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Abstract. Accurate estimates of limit loads for difficult stability problems in geotechnical 

engineering can rarely be obtained from a single finite element limit analysis without using an 

excessive number of elements. Therefore, efficient adaptive strategies which maximize the 

solution accuracy using minimum number of elements in the mesh are of great interest. This 

study explores the possibility of using the internal dissipation calculated from deviatoric 

stresses and strain rates as suitable control field for purely frictional materials. The 

performance observed for considered set of problematic for other adaptive schemes 

geotechnical examples is very promising. Moreover, the proposed approach works very well 

also for cohesive and cohesive frictional materials, suggesting its use as general engine for 

adaptive mesh refinement. 

 

1 INTRODUCTION 

For complex, practical stability problems in geotechnical engineering, accurate estimates 

of the collapse load or factor of safety can rarely be obtained from a single analysis and a trial 

and error process is usually required. The key to obtaining accurate solutions lies in accurately 

capturing the areas of plasticity within the problem domain, as their pattern and intensity 

govern the solution. The development of an efficient mesh adaptivity strategy, which is able 

to pinpoint the fine detail of a structure’s collapse mechanism, is thus of the highest priority in 

modern limit and shakedown analysis. 

A critical aspect of any adaptive meshing process is the estimation of the discretisation 

error present in a given finite element solution. Since a priori error estimates play only an 

indicative role (Borges et al.
[1]

), useful error estimates must employ a posteriori techniques to 

predict the overall discretisation error in one or more solution norms (or control variables). 

Generally speaking, two major approaches have been practiced so far. The first is the Hessian 

based error estimation, where the spatial distribution of the error in solution is obtained on the 

basis of information gathered from the matrix of second derivatives of some control variable 

(Zienkiewicz et al.
[2]

, Almeida et al.
[3]

, Lyamin et al.
[4]

). And the second is a so-called gap 

adaptivity scheme, which is based on the fact that for limit analysis applications the global 

error in the solution can be readily obtained as the sum of elemental differences between 

upper and lower bound estimates (Ciria et al.
[5]

, Muñoz et al. 
[6]

). 
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The major advantage of Hessian based error estimation when combined with optimal-

mesh-adaptive scheme is that it usually provides the element size distribution which 

converges (keeping the number of elements in the mesh constant) very quickly to a steady, 

smoothly graded mesh pattern, which can be either isotropic or anisotropic. It is very general 

and based on the fact that, at some point x in the vicinity of a point 0x , the difference between 

the variable of interest u and its discrete approximation hu  can be estimated using the 

following expression  

 
0 0 0( ) ( ( ))( )T

h R hC  u u x x H u x x x  (1) 

where C is a positive constant and 0( ( ))R hH u x denotes a recovered Hessian matrix. An anisotropic 

error estimator for element e of a partition h  of the domain   can then be introduced as 
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where n is the problem dimensionality, hn is the minimum dimension of element e, and n is the 

largest eigenvalue of the element Hessian matrix. It is assumed also that the estimated error yields 

the same value in any direction, i.e. 
2 2 2

1 1 2 2 n nh h h     .  

The choice of a suitable control variable is not obvious for plasticity problems. Several 

approaches have been practiced so far including those based on power dissipation or its gap 

(Ciria et al.
[5]

, Muñoz et al. 
[6]

), plastic multipliers (Lyamin et al.
[4]

) and strain rate 

(Christiansen & Pedersen
[7]

) fields employed as control variables. All these schemes work 

quite well for cohesive or cohesive-frictional materials, but for purely frictional soils their 

performance stalls as e.g. plastic multipliers have substantially high values for all zero stress 

points on the surface of soil domain, therefore cannot indicate reliably plastic areas. Similar 

conclusion can be made about performance of schemes based on power dissipation or strain 

rates.  This study explores the possibility of using the internal dissipation calculated from 

deviatoric stresses and strain rates (called also “shear power” in the rest)  

 1 1
1 13 3

: d , ,
e
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as suitable control field for purely frictional materials. In above ,ij ijs  and ,ij ij    are  the 

Cartesian and deviatoric stresses and strain rates, respectively, and 1I


, 1I


 are the first 

invariants for stresses and strain rates. 

