
VI International Conference on Adaptive Modeling and Simulation
ADMOS 2013

J. P. Moitinho de Almeida, P. Dı́ez, C. Tiago and N. Parés (Eds)

MASSIVELY PARALLEL COMPUTATION ON
ANISOTROPIC MESHES

H. DIGONNET∗, L. SILVA∗ AND T. COUPEZ∗

∗CEMEF - MINES ParisTech
Rue Claude Daunesse

BP 207
06904 Sophia Antipolis cedex

France

Key words: Massively parallel computation, Anisotropic mesh adaptation, Multigrid

Abstract. In this paper, we present developments done to obtain efficient parallel com-
putations on supercomputers up to 8192 cores. While most massively parallel computation
are shown using regular grid it is less common to see massively parallel computation using
anisotropic adapted unstructured meshes. We will present here two mains components
done to reach very large scale calculation up to 10 billions unknowns using a muligrid
method over unstructured mesh running on 8192 cores. We firstly focus on the strategy
used to generate computational meshes and in particular anisotropic ones adapted to cap-
ture a quite complicated test function. Then we will briefly describe a parallel multigrid
method. Performance test over a large range of cores from 512 to 8192 cores is then pre-
sented using the French national supercomputers Jade and Curie. The last section will
present a calculation done on smallest number of cores on our own cluster, but using more
realistic data obtain directly from experimentation. The goal is to be able to realize such
kind of simulation on really complex micro structure obtain by tomography at a larger
scale.

1 INTRODUCTION

From the last years computers power increase mainly by cores multiplication (rather
than clock rate rise) inside each CPU (classically 8 or 16 cores in 2012) and also for the
supercomputers of the top500 that contain several thousand to more than one million
cores. this context impose to develop fully parallel softwares to at least be able to take
advantage of new computer hardware. If we look at numerical simulation, computation
times are always to important and has soon as they decrease the user want to have more
precise computation by introducing more physical properties or by looking in computing
lower scale calculation to improve the material behavior. One of the mains way to reduce

1

H. Digonnet, L. Silva and T. Coupez

computation time is to use parallel computers and in the ideal case divide the CPU time
by the number of cores used. For that it is then necessary to develop algorithms that could
run on massively parallel computer containing hundred, thousand or even more cores like
ones present in the top500 list of supercomputers. We present here some algorithms done
to allow our application CimLib to run over massively parallel supercomputer using up
to 8192 cores. The first section will focus on parallel mesh adaptation with anisotropic
elements taht lead to generate smaller meshes for a given precision. A second part will
briefly present parallel multigrid method implemented to reduce the complexity of the
algorithm used to solve linear systems and fully utilize the power and memory given on
a computer. We present parallel performance on solving incompressible Stokes equation
using from 8 to 8192 cores and enable resolution of a linear system containing more that
10 billions unknowns by using 8192 cores. The last section will present more reasonable
simulation but on a more realistically and complex case. It consists in computing a flow
through a micro structure given directly from a real one using tomography.

2 parallel anisotropic mesh adaptation

2.1 parallel mesh adaptation strategy

We briefly present here the methodology used to parallelize our unstructured and non
hierarchic mesher, MTC [1]. At the beginning of this work, the sequential mesher already
exist and is likely to evolve (we recently add anisotropic mesh size [2]), so we want to keep it
as it was, by not including parallel instructions inside. So, we have not parallelized directly
it, but only give the oprtunity to use it inside a parallel context. The strategy is then to
combine local remeshing (inside each processor domain, freezing the interfaces between
the partitions) [3] and parallel mesh repartitioning [4] to move unremeshed interfaces
inside domains for the next step, in order to be able to apply the remeshing procedure on
theses zones during the next phase. Figure 1 illustrate this strategy on a simple geometry
using seven processors.

