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CONVENTIONAL BARYCENTRIC COORDINATES are defined rela-
tive to vertices defining the boundary of a polytope. Here, we develop barycen-

tric coordinates relative to a cloud of vertices sampling not only the boundary,
but also the interior of a region in Rd, with the objective of using these barycen-
tric coordinates as basis functions to approximate partial di�erential equations or
parametrize surfaces. We show that entropy maximization provides a rational way
to define smooth barycentric coordinates, but for the resulting basis functions to
be localized, and hence lead to sparse matrices in computational mechanics, en-
tropy maximization needs to be biased by a suitable notion of locality. The basis
functions that result from this approach are smooth, reproduce polynomials, are
localized around their corresponding vertex, and their definition does not rely on
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an underlying mesh or grid but rather on less structured neighborhood relations
between vertices. Thus, they can be viewed as meshfree basis functions [12, 21, 37].
The theory and practical evaluation behind these basis functions is reviewed next,
and selected applications in computational mechanics are presented.

1.1 INTRODUCTION
A standard approach to numerically represent a function u over a domain in � µ Rd

is to expand it in terms of a finite set of basis functions, that is

uh(x) =
nÿ

i=1
„i(x)ui, (1.1)

where „i : �̄ ≠æ R is the i≠th basis function and ui its corresponding coe�cient.
Such a representation is the basis of Galerkin methods to solve partial di�erential
equations (PDEs), see [15] and also Chapter ??. Here, rather than choosing a priori
the set of basis functions, such as piecewise polynomials defined over a mesh, we
initially leave their definition open, and then motivate and make explicit the specific
choices leading to maximum-entropy meshfree basis functions.

To show convergence of numerical solutions obtained by a Galerkin method to
the exact solution, the basis functions need to satisfy the so-called reproducibility
conditions. These conditions ensure that polynomials up to degree p are exactly
represented by the basis functions. For second-order PDEs such as the heat equation
and the most common systems arising in fluid and solid mechanics, consistency
conditions up to p = 1 are required at all points x œ �

nÿ

i=1
„i(x) = 1, (1.2a)

nÿ

i=1
„i(x)vi = x, (1.2b)

for some vector coe�cients vi œ Rd. If these conditions are met, then any a�ne
function w(x) = a·x+b, where a is a vector in Rd and · denotes the scalar product,
can be exactly represented in � as w(x) =

qn
i=1 „i(x)(a · vi + b).

Interpreting the coe�cients vi as the coordinates of points or vertices, we can
naturally associate each basis function to a vertex, and view the set of vertices
V = {v1, v2, . . . , vn} as points sampling the domain �. With this interpretation,
we only need to require the basis functions to be non-negative

„i(x) Ø 0 ’x œ �, i = 1, 2, . . . , n (1.3)

and recall (1.2) to realize that the functions „i(x), i = 1, 2, . . . , n define a set
of generalized barycentric coordinates relative to V . A di�erence with respect to
previous chapters is that now we allow for interior vertices to the domain, and for
multiple vertices along a face of the domain.
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Figure 1.1 Set of vertices V in two dimensions, along with the convex hull P .

Because generalized barycentric coordinates at x are coe�cients of a convex
combination of the vertices resulting in x, see (1.2b), it immediately follows that
such basis functions can only be defined in the convex hull of V , and therefore
� µ conv V . Further exploiting elementary facts of convex geometry, it is possible to
characterize the behavior of convex approximation schemes of V , that is barycentric
coordinates defined in the vertex set V , on the boundary of the polytope P =
conv V [4]. In particular, it can be shown that if F denotes a face of P in the sense
of convex geometry (in R3 0-dimensional faces are extreme points, 1-dimensional
faces are edges, and 2-dimensional faces are a proper faces) and vi /œ F , then the
corresponding basis function „i vanishes on F [4].

