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Abstract. We investigate reduced-space Newton-Krylov (NK) algorithms for engineer-
ing parameter optimization problems constrained by partial-differential equations. We
review reduced-space and full-space optimization algorithms, and we show that the effi-
ciency of the reduced-space strategy can be improved significantly with inexact-Hessian-
vector products computed using approximate second-order adjoints. Results demonstrate
that the proposed reduced-space NK algorithm has excellent scaling that makes it suitable
for large-scale optimization problems. Moreover, reduced-space NK combines the attrac-
tive attributes of both reduced-space quasi-Newton methods and full-space approaches —
namely, modularity, robustness, and scalibilty.

1 Introduction

Partial differential equation (PDE) constrained optimization problems can be posed in
the full-space or the reduced-space. In full-space formulations the PDE state variables
— e.g. pressure and velocity for incompressible flows — are included as optimization
variables, and the PDE becomes an explicit constraint in the optimization. In contrast,
reduced-space formulations treat the state variables as implicit functions of the design
variables: for a given set of design variables the PDE is solved for the states.

In practice, engineers often prefer reduced-space formulations. Reduced-space methods
lend themselves to modularity, so implementation is typically easier than full-space meth-
ods. Unfortunately, conventional reduced-space optimization algorithms exhibit poor al-
gorithmic scaling. For example, the computational cost of limited-memory quasi-Newton
methods is often proportional to the number of design variables. This scaling limits the
number of design variables that can be considered.
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Motivated by the above observations, we consider reduced-space inexact-Newton-Krylov
(INK) algorithms, which offer the potential for design-dimension-independent algorithmic
scaling. One of the challenges with reduced-space INK methods for PDE-constrained op-
timization is the efficient computation of Hessian-vector products needed by the Krylov
solver. In particular, it is widely believed that these products must computed with high
accuracy to avoid convergence difficulties. This accuracy requirement can render reduced-
space INK methods orders of magnitude more expensive than full-space methods [11]. In
this paper, we argue that the Hessian-vector products can be computed inexactly, and
numerical examples demonstrate that the resulting reduced-space INK algorithm offers
an attractive alternative to its full-space counterpart.

2 PDE-constrained Optimization: Formulations and Algorithms

In this section we briefly review the generic PDE-constrained optimization problem
and highlight commonly used formulations and solution strategies. For a comprehensive
review of solution methods see, for example, [1].

2.1 Problem and Notation

We are interested in solving the following PDE-constrained optimization problem:

minimize J (x,u), x ∈ Rm, u ∈ Rn,

subject to R(x,u) = 0.
(1)

The objective functional is J , which we will assume is C2 continuous on its domain. The
variables x and u denote the finite-dimensional control and state variables, respectively.
In the context of PDE-constrained optimization, the state variables arise from the chosen
discretization of the PDE; u may represent function values at nodes in a mesh or coeffi-
cients in a basis expansion. The control variables can be given a similar interpretation.
The PDE itself, together with appropriate boundary and initial conditions, is represented
by the equation R(x,u) = 0.

A local solution of (1) must satisfy the first-order optimality conditions, which can be
found by differentiating the Lagrangian. In order to define the Lagrangian of (1), we first
introduce the symmetric positive definite matrix P ∈ Rn×n that defines a discrete inner
product appropriate to the chosen discretization of the PDE. Then, the Lagrangian is
given by

L(x,u,ψ) ≡ J (x,u) +ψTPR(x,u), (2)

where ψ ∈ Rn are the Lagrange multipliers, also called the adjoint or costate variables in
the context of PDE-constrained optimization.
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Thus, the first-order optimality conditions for a solution to (1) are [20]:

Lψ = 0 ⇒ PR(x,u) = 0, (3a)

Lu = 0 ⇒ Ju(x,u) +ψTPRu(x,u) = 0, (3b)

Lx = 0 ⇒ Jx(x,u) +ψTPRx(x,u) = 0. (3c)

Subscripted variables indicate differentiation with respect to that variable, e.g. Ju ≡
∂J /∂u. The first-order conditions (3) are also called the Karush-Kuhn-Tucker, or KKT,
conditions.