The performance observed for considered set of problematic for other adaptive schemes 

geotechnical examples is very promising. Moreover, the proposed approach works very well 

also for cohesive and cohesive frictional materials, suggesting its employment as general 

engine for adaptive mesh refinement. 

2 THE OPTIMAL MESH ADAPTIVE SCHEME 

Usually mesh refinement proceeds with gradual adjustment of the element size aiming to 

distribute local error uniformly over the problem domain. The other alternative is to obtain the 
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element size distribution which minimizes the global error given by equation (2). This 

approach is known as optimal-mesh-adaptive technique and is described in detail e.g. by 

Almeida et al.
[3]

 In brief, the optimal-mesh-adaptive procedure can be cast as constrained 

optimization problem, which for two-dimensional case becomes 
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where 2Th and Ts  are the new size and the stretching of element T, k  is the finite element 

discretization at the adaptation step k and 
eN is the desired number of elements at the step k+1. For 

p = 2 and the case of equilateral elements (no stretching) the solution to problem (4) is given by  

   2 4 3T e e eh N     (5) 

The advancing front algorithm (Peraire et al.
[8]

) has been employed for generating the 

mesh. As the meshing time is only a small fraction of the total CPU time in adaptive limit 

analysis, this algorithm was chosen in order to give full control of the mesh quality, including 

the shape of the elements and the rate of change of the element size throughout the mesh from 

one iteration to the next. Both refinement and coarsening of the mesh have been allowed.  

3 LIMIT ANALYSIS 

The lower (LB) and upper (UB) bound limit analysis formulations used in this 

investigation stem from the methods originally developed by Sloan
[9][10]

, but have evolved 

significantly over the past two decades to incorporate the major improvements described in 

Lyamin and Sloan
[11][12]

 and Krabbenhoft et al.
[13][14]

 . Key features of the methods include 

the use of linear finite elements to model the stress/velocity fields, and collapsed solid 

elements at all inter-element boundaries to simulate stress/velocity discontinuities. The 

solutions from the lower bound formulation yield statically admissible stress fields, while 

those from the upper bound formulation furnish kinematically admissible velocity fields. 

This ensures that the solutions preserve the important bounding properties of the limit 

theorems. 

Both formulations result in convex mathematical programs, which (considering the dual 

form of upper bound problem) can be cast in the following form: 

 0

    maximize 

    subject to   

                   ( ) 0, {1, , }if i N



 

 

Aσ p p

σ

 (6) 

where λ is a load multiplier, σ  is a vector of stress variables, A is a matrix of equality 

constraint coefficients, 0p  and p are vectors of prescribed and optimizable forces, 

respectively, if  is the yield function for stress set i and N is the number of stress nodes. The 
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solutions to problem (6) can be found efficiently by using general Interior-Point methods 

(IPM) or specialised conic optimization solvers (SOCP). 

4 NUMERICAL EXAMPLES 

Two representative examples from the soil mechanics are considered in this section to 

illustrate the efficiency of proposed adaptive approach. First example, so-called N problem, 

is about estimating the bearing capacity of rigid footing resting on cohesionless soil (sand). 

Second example is known as “passive earth pressure” case. Here the maximum lateral 

pressure which can be exerted to the soil cut, before it collapses upwards, needs to be found.  

Both examples are treated as two-dimensional problems and considered under plain strain 

conditions.  

Adaptive refinement proceeds by specifying the initial and target number of elements in 

the mesh, and the number of adaptive iterations. If this target number of elements is reached 

before the maximum number of iterations has exceeded, no additional elements are injected.  

However, some improvement can still be achieved by redistributing the element sizes in the 

remaining iterations if a better pattern of the control variable can be found. In examples 

considered the thresholds on mesh refinement and coarsening factors between 2 iterates were 

set to 0.25 and 1.5, respectively.  