Immediate consequences of this fact are that: (1) basis functions of interior ver-
tices (red vertex in Figure 1.1) vanish at the boundary of P , (2) the basis functions
of extreme points vi of P satisfy the Kronecker-delta property, „i(vj) = ”ij , and (3)
on a given face F (in blue in Figure 1.1), only the basis functions of vertices lying on
F are non-zero in F . As a result of (3), if we denote by IF the set of indices of nodes
lying on F , then (1.2a,1.2b) become

q
iœIF

„i(x) = 1 and
q

iœIF
„i(x)vi = x for all

x œ F , that is the basis functions of nodes on a face maintain the full approximation
properties on that face. Furthermore, (3) also implies that the basis functions on a
face can be defined without reference to information in the higher-dimensional am-
bient space. These properties can be referred to as a weak Kronecker-delta property,
which facilitate the imposition of boundary conditions in the numerical approxima-
tion of PDEs.

1.2 SELECTING BARYCENTRIC COORDINATES THROUGH EN-
TROPY MAXIMIZATION

On examining (1.2a,1.3), it is clear that for each point x œ P , the barycentric
coordinates {„1(x), „2(x), . . . , „n(x)} can be viewed as a discrete probability dis-
tribution for n events. Defining the barycentric coordinates then becomes a problem
of statistical inference. In the absence of additional information and if one tries to
avoid any bias, Laplace’s principle of insu�cient reason would suggest selecting
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„i(x) = 1/n for i = 1, . . . , n. Yet, we do have additional information, since (1.2b)
states that the average of the vertex positions is x. How to incorporate this piece
of information, while making a choice of the probabilities (barycentric coordinates)
as unbiased as possible?

One classical answer to this question in information theory is Jaynes’ principle of
maximum entropy [17]. Let us first introduce the information entropy associated to
a finite probability distribution by considering a coin toss. In this case, there are two
events (heads or tails) that for a perfectly balanced coin have equal probabilities,
p1 = p2 = 1/2. Instead, we could conceive an extremely unbalanced coin with
probabilities q1 = 0.99, q2 = 0.01. A fundamental question in information theory
is how to quantify the uncertainty of a probability distribution, or in other words,
how to quantify the amount of information gained by realizing a coin toss. It is
obvious that the balanced coin leads to a much more uncertain outcome, whereas,
for the unbalanced one, we will learn very little by throwing it since we know that
the outcome will most likely be heads. It can be shown that a canonical measure
of uncertainty or information is given by the Shannon entropy function

H(p1, p2, . . . , pn) = ≠
nÿ

i=1
pi log pi, (1.4)

where the function x log x is extended by continuity at zero, i.e. 0 log 0 = 0. See [18]
for a detailed motivation of this measure of information and its properties. By
evaluating Shannon entropy on the previous two probability distributions, we find
that the first coin is about 12 times more uncertain than the second one. In fact, it
can be shown that the function in (1.4) is strictly concave with a maximum at the
uniform distribution pi = 1/n, i = 1, 2, . . . , n. This last fact shows that maximizing
the entropy is consistent with Laplace’s principle of insu�cient reason.

Let us now introduce Jaynes’ principle using another simple example, that of
a dice with six faces, A1, A2, . . . , A6. Consider the random function that assigns
to a given face its numerical value, f(Ai) = i. For a perfectly balanced dice, the
average of f is

q6
i=1 i/6 = 7/2. Suppose, however, that an accurate sample mean is

computed for this quantity after a large number of trials, giving a result of 4. Clearly,
this new piece of information is inconsistent with the uniform probabilities that we
expect for a perfectly balanced dice. We would like to incorporate this information
in the inference of the probabilities p1, p2, . . . , p6 associated to each face of the dice,
but clearly it is not su�cient to uniquely determine these probabilities. Jaynes’
recipe is to consider the most uncertain probability distribution, that is the one
that maximizes entropy, while being consistent with the known partial information
[17]. Mathematically, this statement can be formulated as an optimization program
with constraints

max
p1,...,p6

≠
6ÿ

i=1
pi log pi

subject to pi Ø 0,

6ÿ

i=1
pi = 1,

6ÿ

i=1
i pi = 4,
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where the last constraint encodes the additional information about the system.
The solution to this constrained optimization problem is p1 = 0.103, p2 = 0.123,
p3 = 0.146, p4 = 0.174, p5 = 0.207, and p6 = 0.247, showing that the higher
expected value for f biases the probabilities towards faces with a higher numerical
value.