2.1.1 optimization and performance

This strategy of parallelization leads to several iterations (depending of the space di-
mension) between the mesher and the repartitioner, but the work to be done at each
iteration decreases quickly. For example, in a 2d space : the first remeshing step is
proportional to a surface, the second to a line and the last one to a point. For the reparti-
tionner, as we only need to move bad quality zones inside the domain in order to remesh
it, the proportion of elements and nodes to be migrate across the processors decreases in
the same way. For that reason the cost of using a multi steps strategy must be really
close to a single remeshing step: the global work done by the mesher is approximately the
same, and only some few mesh migrations are done during repartitioning steps. For that
purpose an optimization of the update procedures in case of small changes has been done
(the time spent to remesh or migrate 10 elements is then close to zero). This optimization

2

H. Digonnet, L. Silva and T. Coupez

Figure 1: Illustration of the parallelization strategy used for the mesher in a 2d case with a refinement by
4, over 7 processors. Each image represent one step of the iterative methodology consisting in successively
call parallel remeshing with frozen interfaces and parallel repartitioning, until convergence to good quality
mesh. The last repartitionning phase is done to load balance the work by considering finite element
resolution to come. 3

H. Digonnet, L. Silva and T. Coupez

is based on a permute-copy-past algorithm that leads to reduce the complexity from N

(the data size) to m (the moving size) with m ≪ N . Permutation removes any copy of all
the data by making instead some few permutations. After that, work is performed only
in the cutting zone and pasted back after being done. This optimization was essential to
maintain the iterative strategy costless, and so provide a good parallel efficiency to the
mesher.

2.2 anisotropic error estimator

Anisotropic meshes are used to keep the same accuracy of isotropic meshes but with a
smaller number of nodes and elements by allowing different mesh size depending of the
direction. The use of such anisotropic meshes could reduce drastically the size of the mesh
and in particular in 3d where a uniform refinement of a factor 2 increase the number of
nodes by a factor 8 that has to be compared to only a factor 2 if the refinement is only
needed in one direction. For anisotropic mesh adaptation we need use a mesh size definied
by a scalar for isotropic mesh and a symmetric positive defined tensor (named metric) for
anisotropic one. In order to enable mesh adaptation we need to provide to the mesher a
continuous field of mesh size one simple solution is to give a P1 interpolate field where
a local mesh size is defined at each mesh nodes. The way to compute this field could be
a average of the elements metrics containing this node with the difficulty of choosing a
good average value for tensors. A more direct way to defined this metric consist in using
the distribution tensor describe in [2] and given by :

Xi =
1

|Γ(i)|

∑

j∈Γ(i)

X ij ⊗X ij

where X ijis the vector
−−−→
XiXj between two neighbor nodes i and j and Γ(i) the neighbors

nodes of i.
This tensor give the anisotropic size of the envelope containing of the elements belong-

ing to node i, and the natural metric for the mesh is then simply defined by Mi = X
−1
i to

insure that using this metric this envelope has an unit length.
The anisotropic error estimator is well presented in [2] and we will here only present

the mains ideas. To be able to build a anisotropic error estimator we first need to be
able to define an anisotropic error and for that we will use the same technique of the
distribution tensor. For a given Level Set we will compute the error over nodes edges as :

eij =
∣

∣GijX ij
∣

∣

where Gijis the gradient variation of the level set function across the edge ij.
With this anisotropic error and given a number of nodes mesh we could define (for

demonstration refer to paper [2]) a metric tensor to generate an adapted mesh that will
uniformly distribute the error across its edges. The metric is given by :

4

H. Digonnet, L. Silva and T. Coupez

Mi =
1

|Γ(i)|

∑

j∈Γ(i)

s2ijX
ij ⊗X ij

−1

with

p ∈ [1, d]

λ =

∑

i

∑

j∈Γ(i)

e
p

p+2

ij

A

p+2

2

where d is the space dimension, A is the global number of edges in the mesh and p

is the power of the power law estimation for the number of edges generated in the mesh
when we want to divide one edge. For example: for a one direction anisotropic mesh
divide an edges in that direction by a factor 2 will only multiply by 2 the global number
of edges in the mesh and then p = 1; in case of an isotropic mesh divide an edge by two
will generate eight times more edges so p = 3.

2.3 application test case

We present in this section an application test case adapted to massively parallel com-
putation. It consist in computing a adapted mesh to allow a good representation of a
complicated function defined by :

f(x) = a ◦ a(x− x0) + a ◦ a(x− x1)

where

a(x) = tanh

(

Esin

(

4 ∗N + 1

2
Π‖x‖

))

and

x0 = (0, .., 0) x = (1, ..., 1)

E and N are two parameters that can be adjusted. They respectively influence the
thickness and the complexity of the details present in the function: if E increase the size
of the detail decrease and if N increase then each detail contain become more and more
complex. The figure 2 represent the test function on an uniform square mesh containing
around 50000 nodes for E,N parameters equal to 1, 2 and 4. We notice that for E=4

5

H. Digonnet, L. Silva and T. Coupez

and N=4 the uniform mesh start to be to small to obtain a good representation of the
function f.