4.1 Rigid rough strip footing on cohesionless soil (N problem) 

For a rigid strip footing resting on a ponderable purely frictional soil with no surcharge the 

bearing capacity is usually estimated by using reduced Terzaghi
[15]

 equation of the form 

   = 0.5q BN  (7) 

where  is soil unit weight, B is the width of the footing and N is the bearing capacity factor, 

which depends on soil friction angle, . There is no exact solution available for N and over 

the years several empirical expressions were suggested and used in practice (Brinch 

Hansen
[16]

, Caquot & Kerisel
[17]

). Recently very accurate estimates done by numerical limit 

analysis were reported (Hjiaj et al.
[18]

) and eventually quasi-exact values of N  were obtained 

by the method of characteristics (Martin
[19]

). Therefore, besides the standard for limit analysis 

UB-LB gap error estimation, this allows direct check of the accuracy of adaptively obtained 
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Figure 1. Geometry (a), initial mesh (b) and shear power dissipation plot (c) for strip footing. 
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solutions for this problem.    

The problem description (including Prandtl
[20]

 failure mechanism) together with the initial 

mesh used for analysis and corresponding shear power dissipation is given in Figure 1. Next, 

in Figure 2 the distributions of several traditionally used for adaptive limit analysis control 

variables are plotted. Due to the absence of cohesion in soil mass it is evident that power 

dissipation (all zeros) is not an alternative to govern refinement procedure in this case. And 

even if power loss due to soil unit weight is taken into account (Figure 2b) the resultant 

distribution does not resemble the actual collapse mechanism (slip line) to be considered as a 

good choice. Neither it will work when UB-LB gap of elemental power dissipation would be 

used. Similar comments are applied to another pair of control variables, strain rate and plastic 

multiplier fields. It is clear that all zero-stress points (soil surface boundary, LB case) are at 

plastic state, therefore will have some non-zero plastic multipliers as shown in (Figure 2d). 

This “noise” prevents plastic multipliers to be employed as adaptivity guide either. On the 

other hand, the dissipation computed using deviatoric terms of stresses and strains (shear 

power) has very distinctive distribution resembling classical Prandtl
[20]

 collapse mechanism 

for strip footing. And, as can be judged from results presented in Figure 3c, it works 

efficiently for both lower and upper bound discretizations. The final mesh and corresponding 

shear power dissipation are illustrated in Figure 3a,b. 

Figure 3. Final mesh (a), shear power dissipation (b) and convergence diagram for strip footing. 
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Figure 2. Distributions of commonly used control variables in the case of N problem. 

a)  power dissipation (UB) b)  rate of work by gravity (UB) c)  strain rate (LB) d)  plastic multiplier (LB)
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4.2 Passive earth pressure 

This is another classical problem in soil mechanics, where the lateral pressure, p, is applied 

to the soil mass to cause its collapse, as shown in Figure 4. There are several theories for this 

problem (the most famous are due to Coulomb
[21]

 and Rankine
[22]

) with different analytical 

solutions accounting for various soil slope angles, soil/wall interface conditions, mode of 

failure (no rotation or rotation allowed), etc. But our main focus here is not actually to 

compare results obtained to existing solutions, rather demonstrate that proposed mesh 

refinement approach performs reliably when applied to sands. For this purpose, in the same 

way as for N case, the distributions of most popular control variables traditionally used 

within the limit analysis adaptive schemes are given in Figure 5. It appears that the same 

comments as those given in previous section are applicable here as well - none of the 

distributions in Figure 5 seems to be suitable to assist with effective mesh refinement. On the 

other hand, using proposed adaptive scheme based on shear power dissipation results in 

robust refinement procedure as presented in Figure 6. 

Figure 4. Geometry (a), initial mesh (b) and shear power dissipation plot (c) for passive earth pressure. 
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Figure 5. Distributions of commonly used control variables in the case of passive earth pressure problem. 

a)  power dissipation (UB) b)  rate of work by gravity (UB) c)  strain rate (LB) d)  plastic multiplier (LB)
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Figure 6. Final mesh (a), shear power dissipation (b) and convergence plot (c) for passive earth pressure problem. 
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5 CONCLUSIONS 

Based on deviatoric stress and strain fields elemental power dissipation was employed to 

control mesh refinement process in limit analysis computations for purely frictional materials. 

Both lower and upper bound counterparts of limit analysis were tested. The obtained results 

show that the proposed approach works reliably for demanding applications, where 

traditionally used control variables fail to perform.  
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