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Abstract. A method is presented for automatically generating cross-fields from direction
constraints on arbitrary surfaces meshed with triangular elements. A cross-field describes
the directionality of a quad mesh and the developed solver produces a cross-field abid-
ing to prescribed target element sizes and directions. Additionally, a simple method of
generating a multi-block decomposition suitable for all-quad meshing by tracing critical
streamlines of the cross-field is explained and illustrated.

1 INTRODUCTION

1.1 Related work

Computer graphics visual effects methods such as anisotropic shading, morphing, tex-
ture synthesis, and global parametrisation of surfaces have been the driving force for the
development of many vector field design methods [1, 2, 3, 4]. The vector field purpose is
to control a bijective mapping onto the surface and the design objective is to minimise
the angular distortion and/or stretching of the mapping. Vector fields with four-way
symmetry have been found to be particularly useful for these applications. The concept
has been described by many authors with different terminology, such as cross-field [5, 6],
4-way symmetry field (4-RoSy field) [7, 8], and frame field [9]. Quad mesh generation
is a somewhat equivalent problem where the mapping of an isotropic square mesh onto
the surface is sought. In recent years cross-fields have begun to emerge as an important
common feature to many new advanced mesh generation methods.

The QuadCover algorithm [9] produces a globally continuous parametrisation whose
isoparametric curves describe a global closed quadrilateral mesh from a provided cross
field. It was strongly inspired by Ray et al. [10] whose Periodic Global Parametrisa-
tion method produces comparable results by similar means. The global parametrisa-
tion method for generating quad meshes from input cross-fields has been used in other
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works [5, 11] with modifications. Progress has also been made on the 3-D equivalent
problem [12, 13, 14].

Various approaches have been taken for the construction of smooth cross-fields on
surfaces. The curvature orientated cross-field is a popular option and used in [15, 16, 9].
It produces appealing cross-fields coupled to inherent surface properties and a piece-wise
linear approximation aligned with the principal directions is an optimal representation of
the smooth underlying surface [17, 18] (as cited in [16]). However, where curvature tensors
are symmetrical the principal directions are ill-defined which results in a discontinuous
cross-field. Smoothing or optimisation schemes are needed to put order on the randomly
orientated crosses in these regions.

For other approaches, a typical first step is to define a measure of the smoothness of a
cross-field based on the angular deviations, variably called the smoothness energy, error
or energy functional, and then set about minimising its integral over the surface area.
Wei [2] and Turk [3] took a pragmatic approach and developed mixtures of relaxation and
interpolation procedures to numerically converge to a vector field result.

Bunin’s continuum theory of unstructured mesh generation [6] clarifies how singularities
are the crucial characteristic features of cross-fields and quad meshes. A rigorous theory
is presented that relates the size variation of an infinitesimal quad mesh to the directional
variation of a cross-field. The scalar size field, acting as the continuum description of
the mesh, is governed by a stationary heat equation where singularities appear as point
sources and sinks. A quad mesh singularity corresponds to a node which is not attached
to a regular array of quad elements, e.g. where three or five quad elements are attached
to a given node in the interior of the mesh. Singularities necessarily occur from particular
combinations of mesh alignment constraints or significant total Gaussian curvature of the
surfaces. Once a valid arrangement of singularities has been identified, the scalar field can
be easily solved numerically. In a follow-up paper [19], Bunin describes a method to tackle
the inverse Poisson type problem of placing mesh singularities on planar surfaces. Ben-
Chen et al. [20] proposed a method for identifying suitable locations for cone singularities
of a conformally related metric to the surface by considering the Gaussian curvatures.

Palacios et al. [8], describe a design system in which cross-fields can be created and
modified on surfaces from a set of prescribed singularities using interpolation and re-
laxation algorithms. A vector-based representation of an N-RoSy field is used which is
globally continuous over planar surfaces but not for curved surfaces. A parallel transport
scheme similar to that described by Zhang [4] is proposed to describe the field continuously
over local regions.