2.2 Full-space Approach

The KKT conditions are a set of nonlinear algebraic equations, so a natural solution
strategy is Newton’s method with an appropriate globalization. As usual, the potential
for rapid convergence makes Newton’s method attractive. The full-space approach that
we adopt here is based on the Lagrange-Newton-Krylov-Schur (LNKS) method of Biros
and Ghattas [2, 3]. One difference between their method and the present scheme is the
parameter continuation used for globalization; more details on this globalization can be
found in [13].

The Newton update equation corresponding to (3) is 0 Lψ,u Lψ,x
Lu,ψ Lu,u Lu,x

Lx,ψ Lx,u Lx,x

∆ψk

∆uk
∆xk

 = −

LψLu

Lx

 , (4)

where the subscript k denotes the current Newton iteration. Solving (4) with a direct
method is usually impractical for large-scale PDE-constrained optimization problems;
therefore, the approach adopted in LNKS is to use an inexact-Newton-Krylov approach.
An advantage of using an inexact-Newton method [7] is that the KTT system can be
solved approximately and inexpensively during the early Newton iterations

A Krylov-based approach avoids the need to form the KKT matrix explicitly, since
Krylov methods use matrix-vector products. However, to be effective, Krylov-iterative
solvers must be preconditioned. We adopt the preconditioner P̃2 from [2], which was
found to be efficient in terms of CPU time. This preconditioner approximates the full-
space Hessian by dropping second-order derivatives, with the exception of Lx,x, which is
replaced with a L-BFGS quasi-Newton approximation. In addition, the Jacobian Ru is
replaced with a suitable preconditioner A.

2.3 Reduced-space Approaches

Full-space methods for PDE-constrained optimization are efficient [11, 2, 12], often
requiring only a few multiples, typically O(10), of the PDE solution cost. Neverthe-
less, full-space methods have significant disadvantages: lack of appropriate optimization
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libraries; inability to leverage specialized globalization strategies, and; potentially pro-
hibitive memory requirements. These disadvantages motivate reduced-space methods,
which we review in this section.

For a valid set of control variables, the state equations will be invertible. Thus, we can
invoke the implicit function theorem and define the state variables in terms of the control
variables: u = u(x). Consequently, the optimization problem (1) reduces to

minimize J (x,u(x)), x ∈ Rm. (5)

The first-order optimality conditions for a solution of (5) are the same as (1); after all,
they solve the same problem. The difference is, in the reduced formulation, the primal and
adjoint PDEs (equations (3a) and (3b)) must be solved at each optimization iteration.

In other words: in reduced-space formulations the optimization algorithm is responsible
for satisfying (3c), while the user must satisfy (3a) and (3b). The advantage of this
approach is that efficient software libraries are usually available to solve the primal and
adjoint PDEs; typically, these libraries are parallel and have specialized globalizations
tuned to their discipline. The disadvantage is the added cost of accurately solving the
state and adjoint equations early in the optimization process.

We now turn to the problem of solving the first-order condition (3c) for x. As in the
full-space, we begin with Newton’s method. Linearizing about the current design, xk, we
find the Newton-update equation

Hk∆xk = −gk, (6)

where Hk ≡ (∂g/∂x)k is the reduced Hessian evaluated at xk, and gk is the reduced
gradient evaluated at xk. One of the challenges for reduced-space formulations is capturing
the second-order information contained in Hk. This is because the reduced Hessian is the
total derivative of the gradient with respect to x, so variations in u and ψ must be
accounted for

Quasi-Newton methods are a popular and successful class of algorithms that approxi-
mate the Hessian, thereby circumventing the need to compute the total derivative of g.
For quasi-Newton methods the Newton-update equation is replaced with

Bk∆xk = −gk, (7)

where Bk is a quasi-Newton approximation to Hk. In this work, we consider the limited-
memory BFGS quasi-Newton method [17] globalized with a strong-Wolfe-type line search
algorithm [8]. For the Armijo sufficient-decrease condition we use the parameter c1 =
10−6, and for the curvature condition we use c2 = 0.999; see [20] for the definition of these
parameters.

Quasi-Newton methods are simple and effective for many problems; however, they are
not necessarily suited to large-scale design spaces. For large problems, we must often resort
to limited-memory quasi-Newton methods; while BFGS has a superlinear asymptotic
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convergence rate [20], its limited-memory variant has only a linear rate of convergence [17].
In addition, during the early stages of optimization the quasi-Newton approximation may
not capture curvature accurately, and this can lead to many subiterations in the line
search or many trust-region radius updates. For these reasons, the computational cost of
quasi-Newton methods typically grows with problem size; linear scaling is not unusual.

