
FINITE-ELEMENT ANALYSIS OF

FLEXIBLE MECHANISMS USING THE

MASTER-SLAVE APPROACH WITH

EMPHASIS ON THE MODELLING OF JOINTS

José Javier MUÑOZ ROMERO

Department of Aeronautics

Imperial College London

Thesis submitted for the degree of

Doctor of Philosophy

of the University of London

2004

1

To Marga

2

Abstract

The present work provides the necessary tools for the dynamic modelling of flexible

mechanisms using the master-slave approach. The numerical modelling of this kind of

structures within the finite-element context encounters three main difficulties: the mod-

elling of beams, the time-integration of the equilibrium equations and the treatment of

the joint constraints.

Due to the presence of large displacements and rotations, the geometrically exact beam

theory (also known as the Reissner-Simo beam theory) has been chosen for its suitable

description of the kinematics and the demonstrated accuracy it gives. The finite-element

interpolation of large rotations is not unique and it strongly influences the strain-invariant

properties of the underlying model and the conserving characteristics of the resulting

time-integration schemes. These schemes are affected by the character of the differential

equations, which in turn depend on the modelling of the kinematic joints. In the present

thesis, they are modelled by resorting to the master-slave approach, a technique that

retains the minimum set of degrees of freedom within the equations of motion and has

the additional and important advantage of not including any constraint equations. In

doing that, we avoid the common use of algebraic-differential equations which in general

require more involved time-integration schemes.

We include a novel extension of the master-salve approach to more general contact

problems. With this new approach we are able to model sliding joints on flexible beams

while preserving some of the conserving properties of the underlying time-integration

algorithms. This method is also adapted for the modelling of joints with dependent

degrees of freedom like the cam joint, the screw joint, the rack-and pinion joint or the

worm joint.

3

Acknowledgements

I take this opportunity to express my sincere gratitude to Gordan Jelenić for his gen-

erous effort and useful advice. He committed himself with great dedication on the super-

vision of my PhD after Mike Crisfield sadly left us in February 2002. Also the assistance

and cooperation of Ugo Galvanetto have been a great help during this three years of

research.

This work has been financed by the Engineering and Physical Sciences Research Coun-

cil, whose support is gratefully acknowledged. Also, I express my gratitude to LUSAS

FEA for supplying the source code that has enabled me to carry out this thesis.

I am deeply indebted also to Ed Graham for his great effort in reading and his pre-

cious linguistic guidance in this thesis (and other works). Also, many thanks to Burkhard

Bornemann, who introduced me to the insights of LATEX2ε and many other useful (com-

puter and not computer related) tricks. Also, without naming them all, I am indebted

to the people at the department of Aeronautics with whom I have shared my life at

Imperial College. In particular, Mauricio Donadon, Yasin Kassim, Marco Cerini, Mike

Koundouros, Giordano Bellucci, Davide Tumino and many others that contributed to the

friendly atmosphere.

Finally, I am very grateful unto Marga for her incommensurable patience, and to my

family for their support and encouragement along this fruitful time.