Going back to the problem of inferring the generalized barycentric coordinates,
it is now clear that application of Jaynes’ principle of maximum entropy leads to
an optimization program at each point x œ P and given by

max
„1,...,„n

≠
nÿ

i=1
„i log „i

subject to „i Ø 0,
nÿ

i=1
„i = 1,

nÿ

i=1
„i vi = x,

(1.5)

where the dependence on x only enters through the last vectorial constraint. The
solution to the program is the value of the barycentric coordinates selected by
entropy maximization at x, „i(x), i = 1, 2, . . . , n. Because the entropy function is
strictly concave, this program has a unique solution if and only if it is feasible, that
is whenever x œ P̄ [8]. This method, reviewed in Section ??, was introduced in [35]
to generate basis functions in polygons.

Figure 1.2 shows the basis functions defined by entropy maximization for a set of
vertices that not only defines a polygon, but also samples its interior and its faces. It
can be observed that in agreement with the general results for convex approximation
schemes mentioned earlier, the basis function associated to the extreme vertex v1
is 1 at v1, and therefore all other basis functions are zero at this point. Also in
agreement with the general results, the basis function of the interior vertex v3
vanishes on the boundary of P , and the basis function „2 does not satisfy the
Kronecker-delta property because v2 is on the boundary but is not an extreme
point. Yet, this set of basis functions presents a significant disadvantage when used
to approximate functions in general, or solutions of PDEs in particular: the basis
functions are completely nonlocal. The most dramatic case is that of basis functions
of interior nodes, such as „3, which spread through the entire domain and are as
uniform as allowed by the convex structure of the optimization program. This is
not a desirable feature to approximate functions over P because with such a basis
it is not possible to define a localized feature, say around vertex vi, and correlate
this feature with the nodal value ui in (1.1). Besides the lack of local resolution,
such a global set of basis functions leads to a dense sti�ness matrix when used in a
Galerkin method to approximate partial di�erential equations [15].

This discussion suggests that in defining the generalized coordinates by mere
entropy maximization, we have been “too unbiased”. We have ignored the funda-
mental requirement of locality, by which the approximation in (1.1) at a given point
x should more strongly depend on coe�cients ui associated to vertices close to x.
Local basis functions should concentrate their “mass” in the vicinity of their asso-
ciate vertex, where their value should be closer to 1 than for instance „3 in Figure
1.2.
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Figure 1.2 Basis functions selected by entropy maximization for the set of
vertices shown in (a). Selected basis functions for vertices at extreme positions
of P (b), along a face of P (c), and in the interior of P (d).
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1.3 INTRODUCING LOCALITY: LOCAL MAXIMUM-ENTROPY AP-
PROXIMANTS

Clearly, locality and entropy maximization are conflicting objectives; at any given
point x the former tries that only a few basis functions, those of vertices closer
to x, have values significantly larger than 0 while all others are close to 0, while
the latter tries to have as uniform values of „i(x) as possible. Interestingly, there
is another family of generalized barycentric coordinates associated to V that can
be characterized through an optimization program analogous to that in (1.5): the
piecewise linear basis functions associated to the Delaunay triangulation of V . In-
deed, if the vertices in V are in general positions (there are no d + 1 cospherical
vertices in V ), then there is a unique Delaunay triangulation with vertices V and
the solution to the constrained optimization problem

min
„1,...,„n

nÿ

i=1
„i|x ≠ vi|2

subject to „i Ø 0,

nÿ

i=1
„i = 1,

nÿ

i=1
„i vi = x,

(1.6)

are the barycentric coordinates of the simplex in the d-dimensional Delaunay trian-
gulation where x belongs [30]. Thus, at each point there are at most d + 1 non-zero
basis functions. See [30, 4] for a discussion about the situation in which the ver-
tices are not in general positions. Arguably, these are the most local generalized
barycentric coordinates associated to V .

