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Abstract. This paper recalls our previous research on adaptive modeling and analysis of
structures of complex mechanical description. Such complex description results from the
application of at least two different models for the structure mechanical characterization.
The geometry of the structures can be either complex, i.e. composed of solid, shell
and transition parts, or simple – with one geometrical part employed. The numerical
models applied in such structures’ adaptive modelling and analysis is based on 3D-based
hierarchical modelling and hierarchical hp-approximations. The corresponding control
of the model and discretization adaptivities takes advantage of the a posteriori error
estimation, which is based on the equilibrated residual method (ERM). The method is
generalized for the special needs of 3D-based hierarchical models, and is applied to the
assessment of the total and approximation error estimators/indicators. The modelling
error indicators are obtained as the differences between their total and approximation
counterparts. The necessary modifications of the original ERM are the first subject of
this paper. These modifications concern both theoretical and implementation aspects.
The second subject presented in this paper concerns the parametric studies of the global
estimators or indicators of the total, modeling, and approximation error components.
Various factors affecting effectivity of the estimation are taken into account.
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1 INTRODUCTION

The paper completes our hitherto theoretical research efforts concerning the a posteri-
ori error estimation in the case of complex structures. Such structures include at least two
different mechanical models (theories) applied in mechanical characteristics of the struc-
ture. Within such structures we apply 3D-based approach utilizing only three-dimensional
degrees of freedom. The 3D-based models for complex structures were presented in [1, 2].
The considered estimation method for such models is based on the equilibrated residual
approach (ERM) [3] and is applied to the assessment of the global, total and approxima-
tion errors. The global modeling error is obtained as a difference of the former two errors.
The results from the a posteriori error estimation are assigned for adaptivity control of
hierarchical modeling and adaptive analysis of solid mechanics problems. These problems
may correspond to either simple or complex mechanical description.

The global modeling error estimate and the element contributions to it allow for the
adaptive hierarchical modeling within first order shell, hierarchical shell and the corre-
sponding transition (either shell-to-shell or solid-to-shell) domains of the complex struc-
tures. Both, the change of the mechanical model or q-adaptivity are possible – with q
denoting the transverse order of approximation within the hierarchical shell models. In
the recalled approach also adaptive 2D, 3D or mixed (2D/3D) hp-approximations are
possible in the shell, solid and transition domains of the complex structures, respectively,
with h standing for the averaged element dimension and p denoting the longitudinal or
three-dimensional order of approximation. The element contributions to the estimated
global approximation error serve these two types (h and p) of adaptivity.

Taking the above context into account, it is very important to have the estimation
method which can satisfy the specific needs of the complex structures 3D-based modeling
and analysis and delivers sufficiently accurate estimated values of the global errors, and
acceptable element contributions to them as well. In order to satisfy the mentioned
needs we adopt the existing algorithms of the equilibrated residual method. So far the
method was applied to either the approximation error estimation within three-dimensional
elasticity [4] or the total error estimation of the conventional hierarchical shell models
[5, 6]. Also the approximation error estimation for the 3D-based first-order shell models
is available [1, 7, 8]. Here we extent the application of the residual equilibrated method
onto the estimation of the total error of the 3D-based first-order shell model, as well
as the estimation of the total and approximation errors of the 3D-based hierarchical
shell and transition models, both skipped in our previous works. In particular we show
how to apply this method to the 3D-based (constrained) shell model of the first order
and the corresponding constrained transition models as well. Such an application needs
different equilibration procedure than the three-dimensional equilibration applied to the
3D-elasticity or hierarchical shells, where the equilibration is performed in the global
directions. The adopted approach requires introduction of the local nodal coordinate
systems, and different treatment of the constrained and unconstrained directions. Note
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that some key aspects of this approach were presented in [9]. The present paper provides
readers with some additional, theoretical and algorithmic, remarks or hints which were
not published in the cited paper.

