Numerical modelling of impact noise

Cristina Díaz-Cereceda, Jordi Poblet-Puig and Antonio Rodríguez-Ferran

July 2009

Laboratori de Càlcul Numèric (LaCàN)
Universitat Politècnica de Catalunya (Spain)
http://www-lacan.upc.es
Outline

- Motivation

- Approach to the problem
 - Modelling the impact force
 - Computing the displacement field and the radiated power
 - Obtaining the outputs of interest

- Developed models
 - Infinite plates
 - Modal analysis for finite plates
 - Coupled plates

- Conclusions
Motivation

Approach to the problem
- Modelling the impact force
- Computing the displacement field and the radiated power
- Obtaining the outputs of interest

Developed models
- Infinite plates
- Modal analysis for finite plates
- Coupled plates

Conclusions
Impact noise: noise level in rooms due to the impact of an object hitting the building structure.

Situation: Current trend of the regulations is restrictive (*i.e.* Código Técnico de la Edificación).

88 dB (NBE-CA-88) → 65 dB (April 2009)
Motivation

Approach to the problem
- Modelling the impact force
- Computing the displacement field and the radiated power
- Obtaining the outputs of interest

Developed models
- Infinite plates
- Modal analysis for finite plates
- Coupled plates

Conclusions
Approach to the problem

Three main methods:

- Energy average thinking (SEA)
- Simplified methods
- Solving vibroacoustic equations by means of numerical methods
 - Modelling the impact force
 - Computing the displacement field
 - Obtaining the radiated power
 - Computing the outputs of interest
Modelling the impact force

- Excitation: point force (tapping machine).
- Modelling: influence of the floor characteristics.
- Formulation: proposed by Brunskog.
Computing the displacement field and the radiated power

- Displacement field: governing equation
 \[D \Delta^2 \hat{u} - \omega^2 \rho_s \hat{u} = q \]
 where \(\hat{u} = \hat{u}(x, \omega) \).

- Radiated power: generic expression
 \[\Pi_{rad} = \int_{s} \mathbf{l} \cdot \mathbf{ds} = \frac{1}{2} \text{Re} \left(\int_{s} p \hat{\mathbf{v}}^* \, ds \right) \]
 where \(\hat{\mathbf{v}} = j\omega \hat{u} \).
Obtaining the outputs of interest

- Normalised impact noise pressure level (L_n)
 \[L_n = 10 \log \left(\frac{\Pi_{Rad}}{p_{ref}^2} \frac{4\rho c}{A_0} \right) \text{ dB}. \]
- Adjusted normalised impact noise pressure level ($L_{n,w}$).
Motivation

Approach to the problem
- Modelling the impact force
- Computing the displacement field and the radiated power
- Obtaining the outputs of interest

Developed models
- Infinite plates
- Modal analysis for finite plates
- Coupled plates

Conclusions
Models for a single plate

Infinite plate radiating into an infinite half-space

- Widely used. Detailed in the bibliography.
- Implies spatial Fourier transformation of the displacement.

\[
\tilde{u} = \frac{F_0 e^{i(\alpha x_0 + \beta y_0)}}{D (\alpha^2 + \beta^2)^2 - \rho_s \omega^2}
\]

\[
\Pi_{rad} = \frac{k \rho c}{8\pi^2} \int \int_{\alpha^2 + \beta^2 \leq k^2} \frac{\omega^2 |\tilde{u}(\alpha, \beta)|^2}{\sqrt{k^2 - \alpha^2 - \beta^2}} d\alpha d\beta
\]
Models for a single plate

Finite plate simply supported along its edges

\[\hat{u}(x, y) = \sum a_{pq} \Psi_{pq}(x, y) \]

- The eigenfunctions of the plate can be found analytically

\[\Delta^2 \Psi_{pq} - k_{pq}^4 \Psi_{pq} = 0 \Rightarrow \Psi_{pq} = \sin \left(\frac{p\pi}{L_x} x \right) \sin \left(\frac{q\pi}{L_y} y \right) \]