Comparison of (1.5) and (1.6) suggests combining both objective functions to
define the following optimization problem

min
„1,...,„n

—

nÿ

i=1
„i|x ≠ vi|2 +

nÿ

i=1
„i log „i

subject to „i Ø 0,
nÿ

i=1
„i = 1,

nÿ

i=1
„i vi = x,

(1.7)

which defines Pareto optima harmonizing the two conflicting objectives: information
theory optimality and locality. Depending on —, or its non-dimensional counterpart
“ = —h2 where h is the typical spacing between vertices, the basis functions will
more closely resemble nonlocal approximants such as those shown in Figure 1.2
or highly local piecewise a�ne barycentric coordinates supported on a Delaunay
triangulation. In fact, the locality parameter —, controlling the aspect ratio of the
basis functions, can be defined locally by considering the following objective function
in (1.7)

nÿ

i=1
—i„i|x ≠ vi|2 +

nÿ

i=1
„i log „i,

where —i is the aspect ratio parameter associated to vertex i. We call the set of basis
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Figure 1.3 Local maximum-entropy (LME) basis functions. (a) Selected ba-
sis functions for a one-dimensional vertex set, with varying nondimensional
aspect ratio parameter “i = —ih2, see main text. (b) Basis functions for an
interior node in a two-dimensional set of vertices and di�erent aspect ratio
parameters, and (c) representative basis functions of boundary nodes.

functions obtained through the optimization program (1.7), „i(x), i = 1, 2, . . . , n,
local maximum-entropy (LME) approximants. Figure 1.3 illustrates the LME ba-
sis functions in one and two dimensions, although the formulation can be imple-
mented in principle in any dimension. The smooth basis functions closely resemble
other meshfree basis functions, such as those generated by the moving least-squares
method [37]. The crucial di�erence, however, is that such alternative methods do not
produce in general generalized barycentric coordinates because the basis functions
can be negative. The fact that LME functions are non-negative, and thus convex
approximants with a weak Kronecker-delta property, facilitates the imposition of
essential boundary conditions in the numerical solution of PDEs.

Note that while (1.6) is a linear program with unique solution only when vertices
are in general positions, the one-parameter family of optimization programs in (1.7)
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is nonlinear and strictly convex as a result of the entropy function. Thus, since it
is feasible for all x œ P̄ , it has a unique solution. Thus, the entropy functional
regularizes in some sense the linear program in (1.6). In fact, as shown in [4], the
entropy regularization leads to a unique well-defined set of generalized Delaunay
barycentric coordinates in the limit — æ +Œ.

Another important consequence of the entropy functional in (1.7) is the smooth-
ness of the resulting LME barycentric coordinates, as compared to those resulting
from (1.6). While the Delaunay barycentric coordinates are only C0 in P , since
they have discontinuous derivatives along the faces of the Delaunay simplices, it
can be shown using the implicit function theorem that the LME approximants are
CŒ in P with respect to x (also with respect to —i).

The LME basis functions have been defined so far implicitly through a con-
vex constrained optimization program with as many unknowns as vertices in V .
Through standard duality methods, however, it is possible to obtain an almost ex-
plicit form of the basis functions. For this, let us first define the partition function

Z(x, ⁄) =
nÿ

i=1
exp

#
≠—i|x ≠ vi|2 + ⁄ · (x ≠ vi)

$
. (1.8)

Then, the LME basis functions can be expressed at any point x œ P as

„i(x) = 1
Z (x, ⁄

ú(x)) exp
#
≠—i|x ≠ vi|2 + ⁄

ú(x) · (x ≠ vi)
$

. (1.9)

This expression is not fully explicit because to compute ⁄

ú(x) an unconstrained
optimization must be solved: the mininization of the strictly convex function
log Z(x, ⁄). It can be observed that the functions can be viewed as the product
of a Gaussian function around vertex vi, a normalizing factor (Z) so that all func-
tions add up to one, and an exponential factor that depends on the Lagrange mul-
tiplier ⁄

ú enforcing the linear reproducing condition. Examination of (1.9) shows
that, strictly speaking, these basis functions have global support. However, thanks
to the fast decay of the Gaussian function, for all practical purposes they can be
considered as compactly supported. Furthermore, the sum in calculation of Z in
(1.8) e�ectively involves only a handful of terms corresponding to vertices in the
neighborhood of x, which makes the evaluation of the basis functions e�cient.

