 +N1ψ1a1 +N2ψ1a2 (14)

θXFEM = N1θ1 +N2θ2 +N1ψ2a3 +N2ψ2a4

Since linear interpolations are used, the enrichment functions ψ1 and ψ2 can be ramp
functions as described in [5]. The partition of unity is formed by the shape functions N1

and N2. As described in the previous section, the location of the discontinuity is found
using the level-set and the elements containing a discontinuity are enriched.
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Figure 7: Comparison of the novel XFEM Timoshenko beam theory with respect of the clasical conforming
beam theories for the two-material beam problem. The deflection, the rotation and the curvature are
compared.

4.1 Locking in Timoshenko beams

Without using any specific treatment, the element beam described in the previous
section suffers from shear locking. This occurs due to inconsistent interpolation for w and
θ. In order to avoid the occurence of shear locking, many techniques were proposed such
as the assumed natural strain method, the reduced integration method and the consistent
interpolated element method. A detailed description of these methods can be found in
[7]. In this paper, an assumed natural strain method is used to avoid any shear locking
in the enriched Timoshenko beam element.
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Figure 8: Comparison of shear-strains of two-material Timoshenko beam

5 SHEAR LOCKING TREATMENT IN AN ENRICHED TIMOSHENKO
BEAM ELEMENT

The strain energy in Equation (12) is made of two parts namely the bending energy
and the shear energy. The stiffness matrix can therefore be split into two parts: the
bending part and the shear part which reads

K =

∫ x2

x1

[Bb]
T
EI[Bb]dx+

∫ x2

x1

[Bs]TkGA[Bs]dx (15)

where Bb and Bs are the operators linking respectively the curvature and the transverse
shear to the degrees of freedom of the beam. Using Equation (14), these operators are
given for an XFEM beam element as

Bb =

[

0
dN1

dx
0

dN2

dx
0 0

d(N1ψ)

dx

d(N2ψ)

dx
0 0 0 0 0 0 0 0

]

(16)

Bs =

[

0 0 0 0 0 0 0 0

−

dN1

dx
N1 −

dN2

dx
N2 −

d(N1ψ)

dx
−

d(N2ψ)

dx
N1ψ N2ψ

]

The Bs matrix in the above equation will lead to a shear locking problem due to the
presence of shape functions and their derivatives together. Based on the definition of the
transverse shear strain χ = θ − dw

dx
, an assumed natural strain method is used to treat

properly the shear locking. The transverse shear strain is assumed piece-wise constant
on each side of the interface. This is motivated by the fact that a conforming mesh with
regular beam element would lead to a piece-wise constant transverse shear field with a
discontinuity at the material interface. A classical collocation method is used to determine
the assumed strain as follows

∫ xa

x1

←→χ1 − χ = 0 (17)
∫ x2

xa

←→χ2 − χ = 0
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Figure 9: Behaviour of Elements as t→0

Expanding the above equations with the assumption that χ1 and χ2 are constant leads
to

←→χ1 =
1

ℓ1

∫ xa

x1

N1θ1 +N2θ2 +N1ψb1 +N2ψb2 (18)

−(
dN1

dx
w1 +

dN2

dx
w2 +

d(N1ψ)

dx
a1 +

d(N2ψ)

dx
a2)

←→χ2 =
1

ℓ2

∫ x2

xa

N1θ1 +N2θ2 +N1ψb1 +N2ψb2 (19)

−(
dN1

dx
w1 +

dN2

dx
w2 +

d(N1ψ)

dx
a1 +

d(N2ψ)

dx
a2)

Using Equations (19) and (2), the Bs operator can be split into two contributions related
to each part of enriched beam element as follows

Bs
1 =

1
ℓ1

∫ xa

x1

[

0 0 0 0 0 0 0 0

−

dN1

dx
N1 −

dN2

dx
N2 −

d(N1ψ)

dx
−

d(N2ψ)

dx
N1ψ N2ψ

]

(20)

and

Bs
2 =

1
ℓ2

∫ x2

xa

[

0 0 0 0 0 0 0 0

−

dN1

dx
N1

dN2

dx
N2 −

d(N1ψ)

dx
−

d(N2ψ)

dx
N1ψ N2ψ

]

(21)
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5.1 Implementation

The considered problem is depicted in Figure 4. The Poisson’s ratio is assumed to be
0.3 for both the materials. The deflection, the rotation and the curvature are compared
in Figure 7 for the proposed XFEM Timoshenko formulation using the non-conforming
mesh shown in Figure 5, with respect to a Timoshenko formulation and an Euler-Bernoulli
formulation both using a refined conforming mesh. Since the beam is very thin, it is shown
that the results of both Euler-Bernoulli and Timoshenko formulations are coherent. Also
from Figure 8, it can be observed that the jumps in the transverse shear strain field is
also captured accurately using XFEM. As shown in Figure 9, the solution of the enriched
Timoshenko formulation and the solutions of conforming Timoshenko and Euler-Bernoulli
approches are in good agreement when the beam thickness tends to zero. This effectively
proves that any shear locking does not occur when using the extended Timoshenko beam
finite element. The difference between the Euler-Bernoulli approach and the Timoshenko
approach can also be observed in Figure 9, where for smaller values of length over thickness
ratio, the solutions of the two approaches are different because the shear effects which are
more prevalent at these ratios are only considered when modelling using the Timoshenko
theory. Also the contribution from strain-energy to the total energy of the beam reduces
as the length to thickness ratio increases. The enriched element behaves no different in
this regard.

6 CONCLUSION AND PERSPECTIVES

In this study, we have detailed the enrichment functions for Euler-Bernoulli beam.
Simple static case was tested with the newly proposed enrichment function and found to
be satisfactory. A shear-locking free enriched Timoshenko beam finite element was also
developed and tested for the same static case. An assumed natural strain method was
used in order to avoid shear locking in Timoshenko beams. The current work will form
the basis for the development of plate elements using an enriched finite element approach.
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