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Abstract. This extended abstract presents topology optimisation which uses level set 
functions representing the moving boundaries. The level set function based approach to 
topology optimisation has gained much popularity in the recent years due to its numerical 
stabilities and clear boundary representation of the solution.  One advantage of the level set 
representation is its inherent capability to handle topological changes such as merging and 
splitting boundaries.  We have developed a stable hole nucleation algorithm which makes the 
level set formulation completely suitable for topology optimisation. We demonstrate that our 
level set topology optimisation, both in 2D and 3D, have good convergence properties and 
less dependency on the initial design. We apply this to typical structural optimisation 
problems as well as coupled aero-structural problems.  As coupled multidisciplinary 
optimisation problems have multiple optima, we find that the solutions 3D level set topology 
optimisation produce can be quite different from the solutions from the previous element-
based approaches and simplified 2D solutions, suggesting potential alternatives.   
 
1 INTRODUCTION 

The level set method is a boundary or an interface tracking method. It was first introduced 
by Osher and Sethian [1] and since then it has been applied a range of areas such as image 
processing and multiphase flows. In the field of structural optimisation, the level set method 
can be used to track the curves or surfaces that define structural features as they are optimised 
over iterations. This following sections describe the level set topology optimisation method 
with a stable hole creation algorithm which will be demonstrated using numerical examples. 

2 TOPOLOGY OPTIMISATION 

Topology optimisation is the most general form of structural optimisation; of all structural 
optimisation, topology optimisation finds an optimal solution that is least dependent on the 
initial design.  A common approach to topology optimisation is to formulate the problem as a 
material distribution problem where the available design domain is discretised with finite 
elements. Optimisation then determines whether each element should or should not exist 
iteratively.  This formulation makes the optimisation problem a large-scale binary problem 
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which is typically relaxed to a continuous problem with design variables bounded between 0 
and 1. This enables a gradient-based optimiser to solve the problem efficiently however the 
solutions with design variables between 0 and 1 does not usually represent a physical and 
manufacturable structure as this means a structure with material properties continuous varying 
throughout the structure. Therefore, the solutions with non-0/1 variables are penalised. This 
approach has been applied to many disciplinary problems and demonstrated to work well but 
it is well known that a complete elimination of non-0/1 solutions can be difficult to obtain and 
the numerical procedure introduces various parameters to which the solutions and 
convergence can be highly sensitive.  

 
An alternative approach to topology optimisation using the level set method was 

introduced relatively recently, [2].  Since then, there has been a flurry of activities maturing 
this approach.  One attractive advantage is that the level set method obtains clear boundaries 
defining the general layout of the optimising structure at every iteration and eliminates the 
non-0/1 solutions completely. We will first outline our level set based topology optimisation 
method with a hole creation algorithm.  The following sections will then show the example 
results to demonstrate that our method eliminates chequerboarding, a commonly known 
numerical instability in topology optimisation and reduced dependency on the initial solution 
[3]. The last example shows the application to a coupled multidisciplinary problem, aero-
structural topology optimisation of an aircraft wing. 

2.1 Level Set Topology Optimisation Method 

 The level set method defines the structural boundaries to be where the level set φ, is zero, 
(1). 
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where ΩS is the domain of the structure and ΓS is the boundary of the structure. The 
compliance of the structure, C(u, φ) is minimized subject to an upper limit on structural 
volume: 
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where Ω is a domain larger than ΩS such that ΩS ⊂ Ω, Vol* is the limit on material volume, E 
is the material property tensor, ε(u) the strain tensor under displacement field u, U is the space 
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of kinematically permissible displacement fields, v is any permissible displacement field, b 
are body forces, f are surface tractions and H(φ) is the Heaviside function. 
 
 When applied to topology optimisation, the level set method incorporates shape 
sensitivity in computing the velocity function of a typical Hamilton-Jacobi equation, (3). 
 
   

€ 

φi
k+1 = φi

k − Δt∇φi
k Vn,i (3) 

where Vn,i is a discrete value of the velocity function acting normal to the boundary at point i, 
Δt is a discrete time step and k is the current iteration. In the case of (2), the velocity function 
also includes the Lagrangian multiplier, λ for the volume constraint, thus giving (4). 
 
   Vn = λ −Eε(u)ε(u)  (4) 
 
 While this primary level set function modifies, merges and splits existing boundaries, it is 
not possible to create a new boundary, i.e. a hole. We do this by introducing a secondary 
implicit level set function, 

€ 

φ (x) [4]. It can be conceptually explained as the additional third 
dimension in the context of two-dimensional design domain, i.e. fictitious thickness. The 
secondary implicit level set function is initialized to an artificial thickness, 

€ 

h , (5). 
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The secondary level set function is updated along with the primary level set function using 
(6). 
 
   

€ 

φ i
k +1 =φ i

k − ΔtV n,i  (6) 
 
 A new hole is then created when 

€ 

φ (x) becomes negative within the region of ΩS and the 
new hole is added to the primary level set function by simply copying 

€ 

φ (x) onto φ(x) within 
ΩS. This inherent link between the primary and secondary level set functions forms a 
meaningful link between shape and topological optimisation, determining when and where to 
create a hole consistently. 
 
