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Abstract. The processes occurring in solid targets (metals, semiconductors) initiated by 
pulsed flows of condensed energy is described by two-temperature model (TTM). The 
simplest TTM model for metals consists of two, and for semiconductors of three non-linear 
parabolic equations. Ultrafast impact (pico-femtosecond pulse duration) predetermines the 
appearance of large solution gradients that require in numerical solution application of 
computational grids with dynamic adaptation. Transition to an arbitrary non-stationary system 
of coordinates, the velocity of which is unknown and depends on the desired solution is the 
basis of the construction of a dynamically adaptive grids. Velocity of the system of 
coordinates for the numerical discretization is used as a function that control the motion of 
grid nodes . Agreed change of movement of grid nodes with the solution is achieved by 
constructing of transformation function derived from the principle of quasi-stationarity. 

Simulation of some specific regimes of pulsed heating and melting of semiconductor 
silicon (Si), using a numerical grid with the controlled distribution of nodes was carried out.  

 
 
1 INTRODUCTION 

Pulsed laser radiation is a widely used tool for precision machining of materials, including 
semiconductors. Among semiconductor materials, silicon was most widespread in the 
instrument-making and is one of the most promising materials for thin-film nanotechnology. 

To optimize existing and develop new technologies of laser surface treatment of 
semiconductors it is necessary to perform a detailed study of the dynamics of processes 
occurring in the irradiation zone and leading to surface modification, including an analysis of 
the processes of heating, melting and evaporation. 

In this paper, we use the methods of mathematical modeling to investigate the action of 
laser pulse (picosecond) with a wave length of λL=0.53µm and the photon energy exceeding 
the band gap of silicon target ħω>Eg. The main feature of these regimes of laser action is 
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highly non-equilibrium of heating and melting processes, which results in a large difference 
between the carriers temperature and the lattice temperature. The numerical solution of  
system of partial differential equations of parabolic type was carried out by means of the 
dynamic adaptation method. The use of arbitrary nonstationary system of coordinates allows 
to construct grids with a constant number of nodes in regions with moving boundaries and 
allows to concentrate grid nodes in regions of large gradients of solutions. 

Laser radiation with intensity G(t), Gaussian distribution and wavelength λL extending 
from left to right (Fig. 1) falls on silicon target surface, where the part of the radiation is 
reflected and some is absorbed. The released energy of laser pulse causes heating, melting 
(moving boundary Гsl - melting front) and evaporation (moving boundary Гlv  - evaporation 
front). 

2 MODEL 
The mathematical model consists of transport equations of the laser radiation, which takes 

into account the temperature dependence of the reflectivity of the surface, the carrier balance 
equation that takes into account generation (photo-ionization) and recombination of charged 
particles (Auger recombination, and photo-recombination), the balance equations of energy 
carriers and the lattice, taking into account the absorption of laser energy, the exchange of 
energy between the electron and phonon subsystems, heat and mass transfer [1-2]. 

 

 
Figure 1. Scheme of laser irradiation. 

 
The basis of first-order phase transitions  is the mechanism of heterogeneous melting and 

evaporation. The process of melting - crystallization is described in approximation of classical 
variant of Stefan problem and the process of evaporation is described in approximation of 
Knudsen layer (single-phase version of Stefan problem). 

Semiconductor has the properties of metal after melting temperature is reached. And 
therefore it is necessary to write equations for the solid and liquid regions. 

Equations for solid region: 

 2



First A. Author, Second B. Author and Third C. Coauthor. 

( ) ( )

( ) ( )

( )

Lxx

GG
x
G

TTTg
x

W
t

TTTg
x
G

x
W

t

RI
x
J

t
N

sl

latelate
latlat

latelate
ee

enen

<<Γ

−+−=
∂
∂

−+
∂

∂
−=

∂
∂

−−
∂
∂

−
∂
∂

−=
∂
∂

−+
∂
∂

−=
∂
∂

(4)                                                                                 ,2

(3)                                                                ,

(2)                                                           ,

(1)                                                                                      ,

21 ββα

ε

ε

 

Equation (1) is equation for a concentration. Equations (2), (3) are energy equations for 
electron component and lattice. Equation (4) is equation of laser energy transfer.  

