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Abstract. In numerous computational engineering applications, hexahedral meshes may
be preferred over tetrahedral meshes. However, automatic hexahedral meshing remains
an unsolved issue and thus generating a hexahedral mesh is known as a time-consuming
stage that requires a lot of user interactions in the simulation process. A possible way
for designing and optimizing a CAD model or a geometric shape requires parametric
studies where the shape is enriched by inserting geometric details into it. Then we
must ”adapt” the initial mesh and not generate it anew for each new detail taken
into account. In order to perform such studies with hexahedral meshes, we provide an
imprinting method allowing us to automatically add geometric details into an existing
mesh. This addition is done using geometric projections, sheets (layers of hexahedral
elements) insertions and combinatorial algorithms while preserving the hexahedral mesh
structure as best as possible.

1 INTRODUCTION

The definition of a real mechanical piece using only numerical modeling and simulation
has been increasingly used for several years. A lot of research efforts have been put into
the quality control of the numerical solutions and into the design of sophisticated, complex
and coupled modeling, which leads to increasingly time-consuming computations. Most
of these simulations rely on the finite element method (FEM) or the finite volume method
(FVM). Both of them require that the geometric model be discretized by a mesh. In most
cases, they are purely tetrahedral or hexahedral, that is to say exclusively composed of
tetrahedral elements or hexahedral elements. In this work, we focus on the generation of
hexahedral meshes, and more precisely on the adaptation of an existing hexahedral mesh
to fit new geometric features that are inserted into a CAD model during an adaptive
simulation process.
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The classical process for designing and optimizing a geometric shape requires para-
metric studies where the shape is modified and/or enriched by adding geometric details.
Considering a first shape with an associated mesh, we want to ”adapt” the initial mesh
and not to regenerate it from scratch for each new part taken into account (see Fig. 1). In
order to perform such studies with hexahedral meshes, we provide an imprinting method
that allows us to automatically add geometric details into a hexahedral mesh. This addi-
tion is done using geometric projections, sheets (layers of hexahedral elements) insertions
and combinatorial algorithms, while preserving the hexahedral mesh structure as best as
possible. Some authors have studied the insertion of complex geometric models into an
existing grid or octree structure in order to get the initial mesh [8, 12, 4, 9, 5, 6, 13].
In our work, we focus on CAD models where sharp features are numerous and must be
preserved; corners and ridges are typically difficult to capture in an existing mesh. The
main contributions of our work are:

• Contrary to existing algorithms [8, 12, 4, 9, 5, 6, 13], our method can be applied
onto any unstructured hexahedral meshes, it is not restricted to grids or octrees;

• While these algorithms only use a grid or octree to discretize the inner volume of
one or several geometrical domains, we discretize both the inner and outer volumes;

• Both the initial geometric domain and the geometric details to be inserted have
several corners and ridges.

The remainder of this paper is organized as follows: Section 2 gives an overview of
our algorithm while introducing necessary terminology. Section 3 discusses the detailed
algorithm for properly capturing the new geometric entities into the mesh. Section 4
explains how to improve the mesh quality in the vicinity of the inserted details and to
improve the robustness of our algorithm. Section 5 draws conclusions and outlines future
works.

2 MAIN STEPS OF THE IMPRINTING ALGORITHM

2.1 Background notions

A traditional representation [3] of a hexahedral mesh is to consider a 4-tuple (H, F,E, N)
where H is a non-empty set of hexahedra, F is the non-empty set of all quadrilaterals ad-
jacent to one or more hexahedra in H, E is the non-empty set of all edges adjacent to one
or more hexahedra in H and N is the non-empty set of all nodes adjacent to one or more
hexahedra in H. Hexahedra are 3-dimensional cells, or 3-cells, quadrilaterals are 2-cells,
edges are 1-cells and nodes are 0-cells. In this work, the geometric domain Ω that we want
to discretize is a 3-dimensional geometric object represented by its boundary. It is thus a
BRep object described as a 3-tuple (S,C,V) [2] where S is a non-empty set of geometric
surfaces enclosing a 3-dimensional space and such that ∀(s1, s2) ∈ S2, s1 ∩ s2 = ∅, C is
the non-empty set of curves adjacent to one or more surfaces in S and V is the non-empty
set of vertices adjacent to one or more surfaces in S.
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c d