The same vector-based representation of a cross-field is used in the recent work by
Kowalski et al. [21] for decomposing planar surfaces for quad meshing. Boundary align-
ment constraints are applied to the cross-field and it is solved in the interior by a two
stage algorithm: The first solves a stationary heat equation for the coordinates of the rep-
resentation vector. The second normalises the vector solution of the previous step by an
optimisation routine. The final cross-field is smooth with a small number of singularities
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appearing where the neighbourhood boundary alignment constraints are incompatible.
A method for constructing a smooth cross-field from a sparse set of directional con-

straints is described by Bommes et al. [5]. Direction constraints are extracted from the
triangulated surface representation along curves where the estimated principal curvatures
are significantly anisotropic. An involved optimisation algorithm called a greedy mixed-
integer solver is designed for minimising the smoothness energy of a cross-field that is
locally constant on each tri element. It iteratively solves for a smooth cross-field contain-
ing well-positioned singularities between the constrained directions.

With a similar discretised cross-field representation and smoothness energy functional,
Liu et al. [11] use a non-linear optimisation method to solve for a cross-field from direction
constraints along user-specified strokes. A properly initialised cross-field is imperative for
the procedure. A simple method is used to propagate the cross-field from the crosses at
specified elements to unspecified ones by iterating over an unordered queue of elements.
Crosses for elements without specified crosses that neighbour elements with specified
crosses are computed by a method mimicking a parallel-transport operation and then
they are removed from the queue. This is repeated until the queue is empty. Liu com-
ments that by using a randomly generated initialisation instead of the propagation based
initialisation, an optimised cross-field contains many spurious features and singularities
are effectively determined by the specifics of the arbitrary initialisation.

The problem of generating smooth 3-D cross-frame fields for hexahedral mesh gener-
ation has been addressed in recent works. As for 2-D, the proposed 3-D methods involve
using optimisation schemes to minimise the smoothness energy of a cross-frame field.
Huang et al. [22, 13] proposed the use of a spherical harmonic functions to describe cross-
frames which have convenient properties for measuring field smoothness and for specifying
alignments to cross-frames. Before the non-linear optimisation solver is used to minimise
the discretised smoothness energy integral, the system is initialised by solving a station-
ary heat type problem for the spherical harmonic coefficients. The fundamentals of the
procedure are like those used by Kowalski [21] to calculate cross-fields in 2-D. Li et al. [14]
describe an equivalent method to measure the smoothness energy of a cross-frame field.
A boundary aligned cross-frame field is solved for by non-linear optimisation similarly.
Their initialisation procedure is summarised as propagating the boundary frames into the
interior of the tetrahedral mesh of the volume so that for any interior tet, its frame is
assigned to be the same as that of its nearest boundary tet.

1.2 Contributions

The work presented in this paper makes the following contributions:

• A methodology is developed for generating smooth cross-fields on triangulated sur-
faces from an arbitrary number of alignment constraints using an efficient fast-
marching algorithm to propagate the field into regions between constraints. It
improves on the initialisation process described by Liu [11]. A similar fast marching
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algorithm is used by Lai [23] to parallel-transport a vector over a surface.

• The method is reasoned in the terms of Bunin’s continuum theory and a smooth-
ness energy functional is developed which is minimised locally in each propagation
step. Additional terms for penalising deviations from target element sizes and direc-
tions are included in the functional so that the generated cross-fields have improved
suitability with respect to prescribed size fields.

• A simple method is described for generating multi-block decompositions of surfaces
by tracing critical streamlines of the cross-fields similar to that shown in [21].

2 THEORY

2.1 Continuum theory of unstructured mesh generation

In Bunin’s theory [6] a conformal (angle-preserving) transformation from an arbitrary
surface of interest, S, to a locally flat or developable surface, S̃, is searched for. A field
of equally spaced parallel geodesics and their orthogonal trajectories represent a uniform
mesh on S̃ and its image on S describes the quad mesh solution. The elements are ideally
shaped squares on S̃ and as the spacing reduces to zero the elements are also squares on
S. The key results of Bunin’s paper are:

1. The scalar variable φ involved in the conformal factor between the metric tensors
of S and S̃,

g̃ij = e2φgij , φ ∈ R, (1)

obeys the Poisson equation,

∆Sφ = K +
N∑
i=1

ki
π

2
δPi

, ki ∈ Z ≥ −4, (2)

where ∆S is the Laplace-Beltrami operator, K is the Gaussian curvature of S and
the δPi

terms are weighted delta Dirac functions describing discrete cone points of S̃
where a discrete total curvature of multiples of π/2 occurs at the cone vertex. The
cone points correspond to singularities in the quad mesh with their characteristic
types given by the integers ki. From the metric scaling relationship (Eqn. (1)), it
follows that

φ = − lnh, (3)

where h is the element size.

