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Abstract. Detection, localization and estimation of details of concentrated defects
hidden in structural elements as an important part of structural health monitoring is con-
sidered here. In this work the effectiveness of discrete wavelet transform combined with
inverse analysis is also discussed. The efficiency of the method is studied particularly when
applied to eigenmodes of a cantilever steel beam expressed in amplitudes of vertical dis-
placements, velocities, accelerations or strains. The structural response signal measured
in discrete points is transformed using wavelet decomposition which clearly improve iden-
tifiability of damaged structure. Authors use a parametrized finite element model which
mimic the real structure and by changing control parameters embedded in the numerical
model minimize the discrepancy between the wavelet representation of both ’real’ and
numerically computed measurable quantities. For the discrepancy function minimization
(within least-square framework) the deterministic, iterative Trust Region Algorithm is
used. Also another technique which is applied to minimize the objective function within
a frame of global minimization techniques i.e. Genetic Algorithm is tested and checked
here.

1 INTRODUCTION

The problem of damage detection belongs to a wide class of identification problems,
where unknown parameters of a structure are determined from experimental tests. It
is connected with structural health monitoring and safety assessment. The damage can
have different forms such as cracks, voids, inclusions or delamination, often found in
composites. Localized damage is extremely dangerous because it can initiate progressive
failure of a whole structure.

Among a large number of non-destructive testing X-rays, vibration, acoustic emission,
heat transfer, magnetic field , eddy current or ultrasonic methods (see e.g. [1], [2], [3], [4],
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[5], [6], [7]) also wavelet transform combined with inverse analysis can be used. Because
even small and local damage leads to stiffness reduction, increase of damping and decrease
of a natural frequency of the structure, damage detection methods based on analysis of
structural dynamic response can be easily applied to identify the presence of damage [8]. It
happens that the experiments limited to measurement of eigenfrequences are insufficient,
since the global dynamic response is rather insensitive to damage localized on a small
area, therefore the localization and severity of defect is not easy to identify. On the other
hand methods based on local inspection or heat generation are capable to find damage
position, form and/or magnitude but have small range of applicability.

For structural health monitoring different types of response, namely eigenfrequen-
cies/eigenmodes, displacements, velocities and accelerations can be monitored. For this
purpose modern scanning laser vibrometer for non-contact measurement are often ap-
plied. Vibrometer is capable of gathering vibration data in all three-dimensional coor-
dinate system and have an extended range of ultra high vibration frequencies up to 600
MHz www.ects.pl.

The most fundamental challenge is the fact that damage is typically local phenomenon
and may not significantly influence the global response of structures. Therefore the
method which enables to extract the desired detailed information from a numerous data
representing the global response of a damaged structure called Wavelet Transformation
(WT) is proposed. Signal decomposition using WT allows to detect and localize the
damage because wavelets demonstrate strong disturbance in a place where some defect
is present. There are many wavelet functions e.g. Haar wavelet, Symlet, Coiflet, Meyer,
Mexican hat or Morlet and new ones are constantly developed. It follows from the ex-
perience (see [9]) that in the class of considered problems the most effective appeared
Daubechies wavelet of 4th order with two vanishing moments [10]. Estimation of the
magnitude of the damage can be done by making use of e.g. Lipschitz exponent [11].
However, data processing of the structural response signal using CWT or DWT has ap-
peared to be rather ineffective in identification of the type or shape of a defect. Therefore,
some alternative method which provides a more precise damage identification is needed.
In the literature a few attempts can be found, e.g. a combination of WT and artificial
neural networks [12] or with inverse analysis [13].

The inverse analysis provides an important tool if one would like to characterize a
bigger number of damage parameters in the locally deteriorated elements of the struc-
tures. Such technique uses, besides the experimentally obtained data (here the wavelet
representations of the experimental measurements), also their numerical counterparts ob-
tained from the computer test simulation. In the inverse analysis a variety of different
minimization techniques can be employed for the discrepancy minimization. The dis-
crepancy between experimental and numerical measurable quantities, called the objective
function, is usually minimized in the frame of least square approach [14]. In the literature
many authors solve an inverse problems by making use of iterative minimization gradient
based algorithms (e.g. [15]), based on soft computing methods (e.g. [16]), etc. The in-
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verse analysis using any minimization algorithm, searches for a set of embedded (usually
unknown or uncertain) structural or constitutive parameters (not easily accessible from
the experiment) by making use of indirect measurement. Such approach was successfully
used by many researchers in various fields (e.g. [17]). However, the application of WT
in its discrete form together with inverse analysis for structural diagnosis is still an open
and unsolved problem.

