MARIE Skłodowska-CURIE INNOVATIVE TRAINING NETWORK

OPEN CALL – PhD position

Host (recruiting) organisation
Universitat Politecnica de Catalunya · BarcelonaTech, Barcelona, Spain

Project Title: Fast Hi-Fi CFD Vehicle Design

Supervisory team

<table>
<thead>
<tr>
<th>Primary academic institution</th>
<th>Industrial institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Antonio Huerta</td>
<td>Dr. rer. nat. Carsten Othmer</td>
</tr>
<tr>
<td>Universitat Politecnica de Catalunya · BarcelonaTech</td>
<td>Volkswagen AG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Secondary academic institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Rubén Sevilla</td>
</tr>
<tr>
<td>Swansea University</td>
</tr>
</tbody>
</table>

Project description
Accurate and fast evaluation of drag and aerodynamic noise around vehicles is still today an open computational problem. Accurate drag evaluation is important and today’s commercial CFD codes predict values of drag that match reasonably well experimental results. Nonetheless, being able to predict (and optimise) drag when the design variables are the vehicle geometry is also crucial and decisive because it has a major impact in the overall design time. This is known to be extremely expensive in production cycles due to the large amount of configurations tested and the high cost of each simulation involved in the shape optimization process.

Reliable and fast modelling of aero-acoustics is in today’s frontier of knowledge and industry is in need of relevant contributions in this area. Aerodynamic noise requires capturing complex flow features with high-fidelity computational tools. This extra difficulty makes the complete aero-acoustics design cycle a major challenge for today’s engineers and scientists.

The aim of this project is to develop a methodology able to capture all the flow features that are required in aero-acoustic simulations. A technique capable of introducing the geometric design variables as extra parameters in the numerical simulation will be developed. The method will be applied to the numerical solution of the compressible Navier-Stokes equations.
MARIE Skłodowska-CURIE INNOVATIVE TRAINING NETWORK

Benefits
• Doctorate degree from both UPC-BarcelonaTech and Swansea University
• Integration within the research group of an automobile industry leader
• 36 month full-time employment contract
• Additional mobility and family allowances
• Research supervision and training by recognised experts in computational mechanics from academia and industry
• Access to state-of-the-art research and computing facilities
• Training in transversal skills (e.g. communication skills, entrepreneurship)

Prerequisites
• To have a strong undergraduate and MSc degree (or equivalent) in Engineering, Mathematics, Physics or a related field and a good level of English
• To have an enthusiastic attitude to conduct research, being hard-worker and critic
• To demonstrate knowledge of some programming languages such as Matlab and Fortran
• To have some experience with Finite Element analysis

Eligibility
Applicants shall, at the time of recruitment by the Universitat Politecnica de Catalunya · BarcelonaTech, be in the first four years (full-time equivalent research experience) of their research careers and have not been awarded a doctoral degree. Full-Time Equivalent Research Experience is measured from the date when a researcher obtained the degree, which would formally entitle him/her to embark on a doctorate, irrespective of whether or not a doctorate is or was ever envisaged.

At the time of recruitment by the host organisation, researchers must not have resided or carried out their main activity (work, studies, etc.) in SPAIN for more than 12 months in the 3 years immediately prior to the reference date.

Duration of the project
The total duration of the project is 36 months.

Obligations of ESRs
• Completion of the Erasmus Mundus Joint PhD programme Simulation Engineering and Entrepreneurship Development (SEED)
• Be highly committed with quality research, training and management. The successful candidate is expected to become a future leader on the development and application of advanced computational methods for industry
• Take part of the mobility programme both in academia and industry
• Participate on the dissemination and outreach activities associated to the project
• Attend international conferences and present the research undertaken
• Contribute to the writing of articles in high impact international journals

Closing date
March 31, 2016

How to apply
www.lacan.upc.edu/AdMoRe

Questions
admore.itn@upc.edu