2.2  A 2D Beam with Three Load Cases 
 
We apply the level set topology optimisation with hole creation of Section 2.1 to a beam with 
three load cases shown in figure 1(a). Each load case has a magnitude of 2.0 and a weight of 
1.0. The material properties are 1.0 and 0.3 for Young’s modulus and Poisson’s ratio, 
respectively. The beam is discretized using 200 × 50 unit sized square elements and the 
volume constraint is set to 40% of the design domain. Starting from the fully populated 
domain, the structure is optimised through figures 1(b)-(d), where figure 1(d) depicts the 
optimum solution coverged after 144 iterations with total compliance value of 4.67×102. The 
convergence history for this example is shown in figure 2. It is clear that the level set method 
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creates smooth and well-defined boundaries throughout optimisation and holes emerge as 
required. The hole creation does not cause a sudden discontinuity in the convergence history 
of figure 2, indicating that when and where the holes are created, merged and split are 
optimal. It is also noted that there are no chequerboarding and this numerical stability is 
consistent in our experience. 
 

 
Figure 1: Beam optimisation for multiple load cases: (a) initial design; (b) 25 iterations; (c) 40 iterations; (d) 

solution after 144 iterations 
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Figure 2: Convergence history of the beam optimisation 

2.3  A 3D Cantilever Beam 

 This demonstrative example of a 3D cantilever beam is optimised for two load cases, one 
vertical and one horizontal loads at the centre. The other end is clamped. The beam is 45units 
long and the maximum cross-section is 20 × 20 unit2. The volume constraint is set at 25% of 
the design domain. 

 

Figure 3: 3D canilever beam optimisation with two initial solutions. 
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We optimise this problem twice, the first time starting with the fully populated design 
domain and the second with the minimum structure linking the boundary and loading 
conditions by a thin beam, figure 3. We observe that the optimum solutions of the both runs 
agree favourably, with less than 0.5% difference in the compliance values between the two 
solutions. This shows that our level set method is robust and has reduced sensitivities to the 
starting solution. 

 
 2.4  Aero-Structural Wing Optimisation 
 
We perform a preliminary study of 3D optimisation of the internal wing structure with full 

fluid-structure interaction used to update the aerodynamic loading during optimisation. The 
aerodynamic loading on the wing is calculated using the Double Lattice Method. The 
topology optimisation procedure is applied to the internal structure of a simple linearly 
tapered unswept wing box model with a 51×20×7 regular fixed finite element mesh. The wing 
is clamped at the root under a cruise condition.  The top and bottom skins are fixed and 
excluded from optimisation. The volume constraint is set at 35%. 

 

 
Figure 4: Geometry of a tapered unswept wing box model 

 

  

Figure 5: Optimum solution, (a) top and bottom skin thickness distribution; (b) internal column distribution; (c) 
cross-sectional view at span position 18 

 

(a) 

(b) (c) 
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 Figure 5 shows the optimum solution of the wing box.  Looking at figure 5(a), the skin 
distribution along the top and bottom are nearly identical, with the root having the maximum 
thickness and gradually decreasing towards the tip. Perhaps what is the most distinctive about 
the optimum solution is the column like stiffeners connecting the top and the bottom skins, 
shown in figure 5(b). Near the root, the configuration looks somewhat reminiscent of two spar 
arrangements, reducing to a single “spar” arrangement towards the tip.  These spar-like 
stiffeners are somewhat continuous near the room where the bending loads are the most 
significant, then they become discrete columns as the loads are reduced towards the tip. The 
other interesting feature to note is the skin thickness.  It is significantly greatly than the 
typical skin thickness of the conventional wing configuration and figure 5(c) suggests a 
configuration similar to an I-beam. This is an intuitive characteristic as the wing is 
predominantly under bending during cruise. This preliminary optimisation result shows that 
there may be alternative configuration that may be more optimum than the conventional 
configuration and topology optimisation can be used to explore the potentially revolutionary 
optimum designs. 

4 CONCLUSIONS 

 This extended abstract described the level set topology optimisation method and the new 
hole creation algorithm.  Using this method, a few demonstrative examples are shown both in 
2D and 3D: the chequerboarding is naturally eliminated and the method is not strongly 
dependent on the initial solution. Multidisciplinary topology optimisation was applied to a 
simple aircraft wing box under coupled aero-structural considerations. We see that the 
resulting structure is far from the conventional wing configuration suggesting that there is a 
potential for significant weight savings via revolutionary design changes. This warrants 
further studies. 

REFERENCES 
[1] Osher, S.J. and Sethian, J.A. Fronts propagating with curvature dependent speed: 

algorithms based on the hamilton-jacobi formulation. J Comp Phys (1988) 79(1):12-49. 
[2] Sethian, J.A. and Wiegmann, A. Structural boundary design via level set and immersed 

interface methods. J Comp Phys (2000) 163(2):489-528 
[3] Dunning, P.D. and Kim, H.A. Investigation and improvement of sensitivity computation 

using the area-fraction weighted fixed grid FEM and structural optimization. Finite Elem 
Analysis Design (2011) 47:933-941 

[4] Dunning, P.D. and Kim, H.A. A new method for creating holes in level-set function based 
topology optimisation. Int J Num Meth Eng (2013) 93:118-134 

[5] Gürdal, Z. and Olmedo, R. In-plane response of laminates with spatially varying fiber 
orientation: variable stiffness concept. AIAA J (1993) 31(4). 

[6] Hyer, M.W. and Charette, R.F. The use of curvilinear fibre format in composite structure 
design. AIAA J (1991) 29(6):1011-1015 

[7] Ijsselmuiden, S.T., Abdalla, M.M., Setoodeh, S. and Gürdal, Z., Design of variable 
stiffness panels for maximum buckling load using lamination parameters,” AIAA 2008-
2123 (2008). 