2 BASIS OF WAVELET THEORY

Wavelets are functions that satisfying certain mathematical requirements can be used
to represent data or other functions. Nevertheless this concept is not new. In the early
1800’s Joseph Fourier, French mathematician, discovered that using superposition of sines
and cosines he could represent other functions. Fourier transform is a perfect tool for
analyzing the stationary signals representing them in frequency domain. Wavelets have
advantages over it in situations when the signal contains discontinuities, spikes or sharp
edges. In wavelet transform the data are cut into different frequency components and
then each component is analyzed with resolution matched to its scale. It reduces the
effects of the Heisenberg uncertainty principle [18], which in this case means the inability
of precise signal analysis in time domain and frequency domain at the same time.

Fourier transform is a basic tool for harmonic analysis and signal processing. It de-
composes a function/signal into sinusoids of different frequencies. The transformation is
reversible and lossless and the function can be reconstructed from its transform. Fourier
transform is defined over the space L2(R) of square-integrable functions.

Fourier transform represents a signal through a linear combination of basis function
and is defined as:

F (ω) =

∫ ∞

−∞
f (t) · e−iωtdt =

⟨
f (t), eiωt

⟩
, f ∈ L2(R), (1)

where i is the imaginary unit (i2 = −1), ω - circular frequency [rad/s] and t is time.
The inner product of (1) can be written in the form:

⟨ f, g⟩ =
∫
t∈R

f (t) · ḡ(t) dt, (2)

where ḡ (t) is the complex conjugate of g(t) function.
The Fourier coefficient F (ω) is obtained by multiplying function f and sinusoidal wave

eiωt. As the eiωt covers the entire real axis, the value of F (ω) depends on the values of
f(t) for all t ∈ (R). It is therefore difficult to analyze any local properties of f on the
basis of F (ω). Such analysis requires the decomposition of the signal using the set of
functions well localized in time and frequency. Wavelet transformation is well suited for
this purpose.
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It is considered that ψ (t) ∈ L2(R) is a wavelet (mother) function if it satisfies admis-
sibility condition: ∫ ∞

0

|Ψ(ω)|2

ω
dω <∞, (3)

where Ψ(ω) is Fourier transform of function ψ(t).
Average value of wavelet function is equal to zero, it means that the wavelet integral over
real axis disappears: ∫ ∞

−∞
ψ(t) dt = 0. (4)

In wavelet transform there is only one wavelet (mother) function. For signal decompo-
sition copies of wavelet, which are called wavelet family, are used. They are obtained by
scaling and translating ψ according to formula:

ψa,b =
1√
|a|
ψ

(
t− b

a

)
, (5)

where the variable t denotes time or space coordinate, a is the scale parameter and b
indicates the wavelet translation in time/space domain; a, b ∈ (R); a ̸= 0. The scale factor

|a|−1/2 is a normalization coefficient which ensures constant wavelet energy regardless of
the scale. This means that ∥ψa,b∥ = ∥ψ∥ = 1 [19].

Continuous wavelet transform of given function f(t) is obtained by integration the
product of the signal function and the wavelet functions [20]:

W f (a, b) =
1√
|a|

∫ ∞

−∞
f (t) · ψ̄

(
t− b

a

)
dt = ⟨ f (t), ψa,b⟩ , f ∈ L2(R). (6)

The inner product of (6) can be written in the form:

⟨ f (t), ψa,b⟩ =
∫
t∈R

f (t) · ψ̄a,b dt, (7)

where ψ̄a,b is the complex conjugate of ψ(t) wavelet.
On the basis of formulas (1), (2), (6) and (7) it can be concluded that the wavelet

transform is a transformation similar to the Fourier transform. Both of them are based
on the use of the product of a signal f (t) and the remaining part, called the kernel of
the transform. The main difference is that the kernel in Fourier transform are sinusoidal
functions (periodic, representing one frequency) and in wavelet transform the kernel is
wavelet function which satisfies conditions (3) and (4). Next dissimilarity is that wavelet
functions are localized in space. Fourier sinusoidal functions are not.
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An important role in applications plays a dyadic wavelet transformation. Substituting
a = 1/2j and b = k/2j, k, j ∈ C in the (5) a wavelet family is obtained:

ψj,k(t) = 2j/2ψ
(
2jt− k

)
, (8)

where j = 0, ..., J − 1 is scale parameter, k = 0, ..., 2j − 1 translation parameter and J is
the maximum level of transformation.
Discrete wavelet transform is defined as:

W ψj,k = 2j/2
∫ ∞

−∞
f (t) · ψ̄

(
2jt− k

)
dt = ⟨ f (t), ψj,k⟩ (9)

and wavelet coefficients are given by:

dj,k = ⟨ f (t), ψj,k⟩ . (10)

