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Abstract. This article describes the use of Gaussian Processes in model reduction tech-
niques with application to inverse problems. The work is focused on the proper construc-
tion of the model approximation, namely on training process based on limited number
of learning samples. By making use of Active Learning criterion employed in training
process a significant improvement in model prediction can be observed. An example of
application of stochastic surrogate model for the paperboard characterization through
biaxial tensile test and Digital Image Correlation measurements is also presented.

1 INTRODUCTION

The inverse analysis is a technique widely used for structure or material characteri-
zation, especially when unknown or uncertain parameters embedded in the model have
to be determined. Knowing the structure responses such as displacements, accelerations,
eigenmodes, etc. the backward computations can be performed to identify causes, e.g.
constitutive constants, structural parameters. In the literature there are many examples
of application of inverse analysis for material characterization [1, 2, 3], damage detection
[4, 5], estimation of residual stresses [6, 7], to list just a few.

The inverse analysis often uses a numerical model (e.g. finite element or boundary
element model, analytical model) for test simulation, which computes selected quantities
to be compared to experientially measured ones. The inverse procedure, through iterative
optimization algorithms, minimizes the discrepancy between experimentally measured
UEXP and numerically computed UNUM quantities, so the minimization problem reads:

arg min
x∈Rn
‖UNUM (x)−UEXP‖2

2 (1)

where x is a set of sought parameters.
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If the numerical model is complex and/or has to be computed many times, the iterative
minimization procedure becomes very expensive, therefore, not attractive from practical
point of view especially when the test has to be performed routinely ‘in situ’ (i.e. without
a computer which can handle heavy computations). The alternative is to use a surrogate
which approximates the behavior of the numerical model but is much simpler, thus less
expensive. The surrogate is usually constructed as a ’black box’ where for the approxima-
tion the following methods, among others, are commonly used: Radial Basis Functions
(RBFs), Polynomials, Proper Orthogonal Decomposition (POD) combined with RBFs
[8, 9], Artificial Neural Networks (ANNs) [10] or Gaussian Processes (GP) [11, 12].

2 MODEL REDUCTION THROUGH GAUSSIAN PROCESSES

2.1 Model approximation

In order to build a smooth and accurate analytical approximation one needs to con-
struct a forward model to generate responses (i.e. training samples):

xn ⇒
{

Forward
Model

}
⇒ u (xn) (2)

where xn = [x1, x2, . . . , xM ]Tn is an input vector (i.e. vector of sought parameters) and

u (xn) = un = [u1 (xn) , u2 (xn) , . . . , uk (xn)]T is an output vector (i.e. vector of mea-
surable quantities) for n = 1, . . . , N . Both vectors {xn,un} represents a single training
sample and form n-th column of (M×N) parameter matrix X and (K×N) snapshot
matrix U:

X =

 x11 · · · x1N
...

. . .
...

xM1 · · · xMN

 , U =

u11 · · · u1N
...

. . .
...

uK1 · · · uKN

 , (3)

Ideally would be to find method which needs the smallest possible number of ‘training
samples’ and in the same time is precise and robust. The approximation method based
on Gaussian Processes satisfies all these requirements: it gives very good results when the
number of training examples is limited. Another important feature of GP is that it gives
not only the approximation of the mean value of sought solution but also its standard
deviation. This feature gives a possibility of automatic and systematic improvement of
the solution, because in the locations with high values of standard deviation one can
expect a weak approximation and therefore, it points out where, in the parameter space,
an additional experimental or numerical data is necessary to improve the solution.

The GP employed for stochastic approximation is usually formulated within Bayesian
framework, thus provides additional information about the magnitude of correlation be-
tween state variables and control variables. It is very important to know the relevance
of input-output correlation because based on it one can exclude from the model the
parameters which do not influence the measurable quantities. The reduction saves the
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experimental efforts of finding parameters which appear to be irrelevant in particular sim-
ulation. Such information obtained ’for free’ during the training process is similar to the
results from sensitivity analysis often performed for model check.

The stochastic model reduction techniques based on GP have, however, one signifi-
cant disadvantage, namely the Gaussian Processes are usually parameterized in terms of
their covariance functions. This makes it difficult to deal with multiple outputs, because
ensuring that the covariance matrix is positive definite is problematic. An alternative for-
mulation is to treat Gaussian processes as white noise sources convolved with smoothing
kernels, and to parameterize the kernel instead (see [13]). Using this approach, one can
extend Gaussian Processes to handle multiple, coupled outputs.

When GP are applied for model reduction (here for the forward model approximation)
within the inverse problem, the number of measurable quantities (e.g. measured displace-
ment fields, velocities or accelerations in different moments of time and in various space
locations) is often very large. In such situation the probable correlations between the
state variables can be computed, and consequently used to reduce the number of model
outputs by the application of POD, i.e.:

U⇒
{

POD
}
⇒ Ū (4)

where

Ū =

u11 · · · u1N
...

