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Abstract. In a medical context, one of the most used techniques to produce an
initial mesh (starting from segmented medical images) is the Marching Cubes (MC)
introduced by Lorensen and Cline in [1]. Unfortunately, MC presents several issues in
the meshing context. These problems can be summarized in three types: topological
(presence of holes), of quality (sharp triangles) and accuracy in the representation of
the target domain (the staircase effect). Even though there are several solutions to
overcome topological and quality issues, the staircase effect remains as a challenging
problem.

On the other hand, the Computational Geometry Algorithms Library (CGAL)
[2], has implemented the Poisson Surface Reconstruction algorithm introduced in
[3], which is capable of producing accurate and high quality triangulations based on
a point set and its normal directions.

This paper shows how surface meshes can be produced using both, MC and
CGAL. Moreover, starting from the generated quality surface mesh, this work also
shows how volume meshes can be produced. Therefore, a complete workflow, start-
ing from segmented medical images to surface and volume meshes, is introduced
in this work. In particular, tetrahedral and mixed–element meshing techniques are
presented to produce a simulation with the Finite Element Method.
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1 INTRODUCTION

In the context of biomechanical modelling of human organs, the most common way
to produce a mesh suitable for biomedical applications is to perform the following
steps:

• Acquire volumetric medical images of the patient’s organ using magnetic res-
onance imaging (MRI), ultrasound (US), computed tomography scanner (CT)
or other imaging techniques.

• Achieve image segmentation in order to produce a cloud of points or an initial
surface mesh defining the geometry of the modelled domain.

• Add internal nodes to produce the 3D elements that will conform the final
volumetric mesh.

One of the most used methods for extracting surfaces from volumetric information
arising from sources such as MRI data and CAT scans is implicit modelling, leading
to an abundance of approaches. One of the most widespread approach is Marching
Cubes (MC) [1], which belongs to the family of techniques that uses a structured
grid for implicit modelling [4].

One apparent drawback of MC is the uniform sampling density which does not
take the local surface curvature into account, producing problems like: (i) presence
of holes or surface crossing (topology), (ii) sharp and flat triangles (quality) and
(iii) the MC characteristic staircase effect. Even though many approaches have
been proposed to control the mesh complexity, e.g., by adaptive octree descent with
sophisticated refinements, the quality and the staircase effect remain as challenging
problems.

The Poisson Surface Reconstruction Method (PSR) tackles these issues by es-
timating the surface as the iso-contour to an indicator function defined from the
normal vectors to the MC boundary. The Computational Geometry Algorithms Li-
brary (CGAL) implements a variant of this algorithm which solves for a piecewise
linear function [2].

This paper shows how to obtain high accuracy surfaces, that approximate a volume
outer boundary from MC algorithms using a PSR method implemented in CGAL.
Moreover, this paper shows how to obtain volume meshes starting from the acquired
surface mesh.

2 MATERIALS AND METHODS

The overall proposed workflow is shown in Figure 1, where three main compo-
nents are introduced: input data, surface meshing and volume meshing. The surface
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meshing is based on the MC method, the rendered mesh is improved in order to use
CGAL to apply a PSR method. The output of CGAL is finally used to construct a
high quality volume mesh.

Image Aquisition

Marching Cubes

Segmentation

Quality Improvement

Mixed-Element

Hexahedra

Tetreahedra

Computation of
point normal

Poisson Surface
Reconstruction

Quality
Improvement

Input Data Surface Meshing Volume Meshing

Figure 1: Main Workflow with three steps: Input Data, Surface Meshing and Volume Meshing.

2.1 Image acquisition and segmentation

Volumetric medical images from imaging acquisition technology, such as CT, MRI
and PET, are represented by a stack of 2D image slices in 3D space, where the tissue
type surrounding a Voxel (volumetric pixel) determines its value. The variations
in tissue type give rise to varying intensity which is quantized as a scalar value
known as grey level, or more often as vector or tensor values when Voxels contain
multiple scalar values, e.g. in ultrasound. The segmentation problem is essentially
a classification problem. A label representing the region to which an image Voxel
belongs is assigned to each Voxel. The assignment is however, subject to some
constraints, such as piecewise continuity and smoothness. Depending on the imaging
technique, the segmentation could be difficult and a research area in itself [5].