A linear combination of wavelet functions ψj,k and wavelet coefficients dj,k allows to rep-
resent a discrete signal (the number of data is equal to 2J) in the form:

f(t) =
J−1∑
j=0

dj,k ψj,k(t) (11)

Multi-level signal representation is possible thanks to multi-resolution analysis (MRA)
(see [21]), closely connected with wavelet transform. For multi-resolution signal analysis
a scaling wavelet φ(t) (father) is required:

φj,k(t) = 2j/2φ
(
2jt− k

)
. (12)

Discrete signal f(t) can be approximate using wavelet ψ(t) and scaling φ(t) functions
according to:

f(t) =
∞∑

k=−∞

aj,k · φj,k(t) +
∞∑

k=−∞

∞∑
j=0

dj,k · ψj,k(t), (13)

where aj,k are scaling function coefficients derived from the formula:

aj,k = ⟨ f (t), φj,k⟩ . (14)

A wavelet function has a band-like spectrum, so the coefficients dj,k have high frequen-
cies information (details). Coefficients aj,k have low-pass information with a constant
component which is called signal approximation.

Multi-resolution analysis of discrete signal can be expressed in Mallat’s algorithm:

fJ = SJ +DJ + ...+Dn + ...+D1, n = J − j (15)

where SJ is a smooth signal representation, Dn and are Sn are details and rough parts of
a signal, j is the level of decomposition and J level of MRA. The idea of multiresolution
analysis using Mallat pyramid is presented in Fig.1.
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Figure 1: Multiresolution analysis of discrete signal

3 PROBLEM FORMULATION

Studies on the identification of defects reported in the literature are most often related
to the beams, frames or plates (see e.g. [22]). They are in fact structural elements, which
are most common in engineering practice. However, the specific type of the structure
does not make any difference, provided that the response signal for any action (not nec-
essarily defined) can be received. The main task of this study is to detect localization
of damage in the structure, if such damage exists. Moreover the position, type, shape
and severity of defect should be found. A cantilever beam made of steel, with Young’s
modulus E = 200 GPa and mass density ρ = 7850kg/m3 is considered. The length of the
beam is 0.96 m and rectangular cross section has dimensions 4× 8 cm. Damage in beam
is modeled as local stiffness reduction, obtained by reducing the height of cross-section or
the value of Young’s modulus. Authors use a parametrized Finite Element (FE) model
which mimic the real structure subjected to dynamic mechanical excitation. All control
parameters gathered in the vector x are embedded in the numerical model; by changing
them one can minimize the discrepancy between the wavelet representation of both ’real’
and numerically computed measurable quantities. Here the ’real’ experiment is substi-
tuted with a numerical one, called here pseudo-experiment, in which all parameters (i.e.
damage localization, type or shape of damage, number of monitored points, etc.) are
known (Fig. 2a). By different initialization of the vector x in the numerical model (which
is different from the pseudo-experimental one) (Fig. 2b), and by comparing the converged
values of the sought parameters to those parameters used for pseudo-experimental data
generation, one can check the robustness of the proposed method.

The effectiveness of the method was studied when applied to eigenmodes expressed in
amplitudes of vertical displacements, velocities, accelerations or strains. The structural
response of this kind is a discrete signal measured in points uniformly distributed along
the span of a beam and transformed using WT. The response of undamaged structure in
such case is unnecessary.
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Figure 2: Steel cantilever beam: a) real damaged structure (experiment), b) computer model with variable
defect parameters.

4 PROBLEM SOLUTION AND RESULTS

Among a large group of optimization algorithms in frame of nonlinear least square
problems, the Gauss-Newton (GN) or Levenberg-Marquardt (LM) (see e.g. [23, 24] for
more details) are the most efficient and often implemented into the inverse procedure.
Here, however, another powerful algorithm is programmed and used for objective function
minimization, namely trust region algorithm (TRA). TRA uses a simple idea, similar to
the one in LM algorithm, where the new step is performed in the direction which combines
a Gauss-Newton and steepest descent direction. LM algorithm computes a new direction
using a following formula:

∆x = − (Hx + λI)−1 gx, (16)

where: λ is an internal parameter, gx = ∇ω (x) is a gradient of objective function ω with
respect to parameters x:

gx =
∂ω

∂x
(17)

and Hessian Hx = ∇2ω (x) is a second partial derivative of ω with respect to parameters
x:

Hx =
∂2ω

∂x2
. (18)

In the nonlinear least square approach, the gradient and Hessian can be computed based
on Jacobian:

J (x) =
∂R

∂x
, (19)

so the gradient and Hessian are defined, respectively:

g (x) = JTR, H (x) ≃ JTJ. (20)

Such approximation of the Hessian, which can be computed ’for free’ once the Jacobian is
available, represents a distinctive feature of least squares problems. This approximation
is, however valid if residuals are small, meaning we are close to the solution, therefore

7



Anna Knitter-Piatkowska and Tomasz Garbowski

some techniques may be required in order to precondition Hessian to be semi-positive
defined (see e.g. [25]).