- Modal contributions are uncoupled

\[a_{pq} = \frac{4 F_0 \Psi_{pq}(x_0, y_0)}{(D k_{pq}^4 - \omega^2 \rho_s) L_x L_y}; \quad \Pi_{\text{rad}} = \frac{\omega \rho}{4\pi} \int \int \hat{\nu}(x', y') \hat{\nu}^*(x, y) \frac{\sin(kr)}{r} d\Omega d\Omega' \]
Comparison with experimental measurements
Parametric analysis

Thickness

<table>
<thead>
<tr>
<th>h (m)</th>
<th>$L_{n,w}$ (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>88</td>
</tr>
<tr>
<td>0.1</td>
<td>80</td>
</tr>
<tr>
<td>0.2</td>
<td>72</td>
</tr>
<tr>
<td>0.4</td>
<td>62</td>
</tr>
</tbody>
</table>
Parametric analysis

Loss factor

\[
\eta \ \text{L}_n, w \ (\text{dB})
\]

<table>
<thead>
<tr>
<th>(\eta)</th>
<th>(L_{n,w}) (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 %</td>
<td>97</td>
</tr>
<tr>
<td>1.5 %</td>
<td>80</td>
</tr>
<tr>
<td>3 %</td>
<td>77</td>
</tr>
<tr>
<td>4.5 %</td>
<td>75</td>
</tr>
</tbody>
</table>
Models for multiple plates

- Linking: elastic joint \(M = k_\theta (\theta_1 - \theta_2) \).
- The same basis of functions is used.
- The weak form is developed: the bending moments are imposed.

\[
\int_\Omega \left(k_{lm}^4 - \frac{\omega^2 \rho_s}{D} \right) \hat{u} \nu \, d\Omega + \frac{1}{D} \left[\left(\int_{y=0}^{y=L_y} M_x \nabla_n \nu \, dy \right)_{x=0} + \left(\int_{y=0}^{y=L_y} M_x \nabla_n \nu \, dy \right)_{x=L_x} \right] + \left(\int_{x=0}^{x=L_x} M_y \nabla_n \nu \, dx \right)_{y=0} + \left(\int_{x=0}^{x=L_x} M_y \nabla_n \nu \, dx \right)_{y=L_y} = \frac{1}{D} \int_\Omega q \nu \, d\Omega
\]
Models for multiple plates

Coupled system:

\[
\begin{bmatrix}
D_1 + k_\theta C & k_\theta E \\
k_\theta G & D_2 + k_\theta H
\end{bmatrix}
\begin{bmatrix}
a \\
b
\end{bmatrix}
=
\begin{bmatrix}
f_1 \\
0
\end{bmatrix}
\]

Cases of interest:

Four plates

T-shaped structure

Cases of interest:

Four plates

T-shaped structure
Two plates

Dependence on k_θ
Dependence on k_θ
T-shaped structure

Dependence on k_θ floor-wall. Continuous floor.
T-shaped structure

Dependence on k_θ floor-wall. Non-continuous floor.
Motivation

Approach to the problem
- Modelling the impact force
- Computing the displacement field and the radiated power
- Obtaining the outputs of interest

Developed models
- Infinite plates
- Modal analysis for finite plates
- Coupled plates

Conclusions
Conclusions

- Both the infinite plate model and the modal analysis model are good approximations to the real behaviour.
- The thickness and loss factor of a floor are important parameters for the impact noise level.
- Elastic joints through the floor lower the impact noise in adjacent rooms.
- Floor-wall flanking transmission becomes important when floor-floor transmission is low.
Conclusions

- Both the infinite plate model and the modal analysis model are good approximations to the real behaviour.

- The thickness and loss factor of a floor are important parameters for the impact noise level.

- Elastic joints through the floor lower the impact noise in adjacent rooms.

- Floor-wall flanking transmission becomes important when floor-floor transmission is low.
Conclusions

- Both the infinite plate model and the modal analysis model are good approximations to the real behaviour.
- The thickness and loss factor of a floor are important parameters for the impact noise level.
- Elastic joints through the floor lower the impact noise in adjacent rooms.
- Floor-wall flanking transmission becomes important when floor-floor transmission is low.
Both the infinite plate model and the modal analysis model are good approximations to the real behaviour.

The thickness and loss factor of a floor are important parameters for the impact noise level.

Elastic joints through the floor lower the impact noise in adjacent rooms.

Floor-wall flanking transmission becomes important when floor-floor transmission is low.