2. The geodesic curvature, κg, of a mesh edge is directly related to local variation of
the φ-field by

∂φ

∂e
= κg ≡

∂θ

∂t
. (4)
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The tangent vector t, intrinsic normal e, and surface normal n make a right hand
orthonormal basis. The directional derivatives in the directions of t and e are
represented by ∂

∂t
and ∂

∂e
. θ is defined as the angle of the tangent vector from a

reference direction on the tangent plane that is parallel transported over the surface
(see [6, Section 2]). It follows that

∇θ = R(−π
2
n)∇φ, (5)

where R(−π
2
n) represents a −π/2 rotation about n. Hence, ∇θ is also governed by

Eqn. (2).

3. For boundary conforming solutions, boundary conditions are applied to curved
boundary edges and corners with angles not multiples of π/2. Neumann bound-
ary conditions are applied to curved boundary edges according to Eqn. (4). Point
sources with strengths dependent on the corner angle are applied at boundary cor-
ners.

These concepts are illustrated by the example shown in Figure 1.

Figure 1: Example of Bunin’s continuum theory
for a flat triangular surface S. The conformally re-
lated surface S̃ is conical. The −φ-field describing
the logarithm of the element size on S is solved
as a temperature field in a FEA heat conduction
analysis.

Figure 2: Optimising cross angle at node i adjacent
to nodes j considering the target size gradients and
orientations in the connected elements 1 to n.

2.2 Energy Functional

For the purpose of designing a cross-field solver, an energy functional is developed for
minimisation. Rapid variation in cross-field directions, and hence element size variation,
should be penalised. An obvious choice is to use the Dirichlet energy of the φ/θ-field,

Esmoo =

∫
‖∇φ‖2dA =

∫
‖∇θ‖2dA. (6)
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It is straightforward to prove that its value equals both the sum of the squared local
geodesic curvatures of orthogonal mesh edges, and also the square of the norm of the
element size gradient normalised by the local size. It is worth noting that that the Laplace
equation (Eqn. (2) without source terms) is equivalent to minimising the Dirichlet energy
in 2-D.

Given a target element size field for the mesh, a cross-field that accommodates those
sizes will change direction according to the gradients of the prescribed size field as by
Eqn. (4). Thus another penalty term to account for this is

Egrad =

∫
‖∇θ −∇θtar‖2dA, (7)

where∇θtar is the target gradient of the local angle of the cross-field that can be computed
from the target size field using Eqn. (3) and Eqn. (5). Similarly, a penalty term for the
deviation of the field from prescribed directions is

Edirec =

∫
(θ − θtar)2

Atotal
dA. (8)

(Note: The total area divisor is included so that the expression yields a dimensionless
value)

The overall energy functional is the combination of the individual energy functionals:

E = Esmoo + w1Egrad + w2Edirec , w1, w2 ∈ R > 0, (9)

where w1 and w2 are arbitrary weighting factors.

3 CROSS-FIELD GENERATION

3.1 Discretisation

A piece-wise linear description of a cross-field on a tri mesh is used in this work. This
allows finite-element theory to be utilised to formulate the problem locally as a directly
solvable linear system. On a tri element, e, an example of which can be shown in Figure 2,
the angle of a cross relative to a local frame is approximated by a bilinear function, or
equivalently by blends of the node angle values using linear shape functions:

θ(e)(x, y) = α
(e)
0 + α

(e)
1 x+ α

(e)
2 y,

=
3∑
i=1

L
(e)
i (x, y)θ

(e)
i . (10)

A target element size field can be discretised in the same way on the tri mesh.
Considering the problem of minimising E by adjusting the cross at a node i while

keeping the crosses at surrounding nodes j fixed, of elements 1 to n, the solution satisfies
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the equation

∂E

∂θi
= 0

=
n∑
e=1

∂

∂θi

∥∥∥∇θ(e)
∥∥∥2
A(e) + w1

n∑
e=1

∂

∂θi

∥∥∥∇θ(e) −∇θ(e)
tar

∥∥∥2
A(e) + w2

n∑
e=1

∫
e

(θ(e) − θ(e)
tar)

2

Atotal
dA. (11)

Using the local linear approximations of θ(e) and θ
(e)
tar in Eqn (10), Eqn. (11) can be

reduced and re-expressed with θi as a function of L
(e)
i , L

(e)
j , A(e), θ

(e)
j , and θ

(e)
tar. In this

way a formula is constructed for calculating the optimum cross at a node.1 Figure 2 shows
the set-up for one of the n elements. In a propagation advancement step (Section 3.2)
θi is optimised from the point of view of a single element. For a smoothing process all n
elements would be taken into account.