. . .
...

uL1 · · · uLN

 , (5)

with L � K. However, the problem size, even when reduced, does not necessarily make
possible an efficient application of multi-output GP. An alternative is to formulate the
GP approximation on modified training samples, which instead of output consisting of
truncated measurable quantities {xn, ūn}, have an output containing a particular scalars
{xn, tn}. The scalar value output can be chosen for example as a ‘squared distance’ from
the experimental measurements to their numerically computed counterparts, namely:

tn = ‖un − uEXP‖2
2 . (6)

By adopting a latter method the GP approximation can be constructed in two stages.
First N training samples {xn,un} are computed through forward model (2). Later for
each particular identification procedure an experimental data uEXP are used for output
truncation through (6) to a single scalar (so the training data is now {X,T}, where
T = [t1, t2, . . . , tN ]). Having a scalar output in each training sample the single-output
GP approximation can be easily constructed. On this stage an additional retraining
by an active learning method (see e.g. [11]) can be performed in order to improve the
surrogate. Once the GP approximation is designed, any optimization algorithm can be
used to find a function minimum according to formula (1). Because the surrogate in
general approximates a multi-modal function (i.e. function with many local minima)
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it seems reasonable to employ for function minimization some global search techniques
such as genetic algorithms [14] or particle swarm methods [15]. Such algorithms require
usually a big number of iterations in order to find a global minimum, however, when used
on reduced model the computing time is not an issue anymore.

2.2 Linear regression model

In order to explain how to construct a model approximation by Gaussian Processes,
first a Linear Regression (LR) model should be considered. LR is a linear function of
model parameters w and nonlinear function of the input vector x, and usually is defined
as:

y (x,w) =
M∑
j=1

wjφj (x) , (7)

which simply is a linear combination of fixed, nonlinear basis functions φj(x) of the input
variables (e.g. polynomial basis functions).

If we now take N given training patterns (xn, tn), xn being the input vector, tn the
response for n = 1 . . . N , then the parameters w of the linear model can be computed by,
for example, penalized least squares method:

w =
(
ΦTΦ + λI

)−1
ΦT t, (8)

where Φ is N×M design matrix with elements defined as φm(xn). The regularization
parameter λ is called hyper-parameter and can be estimated using validation set or by
applying Bayesian inference and maximizing evidence of dataset p(t|λ) w.r.t. λ (details
are given in [12]).

2.3 Gaussian Process

Gaussian process model can be obtained by reformulation of the linear model in terms of
dual representation. In this approach, linear model is trained by minimizing a regularized
error, which is defined using N×N symmetric Gram matrix:

K = ΦΦT = φ(x)Tφ(x′) = k(x,x′), (9)

where k(x,x′) is a kernel function. The vector kn = k(xn,x) represents n-th row or
column of K matrix.

The prediction for a new input x∗ can be computed by the formula:

GP (x∗|x, t, λ) = k(x,x∗)T (K + λI)−1t, (10)

where k(x,x∗) is a covariance between a new input x∗ and the other inputs, t = (t1 . . . tN)T

is a vector of training target values.
From the Bayesian point of view the dual representation of linear model leads to the

Gaussian process, where the kernel function is interpreted as a covariance function of the
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GP. Application of such regression model for prediction allows to compute the predictive
distribution of the target variable y(x∗) for a new input vector x∗. This requires evalu-
ation of conditional distribution p(y|t), which for the Gaussian processes is a Gaussian
distribution with mean and covariance respectively given by:

mean (x∗) = kTC−1t, (11)

σ2(x∗) = c− kTC−1k, (12)

where C is the N×N covariance matrix given by:

C(x,x′) = k(x,x′) + β−1I, (13)

where β is the variance of the target distribution and I is an identity matrix. The covari-
ance function C(x,x′) defines the property that vectors x and x′, which are close in input
space, should give rise to highly correlated outputs y(x) and y(x′).

2.4 Covariance function

The covariance function can be any function that will generate a non-negative definite
covariance matrix for any ordered set of (input) vectors (x1, . . .xN). A stationary, non-
isotropic squared exponential covariance function k (x,x′) is chosen here, and given by:

k (x,x′) = ν exp

(
−1

2

M∑
i=1

wi (xi − x′i)
2

)
+ b, (14)

where the term b represents a bias that controls the vertical offset of the Gaussian process,
while ν controls the vertical scale of the process. The wi parameters allow a different dis-
tance measure for each dimension. If wi is small then the i-th input is down-weighted and
have little effect on the input. These hyper-parameters play vary important role mainly
because they have a direct link to model sensitivities with respect to input parameters
thus provide a measure of importance of input parameters.

After defining the covariance function we can make predictions of the new input vectors
but first it is necessary to learn the hyper-parameters

θ = [ν, ω1, . . . , ωM , b, β] . (15)

In order to find those parameters one can search for the most probable set by maximizing
the log likelihood function given by:

ln p(t|θ) =
1

2
ln |C| − 1

2
tC−1t− N

2
ln 2π, (16)

using gradient-based optimization algorithms, such as a first-order batch Levenberg-
Marquardt Algorithm (LMA) or Trust Region Algorithm (TRA), which provides fast
convergence (see details in [16]).
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2.5 Application of GP to inverse problems

Once the N training samples {X,U} is generated through forward model (2) and later
adjusted to the particular experimental data uEXP by the formula (6) so the training set
becomes {X,T} one can learn hyper-parameters θ of covariance matrix C (x,x′), thus
construct GP approximation GP (X,T,θ) of forward model.