4

Contents

1 Introduction 19

1.1 Motivation . 19

1.2 Scope of the thesis . 19

1.2.1 Beam models . 20

1.2.2 Time-integration . 20

1.2.3 Modelling of joints . 21

1.3 Outline . 24

I Finite element modelling of geometrically exact beams 26

2 Large 3D rotations 27

2.1 Rodrigues formula of the rotation matrix 27

2.2 Vector-like parametrisation of rotations 30

2.2.1 Tangent-scaled rotation vector . 31

2.2.2 Conformal rotation vector . 33

2.3 Infinitesimal variations of rotations . 34

2.3.1 Non-commutativity of 3D rotations 34

2.3.2 Multiplicative and additive rotations 35

2.3.3 Infinitesimal variations of tangent-scaled rotations 37

2.3.4 Moving and fixed bases . 38

2.3.5 Infinitesimal variations of a rotation dependent on one parameter . 40

2.3.6 Variation of vectors attached to the moving frame gi 41

2.3.7 Derivation of dw and dW . 41

5

3 Geometrically exact beam formulation 43

3.1 Beam kinematics . 44

3.2 Equilibrium equations . 46

3.3 Strain definition . 48

3.4 Constitutive law . 51

3.5 Weak form of the equilibrium equations 52

3.5.1 Multiplicative virtual rotations . 52

3.5.2 Additive virtual rotations . 56

3.6 Conservation properties of the beam equations 57

3.6.1 Conservation of energy . 57

3.6.2 Conservation of momenta . 59

3.7 First discretisation of equations . 60

4 Non-conserving time-integration algorithms 62

4.1 Newmark algorithm . 62

4.1.1 Translational degrees of freedom 62

4.1.2 Rotational degrees of freedom . 63

4.2 HHT algorithm . 66

4.2.1 HHT1: Linear interpolation of additive force vectors 67

4.2.2 HHT2: Linear interpolation of spin force vectors 67

4.2.3 HHT3: Linear interpolation of kinematics 68

4.3 Time-discretisation of residuals . 69

4.4 Final remarks about the non-conserving algorithms 69

5 Spatial interpolation 71

5.1 Preliminary issues . 71

5.1.1 Solution procedure of the non-linear equations 71

5.1.2 Interpolation of displacements . 72

5.2 Interpolation of global rotations . 73

5.2.1 Total, incremental and iterative rotations 73

6

5.2.2 Total, incremental and iterative updates 75

5.3 Interpolation of local rotations . 80

5.3.1 Generalised shape functions . 80

5.3.2 Update of rotations and curvature 83

6 Conserving time-integration schemes 85

6.1 Preliminary considerations . 86

6.1.1 Increment of energy over a time-step 87

6.2 Interpolation of tangent-scaled rotations and non-linear angular velocity

update: STD algorithm. [STD95] . 89

6.3 Interpolation of unscaled rotations and linear angular velocity update . . 91

6.3.1 Momentum-conserving algorithms 93

6.3.2 Strain-invariant energy-momentum algorithms 95

II Modelling of joints 98

7 Node-to-node master-slave approach 99

7.1 Kinematic description of the joint . 100

7.2 Variational form . 102

7.2.1 Master-slave relationship . 102

7.2.2 Equilibrium equations . 103

7.3 Incremental form . 105

7.3.1 Master-slave relationship . 105

7.3.2 Equilibrium equations of conserving schemes 107

7.4 Computational aspects . 110

8 Node-to-element master-slave approach: sliding joints 113

8.1 Kinematic assumption of the sliding contact 114

8.2 Beam equilibrium equations . 116

8.3 Master-slave relationship . 117

8.3.1 Infinitesimal kinematic contact conditions 117

7

8.3.2 Finite element discretisation and coupling element definition . . . 120

8.4 Computational issues . 124

8.4.1 Newton-Raphson solution procedure and update 124

8.4.2 Contact element transition . 125

9 Momentum-cons. and strain-inv. time-int. algorithms within the NE

app. 128

9.1 Momentum conserving time-integration schemes 129

9.2 Incremental form of the sliding contact conditions 130

9.2.1 Translations with no contact transition (NT) 132

9.2.2 Translations with contact transition (T) 134

9.2.3 Rotations . 136

9.2.4 Master-slave relationship . 139

9.3 SM1 algorithms . 140

9.3.1 No contact transition: SM1-NT algorithms 141

9.3.2 Contact transition: SM1-T algorithms 142

9.4 SM2 algorithms . 143

9.4.1 No contact transition: SM2-NT algorithm 144

9.4.2 Contact transition: SM2-T algorithms 145

9.5 Summary of conserving time-integration schemes 146

9.5.1 Master-slave transformation matrix and linearisation of residuals . 146

9.5.2 Conserving properties and time-integration strategy 147

9.5.3 Comments on the energy conservation and update of slave displace-

ments . 148

10 Energy-momentum conserving algorithms with the NE approach 152

10.1 Incremental master-slave relationship . 152

10.1.1 Translations . 152

10.1.2 Rotations . 154

10.2 Master-slave transformation matrix . 157

10.3 Conservation of momenta . 158

8

10.4 Contact transition . 160

10.5 Conservation of energy and final observations 161

11 Joints with dependent released degrees of freedom 163

11.1 Preliminary definitions . 164

11.2 Variational form . 166

11.2.1 General form of the modified residual vector 166

11.2.2 Joints with linearly dependent degrees of freedom 168

11.2.3 Cam joint . 169

11.3 Incremental form . 170

11.3.1 Modified residuals . 170

11.3.2 Joints with linearly dependent degrees of freedom 171

11.3.3 Cam joint . 172

12 Numerical examples 174

12.1 Free rotating beam attached to a screw joint 174

12.2 Free sliding mass . 183

12.3 Aerial runway, Sugiyama et al. [SES03] 191

12.4 Flexible cylindrical manipulator,

Krishnamurthy [Kri89] . 197

12.5 Driven screw joint, Bauchau and Bottasso [BB01] 208

13 Conclusions 214

13.1 Achievements of the thesis . 214

13.2 Further work . 217

A Derivation of matrices T, S and some of their differentiations 219

A.1 Unscaled rotations . 219

A.1.1 Transformation matrix T . 219

A.1.2 Matrices dT and T′ . 222

A.1.3 Matrix dT′ . 225

A.2 Tangent-scaled rotations . 226

9

A.2.1 Transformation matrix S . 227

A.2.2 Matrix dS . 228

A.2.3 Matrix dS−1 . 229

B Quaternions 230

B.1 Definitions . 230

B.2 Euler parameters and quaternions . 231

C Derivation of beam equilibrium equations 233

C.1 Cauchy’s equation of motion . 233

C.2 Introducing the beam kinematics . 235

D Brief overview of numerical time-integration 238

D.1 The initial value problem . 238

D.2 General classification of numerical methods 240

D.3 Properties of the time-integration algorithms 240

D.3.1 Convergence . 240

D.3.2 Accuracy . 241

D.3.3 Stability . 242

D.3.4 Stiff problems . 243

D.3.5 Conserving properties . 243

E Update of incremental and iterative curvatures 244

E.1 Unscaled rotations . 244

E.2 Tangent-scaled rotations . 246

F Linearisation of beam residuals 248

F.1 Non-conserving schemes . 248

F.1.1 Residual gn+1 and interpolation of spin iterative rotations 249

F.1.2 Residual ga,n+1 and interpolation of additive iterative rotations . . 254

F.1.3 Residuals gn+1 and ga,n+1 with interpolation of local rotations . . 258

F.2 Conserving schemes . 260

10

F.2.1 β1-algorithm in Section 6.3.2 . 260

F.2.2 STD-algorithm . 264

F.2.3 Algorithm M1 . 267

F.2.4 Algorithm M2 . 268

G Linearisation of master-slave residuals 270

G.1 Node-to-node master-slave residuals . 270

G.1.1 Variational form . 270

G.1.2 Incremental form . 272

G.2 Node-to-element master-slave residuals . 275

G.2.1 Variational form . 275

G.2.2 Incremental form . 278

G.3 Joints with dependent degrees of freedom 286

G.3.1 Variational form . 287

G.3.2 Incremental form . 289

H Demonstration of the conservation properties 295

H.1 Conservation of momenta of the STD algorithm. (Section 6.2) 295

H.2 Increment of angular momentum by using residuals gi
∆ in (6.14) 296

H.3 Conservation properties of algorithm M2

(Section 6.3.1) . 297

H.3.1 Conservation of momenta . 298

H.3.2 Energy increment . 299

H.4 Conservation of momenta for algorithms β1 and β2.

(Section 6.3.2) . 299

H.5 Sliding joints: conservation of angular momenta of SM1 and SM2 algorithms301

H.5.1 Conservation of momenta of SM1 algorithms 302

H.5.2 Conservation of momenta of SM2 algorithms 308

11

List of Figures

2.1 Rotation of a vector through a fixed axis θ. 28

2.2 Schematic of two vector-like parametrisations of 3D rotations (rotation and

tangent-scaled rotation vectors), and their corresponding mappings. . . . 31

2.3 Graphical representation of the non-linear space SO(3) and infinitesimal

rotations. 37

2.4 Moving basis gi and fixed basis ei. 39

3.1 Kinematics of a 3D beam. 45

3.2 Strain measures in the reference configuration. 51

5.1 Schematic of the total, incremental and iterative rotation vectors. 74

7.1 Prismatic joint (a), cylindrical joint (b), revolute joint (c), spherical joint

(d), cardan or universal joint (e) and notation used (f). 101

7.2 Scheme of the master and slave nodes, and the residual gi acting on the

slave node. 105

8.1 Configurations obtained with the (a) node-to-node and the (b) node-to-

element master-slave approach. 114

8.2 Kinematics of beams BA and BB in contact. 115

8.3 Initial, current and perturbed configuration of beams BA and BB. 118

8.4 Schematic of the master and slave nodes, and residuals acting on the model.123

8.5 Coupling element definition and schematic of the contact element transition.126

8.6 Contact element update dealing with contact transition. 127

12

9.1 Simplified mesh for problems without element transition. 131

9.2 Simplified mesh for problems with element transition. 131

9.3 Location of the contact points without and with contact transition. 132

9.4 Translational increments over one time-step within one element. 133

9.5 Translational increments over one time-step in the case where element tran-

sition occurs. 135

9.6 Sliding contact point for the SM1-NTa and SM1-NTb algorithms. 142

9.7 Diagram of the sliding contact point for the SM1-Ta and SM1-Tb algorithms.144

9.8 Diagram of the sliding contact points for the SM2-NT and SM2-Ta algo-

rithms. 145

10.1 Rotational increments over a single time-step within one element. 155

10.2 Example of a situation in which the angular momentum and the kinematic

sliding conditions cannot be satisfied simultaneously. 160

11.1 Examples of complex joints with dependent released degrees of freedom:

a) rigid segment, b) screw joint, c) rack-and-pinion joint and d) cam joint. 165

11.2 Scheme of the screw joint and rack-and-pinion joint. 168

11.3 Scheme of the cam joint. 169

12.1 Description of the free rotating beam attached to a screw joint. 175

12.2 Motion of the free rotating arm using the NN model with algorithm β1 (a)

and the NE model with algorithm ALG1 (b), ∆t = 0.02. 175

12.3 Released displacement of the free rotating beam. 176

12.4 Component Y of the slave displacements using β1 algorithm (NN approach)

and ALG1 (NE approach) for the free rotating beam. 176

12.5 Component Y of the slave displacements for the NN approach, ∆t = 0.02. 178

12.6 Evolution of the total energy in the NN approach. 178

12.7 Component Y of the slave displacements for the NN approach and with

∆t = 0.05. Algorithms β1 and M1 follow the same line until t = 3.80,

where the former fails to converge. 179

13

12.8 Component y of the slave displacements for the NE approach, ∆t = 0.02. 179

12.9 Component y of the slave displacements for the NE approach, ∆t = 0.05. 180

12.10Time-step size for the NE approach in the free rotating beam problem. . . 180