In order to assess the quality of the equilibrated residual method we compare three
versions of the method. The differences between them result from the different definitions
of the element local problems in these three versions. The collection of solutions to
such problems constitutes the estimate of the exact global solution. In the first of the
applied versions, we average the interelement stress fluxes. In the second case we perform
linear (at the element vertex nodes) equilibration of these fluxes. In the third version
we constrain local problems at element vertices by means of the displacement values
obtained from the global numerical solution. Then, for the most effective case (the third
one), we perform unique parametric studies of the modeling, approximation and total
error estimations. These studies include such important factors as: the problem type, the
applied mechanical model, and the mechanical complexity of the model. Our studies are
completed with an analysis of the results. This analysis leads to practical hints concerning
the appropriate definitions of the local problems, so as to assure the most effective error
estimation within complex structures. Note that the numerical results presented here
illustrate some of the tabular data published in [9].

2 MODIFICATION OF THE ERM FOR COMPLEX STRUCTURES

In order to apply the equilibrated residual methods (ERM) to the 3D-based models of
complex structures, one has to include the following changes.

Firstly, the equilibration procedure has to be performed in the local nodal directions for
the shell vertex nodes of the shell elements (see [7, 9]) and such nodes of the shell parts of
the transition elements as well (compare [9]). These nodal directions are consistent with
the shell mid-surface normal and tangent directions. In the normal direction different
shape function definition has to be applied in the equilibration procedure so as to take into
account the Reissner-Mindlin kinematic constraints of lack of elongation of the normals to
the mid-surface. In the case of the solid nodes of the solid or hierarchical shell elements,
and in such nodes of the solid or hierarchical shell parts of the solid-to-shell or shell-to-
shell transition elements as well, the equilibration can be performed in the standard way
[1, 3, 4], i.e. in the global directions. The standard 3D vertex shape functions are applied
in this case.

And secondly, in the local ERM problems of the elements of the regular meshes, the
nodal forces due to the equilibrated interelement stress fluxes have to be defined as global
ones. In the case of the solid nodes, one can use the global splitting factors and global
components of the interelement stresses for these forces determination. The applied shape
functions are 3D vertex ones. On the contrary, in the case of the shell nodes, one has to
utilize the local splitting factors and local components of the interelement stresses. One
may apply the same shape functions as before, apart from the third local direction, where
one has to apply the modified vertex shape functions, accounting for the Reissner-Mindlin
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constraints. Finally, the products of the local factors and stresses have to be transformed
to the global system of coordinates.

In the case of the irregular meshes, resulting from the local element subdivisions,
one has to take into account that for the hanging (constrained) vertex nodes of the
element obtained with the subdivision, the splitting factors are expressed through the
corresponding factors of the vertex unconstrained (active) nodes of the undivided parent
(or neighbouring) element. Examples of the corresponding relations, for the solid nodes,
in the case of 2D- and 3D-problems, can be found in [4, 10] and [1], respectively. In this
paper we extend this approach onto the shell nodes of the first-order shell and transition
elements.

3 PARAMETRIC STUDIES OF THE ESTIMATORS

Here we take advantage the benchmark examples used by us elsewhere [1, 2, 9]. The
first two examples concern a bending-dominated plate and a bending-dominated half-
cylindrical shell. Both structures are aligned horizontally. The third example corresponds
to a membrane-dominated cylindrical shell. The length of straight edges of the plate
and shells are equal to 2l = 3.14 · 10−2 m, the curved edges of the shells are equal to
2l = πr = 3.14 · 10−2 m, with r = 1.0 · 10−2 m. The thickness of the structures equals
t = 0.15 · 10−2 m. The plate is clamped. Also the straight edges of the first shell are
clamped, while the curved ones are free. There is no rotation along the curved edges of
the second shell. The two bending-dominated examples are loaded vertically with the
uniform traction p = 4.0 · 104 N/m2, while the membrane-dominated shell is loaded with
the internal pressure of the same magnitude. Due to the symmetry of the geometry,
loading and boundary conditions we analyse only a quarter of the bending-dominated
structures and one-eighth of the membrane-dominated one.

