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Abstract. We present a reduced order finite element method based on the variational
multiscale method together with a component mode synthesis representation for the fine
scale part of the solution. We present an a posteriori error estimate in the energy norm for
the discrete error in the approximation which measures the error associated with model
reduction in the fine scale.

1 INTRODUCTION

In this contribution we briefly describe a recent multiscale finite element method, intro-
duced in [6], which builds on using a reduced order model for the fine scale in a variational
multiscale method, see [2] and the later developments [5].

Model reduction methods are commonly used to decrease the computational cost asso-
ciated with simulations involving repeated use of large scale finite element models of for
instance a complicated structure. The objective of model reduction methods is to find
a low dimensional subspace of the finite element function space that still captures the
essential behavior of the solution sufficiently well. A classical model reduction method is
component mode synthesis (CMS), see [3].

In CMS the computational domain is split into subdomains and a reduced basis as-
sociated with the subdomain is constructed by solving localized constrained eigenvalue
problems associated with the subdomains together with modes that represent the dis-
placements of the interface between the subdomains, as in the Craig-Bampton method
[1].

Here we construct a multiscale finite element method where the coarse scale is rep-
resented by piecewise linear continuous elements on a coarse mesh and the fine scale is
defined by a CMS related approach on a refined mesh, using the coarse mesh elements
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as subdomains in the CMS method. The coupling modes are computed for each pair of
neighboring elements and couple the response in the subdomains. Thus the fine scale is
finally represented as a direct sum of functions with support in each element and functions
associated with each edge supported in the two elements neighboring the edge. Adaptive
reduction is accomplished by choosing a basis in each such subspace consisting of a trun-
cated sequence of eigenmodes. The eigenmodes are numerically computed and capture
fine scale effects.

We note that in the original CMS method the interface problem is global, which is
a serious limitation since the reduced mass matrix is dense. In the multiscale method
we present here we instead get a mass matrix with a block structure that is similar to
finite element methods based on higher order polynomials. Furthermore, the size of all
eigenvalue problems solved in the fine scale computations can be controlled by refining
the coarse scale mesh.

We derive an a posteriori error estimate for the multiscale finite element method that
can be used to automatically tune the number of subscale modes in an adaptive algorithm.
For further details we refer to [6] and the previous work on a posteriori error estimates
for component mode synthesis [4].

2 LINEAR ELASTICITY

Strong form: The equations of linear elasticity take the form: find displacements u
such that

−∇ · σ(u) + τu = f , x ∈ Ω, (1a)

σ(u) = 2µε(u) + λ(∇ · u)I, x ∈ Ω, (1b)

u = 0, x ∈ ΓD, (1c)

n · σ(u) = gN , x ∈ ΓN , (1d)

where τ ≥ 0 is a real parameter, f is a body force, gN is a traction force, ε(u) =
1
2
(∇u + ∇uT ) is the linear strain tensor, σ the stress tensor, I is the d × d identity

matrix, and λ and µ are the Lamé parameters given by λ = Eν[(1 + ν)(1 − 2ν)]−1 and
µ = E[2(1 + ν)]−1, where E and ν is Young’s modulus and Poisson’s ratio respectively.
The coefficients can have multiscale behavior, i.e. exhibit variation on a very fine scale or
on multiple scales.

Weak form: The corresponding variational form of (1) reads: find u ∈ V = {v ∈
[H1(Ω)]d : v|ΓD

= 0} such that

A(u,v) = b(v), ∀v ∈ V, (2)

where A(·, ·) is the bilinear form

A(v,w) = a(v,w) + τ(v,w) (3)
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Figure 1: Left: coarse mesh T H on an L−shaped domain. Left: fine mesh T h obtained by a sequence of
uniform refinements.

with

a(v,v) = 2(µε(v) : ε(w)) + (κ∇ · v,∇ ·w), (4)

and b(·) is the linear form

b(v) = (f ,v) + (gN ,v)ΓN
. (5)

3 MULTISCALE METHOD

The mesh and finite element spaces: Let T H be a coarse mesh on Ω consisting
of shape regular triangles (d = 2) or tetrahedra (d = 3) and let T h be a fine mesh
obtained by a sequence of uniform refinements of T H . See Figure 3. Let V H ⊂ V h be the
corresponding spaces of continuous piecewise linear functions.

