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Abstract. The implementation of Adaptive Mesh Refinement (AMR) within the geotech-
nical software package PLAXIS 2D is described in this paper. A recovery-based algorithm
is used which aims to reduce the discretisation error by refining the mesh during the so-
lution process. The error is estimated with a Zienkiewicz-Zhu-type error estimator but
based on the incremental deviatoric strain instead of stress. The deviatoric strain field is
compared with an improved field calculated by superconvergent patch recovery. Once el-
ements with large errors have been detected, mesh refinement takes place. A combination
of regular subdivision and longest-edge bisection is employed. Mapping history variables
from the old mesh to the new mesh is accomplished by using the recovered solutions and
the shape functions. The AMR algorithm is demonstrated for a biaxial compression test.
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1 INTRODUCTION

Adaptive Mesh Refinement (AMR) is a technique which refines a mesh as part of the
solution procedure of a boundary value problem. The aim is to achieve the best mesh
possible (within certain constraints) for each load level. AMR is applied to problems
which have features developing on different scales. In geotechnics, a retaining wall is one
such an example. The boundary condition will be applied along the wall which may have
a height of the order of metres. Should the load be large enough, a shear band or failure
surface may develop in the soil behind the wall with a width of millimetres. In order to
properly model the shear band, the elements need to be sufficiently small. For most of
the domain this would be a waste of computational effort, and, as the location of the
shear band is not known a priori, AMR presents as an obvious solution by automatically
generating small elements where they are most needed.

AMR works by quantifying the discretisation error in the finite element (FE) solution,
and, when the global error norm exceeds a specified tolerance, certain elements are marked
for refinement. Once the mesh has been refined and the solution has been mapped to the
new mesh, the loading is resumed. This allows the mesh to be refined in regions where
the error is high (eg. due to the large strain gradients) resulting in a more accurate
description of the shear band.

It has recently been suggested that AMR is not widely used, either in industry (for
structural mechanics applications) [1, 2] or in the field of geotechnics [3]. Noteworthy
exceptions in geotechnics are [4, 5, 6, 3]. This paper aims to implement a straightforward
AMR algorithm which progressively refines the mesh when the global error exceeds a
given tolerance.

2 FORMULATION

AMR has been implemented within Plaxis’s 2D displacement-based FE solver [7].
Throughout this paper 6-noded triangular elements are used within unstructured meshes.
The approximation of the displacements is therefore quadratic. Load or displacement
boundary conditions are applied in increments as is usual for materials that behave non-
linearly. Once an increment has converged, the AMR algorithm recovers nodal fields and
then calculates the error. If the error exceeds the user-defined tolerance, the refinement
and mapping algorithms are called. The FE solver then applies the next increment. The
four stages of the algorithm are now briefly discussed. A more detailed description can
be found in [8].

2.1 Recovery

Variables defined at integration points are recovered at the nodes in order to estimate
the error and to facilitate the mapping process. For this purpose, Superconvergent Patch
Recovery (SPR) is used [9]. It is an efficient, local method involving the inversion of a
relatively small matrix (small when compared to the size of the global stiffness matrix).
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The implementation of SPR involves two stages: first, assembling the patches (groups
of neighbouring elements) and second, fitting least squares surfaces to the integration
point values in each patch. Node-based patches are implemented here, which are formed
around each interior vertex node (often referred to as an “assembly node”). The patch is
composed of all those elements which contain the assembly node. To recover the solution
at nodes on or near the boundary, the standard node-based patches containing elements in
contact with the boundary can be extended to include the boundary nodes (as suggested
in [10]).

In each patch, a least squares fit is carried out to the data at integration points. In SPR
the least squares fit is of the same degree as the displacement shape functions, which are
quadratic in this case. Each patch is mapped onto the domain [−1, 1] × [−1, 1] to avoid
ill-conditioning of the matrix which is inverted to obtain the least squares coefficients.

2.2 Error estimation

Zienkiewicz et. al. [11] prove that their error estimator (described in [12]) is asymptot-
ically exact for linear elastic problems. For elastoplastic problems Boroomand et. al. [13]
introduce an error estimator based on incremental energy. More recently Hicks [6] em-
ployed an error estimator based upon a measure of incremental deviatoric strain. The
incremental shear strain invariant, ∆γ, is defined as

∆γ =
√

∆εdev
ij ∆εdev

ij , (1)

where ∆εdev
ij is the ij

th component of the incremental deviatoric strain tensor. The error
in this quantity with respect to the L2 norm is given by

||e||∆γ =

√∫

Ω

(∆γ∗ −∆γ)2 dΩ , (2)

where ∆γ∗ is the recovered field based on the recovered incremental strains. This estimator
should be especially suitable for geomechanical problems which exhibit large changes in
strain.

The error estimator for element iEl is given by

||e||iEl∆γ =

√∫

ΩiEl

(∆γ∗ −∆γ)2 dΩ , (3)

and from this, the global error norm can then be calculated:

||e||∆γ =

√√√√
nEl∑

iEl=1

(||e||iEl∆γ

)2
. (4)
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Either of the above error measures can be made relative by dividing by

||∆γ∗|| =
√∫

Ω

(∆γ∗)2 dΩ . (5)

Both local and global errors are used in this implementation of AMR. The global
estimate is compared against a user-defined tolerance, and, if it exceeds the tolerance,
mesh refinement is triggered. The local (or element) error indicates which elements should
be refined. The approach followed here is to link the user-defined global tolerance with the
local, element scale to provide a local tolerance. This method relies on the concept of an
optimal mesh where the error is equally distributed over the elements (for example [14]).
Given a user-defined global tolerance η (which is a relative measure), the condition for
triggering refinement is

||e||∆γ

||∆γ∗|| > η . (6)

Introducing the assumption that the local errors are equally distributed over the mesh
gives

||e||local
∆γ > η ||∆γ∗||√

nEl
, (7)

where nEl is the total number of elements. So, once the global error exceeds the user-
defined (global) tolerance, then all elements whose error exceeds η ||∆γ∗||√

nEl
will be marked

for refinement.