2.2 Surface Meshing

The first step is to use MC to render a surface from segmented contours. The
principle behind the MC algorithm is to subdivide space into a series of small cubes.
By the values at its eight vertices -below or above an isovalue- the intersections at the
cube edges are found. These intersections are used to generate triangles representing
the isosurface by a lookup table of surface configurations of cubes. However, the
MC shows important drawbacks for some surface configurations: the topology of
the isosurface is not unique and the resulting surface of two adjacent neighbor cubes
can produce: holes, poor quality triangles explained below and low accuracy in the
representation known as the staircase effect.
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With respect to holes in the triangle mesh, there are new versions of MC [4, 6],
that address and solve this problem. Alternatively a conventional solution is the use
of the ear clipping technique [7], adding new triangles to close the hole.

One of the most important quality metrics for surface meshes is the minimal angle.
There are two types of poor quality triangles: sharp and flat. The first refers to a
triangle that has one angle close to cero and two close to 90 degrees. A conventional
solution is the edge collapsing technique, which will “join” the two nodes opposite
to the “close to cero” angle. The second one has two angles close to cero and one
close to 180 degrees; there is no proper or general solution for this case.

These repairing techniques allow to get a surface mesh without sharp triangles
nor holes; the next section is dedicated to tackle the problem of low accuracy repre-
sentation or staircase effect.

2.3 Quality meshes from implicit functions

Starting with a surface mesh free of holes and sharp triangles, problems like stair-
case effect and remaining poor quality triangles can be overcome by the Poisson
Surface Reconstruction method (PSR) [2] which is available in the library CGAL.
The PSR formulation considers [3] all points at once, without resorting to heuris-
tic spatial partitioning or blending and so, is highly resilient to data noise. This
approach allows a hierarchy of locally supported basis functions, and the solution
reduces to a well conditioned sparse linear system.

CGAL takes as input a set of normal vectors (3D oriented set of points). The
normal of each node is computed as the average of incident triangle normals. Given
an oriented set of points. CGAL algorithm builds a 3D Delaunay triangulation from
these points and refines it by Delaunay refinement so as to remove all badly shaped
(non isotropic) triangles and to tessellate a loose bounding box of the input oriented
points [2]. The PSR defines an indicator function χ̃ as 1 at points inside the model,
and 0 at points outside. A new quality surface is obtained by extracting an isosurface.

The principle behind this method is the relationship between oriented points (nor-
mal vectors) and the indicator function. The gradient of the indicator function is a
vector field that is zero almost everywhere (since the indicator function is constant
almost everywhere), except at points near the surface, where it is equal to the inward
surface normal. Thus, the oriented point set can be considered as a sample points
from the gradient of the indicator function shown in Figure 2, [3].

The indicator function thus reduces to inverting the gradient operator, i.e. finding
the scalar function χ̃ whose gradient best approximates a vector field ~V defined by
the samples, i.e.

Min|∇χ̃− ~V |.
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Figure 2: Four stages to reconstruct a surface: obtain a set of sample oriented points, each oriented
point can be considered as a sample point of the gradient of some indicator function, the isosurface
induced by the indicator function defines the reconstructed model.

Applying the divergence operator, this variational problem transforms into a stan-
dard Poisson problem: Compute the scalar function χ̃ whose Laplacian (divergence

of gradient) equals the divergence of the vector field ~V ,

∆χ̃ ≡ ∇ · ∇~χ = ∇ · Ṽ .

In order to implement and solve this approach in a discrete domain, some problems
must be considered [3].

2.3.1 Define the gradient field

Because the indicator function is a piecewise constant function, explicit computa-
tion of its gradient field would result in a vector field with unbounded values at the
surface boundary. To avoid this, the indicator function is convolved with a smoothing
filter and considers the gradient field of the smoothed function [3].

∇(χM ∗ F̃ )(q0) =

∫
∂M

F̃ (q0)N̄∂M(p)dp

2.3.2 Approximating the gradient field

Using the point set S to partition ∂M into distinct patches ℘s ⊂ ∂M , we can
approximate the integral over a patch ℘s by the value at point sample s.p , scaled
by the area of the patch:

∇(χM ∗ F̃ )(q) ≈
∑
s∈S

|℘s|F̃s.p(q)s. ~N ≡ ~V (q)
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2.3.3 Solving the Poisson problem

Having formed a vector field ~V , we want to solve the function χ̃ so that ∇χ̃ = ~V .
However, ~V is generally not integrable (there is not guarantee that is curl-free), so an
exact solution does not generally exist. To find the best least-squares approximate
solution, we apply the divergence operator to form the Poisson equation.