We then have the following splitting

V h = V H ⊕

(⊕
E∈EH

V h
E

)
⊕

(⊕
T∈T H

V h
T

)
(6)

Here V h
T ⊂ V h is the space of functions with support in element T ∈ T H , EH is the set of

edges in the coarse mesh T H , and if the edge E is shared by elements T1 and T2 in T H

then the edge space V h
E is defined by

V h
E = {v ∈ V h : supp(v) ⊂ T1 ∪ T2, a(v, w) = 0 ∀w ∈ V h

T1
⊕ V h

T2
} (7)

Note that this means that the functions in V h
E are uniquely determined, through harmonic

extension, by the restriction to the edge.
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Multiscale finite element space: To construct a multiscale basis in this finite element
space we use Fourier expansions in terms of eigenmodes determined by the following
eigenvalue problems. Reduction, is then obtained by truncating the Fourier expansion.

• Basis in V h
T : Let (Zi,Λi) ∈ V h

T × R+, for i = 1, 2, . . . , dim(V h
T ), be the eigenpairs

defined by

a(Z,v) = Λ(Z,v), ∀v ∈ V h
T (8)

Using modal truncation we obtain a reduced subspace V h,mT

T ⊂ V h
T , defined by

V h,mT

T = span{Zi}mT
i=1, (9)

where mT � dim(V h
T ).

• Basis in V h
E : Let (Zi,Λi) ∈ V h

E × R+, for i = 1, 2, . . . , dim(V h
E ), be the eigenpairs

defined by

a(Z,v) = Λ(Z,v), ∀v ∈ V h
E (10)

Using modal truncation we obtain a reduced subspace V h,mE

E ⊂ V h
E , defined by

V h,mE

E = span{Zi}mE
i=1, (11)

where mE � dim(V h
E ).

Finally, we arrive at the following reduced order multiscale finite element space

V h,m = V H ⊕

(⊕
E∈EH

V h,mE

E

)
⊕

(⊕
T∈T H

V h,mT

T

)
(12)

where m = (∪E∈EHmE) ∪ (∪T∈T HmT ) is the multi index containing the indices mE and
mT for all edges E ∈ EH and elements T ∈ T H .

Multiscale finite element method: The multiscale method is then directly obtained
by using this reduced order space in the standard variational formulation: findUm ∈ V h,m

such that
A(Um,v) = b(v), ∀v ∈ V h,m, (13)

Note that this is a coupled system involving both the coarse piecewise linear functions
and the edge and element spaces spanned by the eigenmodes define above. Fine scale
effects are captured in computations of the eigenfunctions on the fine mesh.
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4 A POSTERIORI ERROR ESTIMATE

A posteriori error estimates: Let ||| · ||| denote the energy norm, |||v|||2 = A(v, v) and
let Uh denote the standard finite element solution in V h. Then we have the following a
posteriori error estimate

|||Uh −Um|||2 ≤
∑
E∈EH

η2
E +

∑
E∈T H

η2
T . (14)

Here we introduced the following subspace indicators

η2
E =

‖RE(Um)‖2

ΛE,mE+1

, E ∈ EH , (15)

η2
T =
‖RT (Um)‖2

ΛT,mT +1

, T ∈ T H , (16)

where the subspace residual RI : V h
I → V h

I , is defined by

(RI(w),v) = b(v)− A(w,v), ∀v ∈ V h
I , I ∈ EH ∪ T H (17)

The indicators measure the error contribution due to reduction in the corresponding
subspaces V h,mE

E , E ∈ E , and V h,mT

T , T ∈ T .

Adaptive algorithm: Based on the a posteriori error estimate (14) we may construct
an adaptive solution procedure as follows:

1. Start with a guess of the subspace dimensions in V h,mE

E and V h,mT

T .

2. Solve the problem (13) and compute the subspace indicators (15) and (16).

3. If an indicator is large according to some refinement criterion, increase the number
of modes in that subspace.

4. If
∑

E∈E η
2
E +

∑
T∈T η

2
T < TOL, where TOL is a predetermined tolerance, stop.

Otherwise, go to 2.

5 NUMERICAL EXAMPLE

We finally consider linear elasticity with τ = 0, Young’s modulus E = 1, and Pois-
son’s ratio ν = 0.3 on the L−shaped domain clamped, and free on the reminder of the
boundary, at one side and exposed to a gravity force Fg acting on the whole domain,
see Figure 5 (left). As is well known the solution is singular in the corner. We use an
unstructured triangulation to construct the coarse mesh and a sequence of uniform refine-
ments to construct the fine scale mesh, see 3. In figure 5 (right) we compare the adaptive
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Figure 2: Left: set up of the problem in the numerical example. Right: decay of the error for the reduced
displacement U r using a uniform refinement strategy (dashed line) compared to an adaptive strategy
(solid line).

strategy described above with a uniform strategy. We plot the estimated energy norm
error compared to the actual energy norm error. We note that the error estimate is sharp
and that the adaptive strategy outperforms the uniform strategy. We also note that the
adaptive method actually produces an exponentially convergent sequence of approximate
solutions.
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