12.11 Evolution of the total energy in the NE approach, ∆t = 0.02. 180

12.12 Evolution of the total energy in the NE approach, ∆t = 0.05. 181

12.13 Released displacement for algorithms ALG1, ALG2, ALG3 and ALG4. . 181

12.14 Evolution of the displacement residual norm for some iterations during

the Newton-Raphson solution process. NN approach. 182

12.15 Evolution of the displacement residual norm for some iterations during

the Newton-Raphson solution process. NE approach. 182

12.16 Free sliding mass example. 183

12.17 Motion simulation for the free sliding mass problem using algorithm ALG2

and ∆t = 0.004. 184

12.18 Time-steps used in the free sliding mass problem. 184

12.19 Evolution of the total energy for the free sliding mass problem. 185

12.20 Three components of the angular momentum for the trapezoidal rule, and

ALG1-ALG4 algorithms with ∆t = 0.002. 186

12.21 Three components of the angular momentum for the algorithms ALG1-

ALG4, ∆t = 0.002. 187

12.22 Three components of the angular momentum for the algorithms ALG1-

ALG4, ∆t = 0.004. 188

12.23 Released displacements for the free sliding mass problem, ∆t = 0.002. . . 189

12.24 Released displacements for the free sliding mass problem, ∆t = 0.004. . . 189

12.25 Evolution of the released displacement from time t = 0.2 for the conserving

algorithms ALG1, ALG2 and ALG3 in the free sliding problem with ∆t =

0.002. 190

12.26 Evolution of the released displacement from time t = 0.2 for the conserving

algorithms ALG1, ALG2 and ALG3 in the free sliding problem with ∆t =

0.004. 190

12.27 Geometry of the aerial runway problem. 191

12.28 Mass trajectory in the XZ and YZ planes for the model given in [SES03]. 191

14

12.29 General view of the mass trajectory when using mesh H2 and algorithm

ALG2 with ∆t = 0.0005. 192

12.30 Mass trajectory in the XZ and YZ planes for the present formulation using

mesh H1 and ∆t = 0.001. 192

12.31 Mass trajectory in the XZ and YZ planes for the present formulation using

mesh H2 and ∆t = 0.0005. 192

12.32 Evolution of the released dof for the present formulation with meshes H1

(a) and H2 (b). 193

12.33 Time-step size for the aerial runway problem. 194

12.34 Total energy for the aerial runway problem with mesh H1, ∆t = 0.001. . 195

12.35 Total energy for the aerial runway problem with mesh H2, ∆t = 0.0005. . 196

12.36 Scheme and finite-element models of the flexible cylindrical manipulator. 197

12.37 Tip displacements of the manipulator given by Krishnamurthy [Kri89]. . 198

12.38 Time history of the input loads Fr, Fz and moment Mz. 200

12.39 Time history of the displacements r, z and rotation θ for mesh H1. . . . 201

12.40 Time history of the displacements r, z and rotation θ for mesh H2. . . . 201

12.41 Tip displacements of the flexible cylindrical manipulator using mesh H1

and the trapezoidal rule. 203

12.42 Tip displacements of the flexible cylindrical manipulator using mesh H1

and ALG1. 203

12.43 Tip displacements of the flexible cylindrical manipulator using mesh H1

and ALG2. 204

12.44 Tip displacements of the flexible cylindrical manipulator using mesh H1

and ALG3. 204

12.45 Tip displacements of the flexible cylindrical manipulator using mesh H1

and ALG4. 205

12.46 Tip displacements of the flexible cylindrical manipulator using mesh H2

and the trapezoidal rule. 205

12.47 Tip displacements of the flexible cylindrical manipulator using mesh H2

and ALG1. 206

12.48 Tip displacements of the flexible cylindrical manipulator using mesh H2

and ALG2. 206

15

12.49 Tip displacements of the flexible cylindrical manipulator using mesh H2

and ALG3. 207

12.50 Tip displacements of the flexible cylindrical manipulator using mesh H2

and ALG4. 207

12.51 Geometry and applied released displacement of the driven screw joint

problem. 209

12.52 Out-of-plane displacement uz of the tip of the beam for the driven screw. 210

12.53 Out-of-plane displacement uz of the tip of the beam for the β1 (NN ap-

proach) and ALG3 (NE approach) algorithms. 210

12.54 Out-of-plane displacement uz of the tip of the beam for the NN approach. 211

12.55 Out-of-plane displacement uz of the tip of the beam for the NE approach. 211

12.56 Rotation θx of the tip of the beam for the driven screw joint problem in

[BB01]. 212

12.57 Rotation θx of the tip of the beam for algorithm β1 (NN approach) and

algorithm ALG1 (NE approach). 212

12.58 Rotation θx of the tip of the beam for the NN approach. 213

12.59 Rotation θx of the tip of the beam for the NE approach. 213

16

List of Tables

4.1 Translational and rotational variables for the dynamic case. 64

5.1 Schematic of the additive and spin update procedure for rotations. 76

5.2 Additive and spin update procedure with total, incremental and iterative

interpolated rotations. 76

5.3 Path-dependence with respect to the curvature and rotations in the total,

incremental and iterative formulations. 79

5.4 Nodal update and interpolation procedures using local rotations. 84

7.1 Released degrees of freedom for several kind of joints. 101

8.1 Update of slave node kinematics (rNA
,ΛNA

). 125

9.1 Values of Ij
X , ∆rX and γ in matrices N∆ and R∆. 140

9.2 Position vectors, update process and linearisation of rNA
in the SM1-NTa

and SM1-NTb algorithms. 143

9.3 Values of γ, Ij
X and ∆rX in matrix N∆ for each algorithm. 146

9.4 Summary of conservation and kinematic properties of algorithms SM1 and

SM2. 147

9.5 Algorithms used in the four suggested time-integration strategies. 148

9.6 Computation of the slave node position vector and update for translations

from the algorithms in Table 9.5. 150

9.7 Computation of the rotation of the slave node and strain-invariant rota-

tional update. 151

10.1 Summary of conserving and kinematic properties of the SEM algorithms. 161

17

11.1 Values of a(θR) and b, and their physical meaning for the joints in Figure

11.1. 165

11.2 Matrices Hδ and H∆ for joints with linearly dependent released displace-

ments and the cam joint. 173

12.1 Values of the applied loads in the problem of the manipulator. 199

12.2 Geometrical and material properties of the driven screw joint problem. . 208

G.1 Expressions of Ij
X and ∆rX in matrix N∆ for algorithms contained in

ALG1, ALG2, ALG3 and ALG4. 278

G.2 Values of Hδ and H∆ for joints with linearly dependent released displace-

ments and the cam joint. 286

G.3 Matrices KHδ and KH∆ for joints with linearly dependent released dis-

placements. 293

G.4 Matrices KHδ and KH∆ for the cam joint. 294

18

1. Introduction

1.1 Motivation

The study of flexible mechanisms has attracted a remarkable attention in recent years.

Some industrial applications that employ this kind of structures are telescopic booms,

deployable structures, spatial appendages, railway pantographs, light manipulators or

suspension systems, among others. The analysis of the deformations of the resulting

structural model requires accurate techniques in order to capture the flexibility of the

system.

A considerable amount of research has been dedicated to the numerical modelling of

flexible multibody systems. However, most of the models currently implement the kine-

matic constraints via Lagrange multipliers and penalty methods, and therefore deal with

the coupled system of differential and algebraic equations. The present work demonstrates

that the same systems can be alternatively modelled with the master-slave approach,

which avoids the use of algebraic equations and their associated complexities. We have

used the method for the modelling of beams with joints, and in particular, for modelling

sliding contact conditions. This work attempts to pave the way towards the modelling of

more general contact situations without the use constraint equations.

1.2 Scope of the thesis

Three basic ingredients must be addressed when modelling flexible mechanisms: the

modelling of beams (these are the elements most commonly used in the above-mentioned

applications), the time-integration of the equations of motion, and the modelling of joints.

Although these issues are not completely independent, we will describe them separately

in the following subsections.

19

1.2.1 Beam models

It is desirable to have in hand a beam formulation capable of undergoing large dis-

placements and one that facilitates the modelling of joints.

One common practice is to describe the dynamics of a flexible beam via a rigid body

motion with a floating frame attached to the beam, and superimpose a linear deformation

referred to this floating frame [Sha98, GdB94]. Although this technique is acceptable for

small deformations, it yields inaccurate results when the bending deformation becomes

significant. We will instead base our beam formulation on the geometrically exact beam

theory (or Reissner-Simo beam theory), which allows to measure the strains and stresses

in any deformed configuration of the beam [Rei81, Sim85] and to refer them directly to

an inertial coordinate system. The resulting formulation is especially suited for problems

with large displacements [SVQ88, CG88, IFK95, BDT95]; furthermore, since the kine-

matic description of the beam within this theory provides for each point of the deformed

centroid line an orthogonal unique triad, this theory becomes very appropriate for defining

kinematic joint conditions at any point of the beam [JC96, BB01].