We want to retain the modularity of the reduced-space approach, but with algorithmic
scaling that does not grow with problem size. The solution pursued here is to apply
an inexact-Newton-Krylov strategy in the reduced-space [14, 4]. The inexact-Newton
approach replaces the solution of (6) with the condition that ∆xk must satisfy

‖Hk∆xk + gk‖ ≤ ηk‖gk‖, (8)

where ηk is the so-called forcing parameter and ‖ · ‖ denotes the L2 norm. To achieve

superlinear convergence, we use ηk = 0.1 min [1, (‖gk‖/‖g0‖)
1
2 ] [7]. To avoid oversolving

the linear problem when the iterates are near the desired nonlinear tolerance, we set
ηk ← max (ηk, τ‖g0‖/‖gk‖), where τ is the nonlinear tolerance.

Similar to the full-space approach, using a Krylov method avoids the need to form the
Hessian explicitly; only Hessian-vector products are required. The computation of the
Hessian-vector products plays an important role in the efficiency of reduced-space INK
and is discussed in detail in the following section.

To globalize the reduced-space INK algorithm, we use the Steihaug-Toint variant of
the conjugate-gradient method [24, 25] in a standard trust-region framework [6]. In the
context of optimization, limited-memory BFGS has been shown to be an effective precon-
ditioner for Krylov iterative methods [19], and this is the preconditioner adopted here.

3 Inexact Hessian-vector Products & Second-order Adjoints

The Hessian-vector products needed in reduced-space INK methods can be computed
using second-order adjoints [26]. By defining a new functional, gTw, where w ∈ Rm is
an arbitrary vector, and including both the state and (first-order) adjoint equations as
constraints, one can show that the Hessian-vector product is given by [2, 14, 13]

Hw = gTxw + λTPRx(x,u) + vTSx(x,u,ψ), (9)

where S denotes the first-order adjoint residual

S(x,u,ψ) ≡RT
uPψ + J T

u . (3b)

Note that the partial derivatives with respect to x in (9) treat u, ψ, λ, and v as constants
(i.e. these are not total derivatives).

The variables v ∈ Rn and λ ∈ Rn are the second-order adjoint variables of the func-
tional gTw corresponding to the primal and adjoint equations, respectively. The second-

5



Jason E. Hicken

order adjoints satisfy the equations (see, for example, [13])

PRuv = −gTψw, (10)

RT
uPλ = −gTuw − ST

uv. (11)

The assembly and solution of the second-order adjoint equations (10) and (11) deserve
some remarks.

• The system matrix of (10) is the Jacobian of the primal equations, and the sys-
tem matrix of (11) is the transposed Jacobian. Most adjoint-based optimization
algorithms are capable of solving for systems involving RT

u , and adapting these
algorithms to solve systems involving Ru is straightforward.

• The right-hand side of the first adjoint system simplifies to

−gTψw = −RT
xPw.

This term can be computed in the same way as the second term in the reduced
gradient (3c).

• The right-hand side vector of the adjoint system for λ involves second derivatives.
These terms amount to direction derivatives and can easily be computed using finite-
difference approximations, the complex-step method, or algorithmic differentiation.
See the appendix of [13] for details.

The Hessian-vector product involves the solution of the two second-order adjoint equa-
tions (10) and (11). These equations are typically solved using iterative methods, which
suggests that we might reduce computational cost by sacrificing accuracy. In other words,
can we compute inexact Hessian-vector products rather than exact products?

The use of inexact Hessian-vector products is entirely appropriate in the context of an
inexact-Newton method: why compute accurate products when we only want an approx-
imate solution anyway? Indeed, the analysis of Simoncini and Szyld [23] indicates that
the accuracy of matrix-vector products can be relaxed provided the Krylov basis remains
orthogonal, which is the case for methods like GMRES [22] and FGMRES [21]. On the
other hand, inexact products can pose convergence problems when the Krylov basis is
not explicitly orthogonalized, e.g. in the CG method [10, 23], although no such problems
were observed in the present study.