One of the main issues of the trust region approach, that to a large extent determines
the success and the performance of this algorithm, is the decision strategy of how large the
trusted region should be. Allowing it to be too large can make the algorithm facing the
same problem as the classical Newton direction line search, when the minimizer of model
function is quite far from the minimizer of the actual objective function. On the other
hand using too small region the algorithm misses an opportunity to take a substantial
step that could move it much closer to the solution.

Each k-th step in the trust region algorithm is obtained by solving the sub-problem
defined by

min
dk

mk (dk) = f (xk) + dT
k∇f (xk) +

1

2
dT
k∇2f (xk)dk, ∥dk∥ ≤ ∆k, (21)

where ∆k is the trust region radius. By writing the unknown direction as a linear combina-
tion of Newton and steepest descend direction, the sub-problem will obtain the following
form:

minmk (xk) = f (xk) +
[
α1d

SD
k + α2d

N
k

]T ∇f (xk)+

+ 1
2

[
α1d

SD
k + α2d

N
k

]T ∇2f (xk)
[
α1d

SD
k + α2d

N
k

] (22)

under the constrains: ∥∥α1d
SD
k + α2d

N
k

∥∥ ≤ ∆k. (23)

The problem now becomes two dimensional and it is solved for the unknown coefficients α1

and α2. In order to find both alphas in (22) the set of nonlinear equations has to be solved
using for example a Newton-Raphson techniques. Herein this approach is implemented
into inverse procedure for the discrepancy minimization.

TRA, however, is a ’local’ algorithm and if objective function is non-convex it may
stuck in the local minimum. Therefore a regularization method or multi-start techniques
can be beneficial. Here, very good results are obtained when the procedure is divided into
two steps: first decomposition of the output structural response signal, e.g. strains, using
DWT (see Fig. 3) for preliminary estimate of damage location and second the application
of TRA on the limited search field (i.e. to the number of elements, where the wavelet
disturbances is clearly evidenced). The advantage of this approach is relatively small
number of iterations where damage details/sought parameters are properly specified (see
Fig. 4).

Another possible technique which can be applied to minimize the non-convex functions
are methods belonging to the global minimization search family. Here, Genetic Algorithm
(GA) is programmed and employed for the damage detection problem. Some more details
on GA and other evolutionary-based algorithms can be found in many textbooks and
articles (e.g. [26], [27]). Unfortunately, the first approach to the damage detection problem
with GA was unsuccessful (i.e. none of the sought parameters were found) when as
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Figure 3: Structural response signal: a) expressed in strains , b) decomposed using DWT (detail 1).

damage position

no of damaged elem.

cross-section

or stiffness reduction

Objective function

Figure 4: Trust region algorithm: a) identified damage details, b) objective function.

the output signal the direct structural dynamic response (e.g. expressed in strains) was
used (see Fig. 5). Only the solution provided by application of GA on the output signal
represented by wavelet coefficients appeared to be successful (see Fig. 6). All defect details,
such as location, intensity, shape or number, were clearly identified within relatively small
number of iterations.

5 CONCLUSIONS

The contribution of this work is a novel approach to Structural Health Monitoring
(SHM) based on damage detection through wavelet transformation, numerical FE model-
ing and mathematical programming. The inverse analysis employed here uses two distinct
minimization algorithms in order to select the most suitable technique of DWT applica-
tion to SHM. The effectiveness of the method is studied by the way of an example of
cantilever steel beam subjected to mechanical excitation. The eigenvibrations are con-
sidered. The examples proved that application either TRA or GA is very efficient in
determining the details of damage such as location, severity, shape or number of defective
elements. However, the prerequisite is that as the output the structural response signal
(e.g. strains) represented in wavelet coefficients is taken into consideration. In the case of
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X(1)

X(2)

X(3)

Figure 5: Genetic Algorithm: a) unidentified damage details, b) fitness function.

X(1)

X(2)

X(3)

Figure 6: Genetic Algorithm: a) identified damage details, b) fitness function.

TRA application it allows to limit the search field to the number of elements, where the
evident wavelet disturbances is visible, therefore the procedure is performed in a small
number of iterations. In GA, when as the output signal the direct structural dynamic
response is used, damage detection failed. Only when the output signal is expressed in
wavelet coefficients, as mentioned, damage details are properly specified.

This preliminary work serves as a check of the usefulness of the proposed technique,
and will be validated, in future, by a real experiment on structural elements.
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