One of the major complexities of the finite-element implementation of the geometrically

exact beam theory is the temporal and spatial discretisation of the rotational field. It

has been proven that original implementations in statics [SVQ86] and dynamics [SVQ88,

CG88] suffer from being non-objective and path-dependent [JC99a]. Some alternative

interpolations of rotations have been proposed in order to avoid these pitfalls, such as the

the interpolation of the director vectors of the cross-section [BS02b, RA02]. Although

this technique solves the problems of invariance and retains the conserving properties of

certain time-integration schemes, it leads to a non-orthogonal triad at the integration

point and to potential singularities in the interpolation. We note that a similar approach

was introduced in [AdJ91], although no invariance issues were addressed. The present

work will alternatively use a consistent interpolation of local rotations (i.e. rotations

referred to an elemental triad [JC99a]), which despite affecting the properties of the time-

integration, leads to an invariant and path-independent formulation with a well defined

orthogonal triad at the interpolated points of the centroid line. Effectively, the same

interpolation for the rotational field was proposed independently in [BB94a, BB94b].

1.2.2 Time-integration

Two main concerns arise when integrating in time the equations of motion of multibody

systems: the design of stable and accurate algorithms for the underlying beam elements,

and also the extension of these properties to problems with kinematic constraints. The

20

latter is closely linked to the technique employed when modelling the joints and will be

discussed in the next section. The design of time-integration algorithms for unconstrained

beams is explored in the first part of the thesis.

We will distinguish between conserving (or conservation based) and non-conserving

algorithms. The former are specially designed to conserve the constants of motion such

as the total energy (for conservative problems) or the angular momentum (in the absence

of external loads) in the non-linear regime. Although the conservative and stability prop-

erties (if any) of the latter are only assured for linear systems, they require in general less

storage data than the conserving algorithms. We will restrain our study of non-conserving

algorithms to the Newmark [New59] and the HHT [HHT77, CH93] algorithms, which will

be adapted to the case of large 3D rotations.

With regard to the conservative algorithms, we will resort to the energy-momentum

method, originally developed by [STD95] in the context of geometrically exact beams.

We will use a strain-invariant version of this algorithm that interpolates local rotations

[CJ00]. This is in contrast with other methods where the conservation is enforced by

resorting to Lagrange multipliers [KR96], but whose stability depends on the behaviour

of the underlying (non-conserving) algorithm.

It has been claimed in recent works [BT96, KC99, AR01] that the strict conservation of

energy without effective numerical dissipation of high frequencies can lead to instabilities

when analysing problems with high frequencies. In some cases, these high frequency oscil-

lations arise when modelling the kinematic constraints with Lagrange multipliers [CG89].

In other cases, these oscillations are generated by the stiff nature of the physical problem

at hand. By adding numerical dissipation, the response may be smoothed and the stabil-

ity of the analysis improved. In most of the proposed formulations, the energy decaying

character of an algorithm is obtained from an initial conserving form. When deriving

time-integration algorithms for the modelling of joints, it is therefore useful to develop

primarily energy- and momentum-conserving algorithms for beams, and extend these al-

gorithms to the formulations of joints introduced in this thesis. From these algorithms,

introducing energy dissipation might be investigated with the techniques described in

[BT96, KC99, AR01]. Nonetheless, we will develop a momentum-conserving algorithm

with dissipative properties. This should be regarded as a byproduct, rather than an

objective, of the thesis.

1.2.3 Modelling of joints

We can divide the techniques used for the modelling of constraints in the following two

main groups:

21

1. The constraint equations are satisfied via the use of Lagrange multipliers and a

penalty function stemming from a potential associated with the violation of the

constraints.

2. The constraint equations are satisfied with the master-slave approach (also called

parent-child method or minimum set method). The displacements of a (slave) node

are related via the released displacements of a reference (master) node or reference

element.

The first technique is widely used in the context of rigid mechanisms and has been

extended to the modelling of flexible multibody systems (see [Nik88, CG89, LC97, Cri97,

AP98a, GC01, BBN01, BS02a, TR03, LCG04] for instance). Although this method allows

to model the constraints in a standard and general manner, it has the disadvantage of

using more degrees of freedom than the strictly necessary (a mild drawback for systems

with large number of degrees of freedom, though) and can lead to ill-posed system of

differential-algebraic equations (DAEs). It can be proven that for linear analysis, the

eigensolutions associated with the Lagrange multipliers have infinite frequencies [CG89],

which introduces instabilities in the response of the system (although the underlying

algorithm is unconditionally stable in linear unconstrained problems). Besides, the solu-

tion of DAE differs substantially from the well studied methods for ordinary differential

equations (ODE) [BCP89, HLR89, GdB94, AP98b, GC01]. The DAE are normally trans-

formed into an ODE by differentiating the constraint equations, which is solved using

some of the methods available for these equations [GdB94, GC01, AP98b], in some cases

specially adapted for the kind of the resulting ODE. However, the stability of these algo-

rithms in the non-linear regime cannot be ensured in general.

The master-slave approach has similarities with some early techniques [CV78, AS79]

where the system of equations with dependent and independent displacements was ma-

nipulated in order to obtain a reduced system with only independent degrees of freedom.

The main difference with respect to these methods is that we initially write the weak

form of the equations of motion for a system with no released displacements (the elements

are assembled in the conventional manner); in a second stage, we then add these released

degrees of freedom by extending the virtual work principle with the work associated to

the released displacements. This leads to a simpler and systematic way of embedding the

joint constraints.

Strong resemblances can be also found between the master-slave approach and the

constraint elimination or velocity transformations [Jer78, KV86] used in the context of

rigid multibody systems, or the embedding technique [Ros77, Sha98]. In these methods

the kinematic relationship between relative and slave (or, in their terminology, absolute)

22

velocities and accelerations is inserted in the equations of motion in order to write them

as a function of the master and released velocities and accelerations (independent vari-

ables only). In contrast, we will derive a kinematic relationship between only the virtual

displacements (or incremental displacements in the conserving algorithms), but our equi-

librium equations will contain the (dependent) slave displacements. This circumvents the

use of a master-slave relationship for the velocities and the accelerations.

We point out that in contrast to methods with Lagrange multipliers and penalty meth-

ods, the variational principle (or incremental form in conserving algorithms) in the master-

slave approach does not have to be augmented with the constraint equations. It is shown

in the thesis that extending the residual vector using the master-slave relationship is

equivalent to imposing a zero virtual work (or increment of energy) along the virtual

released displacements. It is also worth emphasising that by avoiding the use of algebraic

equations (and hence DAEs), we can construct algorithms that inherit the unconditional

stability (in the sense that they are energy- and momentum-conserving) in the non-linear

regime.

The development of master-slave formulations in a non-linear environment with flexible

bodies is quite recent and, although it is less popular than the use of Lagrange multipliers,

we will show that the approach is not only perfectly suited for the modelling of flexible

mechanisms, but that it can also simplify the resulting equations and be inserted in a

straightforward manner into existing time-integration schemes.

We will develop two approaches: the node-to-node (NN) and the node-to-element (NE)

master-slave relationship. The former is adequate for joints with only rotational released

degrees of freedom, and the latter to sliding joints, i.e. joints with released translations

along a set of aligned elements or slideline. This presents a series of difficulties, namely

the preservation of the bilateral contact when the contact point jumps to an adjacent

element.

The use of NN master-slave approaches to flexible multibody systems can be found

in [PP91] for linear elastic deformations. Further developments for large displacements

is given in [JC96, Mit97, IM00b], and their formulation within the energy-momentum

conserving time-integration schemes in beams is introduced in [JC01]. A similar method

is also presented for contact of flexible-rigid bodies in [Pus02], and for revolute joints in

rigid bodies in [NLT03].