Let H̃kw be the inexact Hessian-vector product (9) computed using the iteratively-
solved second-order adjoints ṽ and λ̃. Then the error in the Hessian-vector product
satisfies

‖Hkw − H̃kw‖ ≤ δλ‖R−1
u Rx‖+ δv‖P−1R−T

u (Sx + SuR−1
u Rx)‖,
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where δλ and δv are bounds on the second-order adjoint residuals for λ̃ and ṽ, respectively,
and are defined by

‖PRuṽ + gTψw‖ ≤ δv =
1

2
ηk‖gk‖, (12)

‖RT
uP λ̃+ gTuw + ST

u ṽ‖ ≤ δλ =
1

2
ηk‖gk‖. (13)

Bounds for ‖R−1
u Rx‖ and ‖P−1R−T

u (Sx − SuR−1
u Rx)‖ are also required and are more

difficult to estimate. For this preliminary work, trial-and-error was used to determine
that these terms are O(1) for the problem considered below; future work will investigate
a priori methods of bounding these terms.

Based on the bounds δv and δλ, as well as the O(1) estimates for the remaining terms,
we have

‖Hkw − H̃kw‖ / ηk‖gk‖.
Thus, the approximate solution of the second-order adjoints, based on (12) and (13),
is such that the accuracy of the inexact Hessian-vector products is comparable to the
accuracy of the linear solve.

4 Results

In this section we investigate the performance of the reduced-space INK algorithm and
compare its performance with that of the reduced-space quasi-Newton (QN) method and
the full-space LNKS algorithm.

Our model problem for the investigations will be the inverse design of an inviscid nozzle
flow. The PDE constraint for this problem is the quasi-one-dimensional Euler equations,
given by

∂F
∂x
− G = 0, ∀ x ∈ [0, 1], (14)

where the flux and source are

F =
(
ρuA, (ρu2 + p)A, u(e+ p)A

)T
, and G =

(
0, pdA

dx
, 0

)T
,

respectively. The state variables are density (ρ), momentum per unit volume (ρu), and
energy per unit volume (e). Pressure, which also appears in the Euler equations, is
determined using the ideal-gas equation of state: p = (γ−1)(e− 1

2
ρu2). Finally, A = A(x)

denotes the spatially varying nozzle area, which, when discretized, will become our control
variable. The boundary values are provided by the exact solution, which is determined
using the Mach relations. The exact solution is based on a stagnation temperature of
300K and stagnation pressure of 100 kPa. The critical nozzle area is A∗ = 0.8 and the gas
constant is 287 J/(kg K). In the implementation, the equations and variables have been
nondimensionalized using the density and sound speed at the inlet, x = 0.
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The Euler equations (14) are discretized using a summation-by-parts finite-difference
scheme [16]. In particular, the derivatives are approximated using a third-order accurate
diagonal-norm operator, and the boundary conditions are imposed weakly using SAT
penalty terms [9, 5]. To stabilize the discrete equations, we add scalar third-order accurate
artificial dissipation [18].

For the reduced-space formulations, the discretized Euler equations are solved using
a Newton-GMRES algorithm [15]. The GMRES [22] Krylov solver is preconditioned
using an LU factorization of a first-order accurate discretization that is based on nearest-
neighbours and first-order scalar dissipation. The linearized forward problem (10) is also
solved using GMRES and the same preconditioner. The adjoint problems are solved
using GMRES with the Jacobian-vector products and preconditioners replaced with their
transposed versions.

The nozzle area A(x) is discretized using cubic B-splines with open uniform knot vec-
tors. The area is fixed at the ends of the nozzle such that A(0) = 2 and A(1) = 1.5.
The control variables consist of the interior B-spline control points. To avoid confusion
between the design variables and the x-coordinate, we will use A to denote the vector of
(interior) B-spline control points. In all cases, the initial design A0 corresponds to the
set of control points that produce the linearly varying area A(x) = 2− 0.5x. The target
nozzle area is a cubic function of x that passes through the fixed inlet and outlet areas
and has a local minimum at x = 0.5 given by A(0.5) = 1.