∆χ̃ = ∇ · ~V

2.4 Volume Meshing

Following the workflow shown in Figure 1, there are three type of volume meshing
analyzed in this work and they vary in terms of element type employed: tetrahedra,
hexahedra or mixed–elements, meaning a mix of tetrahedra, hexahedra, pyramids
and prisms (wedges). In order to compare the different results generated by these
meshing techniques, it is first necessary to explain how quality of volume elements
is measured.

2.4.1 Quality of volume meshes

The Jacobian Ratio (JR) is one of the most used quality criterion in hexahedra
meshes [8, 9, 10, 11, 12] and in order to understand how it works, it is necessary to
understand some concepts first.

The FEM establish a bijective mapping function F between the modeled domain
referential (x1, x2, x3), in which the elements of the mesh are defined, and a referential
parent system (ξ1, ξ2, ξ3) for each type of element. The Jacobian matrix J of mapping
F considered at parent frame point ξ is then defined as:

J(ξ) :=
∂F

∂ξ
(ξ)

If for some reason, F is no longer bijective, a Finite Element Analysis (FEA)
cannot be carried out over the mesh. In order to detect the bijection property of
F , two values must be computed for each node. The first is the determinant of J ,
|J(ξ)|. The second is the Jacobian Ratio JR defined as:

JRi =
|J(ξ)|i
|J(ξ)|max

where |J(ξ)|max is the maximum value of |J | among all element nodes. Note that
JR is normalized to present values between (−∞, 1].
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Element category invalid very bad questionable good

JR value (−∞, 0.001] (0.001, 0.03] (0.03, 0.2] (0.2, 1]

Table 1: Quality categories for Jacobian Ratio

It is now possible to say that F is not longer bijective when JR ≤ 0 for at
least one of its nodes. Moreover, the quality of an element e can be defined as
JRe := |J |min/|J |max and therefore, if any element presents a JRe ≤ 0, then not
only is the element invalid, but the entire mesh is considered as not suitable for
FEA.

The JR is not only used to detect invalid elements, but also poor quality ele-
ments. A perfect element is the one with a JR = 1. An element is said to present
“questionable” quality when JR ∈ (0, 0.2) after the Verdict library of mesh quality
metrics1 and some authors [9, 11]. On the other hand, the documentation of one of
the most important commercial Finite Element Solver (FES), ANSYS2, states that
an element with a JR value3 less than 0.001 presents so poor quality that it is consid-
ered as invalid. Moreover, an element with a JR value ∈ (0.001, 0.03] is suitable for
FEA although the solution from the FES will be inaccurate. Regarding both quality
boundary definitions, Table 1 shows the different categories for element quality.

The JR criterion is widely used in hexahedra meshes and it can be easily extended
to prisms and pyramids by the computation of the |J | for those element types.
Unfortunately it is not a good quality measure for tetrahedra as the value of |J | is
the same for each tetrahedron node no matter their position, in other words, the
value of JR for a tetrahedron is always 1. Moreover, the JR does not allow the
detection of sliver (or flat) tetrahedra, which is one of the most common problems
for this type of element and it adds imprecision to the solution found by a FES.

On the other hand, there is a quality criterion used by several authors [13, 14, 15]
that considers important geometric aspects of the tetrahedron, like its volume V and
its edge lengths li:

Aγ :=

(
1
6

∑6
i=1 l

2
i

)3/2

8.47867× V
As it compromises the volume, it helps to detect sliver tetrahedra. Moreover, if V

is the signed volume, Aγ can detect element inversion. Finally, the use of the edge

1The verdict mesh verification library (2007) Sandia National Laboratories, http://cubit.

sandia.gov/verdict.html
2http://www.ansys.com
3Note that ANSYS defines the Jacobian Ratio as JR−1 regarding the notation used here.
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lengths will avoid to consider extremely sharp tetrahedra as “good” elements.
In order to consider a similar scale to JR, the final quality of a tetrahedron is

defined as Qtetra = A−1
γ . With this definition Qtetra is negative for any inverted

element, bad when it’s close to 0 and perfect when its value is 1.
The JR might also fail in detecting inverted pyramids. For this reason a signed

and normalized version of the aspect ratio (AR) presented in [16] is used. In this
case, a negative AR shows the presence of inverted elements.