Figure 1: A hexahedral mesh is modified in order to add some geometrical details that can be relevant
for the numerical study or to get a more geometric-sharp model. In (a), the first mesh was obtained
using a sweeping algorithm [1]. In (b), two shapes, a cylinder and a cross shapes are added. In (c) and
(d), close-up of the imprint on the side of the original mesh resulting from the insertion of respectively
the cross and the cylindre shapes.

Let M = (H, F,E, N) be a hexahedral mesh discretizing1 the BRep object G =
(S, C, V ). In order to initialize boundary conditions for FEM and FVM methods, it is
mandatory to associate2 each i-cell to a j-dimensional geometric entity with j ≥ i. To
get a valid association, some constraints must be satisfied:

• A mesh surface sM ⊆ F , i.e. a set of pairwise adjacent faces of F forming a 2-

1The notion of discretization is not detailed in this paper. See for instance [3].
2This association is similar to the classification notion introduced by Remacle and Shephard in [7].
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manifold, must be associated to each geometric surface s ∈ S. It means that all the
faces in sM , all the edges and nodes adjacent to a face of sM are geometrically on
surface s within a tolerance, and sM discretizes surface s (i.e. every point x ∈ s is
contained in exactly one face, f ∈ sM , and sM wholly fills s.

• A mesh line lM ⊆ E, i.e. a set of pairwise adjacent edges of E forming a 1-manifold,
must be associated to each geometric curve c ∈ C. It means that all the edges in
lM and all the nodes adjacent to an edge of lM are geometrically on curve c within
a tolerance, and lM discretizes curve c (i.e. every point x ∈ c is contained in exactly
one edge, e ∈ lM , and lM wholly fills c.

Implicitly, it means that if two geometric surfaces s1 and s2 of a BRep object share a
curve c then the edges of the mesh line associated to c are also associated to s1 and s2

and such a line of edges separates the two sets of faces associated to s1 and s2.

2.2 Overview of the algorithm

Starting from a hexahedral mesh M = (H, F,E, N) that discretizes a BRep geometric
object G = (S, C, V ), the aim of our algorithm is to adapt M in order to discretize both
G and G2, where G2 = (S2, C2, V2) is a new geometric object fully enclosed into G. The
global process of our method is the following one:

1. Cells of H are split into two sets: those inside G2, denoted H2, and those outside;
cells that are intersected by the geometric object will either be classified as inside
or outside depending on a few criteria(see Section 3.1). Some refinement patterns
can be applied to ensure the right topology of H2 (see Section 4.1);

2. Each vertex of V2 is captured by a node located on the boundary of H2 (see Section
3.2);

3. Each curve of C2 is captured by a line composed of edges of E located on the
boundary of H2 of which the endnodes capture the endpoints of c (see Section 3.3);

4. Each surface s of S2 is captured by a mesh surface composed of faces of F located
on the boundary of H2 and delimited by mesh lines capturing the bounding curves
of s (see Section 3.4);

5. Layers of hexahedra are inserted along the boundary of H2 in order to improve the
quality of elements (see Section 4.2).

3 CAPTURING GEOMETRIC ENTITIES INTO A HEXAHEDRAL MESH

3.1 Extraction of inner cells

The first step consists in choosing which hexahedra of the original mesh M will be
considered as being part of the inserted geometric entity G2. Thanks to the fact that G2
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is fully enclosed into G, hexahedra are divided into two categories: inside or outside the
geometric detail, and the set of faces of M delimiting the two areas will be considered as
the discrete boundary of G2 in M .