3.1.1 Measuring angles

The local frame, F , is located at one of the nodes, call it Nf , with its x- and z-
axes aligned with a cross direction and the local surface normal, nf . Angles θi and θj
of crosses crossi and crossj are taken with respect to F , as shown in Figure 2. For an
arbitrary node Nx, crossx on tangent plane Ex, is rotated onto tangent plane Ef to give
crossx

′. This is effected by the rotation matrix R(µu), where µ = cos−1(nx · nf ) and
u = (nx × nf ) / |nx × nf |. This corresponds to a discrete parallel transport operation
performed on a cross between the nodes (See [6, Section 2]). The rotation about nf that
moves crossx

′ onto crossf through the smallest angle (in the range (−π/4, π/4]) is used
to describe the change in the cross-field orientation. It corresponds to the integral of the
geodesic curvature of the cross-field.

3.2 Cross-field propagation

With the definition of the functional to be minimised and the discretisation of the
problem, one route to generating the cross-field is to set-up an optimisation process à
la Bommes [5] or Liu [11]. However computationally expensive non-linear solvers are
used and an effective initialisation phase is required. Such an initialisation algorithm is
proposed here. Although, the results show that the stand-alone generated cross-fields are
of high quality without optimisation.

To produce boundary conforming meshes the cross-field is set as aligned with the
tangent vectors of boundary edges. At a boundary corner, either the bisector direction or
an offset direction of π/4 from the bisector is used. The decision is based on minimising
the corresponding point source strength in Bunin’s continuum theory and depends on the
corner angle and the choices are fairly intuitive.

1The expression and its derivation are uncomplicated and are omitted here due to space limitations.
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Figure 3: A 2-D test case surface with curved boundaries, sharp indents and hole features. (Left) Tri
mesh on surface. (Centre) Distance field of Eikonal equation solved as part of the propagation algorithm.
(Right) Propagation of cross-field from boundaries inwards.

The fast marching alorithm, introduced by Sethian [24], is used to propagate the cross-
field from direction constraints in concordance with the distance field of the Eikonal
equation. The algorithm developed in this work is similar to the finite-element based
algorithm presented in [25]. A summary is given in Algorithms 1 and 2.

Algorithm 1 Cross-field propagation
B Initilisation
narrow band list ← {}
alive list ← {}
for each Node, N do

if N.cross 6= None then
N.d ← 0
N.alive ← True

alive list.append(N)
else

N.alive ← False

end if
end for
for N in alive list do

N.method*(narrow band list)
end for
narrow band list.sort() B wrt d
B Remove first node and advance narrow band to include
its neighbouring nodes
while narrow band list 6= {} do

trialN ← narrow band list.pop(0)
narrow band list.remove(0)
trialN.alive ← True

trialN.method*(narrow band list)
narrow band list.sort() B wrt d

end while

Algorithm 2 Node method*

function Method*(narrow band list)
B Description: For all neighbouring nodes, if not alive

and not in narrow band list compute d and cross members
and add to narrow band list.

for N1 in Node.neighbour Ns do
dN2N3 list ← {}
for Element, E, in N1.neighbour Es do
{N2,N3} ← E.nodes.remove(N1)
if N2.alive and N3.alive then

d← compute d(N1.pos,N2.pos,N3.pos,
N2.d2,N3.d3)

dN2N3 list.append({d,N2,N3})
end if

end for
if dN2N3 list={} then

pass
else
{d’,N2’,N3’} ← entry in dN2N3 list with small-

est d entry
N1.d ← d’
N1.cross← compute cross (N1.pos, N2’.pos,

N3’.pos,N2’.cross, N3’.cross)
narrow band list.append(N1)