As soon as these parameters increase the function become really difficult to capture and
we need to activate both the anisotropic mesh adaptation and parallel computation to gen-
erate meshes fine enough to represent the test function. The bottom of figure 3represent
the 23 millions nodes anisotropic mesh generate to represent the test function with E=16
and n=6 on the unit square. It clearly illustrate the benefit of being able to execute
anisotropic mesh adaptation in parallel, here using 256 cores.

The figure 4 represent the same test case in a 3d context using smaller parameters
N = 1 and E = 4. E and N parameters. The 3d adapted mesh contain 2 millions
nodes and have been generate using 50 mesh adaptation iterations using 64 cores of Jade
supercomputer in 15.5 hours .

3 Multigrid solver

Using powerful computers containing a large numbers of cores could lead using very
big meshes with several millions nodes. Solving physical equation using for example
the finite element method will ends in solving very large linear systems. Using iterative
methods like Krylov ones will parallel preconditioner give good parallel performance but
the algorithm complexity (around O(n3/2) in 3d) become a bottleneck as soon as the
number of unknowns start to be important (taking a problem 2 times bigger and using
2 times more cores the time spent to solve will be greater than 2). To over come this
difficulty we have implemented a parallel multigrid solver using the framework give by
PETSc [5]. To do this we need to provide for each level the system to be solve and also
the interpolation/restriction matrix operator. Of course all these matrices must be build
and store in a distributed way to allow using a large number of cores. More details are
presented in [6] but a particular attention have been given to reduce the communication
during the construction of the interpolation operator using a parallel octree localization
algorithm and pixel mask filter distributed over processors to limit false positive external
nodes detection. The figure 5 present parallel performance of the multigrid resolution for
Stokes equation over a 2d square mesh of 800 millions nodes and using 512 to 4096 cores.
Time spent to solve the system decrease from 96.7 seconds with 512 cores to 17.7 seconds
with 4096 cores, in the same time the number of multigrid iteration only increase from
11 to 13 and leads to a speed-up of 5.46.

Even if a good parallel performance of the multigrid solver is important, the main
interest is the scalability of this approach that make us able to solve very very large
systems. An ideal scalability will be give by a algorithm that will use exactly the same
computing resources for a given per core problem size independently of the number of
cores uses. A scalability test have been done from 8 to 8192 cores on the multigrid solver.
The results are very interesting : the memory used per core during the process stay nearly
constant (from 1.94 to 2.14 GB) as well as the time spent to assemble all levels systems
(from 9.7 to 11 seconds) and the multigrid iterations (from 13 to 11); only the resolution

6

H. Digonnet, L. Silva and T. Coupez

Figure 2: Influence of the two parameters N and E on the complexity of the test function. This test
function is plot on an uniform 2d mesh containing 50 000 nodes. From the top to the bottom the
parameter N = 1, 2, 4 and from the left to the right the parameter E = 1, 2, 4. On the left bottom the
uniform mesh used to plot the test function.

7

H. Digonnet, L. Silva and T. Coupez

Figure 3: Anisotropic mesh adaptation around the test function f(x) = g ◦ g(‖x − 0‖ + g ◦ g(‖x − 1‖)
with g(x) = tanh(Esin(4∗N+1

2
πx)) with 2 sets of parameters : on the top N=3, E=16 and at the bottom

N = 6, E = 16. For these two sets we present : the function on the unit square, one cross detail and a
zoom on the mesh for a deep detail inside the cross detail. The 2d adapted meshes containing respectively
1 million and 23 millions nodes. They where build in respectively 576 seconds over 128 cores and 3 hours
on 256 cores of Jade supercomputer. The smallest mesh size is around receptively 10−5 and 10−6.

Figure 4: Anisotropic mesh adaptation in 3d around the test function with N = 1 and E = 8 for a final
mesh containing 2 millions nodes.