We emphasize the dependence of ⁄

ú on position to highlight the fact that at
each evaluation point, an unconstrained nonlinear optimization problem must be
solved. This problem, however, is only d-dimensional, has a unique solution, and
can be e�ciently solved numerically using Newton’s method. See [4, 32, 23] for
mathematical and computational details, as well as for the explicit expressions to
compute first and second spatial derivatives of the basis functions, and see [13] for
the calculation of the gradients of the basis functions on the boundary of P .

We end this section by presenting an alternative method to introduce locality
into the maximum-entropy framework, which in addition provides a means to de-
fine strictly compactly supported basis functions. It is very easy to define a set
of non-negative smooth basis functions Âi(x) relative to V , localized around the
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corresponding vertex, and satisfying only the zeroth-order reproducing condition,qn
i=1 Âi(x) = 1. Indeed, consider for instance a scalar, non-negative and smooth

window function w : [0, +Œ) ≠æ R, which decays when the argument is large com-
pared to 1 and satisfies that all odd derivatives up to k at 0 vanish (to guarantee
that the even extension of w to R is Ck). Then, for a large enough fl the functions

Âi(x) = w (|x ≠ vi|/fl)qn
j=1 w (|x ≠ vj |/fl)

are clearly non-negative, localized around their corresponding vertex vi with typical
width ¸, smooth, and add up to one. Furthermore if w is compactly supported, then
the functions Âi(x) are also compactly supported. Thus, at each point, the numbers
Â1(x), Â2(x), . . . , Ân(x) define a discrete probability distribution, which contains
information about locality (Âi(x) is larger if x is closer to vi) but does not satisfy the
first-order reproducing constraint (1.2b). This constraint can be recovered using the
concept of relative entropy, also called Kullback-Leibler distance, which measures
the amount of information required to obtain a discrete probability distribution
from a prior distribution. Viewing Âi(x), i = 1, . . . , n as a prior distribution, the
relative entropy can be written as

D(„|Â(x)) =
nÿ

i=1
„i log „i

Âi(x) . (1.10)

Minimization of this function with respect to „i, i = 1, . . . , n, subject to (1.2)
and (1.3) will produce the closest set of barycentric coordinates to the prior from
an information theoretical viewpoint, i.e. introducing the least extra information
[5, 37]. A direct calculation using duality methods shows that the resulting basis
function „i can be written as the product of Âi and another factor enforcing the
linear reproducing condition, and thus the prior and the relative maximum-entropy
functions have the same support. In particular, if w(r) = e≠r2 and fl = 1/

Ô
—, then

these functions coincide with the LME basis functions.

1.4 FURTHER EXTENSIONS
We summarize next extensions to the meshfree and convex basis functions gen-
erated by the LME optimization program. An obvious question is whether these
approximants can be extended to higher-order, that is, if in addition to exactly re-
producing a�ne functions due to (1.2), they can be designed to exactly reproduce
higher-order polynomials. This would lead to a higher rate of convergence when
approximating PDEs. Focusing in 1D for simplicity, a naive extension would be to
maximize the LME objective function subject to

nÿ

i=1
„i = 1,

nÿ

i=1
„ivi = x,

nÿ

i=1
„iv

2
i = x2, (1.11)

a set of conditions met for instance by quadratic finite element spaces. However,
as identified in [4], conditions in (1.11) together with the non-negativity constraint
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(a)

Maximum-entropy second 
order basis function

Moving-least-squares 
second order basis function

(b)

LME function Cell-maxent function
(c)

Figure 1.4 Extensions of maximum-entropy approximations. (a) Representa-
tive second-order maximum entropy basis function, compared to a moving-
least-squares function, which is wiggly and negative at some points. (b) Com-
parison of a standard LME basis function and a cell-based maximum entropy
basis function supported on a triangulation, which results in a structured ad-
jacency relation and more e�cient calculations to approximate PDEs for a
comparable accuracy. (c) Combination of LME approximants with a bound-
ary representation based on B-splines.