• We first identify the hexahedra intersected by G2 and mark the remaining cells
as either inside or outside. Let H2 be the set composed of intersected and inner
hexahedra;

• The intersected hexahedra of H2 will then be classified as inside or outside depending
on whether more or less than half of their volume is located inside the geometric
detail; those classified as outside are removed from H2. This is done by, for each
hexahedron h of H2, taking a set of points Sh located inside the cell and determining
if most of them reside within G2 or not. For each point P in Sh the projected point
PS2 on the surfaces S2 is computed, then the sign of the scalar product between
PS2P and the outward normal to the surface at PS2 determines whether the point
is inside or outside (negative is inside, positive is outside).
Currently we take an arbitrary number of 27 points located inside each intersected
hexahedron using trilinear interpolation; Gauss points or some other quadrature
rule could be used.

At the end of this step, the hexahedra of M are separated into two sets: those inside G2

and those outside. In the following steps, our algorithm is restricted to selecting boundary
nodes, edges and faces among the discrete boundary of G2 in M .

3.2 Vertices’ classification

A boundary node n ∈ N will be associated to each vertex v ∈ V2 considering a distance
criterion, meaning the nearest node of N will be chosen for each vertex v of V2. A node
cannot be associated to more than one vertex, and in case of conflict, for example if two
vertices both have the same nearest node, vertices’ classification is done on a first-come,
first-served principle.

3.3 Curves’ classification

Curves’ classification is done in two steps.

First for each vertex v ∈ V2 we associate an edge to every curve adjacent to said vertex
(see Fig. 2-a-b). Let Cv be the list of curves adjacent to v, ordered around v in a direct
order. Let n be the node associated to v and En be the set of boundary edges of M
adjacent to n. We are looking for the list of ordered edges Ln ⊆ En, ordered around n in
a direct order, that best matches Cv. We define such a list as the list of ordered edges
that maximizes the cost function:

f(Ln) =

|Cv |∑
i=1

Cv[i].Ln[i]
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where Cv[i] and Ln[i] are the vectors of respectively the ith curve/edge of Cv/Ln pointing
outward from v/n. This phase is not mandatory but it allows us to select a better solution
near the vertices, which is typically where a good selection will improve robustness by
avoiding crossing between lines of selected edges; this non-crossing property is mandatory
for the algorithm used during the surfaces’ classification phase.

The second step builds the remainder of the lines for each curve c ∈ C2 (see Fig. 2-c-d),
by starting from one of the curve’s endpoints and building a contiguous line of boundary
edges to reach the other endpoint. A set of selectable edges is computed as the boundary
edges part of every hexahedron intersected by c, and a shortest path algorithm is used
where each edge is weighted by its Hausdorff distance to the curve [10]. This way, we
extract a suitable line of edges. Let us note that we do not start and end at the endpoints
of c, but rather we start from the first edges associated to c at its endpoints during the
previous step.

In case of curves that do not have endpoints (circles for example in the cylindrical
shape inserted, see Fig. 2-f) we arbitrarily put a few points on the curve and associate
them to boundary nodes , then build lines of edges that connect all those nodes using the
same method as described above, i.e. a weighted shortest path algorithm applied on a
restricted set of edges.

3.4 Surfaces’ classification

Surfaces’ classification is fairly straightforward once the edges’ lines have been deter-
mined. Sets of faces are delimited by the lines, and for each set of faces sM delimited by
a set of lines LM the corresponding surface s ∈ S2 is the surface delimited by the curves
the lines in LM are associated to (see Fig. 2-e). This is sufficient to characterize all the
surfaces of S2 but in two cases:

• When there are no curves, for example if the geometric detail is a sphere, there is
only one surface s in G2 which is then associated to sM ;

• When there are only two surfaces, hence delimited by the same set of curves we have
to choose an order of traversal for the curves and lines of edges and discriminate
between the two surfaces by determining which surface is on the left or on the right.
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e f

Figure 2: Curves’ classification, from a best combination around each vertex to building a line of edges.
In (a), close-up of the combination of edges that best matches the 3 curves of the cross shape at this
vertex. In (b), edges at every vertex have been associated to curves. In (c), a line of edges (in red) has
been associated to a curve. In (d), every curve in the cross shape has been associated to a line of edges.
In (e), surfaces are classified to sets of faces. In (f), a curve of the cynlindrical shape is associated to a
line of edges despite having no endpoints.
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4 ROBUSTNESS AND QUALITY IMPROVEMENT