3.1 Dependence of effectivities on the local problem definition

We analyze the residual method local problems of three types in this section. In figs. 1
and 2 we present the results obtained with averaging of the interelement stresses, for two
definitions of the discretization parameters H, P and Q in the local problems. Here H, P
and Q are the local problem counterparts of the global parameters h, p and q. The first
definition is: H = h, P = p, Q = q + 1, while the second one reads: H = h, P = p + 1,
Q = q + 1. Subsequently, figs. 3 and 4 correspond to equilibration of the interelement
tractions in the local problems for the two definitions, while figs. 5 and 6 correspond
to constraining the vertex nodes of the elements with the values of displacements from
the global problem. Note that in the first four cases the elements are constrained with
six global displacements so as to remove three rigid body translations and three rigid
body rotations. The presented results concern the approximation, modeling and total
global error effectivity indices and correspond to the plate example. The calculations
were performed for the hierarchical shell model MI of the second order (I ≡ q = 2) and
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Figure 1: Effectivity indices in the case of stress averaging (H = h, P = p, Q = q + 1)
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Figure 2: Effectivity indices in the case of stress averaging (H = h, P = p + 1, Q = q + 1)

the uniform mesh division into 2m2 prismatic elements (m ≡ l/h = 3).
Analyzing all of the presented results, one can notice the worsening of the approxi-

mation error effectivity indices with low values of p. Also high values of p lead to worse
values of the approximation error effectivities. This two observations can be related to the
presence of the numerical locking for p = 2 and the influence of the boundary layer phe-
nomena for p ≥ 6, respectively. Please note that the total and modelling error effectivities
are affected by the locking phenomenon only.

The second observation is that, even though the equilibration delivers better effectivi-
ties than the averaging, neither the averaging nor the equilibration provide the satisfactory
results of the residual-based global error estimation, as the effectivity indices are far above
the desired value of 1.0. The best results are obtained for the constraining the local prob-
lems with the global displacements, with H = h, P = p + 1 and Q = q + 1. Because of
that, our further numerical tests will be limited to this particular case.
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1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

order p

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

g
lo

b
a
l 
e

rr
o

rs
 e

ff
e

c
ti
v
it
y

M=MI, I=2
t=0.15e-2

m=3

total error

approximation error

modeling error

 

Figure 3: Effectivity indices in the case of stress equilibration (H = h, P = p, Q = q + 1)
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Figure 4: Effectivity indices in the case of stress equilibration (H = h, P = p + 1, Q = q + 1)

3.2 Influence of the problem type on effectivities

In order to determine the influence of the problem type (plate or shell, bending or
membrane dominance) on effectivities we compare the corresponding results for the plate
(the bending-dominated one), the bending-dominated shell, and the membrane-dominated
shell as well. In the latter case we consider two problems, corresponding to hierarchical
shell models MI of the first (I ≡ q = 1) and second (I ≡ q = 2) order, as for the
membrane-dominated structures the improper solution limit phenomenon does not ap-
pear. In the case of the two bending-dominated examples only I ≡ q = 2 is possible,
because of this phenomenon appearance. In all examples we apply m = 4. The results,
corresponding to the four respective cases, are presented in figs. 7, 8, 9 and 10.

Analyzing the results one can notice that for the bending- and membrane-dominated
shell examples the approximation error effectivity is worse than for the plate. Only, the
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Figure 5: Effectivity indices in the case of vertex constraints (H = h, P = p, Q = q + 1)
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Figure 6: Effectivity indices in the case of vertex constraints (H = h, P = p + 1, Q = q + 1)

bending-dominated shell example is sensitive to the locking (p = 2, 3) and boundary
layer phenomena (p ≥ 6), in the way qualitatively similar to the plate example. Both
membrane-dominated examples produce similar results. No influence of the locking and
the boundary layer is observed.

3.3 Influence of the model on effectivities

Here we compare the results presented in the previous subsection, corresponding to
our three model problems and 3D-based hierarchical shell model MI, with the analogous
results obtained for the 3D-based Reissner-Mindlin model RM of the plate and shells.
The respective results for m = 4, in the case of the plate and bending- and membrane-
dominated shells are shown in figs. 11, 12, 13, respectively.

It can be noticed that the RM model results are less sensitive to the locking phe-
nomenon for the applied density of the mesh, due to better regularity of this model in
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Figure 7: Plate problem effectivities versus the order p (M = M2, t = 0.15 · 10−2 m)
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Figure 8: Half-cylindrical shell problem effectivities vs. p (M = M2, t = 0.15 · 10−2 m)

comparison to the hierarchical MI model. Moreover the influence of the boundary lay-
ers is not present for this model. This observation is consistent with the theory for the
Reissner-Mindlin model.