„i Ø 0 are unfeasible for almost all points in P . This may seem contradictory at first
sight, since there are examples of non-negative approximants that can reproduce
quadratic and higher-order functions, notably B-splines. One option is the give up
non-negativity and consider a notion of entropy for signed probability distributions,
which however destroys the convex structure of the approximation scheme, does not
produce generalized barycentric coordinates, and can lead to wiggly basis functions
[36, 6]. Insisting on non-negativity, the apparent contradiction referred to above
is resolved by noting that for the second-order consistency condition to hold, the
coe�cients that multiply the generalized barycentric coordinates do not need to
be v2

i . By designing appropriate coe�cients, it is possible to restore feasibility, and
thus define second-order maximum entropy approximants in multiple dimensions
[9, 33], see Figure 1.4(a). The construction of feasible constraints for higher-order
reproducing conditions, however, is an open question.
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When applied to the numerical solution of PDEs with Galerkin methods, one
aspect complicating the implementation and diminishing the e�ciency of LME ap-
proximations is the “uncontrolled” support of the basis functions. This is important
because any two basis functions with overlapping support will generate an entry in
the sti�ness matrix resulting from the Galerkin method. Because the LME basis
functions have completely unstructured support, the underlying adjacency struc-
ture setting the matrix structure is quite dense, but with many very small entries
[28]. To alleviate this, a modification of the LME basis functions was proposed, and
called cell-based maximum entropy approximations, in which prior functions (Âi(x)
in the previous section) were designed to be supported on the a k-ring of simplices
around vi of a triangulation, see Figure 1.4(b). In this way, the adjacency structure
of the sti�ness matrix is given directly by the topology of the triangulation and is
much sparser, leading to more e�cient calculations without nearly any degradation
in accuracy [25]. In this reference, the smooth and compactly supported prior func-
tions were computed using approximate distance functions and R-functions, but
other techniques may result in better priors.

We finally report on a method that uses LME approximants to represent do-
mains with complex geometry and smooth boundaries. As described up to now, the
natural domain where the LME approximants are defined is the convex hull of the
P of the set of vertices, or subsets of P , but in this case the approximants do not
satisfy the weak delta-Kronecker on the boundary. However, there is an increasing
awareness on the importance of geometric fidelity in engineering calculations [16].
In fact, it is quite natural to blend maximum-entropy approximations with any
other convex approximation scheme, such as most approximation methods used in
computer graphics. It is su�cient to consider an optimization program such as that
in (1.7), in which some of the barycentric coordinates are taken as data (the known
convex scheme) and the rest are the unknowns of the problem [31]. For instance, in
Figure 1.4(c) one layer of tensor product B-spline basis functions extruded from a
B-spline boundary representation was blended with LME functions.

1.5 APPLICATIONS
The LME approximants and their extensions have been adopted as trial and test
functions in Galerkin methods to solve various PDEs, including linear and nonlinear
elasticity [31, 4, 32, 33], incompressible solids [27], and fluid flow problems [19, 26,
29]. In these problems, which often exhibit smooth solutions, LME approximations
provide highly accurate numerical approximations with relatively coarse sets of
points, as compared to standard C0 finite elements. Furthermore, the meshfree
basis functions can accommodate very large grid distortions in Lagrangian large
deformation simulations [19, 29]. However, some applications truly benefit from the
smoothness of the LME approximants for general unstructured sets of points. We
outline next two example: the numerical approximation of high-order PDEs and
the approximation of manifolds defined by scattered sets of points.



Maximum-entropy meshfree coordinates in computational mechanics ⌅ 13

(a)

(b)

Figure 1.5 Application of the LME approximants to high-order PDEs. (a) In
phase-field models of biomembranes, the unknown field defining the shape of
a moving interface is governed by a fourth-order PDE. Therefore, a Galerkin
method requires smooth basis functions (with square integrable second deriva-
tives). The phase field develops sharp gradients, calling for an adaptive solu-
tion and an approximations scheme devoid of Gibbs phenomenon. All these
conditions are met by LME approximations. (b) shows two snapshots in a
dynamical simulation tracking the shape of a deforming vesicle made out of
a fluid membrane with curvature elasticity, together with the hydrodynamics
of the surrounding fluid. The resolution of the set of vertices follows the sharp
variations of the phase-field.
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1.5.1 High-order partial differential equations