2.4.2 Tetrahedral meshing using TetGen

To generate tetrahedral meshes, one of the most used softwares is TetGen (http:
//tetgen.org), developed by Hang Si. This program has implemented several mesh-
ing algorithms that allow to produce a tetrahedral mesh. Some of its capabilities
are: to preserve the input surface mesh and constraint the mesh generation process
in order to create quality elements, e.g., constraining the minimal dihedral angle.
It is important to note that TetGen, as well as CGAL, is capable of improving the
quality of a surface mesh. However, TetGen will use all the nodes of the input mesh
and will add more (Steiner points) in order to build a constrained or conforming
Delaunay triangulation. In contrast to TetGen, CGAL may or may not use all input
nodes in the process of achieving a quality triangulation. As it will be show in the
result section, CGAL tends to produce meshes with less triangles and nodes than
the quality mesh generated by TetGen (in the context of surface meshes generated
with the MC ).

2.4.3 Hexahedral meshing

One of the most common techniques to produce a hexahedral mesh is the Octree
[17]. The Octree allows regions of different refinement level to coexist in the same
mesh. By the use of several templates containing only hexahedra, transitions are
performed between coarse and refined regions [9, 10, 18].

The Cubit Tool Suite developed at Sandia National Laboratories (http://cubit.
sandia.gov/) implements most of the state of the art algorithms in hexahedral
meshing. Unfortunately, even for academic purposes, it is not easy to obtain a
license (as in the case of TetGen).

2.4.4 Mixed–Element mesheing

Once a hexahedral mesh is produced, there are two options to achieve surface
representation: (1) remove all hexahedra intersecting the boundary (meaning an
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element with inside and outside nodes) and then fill the gap adding new hexahedra
in a proper manner [9] or (2) project the outside nodes onto the surface.

A recent work [19] has proposed to replace boundary hexahedra by mixed–elements
in order to improve the overall mesh quality. Once this replacement is done, project
outside nodes onto the surface. This technique tends to produce less quality issues
than using only hexahedral; although, none of these techniques can ensure mesh
validity for a general case.

3 RESULTS AND DISCUSSIONS

The surface mesh generated for Breast simulation is shown in Figure 3. As men-
tioned in section 2.4.2, TetGen improves the quality of the input mesh; however,
the final results have more triangles than the output generated by CGAL and may
present flat triangles. Table 2 summarizes statistics for surface meshing in the con-
text of the workflow shown in Figure 1. Finally, the CGAL mesh was contrained to
present triangles with min angle above 30 degrees.

(a)

(b)

(c)

(d)

(e)

Figure 3: Breast surface meshing: (a) input data with the MC, (b) zoom to previous mesh, (c)
zoom to the same region in a TetGen optimized mesh, (d) zoom to CGAL mesh and (e) the output
mesh by CGAL

With respect to Volume meshing, the output of TetGen and the mentioned mixed–
element technique are compared. Unfortunately, the Cubit output could not be
compared as it was to difficult to obtain the software. Table 3 summarizes statistics
for volume meshing. Finally, Figure 4 shows the results for volume meshing, where
the overall mesh generated by TetGen is omitted because it is equal (in terms of
surface) to the mesh generated by CGAL.
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MC MC improved TetGen CGAL

nodes 12189 10104 50975 4058

triangles 24374 20204 101946 8112

min angle 0.008 0.0108 0 30

max angle 179.2 179.9 180 119.9

Table 2: Statistics for surface meshing

(a) (b) (c)

Figure 4: Breast volume meshing: (a) output by mixed–elements, (b) cut to see internal elements
and (c) same cut to TetGen mesh (using the surface generated by CGAL).

4 CONCLUSIONS

In this paper, we have proposed and evaluated a workflow based of sophisticated
existing tools to improve poor quality volumetric models, making the process simple
enough for non–experts to use in a wide range of applications.

The major advantage of the proposed workflow is that, the ability to remove
progressively poor quality elements allows to generate high quality surface meshes
and subsequently an accurate volume mesh of the actual geometry, from a point–
cloud acquired with conventional volumetric imaging methods.

Performance metrics over the polygonalization quality show that our workflow
can successfully generate volumes free of bad geometry problems, with good quality
triangles in many complicated surface meshes.

Elements Nodes Aspect–ratio Jacobian–ratio

TetGen 15680 4801 0.0623 –

Mixed–Elements 35748 27029 0.204 0.1894

Table 3: Statistics for volume meshing
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