Equations for liquid region: 
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Where N – carrier concentration, J – particle current density, εe и εlat – internal energy of 
electron gas and lattice, We и Wlat – heat flow of electron gas and lattice, xL – right end of the 
sample, λe и λl – heat conductivity coefficient of electron gas and liquid metal, 

( )NTkGGI eien ++=
ω

β
ω

β
hh 2

2
21  and Ren=γN3 – electron-hole pairs generation and recombination 

velocities, γ - Auger recombination coefficient and ω - laser irradiation frequency, α – free-
carrier absorption coefficient, β1 and β2 - coefficients of one and two photon absorption, ki - 
collision ionization coefficient,  g(Te), g(Te)lat – electron-lattice energy exchange factor for 
metal and semiconductor, g(Te)lat=Ce/τE, τE  - energy relaxation time, Сe – heat capacity. g(Te) 
and other thermophysical  properties of metals reported in [4]. 

Equations (5), (6) are energy equations for electron component and lattice one. Equation 
(7) is equation of laser energy transfer.  

Boundary conditions: 
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Indexes lat, l, v, s, sat, b mean values affiliation to semiconductor lattice, metal liquid 
phase, vapor, solid phase, saturated vapor and boiling under normal conditions. 

3 METHOD 
The method of dynamic adaptation is based on a transition to an arbitrary non-stationary 

coordinate system. The usage of an arbitrary non-stationary coordinate system allows to 
formulate the problem of the grid generation and adaptation at the differential level, i.e. in the 
resulting mathematical model, one part of the differential equations describes the physical 
processes and the other part – the behavior of the nodes of the grid [5]. The transition to an 
arbitrary non-stationary coordinate system is performed using an automated coordinate 
transformation via the sought solution. 

According to the papers [5] – [7], we will perform a transition from the physical space 
 with Euler variables  to some computational space with an arbitrary non-stationary 

coordinate system  with variables
tx,Ω ),( tx

τ,qΩ ),( τq . This transformation can be performed using a 
substitution of variables of a common form ττ =tqfx ),,(=

t
, with a single-valued non-

degenerate reverse transformation     ),,(= =τϕ txq . 
During the transition from one coordinate system to another, the partial derivatives of the 

dependent variables are connected via the following expressions: 
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where qx ∂∂= /ψ  - is the Jacobian  of the reverse transformation. 
Using a replacement of variables of the common form and expressions (8), we can write 

the differential model (1) –(4) and (5) – (7) in the variables ),( τq : 
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where (13), (17) – are the equations of the reverse transformation with the transformation 
functions , . The functions  characterize the speed of the non-stationary 
coordinate system in the solid and liquid phases accordingly and are not predefined and 
should be determined.  

sQ lQ sQ , lQ

Thus, during the transition to an arbitrary non-stationary coordinate system, the initial 
differential models are transformed to the extended differential systems with additional 
equations (13) and (17). Their type, properties and form of the boundary conditions depend on 
the particular form of the functions Q [7]. At this stage of discussion, the functions  are 
not defined yet. After their determination, the equations (13) and (17) are used for 
construction of the grids that adapt to the gradients of solution and to the moving domain 
boundaries. Their differential analogues describe the dynamics of the grid nodes and the 
functions  perform the controlled motion of the grid nodes in an agreement with the 
dynamics of the sought solution.  The agreement is achieved by introduction of a functional 
dependency of the function Q  on the sought solution. But since the solution is not known 
beforehand, a problem arises with the determination of the optimum transformation 
function  that will provide a complete matching of the adaptation mechanism with the 
solution. If there are no complete matching, fitting coefficients are inserted into the 
controlling function. By the adjustment of the fitting coefficients, it is possible to make the 
degree of the mismatching lower. At the same time, the fact of the presence of the fitting 
coefficients in an adaptation method is an evidence of  its imperfection. 

sQ , lQ

sQ , lQ

Q

Such matching can be obtained using the quasi-stationary principle [1], [8], which states 
that it is necessary to switch to a such coordinate system, where the time derivatives will be 
small or satisfy the relation: 0 === ∂τε∂∂τε∂∂τε∂∂τ∂ llateN = . Then the 
transformation functions will take the form: 
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The usage of adapting grids allowed to perform all computations of grids with total number 
of nodes less than 100.  