The NE approach derived here for sliding contact conditions is inspired by the work in

[JC02a]. We will reformulate the master-slave relationship given there in order to deal with

the transition of the contact point along a slideline and extend the method to conserving

algorithms. We observe that the use of sliding joints with the master-slave approach has

23

been introduced recently in [MM03], although with no released rotations and with the

sliding condition derived for the contact of a spring on a planar beam. Contact conditions

of a beam sliding through a rigid orifice have been modelled in [VQL95] and references

therein, while more similar sliding conditions related to the NE approach resorting to

Lagrange multipliers and penalty methods in the context of conserving algorithms can be

found in [LC97, AP98a, Bau00, BB01].

1.3 Outline

The thesis is divided in two parts. Part I one deals exclusively with the modelling of

beams while Part II concentrates on the master-slave approach.

We describe in Chapter 2 the essential concepts concerning large 3D rotations, and

although this is not an exhaustive exposition of the topic, the chapter provides the neces-

sary tools that will be used thereafter. Most of the complexities of this thesis stem from

the presence of large rotations. Some of the formulae have been derived in Appendix A

in order to avoid disrupting the flow of the thesis, and in Appendix B a brief overview of

the quaternion algebra, also relevant for the implementation of rotations, is given.

The underlying beam theory, permanently used in the subsequent chapters, is ex-

pounded in Chapter 3. The beam equations are introduced and the spatially discretised

weak form is deduced. The derivation of the beam equations from the equilibrium equa-

tions of continua can be found in Appendix C.

Chapter 4 introduces a first family of time-integration algorithms specially designed

for the problems at hand. These correspond to the well-known Newmark [New59] and

HHT methods [HHT77, CH93] adapted for problems with 3D rotations. Although we will

also develop algorithms which are in general more robust and stable in Chapter 6, it is

interesting to show that the master-slave approach given in Part II of the thesis can be

embedded in both groups of algorithms. A brief summary of time-integration algorithms

and some relevant definitions can be found in Appendix D.

Chapter 5 focuses on the different choices when interpolating the rotational field, and

addresses the closely related issue of strain-invariance. Chapter 6 describes a set of time-

integration algorithms with conserving properties, and the link between the properties

of these conserving schemes and the choice of the rotational interpolated variables is

discussed.

Part II introduces the master-slave approach. The node-to-node (NN) approach is first

described in Chapter 7, where some known results are reviewed, and some new results

24

concerning energy-momentum and strain-invariant formulation in the presence of joints

are expounded.

Chapters 8, 9 and 10 refer to the novel node-to-element (NE) approach which allow the

modelling of sliding contact conditions. The first of these chapters describes this approach

in a variational formulation, so that it can be used in conjunction with the algorithms given

in Chapter 4. Chapters 9 and 10 formulate the node-to-element approach in the context

of conserving algorithms. The former derives a set of momentum conserving strategies

which are strain-invariant, and the latter introduces a non-invariant energy-momentum

conserving algorithm.

The adaptation of the NN and NE master-slave formulations for joints in which the

released displacements are mutually dependent is addressed in Chapter 11. This includes

many practical joints like the screw joint, the rack-and-pinion joint or the cam joint.

Some numerical examples are presented in Chapter 12. Only those algorithms that are

strain- and dynamic-invariant have been employed and tested in a set of problems, some

of them extracted from the literature.

Finally, a summary of the results and concluding remarks are included in Chapter 12,

together with some suggestions on possible further research.

The remaining appendices give some necessary formulae (Appendix E), the linearisa-

tion of some relevant beam residuals and extended residuals generated by the master-slave

approach (Appendices F and G), and the proof of the conservation properties for the rel-

evant algorithms (Appendix H).

25

Part I

Finite element modelling of

geometrically exact beams

26

2. Large 3D rotations

In the geometrically exact formulation of three-dimensional beams, special attention

must be dedicated to the rotational degrees of freedom. Indeed, most of the complexities

of the models in this thesis stem from the non-linear character of large 3D rotations. For

this reason, the relevant and necessary formulae will be derived in this chapter.

We will focus on the 3 × 3 matrix representation of rotations, which will be the one

used in subsequent chapters. The reader is referred to [Alt86, GPS02] for other possible

representations such as 2 × 2 Pauli matrices or quaternions. The latter are particularly

advantageous from a computational standpoint, and a short overview of them is given in

Appendix B.

Section 2.1 gives an insight into the 3×3 matrix representation of rotations. Section 2.2

introduces several common vector-like parametrisations, and Section 2.3 is dedicated to

the infinitesimal variations of rotations, where the non-commutativity of finite rotations

is also revealed.

2.1 Rodrigues formula of the rotation matrix

A 3D rotation is defined as a transformation represented by a matrix Λ that belongs

to the special three-dimensional orthogonal group SO(3):

SO(3) .= {Λ ∈ M3(R)
∣∣ detΛ = +1 ; Λ−1 = ΛT},

where M3(R) is the group of 3× 3 real matrices. With the help of Figure 2.1a, we will

deduce in this section an explicit expression for Λ.

We note first that the elements of the transformation group SO(3) rotate vectors in

the three-dimensional vectorial space E3 around a fixed axis, and therefore, any rotation

is fully defined by this axis and the angle θ of the rotation (see [BR79], among others, for

the proof). We will indicate the fixed axis with the unit vector e, and define the rotation

vector θ = θe (see Figure 2.1).

27

b)a)

O

A
θ

θ

e
C

B

v1
v2

u1 ≡ e u3

u2

N

C

BA

θ/2

Figure 2.1: Rotation of a vector through a fixed axis θ.

Let us denote by v1 ∈ E3 a vector which is rotated by Λ onto another vector v2 ∈ E3

as follows,

v2 = Λv1. (2.1)

Since +1 is one of the eigenvalues of Λ (in fact the eigenvalue associated with vectors

parallel to e), we can choose an orthonormal basis ui, i = 1, 2, 3 with u1 ≡ e. It follows

that

Λu1 = u1.

By noticing that I =
∑3

i=1 ui ⊗ ui, with I the unit 3× 3 matrix, the rotation Λ may

be rewritten as

Λ = ΛI = Λ
3∑

i=1

ui ⊗ ui.

On the other hand, Λ rotates the vectors orthogonal to u1 as in the two-dimensional

case,

Λu2 = cos θu2 + sin θu3

Λu3 = − sin θu2 + cos θu3,

28

and accordingly, Λ = Λ
∑3

i=1 ui ⊗ ui is expressible in the form

Λ = u1 ⊗ u1 + sin θ (u3 ⊗ u2 − u2 ⊗ u3) + cos θ (u2 ⊗ u2 + u3 ⊗ u3) . (2.2)

We will henceforth use a symbol of a hat superimposed onto a vector1 v = {v1 v2 v3}
to denote the following skew-symmetric matrix

v̂
.=




0 −v3 v2

v3 0 −v1

−v2 v1 0


 = −v̂T,

which is such that v̂a = v × a, with × the cross product operation in E3. Using this

notation, the following identities can be directly verified:

u⊗ v = v̂û + (u · v)I and ̂̂uv = ûv̂ − v̂û. (2.3)

By using the orthogonality of the vectors ui one has that û2u3 = u1, and therefore

u3 ⊗ u2 − u2 ⊗ u3 = ̂̂u2u3 = û1. From (2.3)1 it follows that u1 ⊗ u1 = û2
1 + I, and

replacing u1 with e, equation (2.2) reduces to the Rodrigues formula,

Λ = I + sin θê + (1− cos θ)ê2 = I +
sin θ

θ
θ̂ +

(1− cos θ)
θ2

θ̂
2
. (2.4)

Another important expression for Λ can be obtained by first noting that the Taylor

expansion of the trigonometric functions in (2.4) is given by

sin θ = θ − θ3

3!
+

θ5

5!
+ · · ·+ (−1)n θ2n+1

(2n + 1)!
· · ·

cos θ = 1− θ2

2!
+

θ4

4!
+ · · ·+ (−1)n θ2n

(2n)!
· · ·

(2.5)

It can be also verified that

θ̂
3

= −θ2θ̂ , θ̂
4

= −θ2θ̂
2
,

1Although in the equations, vectors will be considered as column arrays, vectors embedded in the text

are regarded as row arrays in order to avoid cluttering the text with the transpose sign T.