At this point in the paper the main contributions of our work have been outlined; the
geometric detail G2 has been inserted into the initial mesh and its surfaces, curves and
vertices have been associated to mesh entities, but in order to be more robust and obtain
a resulting mesh of better quality our algorithm needs to apply the following steps:

4.1 Refinement

The quality and robustness of the geometric detail classification strongly depends on
the initial mesh. We use a 3-refinement strategy similar to the refinement used in [14]
in order to get a valid result at the end of the first step of our algorithm. Indeed, such
a refinement ensure that the topology of the set of inner hexahedra of H associated to
G2 will be the same as the topology of G2. In Fig. 3 the mesh is refined in the thin
areas using a criterion based on whether at least two non-neighbor surfaces intersect a
hexahedron. That allows the algorithm to better capture the thin top and bottom parts,
and to disjoin the two parts on the right side of the model. Otherwise depending on the
position and the size of the hexahedra near the thin space on the right of the model the
space would not be captured, meaning the selected hexahedra in this area would form one
block instead of two, and the corresponding surfaces and curves would not be classified.

a b

c d

Figure 3: A hexahedral mesh is refined in order to facilitate the geometric detail insertion. In (a), the
geometric detail is represented inside the original mesh, which is a regular cartesian grid. In (b), three
areas are refined, around the thin parts of the geometric detail; the inside hexahedra are represented in
yellow, the ouside ones in green. In (c), after curves’ classification. In (d), after sheets insertions, sheets
represented in red.
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4.2 Sheet insertion

After having classified the vertices, curves and surfaces of the geometric detail G2,
sheets can be inserted in order to offer good quality elements near the surface of the geo-
metric detail, and to provide boundary-aligned elements in case the numerical simulation
favours such a feature in a mesh (see Fig. 4). Depending on the requirements on the
resulting mesh, fundamental sheets and chords [2] can be inserted.

a b

Figure 4: Sheet insertions after classification of the cross shape inside the original mesh. In (a), one sheet
was inserted around the cross shape, inside the geometric detail. In (b), a sheet was inserted around the
shape but this time located on the side of the outer volume.

4.3 Mesh smoothing

A laplacian smoothing constrained by the geometric classification was applied to the
examples shown in this paper. But to get better quality, it seems mandatory to apply more
evolved algorithms. Indeed, as we insert sharp geometric objects, non convex areas with
sharp ridges appear. In such areas,algorithms merging untangling technics and geometric
smoothing should be used [11]. In order to select a suitable method, we need to further
study the impact of the geometric constraint on the smoothing method.

5 CONCLUSIONS

In this work we introduced a method to insert a geometric detail into an existing mesh.
The approach consists in selecting an initial good set of hexahedra, so as to simplify the
curves’ and surfaces’ classification steps that could prove overly difficult otherwise. This
is a strictly a priori selection, and slight changes could be applied to the selection, i.e.
adding or removing a select few hexahedra in order to improve quality or robustness.
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A lot of work remains to be done concerning robustness; for example we have at the
moment ignored the possibility that during vertices’ classification a vertex v could have
more adjacent curves than there are adjacent boundary edges to the nearest node, not to
mention any boundary nodes, hence an impossiblity to classify curves. Such an issue could
be resolved by refining the mesh around good nodes candidates, thus adding adjacent
edges to those nodes. Same wise the hexahedra selection must form a 3-manifold, as
that is an essential property for the surfaces’ classification step; the geometric criteria
that we currently use, i.e. keeping hexahedra which are at least half located inside G2 is
not sufficient and needs to be supplemented with topological criteria. Concerning quality,
sheets insertion needs to be further developped in order to adress and correct badly shaped
cells that can have several edges or even faces classified on the same curve or surface. This
could be done considering [2].
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