5 RESULTS 

Regimes of irradiation with a Gaussian intensity distribution in the pulse 
( ) ( )( ) t/-expGtG 0 τ= 2  were considered. Pulse duration τL = 10 ps. The maximum value of the 

intensity varied from G0=3x109 to 5x1010 W/cm2. Figures 2 and 3 show the time profiles of 
temperature and radiation at intensity G0 = 3x109 W/cm2. It can be seen that at such intensity 
the gap between the electron temperature and the temperature of the lattice is clearly seen, but 
the melting does not occur yet. 

 

 
Figure 2. Time dependences of incident G (black dotted curve) and absorbed part AG (red solid curve) of laser 

radiation intensity, G0=3x109 W/cm2. 
 

Increasing the intensity by one order of magnitude leads to the melting of silicon, which 
starts at the back front of the laser pulse. Typical time profiles of the laser radiation, surface 
temperatures, melting front velocity and (non)-equilibrium carrier concentrations on the 
surface for 3x1010 W/cm2 energy pulse are shown in Fig. 4-7. Since the melting of lattice 
starts at the back front of the pulse, the maximum velocity υsl reaches relatively low value of 
~ 27 m/s.  
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Figure 3. Time dependences of electron Te (black solid curve) and lattice (red dotted curve) temperatures. 

 
 

 
Figure 4. Time dependences of incident G (black curve) and absorbed part AG (red curve) of laser radiation 

intensity, G0=3x1010 W/cm2. 
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Figure 5. Time dependences of electron Te (black curve) and lattice (red curve) temperatures. 

 
Figure 6. Time dependence of the melting velocity υsl. 

As seen from the time dependences of temperatures (Fig.5 and Fig.9) throughout pulse 
duration there is a noticeable gap between the phonon and electron temperatures, which 
reaches 12000K at the peak of the pulse. By the end of the pulse the phonon and electron 
temperatures become equal.  

Maximum melting front velocity reaches 27 m/s for 3x1010 W/cm2 and 225 m/s for 5x1010 

W/cm2. 
The presence of two peaks in the electron temperature in all regimes of irradiation should 

be noted, that indicates a change of the mechanism of absorption (photoprocesses replaced by 
inverse bremsstrahlung). 
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Figure 7. Time dependences of nonequilibrium N (black curve) and equilibrium N0 (red curve) carrier 

concentrations on the surface.  
 
A small change in the intensity of the radiation to 5x1010 W/cm2 (Fig. 8-11) leads to the 

beginning of melting near the maximum of intensity that provides high value of melting 
velocity υsl =225 m/s and the gap between temperatures. 

 

 
Figure 8. Time dependences of incident G (black curve) and absorbed part AG (red curve) of laser radiation 

intensity, G0=5x1010 W/cm2. 
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Figure 9. Time dependences of electron Te (black curve) and lattice (red curve) temperatures. 

 
Figure 10. Time dependence of the melting velocity υsl. 

 
Figure 11. Time dependences of nonequilibrium N (black curve) and equilibrium N0 (red curve) carrier 

concentrations on the surface. 
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4 CONCLUSION 
Application of dynamic adaptation method to the numerical solution of the problems of 

non-equilibrium heating and phase transformations in semiconductor materials was 
considered. Computational features of these problems are the presence of two moving 
interphase boundaries and the presence of regions of rapid change of the solution components 
with different scales in space and time. The use of arbitrary time-dependent system of 
coordinates allows us to construct computational grids with a constant number of nodes in 
regions with moving boundaries and concentrate grid points in regions of large gradients of 
solutions. 

Two functions of coordinate transformation by which we make controlled node 
distribution for nonlinear systems of differential equations of parabolic type  were defined. 

Numerical solution of two typical regimes of laser irradiation on the crystalline silicon 
was obtained. 
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