Many physical phenomena of interest in science and engineering are modeled using
higher-order PDEs. For instance, the Kirchho�-Love equations of thin shells are
fourth-order PDEs. Similarly, many problems involving evolving discontinuities can
be modeled using phase-field models, where the discontinuity is smeared out and
tracked by a field governed by a PDE. In many cases, such a PDE is of fourth
order, including models for crack propagation [7], for crystal growth [38], or for
the mechanics of fluid membranes [10]. The numerical treatment of such problems
with C0 finite elements is cumbersome and involves interpolating independently
the field and its gradient [11]. In contrast, a Galerkin approach is straightforward if
smooth basis functions are used. LME are not only smooth, but also easily amenable
to adaptive methods and have monotonicity properties that help them accurately
describe the sharp variations characteristic of phase-field solutions. See Figure 1.5
for an illustration of LME approximants applied to a phase-field model of vesicle
dynamics [34, 29]. LME approximants have also been applied to phase-field models
of fracture [20], and to other high-order PDEs such as those arising in the mechanics
of thin shells [24] or in the coupled electromechanics of flexoelectric materials [2, 1].

1.5.2 Manifold approximation

Finally, LME approximations have been used to smoothly parametrize manifolds
sampled by clouds of points in an automated way and without the need for a mesh,
using an atlas of partially overlapping charts [24]. See [22] for recent work along
these lines, with a review of similar approaches in computer graphics. Figure 1.6(a)
illustrates the procedure, in which the point-set d-dimensional manifold is systemat-
ically partitioned until each partition is homeomorphic to an open set in Rd. Then,
each partition is embedded in Rd using nonlinear dimensionality reduction methods,
and this embedding is used as a parametric domain for a local parametrization of
the partition. Parametrizations of adjacent partitions are “glued” with partition-of-
unity functions. This natural but powerful procedure has been used to model thin
shells of complex geometry Figure 1.6(b), to parametrize the gait of microscopic
swimming cells [3], or to define collective variables for molecular systems based on
parametrizing the so-called intrinsic manifold underlying molecular flexibility [14],
see Figure 1.6(b).

1.6 OUTLOOK
In summary, the principle of maximum entropy is a conceptually appealing and
computationally practical approach to define generalized barycentric coordinates
for clouds of points. The resulting barycentric coordinates can be viewed as meshfree
basis functions and used in computational mechanics, exploiting their smoothness
and the ease to implement adaptive strategies. The fact that these basis functions
are barycentric coordinates makes it easier to impose boundary conditions, but
also provides a natural framework to coupled maximum entropy basis functions
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Nonlinear dimensionality 
reduction of each partition

2D embedding of partition (*), where 
smooth parametrization using LME 
approximants is defined.(a)

(b)

Partitioned point-set surface

(*)

(c)

Figure 1.6 Approximation of manifolds using an atlas of smooth LME
parametrizations. (a) Methodology to define local parametrizations mapping
partitions of a surface defined by a set of points. (b) Application of this
method to solve the high-order PDE for a nonlinear Kirchho�-Love shell.
(c) Application of the method to describe the molecular conformations of
alanine dipeptide, a small molecule. An ensemble of conformations of this
molecule samples an underlying configurational manifold homeomorphic to a
torus. With the method presented in (a), this manifold is partitioned into four
pieces, each of which is parametrized with LME approximants. This method
allows us to define smooth collective variables for this system, required to
enhance sampling in molecular dynamics simulations.
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with multivariate spline techniques. We have demonstrated this by blending max-
imum entropy approximations to B-spline boundary representations, but another
attractive idea is using such blending to resolve the issues associated with irregu-
lar vertices in spline patches [22]. Open issues include the systematic formulation
of feasible higher-order consistency conditions in multiple dimensions (see the dis-
cussion following (1.11)), and the accurate and e�cient numerical quadrature of
the integrals appearing in Galerkin methods, which involve products of derivatives
of the non-polynomial LME basis functions. Finally, the applicability of the LME
approach in any space dimension has not yet been exploited in applications.
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