end if
end for

end function

The compute cross function is based on the formula suggested in Section 3.1 and the
compute d function is described in Appendix A.1. The process is illustrated in Figure 3.
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Figure 4: Examples of cross-fields and decompositions generated for three different target size fields. Blue
and red dots indicate the occurrence of k = 1 and k = −1 type singularities respectively. (First row) The
default unit target size field is used which results in a simple and aesthetically pleasing solution. (Sec-
ond row) The target size field is isotropic and increases from right to left. The consequence is that edges
tend to curve along paths running vertically which causes the occurrence of numerous extra singularities.
(Third row) A constant anisotropic target element size field is used. The edges are to be aligned with
the principal axes of the size tensor. Hence the Edirec term comes into play with a weighting factor
proportional to the ratio of the principal axes lengths. Edges tend to travel diagonally across the surface
which causes a different arrangement of singularities.
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3.3 Cross-field singularities

Singularities occur in the cross-field in tri elements where the angle of a cross cannot
be interpolated continuously between the crosses of its nodes.

From Bunin’s continuum theory,

−kπ
2

=
n∑
i=0

]
(
PTpi→pi+1

c(pi), c(pi+1)
)

+

∫∫
enclosed-area

KdA, (12)

where a closed-path is composed of segments between the points p0, p1, ...pn (pn=p0). PT
is the parallel transport operator, c is a cross vector and k ∈ Z is the index of the enclosed
singularity.

The total Gaussian curvature term can be calculated in the discretised representation
of the surface from the three surface normals at the nodes using the standard angular
deficit scheme (see e.g. [26]). Rotation angles for each edge in the tri mesh are calculated
from the propagated cross-field by the method described in Section 3.1.1.

Hence, adding the rotation angles associated with each edge of a tri element with signs
according to an anti-clockwise traversal and including the total curvature of the surface
over the element (which is mostly negligible) gives a value equal to 0, −π/2 or π/2. These
values correspond to cases of no singularity (k = 0), a positive singularity (k = 1) or a
negative singularity (k = −1). It is certain that higher order singularities cannot occur
because all edge rotation angles are in the range (−π/4, π/4].

By virtue of the propagation method, singularities only occur in tri elements of inner-
regions near the medial axis of the surface. For convex geometries with a high degree
of symmetry, such as regular hexagons and circles, singularities occur in side-by-side tri
elements. Possibly ideally they should be combined into a single higher order singularity.
An additional routine would need to be incorporated for this task.

3.4 Tracing decomposition edges

With a cross assigned to every node and elements containing singularities identified, a
piece-wise linear C0 smooth cross-field can be defined. For a tri element not containing a
singularity with nodes N1, N2 and N3, a bilinear function describing the change in cross
angle over the element with respect to cross1 is determined. Referring to Eqn. (10), θ1=0,
θ2 = ∆θ12 and θ3 = ∆θ13 where ∆θ12 and ∆θ13 are the rotations stored for the respective
edges, as discussed in Section 3.2. θ(x, y) is taken to mean the rotation about the element
normal. However, θ3 − θ2 6= ∆θ23(= −∆θ12 + ∆θ13 +

∫∫
KdA) if

∫∫
KdA 6= 0. This

complication is ignored – a simplification that is not prone to cause problems because the
total Gaussian curvature over an element is small.

Singularity elements are divided into three new elements by edges running from a new
node at the centroid to the corner nodes. For a new element with nodes N1, N2, Nc where
Nc is the new node, the singularity is placed at Nc. Thus, θ is set as a function of polar
coordinates r, ϕ with the origin at Nc so that θ(r, ϑ2)− θ(r, ϑ1) = ∆θ12.
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Figure 5: Cross-fields and decompositions generated on two curved surfaces with unit target size fields.
In both cases the geodesic curvatures of the boundary edges are zero and the corner angles are π/2,
therefore the singularities emerge as a consequence of the Gaussian curvatures of the surfaces.

Figure 6: Multi-element aerofoil with flap and spoiler. (Left) Cross-field solution and close-up of the
complex cove region. It is evident that the cross-field singularities occur on or near the medial axis
represented by the orange lines. (Right) Intricate decomposition created by traced critical streamlines.