From this point, by making use of equations (11) and (12), the prediction of GP output
t∗ for a new parameter vector x∗ can be computed through conditional distribution

GP (x∗|X,T,θ) =
{

mean(t∗) = kTC−1T, covariance(t∗) = c− kTC−1k
}
. (17)

The mean value and covariance of model prediction are computed by simple matrix mul-
tiplications, however, if number of sampling points is large, the construction and inversion
of covariance matrix have to be carefully designed in order to retain an efficiency.

2.6 Active learning

If one would like to improve an approximation adding new training samples, the specific
training process, which automatically finds new locations of sampling points has to be
employed. In order to optimize the retraining procedure of GP based surrogate model,
the active learning criterion, that improve the global model fit, can be implemented. A
new training points are sequentially added in the zones where the model predictions are
poor and/or in the vicinity of the minimum of the approximated solution, meaning that
the iterative retraining of the surrogate model is performed by adding a new training
patterns, sampled in the new locations in the parameter space (selected by the algorithm
itself).

a) b)

reference function

mean prediction

training sample

standard deviation

of prediction

Figure 1: An example of 1D function approximation by GP and active learning algorithm: (a) 15 samples
approximation, (b) 28 samples approximation

This approach is very efficient when the number of training samples is limited, so the
algorithm starts building approximation with small selection of patterns (randomly or
uniformly distributed) and improves the approximation by sampling the parameter space
in a clever way (based on its confidence about the quality of the approximation). It stops
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when the selected number of retraining samples is reached. In Fig. 1 the active training
process is shown.

3 EXAMPLE

An example of a model characterization is used here to illustrate the application of
above described model reduction techniques. The examples show the use of GP as numer-
ical model’s surrogate for characterization of paperboard parameters [17] through biaxial
test and DIC measurements techniques combined with inverse analysis. From such test
one can identify most of the in-plane parameters of paperboard (for the details see [10]).
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Figure 2: Performance of the GP designed for identification of 12 parameters in Xia et al. model with
measurement noise ±0.5 µm: percentage of relative error in abscissae; in ordinates, percentages of results
within each abscissae interval

Figure 2 shows the performance of GP trained and later retrained by Active Learning
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algorithm for each (over one hundred) pseudo-experimental testing sample.
In the above examples the GP based approximation serves as a surrogate of complete

Finite Element (FE) model, which in combination with iterative minimization routine,
namely trust-region algorithm (TRA) and evolutionary-based techniques, i.e. particle
swarm algorithm (PSA) gives very accurate results of model parameters identification.
The results are compared to those obtained by making use of Artificial Neural Networks
(details on application of ANNs are given in [10]). Both ANNs and GP approximations are
constructed on 10.000 numerically generated samples additionally noised and truncated to
DIC measurements precision. The sampling points are distributed in the 12-dimensional
parameter space according to Optimal Latin Hypercube technique [18].

The GP model is further retrained by making use of 100 new testing data. Each test-
ing sample is used to truncate the output matrix U through formula (6) to the vector T.
Active Learning criterion inserted in training algorithm automatically adds new training
points (totally 1.000) in the argument space according to rules specified in previous sec-
tion. In Tab. 1 the comparison of ANNs performance with GP trained by TRA and GP
trained by PSA with active learning criterion is presented.

Table 1: Relative approximation error on 100 testing samples by (a) Artificial Neural Networks; (b) Gaus-
sian Processes and Trust Region Algorithm and (c) GP combined with Active Learning and Particle
Swarm Algorithm

Parameter ANN GP (TRA) GP+AL (PSA)

E1 1.29 1.49 1.11
E2 1.55 1.61 1.25
G12 1.66 1.81 1.15
Q1 4.22 4.10 2.63
Q2 4.05 3.92 2.89
Q3 14.3 15.1 12.0
n1 3.74 3.70 2.16
n2 4.66 4.32 2.62
n3 15.9 14.7 9.86
k 7.28 7.41 5.38
T1 3.20 4.04 2.40
T2 3.50 4.07 2.23

4 SUMMARY

The model reduction approach has the following important advantages w.r.t. the pro-
cedure based on evaluation of full numerical model: (a) it is much faster (the compu-
tational burden is moved to training phase) and (b) it does not require to use powerful
computers for heavy and repetitive computations of numerical model, so once the model
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is constructed it can be used ‘in situ’ on the portable computer.
The GP approximation model, which serves as a numerical model reduction, was used

here in combination with inverse analysis to solve practical engineering identification
problems. In the work the proper construction of the GP model was discussed, namely:
(a) training process based on minimal number of training data, by making use of auto-
matic samples selection through computed standard deviation of model prediction; (b)
control parameters reduction based on input-output correlation (sensitivity-like analysis)
and (c) state variables ‘compaction’ for single-output GP implementation. The successful
application of stochastic model reduction techniques for the material model characteriza-
tion problems was also presented and compared to other approximation method based on
Artificial Neural Networks.
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