8

H. Digonnet, L. Silva and T. Coupez

Figure 5: Parallel efficiency for the multigrid resolution using 512 to 4096 cores. The number of multigrid
iteration needed to converge stay almost constant (efficiency close to one) has well as the parallel efficiency
per iteration. At the global point of view the parallel efficiency is a bit worse due to the combination of
per iteration parallel performance and increasing number of iteration but still very good (close to one)
has the problem size per core decrease as number of cores used increase.

time increase a beat more from 90 to 148 seconds. This augmentation of 50% of the time
spent to solve the problem between 8 and 8192 cores is still reasonable and may also
be reduce using more multigrid level over 8192 cores as the coarse level system size may
become to big (around 600 000 unknowns) to be solve in a efficient way. To conclude this
multigrid solver implementation have been able to solve a global system (based on the
Stokes equation) containing more than 10 billions unknowns using 8 levels in 158 seconds
using 8192 cores and 17.5 PB of memory.

4 From real to virtual

In this section we present some work done to enable making simulation using real micro
structure. Today tomography could produce some really nice (well defined but also heavy)
image of real material as shown on the left of figure 6 [7]. This image is constituted of a
large number of gray level voxel (equivalent to pixel in 2d), the back ones represent the
polymer matrix and white one solid fibers. From this image we extract the an isosurface
mesh (shown on the right of figure 6). Depending of the image definition the number of
voxel and thus the number of faces in the isosurface mesh could become really important
and may need to be executed in parallel using some small enough part of the whole domain
using some similar technique as octree. Once we have the isosurface mesh, it could be
immerse into the computational mesh by computing for all the mesh nodes the distance to
the isosurface that give a level set representation of the micro structure [8]. To improve the

9

H. Digonnet, L. Silva and T. Coupez

Figure 6: From real to virtual: a large 3d voxel image of the microstructure obtain by tomography
and treated with a segmentation algorithm, its surface mesh given by the isosurface 127, and finally the
computational domain with an anisotropic adapted mesh.

immersion of the microstrure we could lauch some anisotropic mesh adaptation procedures
that will provide the computational adapted mesh as shown in bottom of figure 6.

If the previous figures 6were done to illustrate the mesh adaptation to the real mi-
crostructure using anisotropic mesh, using bigger image for the microstructure generate
very big mesh and justify using massively parallel computer for both anisotropic mesh
adaptation but also for computing the solution. Figure 7 represent the computed flow us-
ing Stokes equation across the immerged microstucture. Computation was done using 96
cores on a 10 millions nodes adapted mesh to a microsuture image containing 900x900x220
voxels. This is this type of computation than we plan to do in a close future but over
much more larger image with around 4000x4000x4000 voxels given by new tomographic
acquisition. For being able to do that all the computational chain need to be run in
parallel from the image generation to the visualization of the computed results.

5 CONCLUSIONS

In this paper, we have presented the parallelization strategy for the mesher that consist
in iterate between a remeshing step with frozen interfaces and repartitionning step used to
migrate interfaces. In that way the mesher engine stay sequential and do not contain any

10

H. Digonnet, L. Silva and T. Coupez

Figure 7: Large numerical simulation of the 3d flow across a microstructure done using a big 900x900x220
tomographic image. Flow is compute over a 10 millions nodes adapted mesh using 96 cores. The isosurface
represent fibers microstructure, vector the velocity field.

11

H. Digonnet, L. Silva and T. Coupez

parallel instruction so it could still be developed (introduce anisotropic mesh) without any
specific knowledge. The implementation of a permutation cut and past optimization gives
excellent parallel performance as well as a better quality control for meshes generated.
Some examples of anisotropic distributed meshes adapted to well represent a complicated
test function are give and clearly show the interest of using anisotropic mesh rather than
isotropic ones : a 23 millions nodes anisotropic mesh adapted using 128 cores can capture
the test function with parameters N=6 and E=16 leading to a very complex function,
a equivalent representation will need a picture containing around one thousand billions
pixels.