A simple numerical procedure is used for completing the task of tracing a cross-field
streamline through an element given a curve tangent vector d1 and a position p0 on element
edge. First d1 is rotated onto the element plane to give d′1. Secondly, the reference vector
is chosen from one of the four cross vectors at N1 so that θ(p0) best fits the angle that d′1
makes with the reference vector. Then Heun’s method, a basic variation of the Runge-
Kutta method, is used to integrate the streamline to another element edge according to

11



Harold J. Fogg, Cecil G. Armstrong and Trevor T. Robinson

θ(x, y). The implemented method is an adaption of that described in [21, Section 3.2].
The critical streamlines radiating from singularities and boundary corners partition

the surface into quadrilateral blocks, thus forming a multi-block decomposition suitable
for all-quad meshing. The cross-field is evenly distorted around singularities and it is a
straightforward matter to determine the starting star geodesic tangent vectors. The de-
composition streamlines are traced until they meet the boundaries or until a pre-decided
threshold distance or turn angle is exceeded.

Examples of cross-fields, singularities and multi-block decompositions are shown in Fig-
ures 4, 5 and 6.

4 DISCUSSION AND CONCLUSIONS

A novel method has been presented for generating a cross-field on a surface of arbitrary
shape and genus with a provided tri mesh. Bunin’s continuum theory is relied on as a
basis for teasing out the best approach and for arguing the rationality of the approach
taken. A set of specified direction constraints fix the crosses at certain nodes initially
and the cross-field is propagated to the rest of the mesh by a fast marching method.
The boundaries are selected automatically as the direction constraints unless alternatives
are given, so that the result is boundary conforming. At each advancement step a new
cross at a node is calculated by a simple formula derived by locally minimising an energy
functional. The energy functional is designed to describe the composition of the cross-
field smoothness and deviations from target element size changes and target directions
over a region. Singularities of the propagated cross-field occur at isolated locations on the
medial axis and are identified in elements of the tri mesh by a simple check.

The cross-field solver is the most important contribution of this work. The fast march-
ing algorithm is efficient and solves the non-linear problem simply and quickly with an
asymptotic complexity of O(N logN) [24]. For the example shown in Figure 6 with the
tri mesh containing ∼6k nodes, the time taken for the entire process to finish was under a
minute. The produced cross-fields can be tailored to suit a prescribed size field of a quad
mesh. A potential application of the presented technology is as an effective cross-field
initialisation method for global optimisation based solvers.

A basic streamline tracing algorithm is used to create the decomposition edges starting
from singularities and boundary corners. Thus, multi-block decompositions of surfaces
can be automatically constructed on which it is possible to generate all-quad meshes using
widely-used algebraic mapping algorithms. Bunin’s continuum theory deals only with the
properties of a mesh with infinitesimal elements, hence it lacks guidelines for constructing
a discrete mesh. For complex decompositions, such as that shown in Figure 6(right),
long thin blocks are created by the simple streamline tracing algorithm. This does not
cause an issue if the target element sizes are very small but a difficulty arises when the
target sizes are greater than the block height. A post processing block simplification
method could be used to overcome this problem by removing thin block rows with heights
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much smaller than the target element sizes, with care needed to avoid violating the block
topology. Depending on requirements, perhaps recently developed global parametrisation
based algorithms, such as [5, 11, 9], might be a preferable way to generate the quad mesh
rather than by decomposition.
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A Appendix

A.1 Calculate distance function in
tri element

The Eikonal equation states

‖∇d‖ = 1, d ∈ R > 0, (13)

where d is the distance function. In a tri element with the
distance set at two nodes, N2 and N3, the distance at the
remaining node, N1, is calculated as follows.
The distances relative to d2 are:

u1 = d1 − d2,
u2 = 0,

u3 = d3 − d1. (14)

A local Cartesian coordinate frame, F , on the element plane
with its origin at N2 is used and u is approximated by a
bilinear function,

u(x, y) = αx+ βy, α, β ∈ R, (15)

where F is chosen such that its x-axis is along edge-12 and
the y-axis points into the element, so that β > 0. By
Eqn. (13),

‖∇u‖ = α2 + β2 = 1,

⇒ β =
√

1− α2. (16)

Substituting known values in Eqn (15) gives

u3 = αx3 +
√

1− α2��*
0

y3,

⇒ α =
u3

x3
(17)

Therefore,

u1 =
u3

x3
x1 +

√
1−

u3

x3

2
y1, (18)

and finally,

d1 = d2 +
u3

x3
x1 +

√
1−

u3

x3

2
y1. (19)
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