29

and in general (−1)nθ2nθ̂
i
= θ̂

i+2n
for n > 0; i = 1, 2 , which introduced in (2.4) and

making use of (2.5) leads to [Gib28, Arg82]

Λ(θ) = I + θ̂ +
1
2!

θ̂
2
+ · · · = exp(θ̂). (2.6)

The vector θ = θe = {θX θY θZ} determines the rotation and therefore provides a

possible three-dimensional parametrisation of the rotation matrix2 Λ. The parametrisa-

tion of Λ is relevant as it determines the way we compute the rotated vector v2, how we

extract the parameters of the rotation, and as it will be shown, other important formulae

concerning the infinitesimal rotations.

All the parametrisations which have the general form

pθ = p(θ)e (2.7)

are so-called vector-like parametrisations [BT03]. The case p(θ) = θ has been already

seen above which leads to the exponential form or the Rodrigues formula in (2.4). Other

three-dimensional parametrisations such as Euler angles or Bryant angles (very commonly

used in guidance) can be found in the literature [GC01]. However, some of the three

dimensional vector-like parametrisations are more suitable for the geometrically exact

beam theory, and in fact provide simple and singularity-free representations of rotations.

Their main properties will be given in the next section.

2.2 Vector-like parametrisation of rotations

Choosing p = θ leads to the so-called rotation vector pθ = θ already mentioned in the

previous section. Among other scalar functions p(θ), the most commonly used are the

following:

p(θ) = 2 tan(θ/2) Tangent− scaled rotation vector,

p(θ) = 4 tan(θ/4) Conformal rotation vector,

p(θ) = 2 sin(θ/2) Euler −Rodrigues rotation vector.

2However, it is only a 1-1 parametrisation for θ ∈ (−π, π], which may be represented by a sphere

of radius π, where diametrically opposite points represent identical rotations. It can be shown that the

minimum number of parameters needed to have a 1-1 representation of the elements of SO(3) and the

parametric space is five [Stu64].

30

E
3

E
3 Λ

SO(3)

cay(θ)θ

θ

exp(θ̂)

Figure 2.2: Schematic of two vector-like parametrisations of 3D rotations (rotation and

tangent-scaled rotation vectors), and their corresponding mappings.

The first parametrisation has remarkable properties and will be described in the next

section. The conformal rotation vector has very similar properties to the tangent-scaled

vector and will be briefly introduced for reasons of completeness. Indeed, both of them

can be regarded as particular cases of the same family of parametrisations [Tsi97]. The

third case is more often employed jointly with a fourth (dependent) parameter, which

together form the Euler parameters, closely related to the quaternions which are briefly

described in Appendix B. Figure 2.2 shows an scheme of the mappings of two vector-like

parametrisations, the rotation vector and the tangent-scaled rotation vector.

2.2.1 Tangent-scaled rotation vector

We will introduce the factor p = 2 tan(θ/2) in (2.7), which leads to the parametric

vector pθ = 2 tan(θ/2)e. We will call it the tangent-scaled vector 3 and we will denote

it by θ = 2 tan(θ/2)e. It is possible to transform the Rodrigues formula and write Λ

exclusively as a function of θ by recalling the identities

1− cos θ = 2 sin2(θ/2) = 2 tan2(θ/2) cos2(θ/2) =
1
2

cos2(θ/2)θ2,

sin θ = 2 tan(θ/2) cos2(θ/2) = cos2(θ/2)θ,

cos2 θ =
1

1 + tan2 θ
=

1
1 + 1

4θ2 ,

and inserting them into expression (2.4), which leads to Cayley formula,
3In the literature, it is also referred as the pseudo-rotation [Arg82, RC03], Cayley rotation vector

[BT03], or the related Rodrigues parameters [Rod40, GC01]. The latter correspond to the similar choice

p = tan(θ/2).

31

Λ(θ) = I + cos2(θ/2)
(

θê +
1
2
θ2ê2

)

= I +
1

1 + 1
4θ2

(
θ̂ +

1
2
θ̂

2
)

= cay(θ). (2.8)

The tangent-scaled vector allows an easy computation of compound 3D rotations.

Any two successive rotations θ1 and θ2 are equal to an equivalent rotation Λ(θ21) =

Λ(θ2)Λ(θ1) with a rotation vector θ21 = θ2 ◦ θ1, where ◦ denotes the composition op-

erator. The use of tangent-scaled vectors allows compound rotations to be given explic-

itly as a function of θ1 and θ2, without resorting to their respective rotation matrices

[Gib28, Arg82]:

θ21 =
1

1− 1
4θ1 · θ2

(
θ2 + θ1 +

1
2
θ̂2θ1

)
. (2.9)

Of course, by applying this formula recursively we can derive the expression for the

compound rotation of multiple successive rotations. For instance, the vector θ321 =

θ3 ◦ θ2 ◦ θ1 is given by

θ321 =
1

1− 1
4θ3 · θ21

(
θ3 + θ21 +

1
2
θ̂3θ21

)

=
1

1− 1
4(1− 1

4
θ2·θ1)

θ3 ·
(
θ1 + θ2 + 1

2 θ̂2θ1

)
(

1
1− 1

4θ2 · θ1

)

((
1− 1

4
θ2 · θ1

)
θ3 + θ2 + θ1 +

1
2

(
θ̂3θ1 + θ̂3θ2 + θ̂2θ1

)
+

1
4
θ̂3θ̂2θ1

)

=
1

1− 1
4 (θ2 · θ1 + θ3 · θ1 + θ3 · θ1)− 1

4θ3 · θ̂2θ1

(2.10)

(
θ3 + θ2 + θ1 +

1
2

(
θ̂3θ1 + θ̂3θ2 + θ̂2θ1

)
− 1

4
((θ3 · θ2)θ1 + (θ2 · θ1)θ3 − (θ3 · θ1)θ2)

)
.

It will also become useful to give an alternative expression for the Cayley formula. By

noting that θ̂
3

= −(θ · θ)θ̂, the transformation in (2.8) can be rewritten as

cay(θ) =
(
I +

1
2
θ̂

) (
I +

1/2
1 + 1

4θ2 θ̂ +
1/4

1 + 1
4θ2 θ̂

2

)
.

The last term can be simplified with the help of the following identity4:

4These results can be verified by multiplying the matrix αI+ βθ̂ by a generic matrix α1I+ β1θ̂ + γ1θ̂
2

and finding the values of α1, β1 and γ1 that equate the result to the identity matrix I. Similar identities

can be found in [CG88].

32

(
αI + βθ̂

)−1
= α1I + β1θ̂ + γ1θ̂

2

with

α1 =
1
α

β1 =
−β

α2 + β2θ2

γ1 =
−β2/α

α2 + β2θ2
,

which leads to the alternative Cayley formula

Λ(θ) =
(
I +

1
2
θ̂

)(
I− 1

2
θ̂

)−1

=
(
I− 1

2
θ̂

)−1 (
I +

1
2
θ̂

)
. (2.11)

The same result can be deduced graphically from Figure 2.1b. The vector
−−→
ON can be

obtained in the following two ways:

−−→
ON = v1 + tan(θ/2)êv1 =

(
I +

1
2
θ̂

)
v1

−−→
ON = v2 − tan(θ/2)êv2 =

(
I− 1

2
θ̂

)
v2.

By equalising both expressions, and recalling v2 = Λv1, equation (2.11) is recovered.

2.2.2 Conformal rotation vector

The conformal rotation vector is formed by the following choice [Mil82]:

pθ = c = 4 tan(θ/4)e.