In summary, the optimization problem is

minimize J (A,u) =

∫ 1

0

1

2
(p(u)− ptarg)2 dx, A ∈ Rm, u ∈ R3n,

subject to R(A,u) = 0,

(15)

where u denotes the vector of state variables (ρ, ρu, and e) at each of the n nodes, and
R(A,u) = 0 denotes the discretized Euler equations. The target pressure ptarg is found
by solving for u using the target nozzle area in the Euler equations.

4.1 Dynamic versus fixed tolerance for the inexact-Hessian-vector products

To demonstrate the impact of inexact Hessians on the reduced-space INK algorithm,
we solve (15) with the second-order adjoint equations satisfying either 1) a fixed (relative)
tolerance of 10−6 or 2) the dynamic tolerances (12) and (13).

Table 1 lists the computational cost for these two approaches over a range of design-
variable dimensions. The cost is measured in terms of equivalent PDE solutions required
to satisfy ‖g(xk)‖ ≤ τ‖g(x0)‖, where τ = 10−3. Specifically, the total number of PDE
preconditioner calls (i.e. applications of (LU)−1) used during the optimization is divided
by the number of preconditioner calls to solve the PDE on the initial geometry.

The results show that, on average, the dynamic tolerance reduces the computational
cost by 40.5% relative to the fixed tolerance. This illustrates the importance of using
inexact Hessians in reduced-space INK algorithms.
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Table 1: Number of equivalent PDE solutions required when using dynamic and static tolerances
in second-order adjoint solves.

number of design variables
20 30 40 50 60

fixed tolerance 102.7 103.5 107.5 113.8 108.3
dynamic tolerance 67.4 58.5 60.5 65.5 66.8

improvement (%) 34.3 43.5 43.8 42.5 38.4

4.2 Comparison of Optimization Methods

We now compare the reduced-space INK algorithm with the full-space LNKS algorithm
and the reduced-space quasi-Newton algorithm. Figure 1 plots the computational cost of
the three algorithms versus the design-variable dimension. Computational cost is mea-
sured using the number of equivalent PDE solves, as defined earlier. The optimizations
are terminated when the relative reduced-gradient norm is below τ = 10−3. In the case
of LNKS, the PDE and adjoint residual norms must be below 10−6 their initial values.

As expected, the quasi-Newton algorithm has a strong dependence on the number
of design variables. In contrast, the two Newton-based algorithms have much weaker
dependence on the dimension of A. Moreover, even for this relatively small problem, there
is a clear advantage to using inexact-Newton rather than quasi-Newton optimization; the
computational cost is between 4 and 6 times lower using INK, and between 15 and 17
times lower using LNKS.

Comparing reduced-space INK with LNKS, we observe a factor of 3 to 4 reduction
in cost using the full-space algorithm. What is not shown in the plot is the robustness
issues associated with LNKS. Considerable parameter tuning was necessary to obtain
convergence with LNKS, so there is trade-off between robustness and speed when moving
from the reduced-space to the full-space. We argue that a factor of 3 to 4 is compensated
for by the time needed to find suitable parameters in the full-space approach.

5 Summary and Discussion

We have shown that reduced-space inexact-Newton-Krylov (INK) algorithms offer an
attractive compromise between reduced-space quasi-Newton and full-space Newton-type
methods. For the nozzle-flow inverse design problem, reduced-space INK was 4 to 6
times faster than the quasi-Newton algorithm and was much less sensitive to the number
of design variables. The LNKS full-space algorithm was found to be the most efficient
scalable algorithm, but this efficiency comes at the price of robustness.

In general, engineers have focused on reduced-space quasi-Newton and full-space New-
ton methods. The results presented here indicate that reduced-space INK algorithms
should be investigated more broadly, since they offer a scalable route to solving large-
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Figure 1: Cost of the nozzle-area optimization based on number of equivalent flow solutions.

scale optimization problems. Moreover, they require limited intrusion into existing PDE
solvers and provide increased robustness relative to full-space algorithms.

Inexact-Hessian-vector products play an important role in the reduced-space INK al-
gorithm presented here. The products are computed using second-order adjoints with
dynamic tolerances. The use of dynamic tolerances was shown to reduce computational
cost by approximately 40% relative to a fixed tolerance. We note that inexact-Hessian-
vector products may pose challenges for traditional optimization algorithms that assume
symmetry of the Hessian. Our current work is focused on developing optimization algo-
rithms that are robust in the presence of inexactness in the Hessian.
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