2.3 Mesh Refinement

There are two ways of refining a mesh in h−adaptivity: by regeneration or by subdivi-
sion. Regeneration is often used and produces elegant-looking meshes directly indicative
of the underlying physical mechanism. However, once the mesh has been regenerated,
the solution must be mapped from the old mesh to the new mesh throughout the entire
domain. In order to limit the numerical diffusion which may occur as a result of trans-
ferring the solution between meshes, and to be more efficient, subdivision is used. Here
the transfer of the solution is carried out only within elements which have been refined.
One way to subdivide elements is to use regular bisection. This refers to the splitting
of an element into four elements by joining the midpoints of the triangle’s edges [15].
Between a regularly-refined element and a non-refined element will be a non-conforming
edge with hanging nodes. A straightforward solution to this is adopted here based on
Rivara’s longest-edge bisection method [16]. It is applied to any elements which, after
being regularly refined, have non-conforming edges. This procedure is repeated until the
mesh is conforming.
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2.4 Mapping

New elements require values of displacement and stress, and also any state variables
which are associated with the constitutive model. Displacements can be mapped using
the shape functions and the nodal values of displacement. In order to map the stresses,
they are first recovered at the nodes using SPR. Then they can be mapped to the new
mesh just as the displacements were. Any integration-point values can be mapped using
this method. After mapping, the stress field will no longer be in equilibrium with the
applied force. A zero-load increment can be applied in order to resolve this, if necessary.

3 RESULTS

A drained biaxial compression test was simulated to demonstrate the performance of
the AMR algorithm. The geometry and boundary conditions can be seen in Figure 1,
where L, the width of the sample, is used to normalise the computed displacements. The
constitutive model is linear elastic, perfectly plastic with a Mohr-Coulomb yield criterion
and associated flow. The parameters are Young’s Modulus E = 10 MPa, Poisson’s ratio
ν = 0.2, friction angle φ = 30◦ and cohesion c = 5.5 kPa. Vertical displacement increments
are applied to the top boundary along which horizontal displacement is prevented. The
base is fully fixed.

Figure 1: The biaxial test modelled in plane strain, with a fully fixed base and a displacement control
through a rough and rigid end plateau.

First, the biaxial problem was simulated with the standard FE method using a fixed
mesh (ie. with no adaptivity). Six-noded triangular elements were used. The global
error norm was calculated based on the incremental deviatoric strain estimator defined in
Section 2.2. The behaviour of the estimator can be seen in Figure 2 for a fixed mesh of
270 elements of approximately equal size. The error increases extremely rapidly during
steps 4 to 7. As can be seen from Figure 4, this corresponds to the approach to the peak
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of the load-displacement curve as the solution becomes non-homogeneous. The global
error norm then reduces until around step 20, after which it remains constant. The
global error norm controls when adaptive remeshing is triggered and is therefore crucial
to the refinement process. This plot would suggest that the incremental deviatoric strain
estimator is a suitable measure as it is able to identify the onset of localisation which
occurs as the peak in the load-displacement curve is approached.

An AMR simulation was then carried out, starting from a mesh of 270 elements with a
global error tolerance of 2.5%. Figure 3 shows the global error norm in this case, with the
broken horizontal line representing the global error tolerance. The filled circles indicate a
step which ends with refinement. It can be seen that refinement is initiated four times in
the vicinity of the peak of the load-displacement curve, at step numbers 4, 5, 6 and 10.
(At the end of the simulation, the error exceeds the tolerance; however, as over 95% of
the displacements have already been applied, refinement is not allowed.)
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Figure 2: The global error norm using the error estimator based on the incremental deviatoric strain
plotted against the normalised displacement boundary condition.

Load-displacement curves are plotted in Figure 4. Curves from two fixed-mesh simu-
lations are shown for comparison, these using 142 and 4162 elements. The AMR results
agree extremely well with the results from the finest fixed mesh, the load-displacement
curves being almost coincident. The steps which trigger refinement are indicated by hol-
low circles. The load-displacement curve for the AMR simulation remains smooth despite
the mesh refinement.
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Figure 3: The global error norm plotted against the number of (load) steps during adaptive mesh refine-
ment. Filled circles indicate when refinement is triggered.
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Figure 4: Load-displacement curves for the AMR simulation and for two standard FE simulations with
fixed meshes.
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Finally, Figure 5 shows plots of the incremental shear strain invariant (∆γ) at the end
of the simulation. The results agree well with the analytical prediction for the inclination
of the shear band (ϑ). According to Roscoe [17], this is given by ϑ = π/4 + ψ/2 where ψ
is the dilation angle (in radians).
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Figure 5: A contour map of the incremental deviatoric strain (∆γ) at the final step for the AMR algorithm.
The black lines indicate the inclination of the shear band as predicted by Roscoe.

4 CONCLUSIONS

An AMR algorithm has been implemented in Plaxis 2D. Results are shown for a biaxial
compression test. The implementation is recovery based and uses element subdivision
rather than mesh regeneration when refinement is required. The adaptive algorithm
triggers relatively few refinement steps but is nevertheless effective due to the success
of the incremental error estimator in pinpointing the onset of localisation. The load-
displacement curve is smooth despite the mesh refinement. This would suggest that the
transfer of data from the old to the new mesh is carried out effectively. The inclination of
the shear band from the numerical results agrees very well with the analytical prediction
given by Roscoe.
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