The vector c strongly resembles the tangent-scaled vector. However, in this case, the

rotation matrix is expressible as the product of two equal rotations:

Λ = Λ2
θ/2

which can be written as a function of the conformal rotation vector c,

Λθ/2 = I +
1

2 + 1
8c · c

(
ĉ +

1
4
ĉ2

)
.

33

The presence of a ’mid-way’ rotation Λθ/2 expressed also via the parameter c has

proven to be advantageous in the time-integration of beams [BDT95]. In addition, it

has a singularity-free interval given by θ ∈ (2π,−2π), which is larger than the one for

tangent-scaled rotations: θ ∈ (−π, π). However, during the present work, on the occasions

when a scaled rotation is required, the tangent-scaled rotations will be preferred to the

conformal rotation vector because (i) the interval of validity of the tangent-scaled rotations

is largely acceptable, (ii) they provide an explicit formula for the compound rotations,

(iii) the rotation matrix is expressed in a simpler way, and (iv) they are particularly

advantageous for the time-integration of rotations in conserving algorithms, as will be

seen in Section 6.

2.3 Infinitesimal variations of rotations

2.3.1 Non-commutativity of 3D rotations

It can be verified that, in general, for any two orthogonal matrices Λ1 and Λ2, the

order of composition of rotations is significant, i.e.

Λ1Λ2 6= Λ2Λ1.

In fact, the commutativity of 3D rotations is only satisfied for isoaxial rotations (ro-

tations around the same axis, like 2D rotations), for rotations around perpendicular axes

or when only small rotations are considered5. This fact reveals that the elements of the

special orthogonal group SO(3) do not form a commutative group under the the opera-

tion of multiplication. In fact, they belong to the more general Lie group (and in fact,

all differentiable continuous coordinate transformations are Lie groups [Gug77, GPS02]).

Each Lie group has an associated Lie algebra, which in the case of SO(3) corresponds to

the algebra so(3) formed by the 3× 3 skew symmetric matrices:

so(3) .= {â ∈ M3(R3) | âT = −â},

complemented by the Lie product, [â, b̂] = âb̂ − b̂â. In the case of 3D rotations the

matrix â is given by θ̂ = θê. As is known in the Lie theory of groups [Gil74, Gug77,

GPS02], any Lie group is obtained by means of the exponential map of the elements of
5For small 3D rotations we might approximate Λ by neglecting the higher-order terms in (2.6), which

leads to Λap = I + θ̂. It can be checked that the first-order approximation of a compound rotation is

given by Λap,12 = I + θ̂1 + θ̂2 = Λap,21.

34

the Lie algebra. In the case of the Lie algebra so(3), the last statement reads

exp : θ̂ ∈ so(3) → Λ = exp(θ̂) ∈ SO(3). (2.12)

The exponential form of Λ can therefore be deduced through trigonometric arguments

as shown in Section 2.1, or as a consequence of the Lie theory of groups. The latter

provides also a way to deduce formula (2.12), since it states that any element A of a Lie

group dependent on one parameter p satisfies the following differential equation [Gil74]

d

dp
A(p) = âA(p) with A(0) = I. (2.13)

The solution of this equation is given by A = exp(pâ), which corresponds to equation

(2.12) with p = θ, â = ê and A = Λ. Indeed, it can be checked that using expression

Λ = I + sin θê + (1− cos θ)ê2, the differential equation in (2.13) is satisfied [GC01]:

ê =
(

d

dθ
Λ

)
ΛT.

2.3.2 Multiplicative and additive rotations

When attempting to obtain a perturbed rotation Λε of Λ = exp(θ̂), we might consider

the result of superimposing a rotation exp(εd̂ϑ) (which belongs to the group SO(3)), or

by performing the exponential map of the addition of elements of the Lie algebra so(3),

εd̂θ + θ̂:

Λε = exp(εd̂ϑ)Λ

Λε = exp(θ̂ + εd̂θ).
(2.14)

The two procedures lead to different expressions which can be obtained by resorting

to the directional derivative.

For any function f : Rm → Rn, the directional derivative of f along dp ∈ Rm at

p0 ∈ Rm is defined by (see for instance [BW97])

Df(p).[dp] .=
d

dε

∣∣∣∣
ε=0

f(p + εdp) ∈ Rn, (2.15)

which will henceforth be written df for short. Thus, the directional derivative dΛ

35

along dϑ can be deduced from (2.14)1 as follows

dΛ =
d

dε

∣∣∣∣
ε=0

exp
(
εd̂ϑ

)
Λ = d̂ϑΛ. (2.16)

The vector dϑ will be called the spin vector or multiplicative infinitesimal vector.

Considering the infinitesimal rotation vector d̂θ ∈ so(3) in (2.14)2, an alternative result

is obtained:

dΛ =
d

dε

∣∣∣∣
ε=0

exp(θ̂ + εd̂θ) = T̂dθΛ. (2.17)

The matrix T has been derived in Appendix A, and is given by the following formula:

T(θ) = I +
1− cos θ

θ
ê +

(
1− sin θ

θ

)
ê2. (2.18)

Since the vector dθ is the differential of the rotation vector θ, it can be added to it

in order to obtain the total new rotation vector θnew = θold + dθ, and therefore, it will

be called the additive infinitesimal vector. By comparing equations (2.16) and (2.17), it

follows that the two infinitesimal vectors are related via the formula

dϑ = Tdθ. (2.19)

The inverse of T is also computed in Appendix A, with the result

T(θ)−1 = I− θ

2
ê +

(
1− θ/2

tan(θ/2)

)
ê2. (2.20)

We point out that det(T) = 2−2 cos θ
θ2 , and therefore T becomes singular for θ = 2nπ,

with n ∈ N\0.

It is worth noting that for a translation r ∈ E3, dr is also a vector in E3, but in the case

of Λ ∈ SO(3) one has dΛ /∈ SO(3). The spin rotation d̂ϑ belongs to the tangent space

of SO(3) (which at the rotation Λ is denoted by TΛSO(3)), and in fact is an element

of the associated Lie algebra so(3). While the tangent space of E3 is the space E3 itself

(revealing the linearity of this vector space), the same cannot be said about SO(3). In

Figure 2.3 the different meaning of dϑ and dθ is shown graphically. The matrix T can be

regarded as an operator that transforms the spin vectors dϑ into infinitesimal changes of

the axial rotational vector θ ∈ E3. Because d̂ϑΛ /∈ SO(3), the infinitesimal changes dϑ

36

Λ2 = exp(θ̂2) = exp(θ̂1 + d̂θ)

TΛ1
SO(3)

θ1

SO(3)

Λ1 = exp(θ̂1)

θ2

TΛ2
SO(3)

d̂ϑ

Figure 2.3: Graphical representation of the non-linear space SO(3) and infinitesimal

rotations.

of the rotation matrix should be mapped back to the SO(3) group via the exponential

map in order to obtain the new rotation Λ2 (see Figure 2.3):

Λ2 = exp(d̂ϑ)Λ1.

It can be checked that the transformation matrix T satisfies the following properties:

T = ΛTTΛ = ΛTΛT (2.21a)

TT−T = T−TT = Λ (2.21b)

I + Tθ̂ = Λ. (2.21c)

From property (2.21a) it follows that T is unchanged when the coordinate system

is rotated by a rotation Λ. Indeed, in [IFK95] it is demonstrated that Λ and T have

the same eigenvectors, but with different eigenvalues (they are equal for θ → 0), which

justifies the fact that T and Λ commute.