A massively parallel multigrid method working on unstructured meshes have been also
presented. The construction of interpolation/restriction operators between very large dis-
tributed meshes and using a large number of cores need a powerful localization algorithm
used to determine which element contain a node. For that we use a parallel octree local-
ization method improve by a domain filter define by a pixel mask to reduce false detection
of non local nodes. By using this filter we have a important reduction of communication
even when domains are unrelated???. Very good parallel performance have been presented
for the multigrid approach use to solve Stokes equation on very fine meshes over a large
range of cores from 8 up to 8192 cores. The multigrid method developed allow to better
use all the resources of massively parallel computers (CPU and memory). Over 8192 cores
a global system containing more than 10 billions nodes have been solved with an 8 levels
multigrid solver in 148 seconds, using a total of 17,5Po of memory. It is important to
notice that for such a resolution we have been oblige to remove the 32 bits integer limit
in our code.

Finally we presented some more realistic simulation done on real micro structure ob-
tained by tomography. Tomography of a real material gives a 3d image (voxels) segmented
to represent the micro structure. This image is then used to build a Level-Set function.
A anisotropic adapted computational mesh is build in parallel to fit the micro structure.
Once this adaptation is done we could compute the flow through the micro structure. We
have presented here one simulation done over a 10 millions nodes 3d adapted mesh using
a micro structure image with 900x900x200 voxels. Visualization of the results has been
done using a parallel version of the Paraview [9]software, coupled with distributed results
files and using python scripts [10].

Future work we be done to improve and validate our algorithms and be able to scale
over tens to one hundred of thousands cores as the 32 bits integer limits have already
been removed. We will also look to simulate non linear materials on a larger VER given
by new tomographic acquisition leading to 4000x4000x4000 voxels images.

6 Acknowledgments

This work was granted access to the HPC resources of [CCRT/TGCC/CINES/IDRIS]
under the allocation 2012-[x2012066109] made by GENCI (Grand Equipement National
de Calcul Intensif)

12

H. Digonnet, L. Silva and T. Coupez

REFERENCES

[1] T. Coupez, Génération de maillage et adaptation de maillage par optimisation locale,
Revue Européenne des Éléments 9, 403 (2000).

[2] T. Coupez, Metric construction by length distribution tensor and edge based error
for anisotropic adaptive meshing, Journal of Computational Physics” 230, 2391(apr
2011).

[3] T. Coupez, H. Digonnet and R. Ducloux, Parallel meshing and remeshing, Applied
Mathematical Modelling 25, 153 (2000).

[4] A. Basermann, J. Clinckemaillie, T. Coupez, J. Fingberg, H. Digonnet, R. Ducloux,
J.-M. Gratien, U. Hartmann, G. Lonsdale, B. Maerten, D. Roose and C. Walshaw,
Dynamic load-balancing of finite element applications with the DRAMA library,
Applied Mathematical Modelling 25, 83 (2000).

[5] S. Balay, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith and H. Zhang, PETSc Users Manual, Tech.
Rep. ANL-95/11 - Revision 3.3, Argonne National Laboratory (2012).

[6] H. Digonnet, Multigrid using Adaptive Unstructured Meshes for Massively Paral-
lel Computation, in Proceedings of the Third International Conference on Paral-

lel, Distributed, Grid and Cloud Computing for Engineering , eds. P. Iványi and
B. ToppingCivil-Comp Proceedings (Civil-Comp Press, Stirlingshire, UK, Pécs, Hon-
gary, 2013).

[7] L. Orgéas, P. Dumont, J.-P. Vassal, O. Guiraud, V. Michaud and D. Favier, In-plane
conduction of polymer composite plates reinforced with architectured networks of
copper fibres, Journal of Materials Science 47, 2932 (2012).

[8] P. Laure, G. Puaux, L. Silva and M. Vincent, Permeability computation on a REV
with an immersed finite element method, AIP Conference Proceedings 1353, Pages
978(May 2011), The 14th International Esaform Conference on Material Forming:
ESAFORM 2011- Queen’s University Belfast, UK, 27-29 April, 2011.

[9] A. Henderson, The ParaView Guide: A Parallel Visualization Application (Kitware,
November 2004).

[10] H. Digonnet, Making Massively Parallel Computations Available for End Users, in
Proceedings of the Second International Conference on Parallel, Distributed, Grid

and Cloud Computing for Engineering , eds. P. Iványi and B. Topping, Civil-Comp
Proceedings, Vol. 95 (Civil-Comp Press, Stirlingshire, UK, Paper 61, Ajaccio, France,
2011).

13