The second observation is that in the case of the two bending-dominated examples the
total and modeling error effectivities are below 1.0 and equal to about 0.8.

3.4 Effectivities versus model complexity

In this subsection we introduce complex mechanical description of our plate and shell
examples. This means that the hierarchical shell model MI (I ≡ q = 2), the first-
order shell model RM (q = 1) and the 3D-based shell-to-shell transition model MI/RM
(q = 1, 2) are employed for each model structure. In the case of the plate, the RM square
domain is symmetric and located in the interior of the plate. The lengths of a quarter of
this domain are equal to lRM = l/2. In the case of the bending-dominated half-cylindrical
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Figure 9: Cylindrical shell problem effectivities versus p (M = M2, t = 0.15 · 10−2 m)
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Figure 10: Cylindrical shell problem effectivities versus p (M = M1, t = 0.15 · 10−2 m)

shell, the MI zone is aligned along the straight clamped boundary of the shell. The
curved boundary of a quarter of the shell is divided by two, i.e. lRM = l/2 = πr/4. In the
case of the membrane-dominated shell, the straight boundary of one-eighth of the shell
is divided by two, i.e. lRM = l/2, and the MI zone is aligned along the external curved
boundary of the shell. The MI zones of the plate and shells are joined with the RM
zones with one layer of the transition elements MI/RM , forming the transition domain
TR.

Comparing the complex models’ results, presented in figs. 14, 15, 16 and 17, with
the corresponding results for the pure MI models (figs. 7, 8, 9 and 10), one can see
their close similarity. The only difference is that now, in the case of the two bending-
dominated examples, the total and modeling error effectivities are slightly below 1.0, due
to the presence of the RM zones in the complex models of the structures.
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Figure 11: Plate problem effectivities versus the order p (M = RM , t = 0.15 · 10−2 m)
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Figure 12: Half-cylindrical shell effectivities versus p (M = RM , t = 0.15 · 10−2 m)
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Figure 13: Cylindrical shell problem effectivities versus p (M = RM , t = 0.15 · 10−2 m)
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Figure 14: Plate problem effectivities versus p (TR = M2/RM , t = 0.15 · 10−2 m)
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Figure 15: Half-cylindrical shell effectivities versus p (TR = M2/RM , t = 0.15 · 10−2 m)

4 CONCLUSIONS

The theoretical findings, which concern the algorithms of the residual-based error es-
timation of the structures of 3D-based complex mechanical description, are as follows.

- The equilibration procedure, proposed in the case of the complex structures, needs
distinction between the solid and shell vertex nodes, as in the latter case the ap-
plication of the modified shape functions, which account for the Reissner-Mindlin
constraints, is necessary. Also the application of the local directions, perpendicular
and tangent to the shell mid-surface, is necessary in this case.

- The definitions of the vertex nodal forces, entering the ERM local problems and
representing the equilibrated interelement stress fluxes, are also dependent on the
vertex node type. In the case of the shell nodes, the local directions and the modified
shape functions are applied again.
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Figure 16: Cylindrical shell problem effectivities vs. p (TR = M2/RM , t = 0.15 · 10−2 m)
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Figure 17: Cylindrical shell problem effectivities vs. p (TR = M1/RM , t = 0.15 · 10−2 m)

- In the case of the element local problems with hanging (constrained) nodes, the
splitting functions and factors are expressed with the corresponding factors of the
bigger undivided elements. The distinction between the solid and shell nodes may be
in use again, i.e. both the local and global splitting factors may enter the calculation
of the forces acting in the element vertex hanging nodes. Such complex situations
happen for the h-refined transition elements.

The conclusions, concerning parametric studies of the error estimation with the element
residual methods, can be formulated as follows.

- The version of the element residual method based on the constraints defined with
the global problem vertex displacements, with H = h, P = p+1, Q = q +1 applied
in the local element problems, delivers the effectivity results closest to the desired
value of 1.0. This version is better than the two approaches based on the averaging
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or equilibration of the interelement stresses in the local problems.

- In the case of this constrained version of the ERM local problems, all three global
effectivities are above 1.0 for the purely hierarchical models MI of the structures.
In the case of the bending-dominated RM and complex models of the structures,
the total and modelling error effectivities are below 1.0.
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