Let us also give the following useful formula:

Â = ΛTâΛ ⇔ A = ΛTa. (2.22)

2.3.3 Infinitesimal variations of tangent-scaled rotations

It is demonstrated in Appendix A that tangent-scaled and unscaled spin rotations

are equivalent. Furthermore, it is shown in the same appendix that when rotations are

parametrised using tangent-scaled rotations, a matrix S(θ) equivalent to matrix T(θ) can

37

be deduced. The explicit expression for S(θ) is (see Section A.2.1)

S(θ) =
1

1 + 1
4θ2

(
I +

1
2
θ̂

)
, (2.23)

and is such that

dϑ = S(θ)dθ,

with dθ the additive tangent-scaled rotation. The inverse of S(θ) can be computed to

be

S(θ)−1 = I− 1
2
θ̂ +

1
4
θ ⊗ θ (2.24)

Using Λ = cay(θ) in (2.8), it can be verified that S satisfies similar relations to (2.21):

S = ΛTSΛ = ΛSΛT (2.25a)

SS−T = S−TS = Λ (2.25b)

I + Sθ̂ = Λ (2.25c)

Moreover, matrices S and T can be generalised for any vector-like parametrisation of

rotations, with a set of analogous properties to (2.21) or (2.25) [BT03].

2.3.4 Moving and fixed bases

An alternative expression for the rotation matrix will be presented in the following

paragraphs, which will be required in subsequent chapters. Introducing two triads (or

bases) defined by the orthogonal vectors ei and gi, i = 1, 2, 3, the rotation matrix is

defined as the transformation that rotates the base ei into gi, i.e.

gi = Λei, (2.26)

and therefore the rotation matrix Λ may be written as

Λ =
3∑

i=1

gi ⊗ ei. (2.27)

38

g1 ≡ e1

Λ e3

g3

e2

g2e1

g1

g2 ≡ e2

x

g2 ≡ e2

x

Figure 2.4: Moving basis gi and fixed basis ei.

Considering ei as the fixed Euclidean basis and gi as the moving basis (see Figure 2.4),

any vector x can be described in two alternative forms, one with components related to

the fixed basis (noted in lower case xi) and the other with components in the moving

basis (noted in upper case Xi). In order to find the relationship between both sets of

components xi and Xi, we note that xi = x · ei and Xi = x · gi, and therefore the vector

x can be expressed as

x =
3∑

j=1

xjej =
3∑

j=1

Xjgj .

Multiplying the last two identities by ei, and noting that ei · ej = δij , one obtains

xi =
3∑

j=1

(ei · gj) Xj .

Remarking that6 Λij = ei · gj , this equation gives rise to the relation between the

components of the vector x in the fixed and the moving bases,

x = ΛX, (2.28)

where x = {x1 x2 x3} and X = {X1 X2 X3}. Note that the vectors of the moving

basis gi and the components of the vectors in this basis are transformed in opposite ways

(see equations (2.26) and (2.28), respectively).

Denoting by dϕ the spin rotation with respect to the moving basis gi, we can relate it

to the spin variation dϑ using the same transformation rule:

dϑ = Λdϕ.

We can relate it to the variations of Λ and the rotation vector θ by making use of

equations (2.21b)2 and (2.22),
6Since the ei is the Euclidean basis, the component Λij can be obtained as eT

i Λej = eT
i (gk ⊗ ek)ej =

(eT
i gk)(eT

kej) = eT
i gj .

39

dΛ = d̂ϑΛ = Λd̂ϕ,

dϕ = ΛTTdθ = TTdθ.
(2.29)

Similarly, we can define the additive variations with respect to the moving basis as

dΘ = ΛTdθ.

By using relations (2.21b), the relation between the spin variations (dϑ and dϕ) and

the additive variation dΘ is given by

dϑ = Tdθ = TΛdΘ,

dϕ = TTdθ = TTΛdΘ = TdΘ.

Obviously, the rotation vector is identical in the fixed and moving bases, Θ = ΛTθ = θ.

2.3.5 Infinitesimal variations of a rotation dependent on one parameter

In the case that the rotation Λ depends on one parameter, say t, the relations between

the infinitesimal quantities described so far might be interpreted as the variations with

respect to the differential dt. By introducing the terms

Λ̇ =
dΛ
dt

, w =
dϑ

dt
,

θ̇ =
dθ

dt
, W =

dϕ

dt
,

(2.30)

the relations dΛ = d̂ϑΛ, dϑ = Tdθ and (2.29) are now written as

Λ̇ =ŵΛ , w = Tθ̇ , Λ̇ = ΛŴ and W = TTθ̇. (2.31)

These equations may be deduced by dividing equations (2.29) by dt while using defi-

nitions (2.30).

Note that t can be identified with the time variable or any other independent param-

eter. In fact, when introducing the beam kinematics in the next chapter, it will be seen

that rotations are dependent on time and also on a length coordinate s. Consequently,

40

equations (2.30), (2.31) and those that will be derived in the coming paragraphs are valid

for both variables, t and s, although here we have exclusively used the variable t.

We also point out that while the use of the directional derivative is required when

computing Λ̇, the vector θ̇ can be obtained via total differentiation or the directional

derivative as θ̇ = 1
dt

d
dε

∣∣∣
ε=0

(θ + εdθ).

2.3.6 Variation of vectors attached to the moving frame gi

The variation of any vector with constant components in the moving basis gi may be

obtained by using equations (2.31). Let us introduce the vector v(t) with components

v = {v1 v2 v3} and V = {V1 V2 V3} in the basis ei and gi respectively. From (2.28) it

follows that v = ΛV, and thus the variation of v with respect to t may then be written

as (remembering that the components V are constant, i.e. V̇ = 0)

v̇ = Λ̇V = ŵΛV = ŵv = ΛŴV.

We note that the same result could be written as dv = d̂ϑv = Λd̂ϕV.

2.3.7 Derivation of dw and dW

It will be useful to have at hand a relationship between dW, dw and dϑ. The derivation

of this relationship requires the application of the directional derivative twice, one implicit

in the time-differentiation according to (2.30) and another represented by d in dW or dw.

In order to distinguish them, we will denote the first one with the symbol δ, so that

equation (2.30) is rewritten as follows:

Λ̇ =
δΛ
δt

, w =
δϑ

δt
,

θ̇ =
δθ

δt
, W =

δϕ

δt
.

(2.32)

By noting that δ(dΛ) = d(δΛ), and developing further both sides of this identity, it

follows that

δ̂(dϑ)Λ + d̂ϑδ̂ϑΛ = d̂(δϑ)Λ + δ̂ϑd̂ϑΛ,

which implies

d(δϑ) = δ(dϑ)− δ̂ϑdϑ.

41

Dividing both sides by δt and using definitions (2.32) finally yields:

dw = ˙dϑ− ŵdϑ. (2.33)

It is important to note that w and dϑ are different vectors and have in general dif-

ferent directions. In fact, w is the variation of Λ when the parameter t changes by an

infinitesimal δt, whereas dϑ is an arbitrary direction along which Λ varies independently

of the parameter t.

By noting that dw = d(ΛW) = d̂ϑw+ΛdW, the directional derivative of W is given

by

dW = ΛT ˙dϑ. (2.34)

42

3. Geometrically exact beam

formulation

By considering certain kinematic assumptions which account for shear deformations

and large displacements, Reissner [Rei72] obtained an expression for the strain measures

in the planar [Rei72] and three-dimensional case [Rei73]. By resorting to the rotation

group SO(3), Simo [Sim85] concisely related the strain measures and the inertial terms

with a group of configuration variables that fully define the beam kinematics. Simo and

Vu-Quoc applied a convenient parametrisation of rotations that gave rise to a space- and

time-discretisation of the equilibrium equations [SVQ86, SVQ88]. This theory is known

in the literature as the geometrically exact beam theory or Reissner-Simo beam theory.

In the present chapter we expose the essentials of their work. We first describe in

Section 3.1 the kinematic constraints of the beam which will lead to equilibrium equations

in Section 3.2. These equations are derived from Cauchy’s law of motion in Appendix C.

In Section 3.3 the conjugate strain measures are obtained from the known definition of

the stress resultants in the cross-section of the beam.

The weak form of the beam equations is obtained by using a simple linear elastic

constitutive law and, as it is customary, by resorting to a vector of test functions. However,

due to the presence of multiplicative and additive variations of rotations, two equivalent

weak forms can be deduced. These are derived in Section 3.5, and indeed, they are the

starting point for the time- and space-discretised beam model used in subsequent chapters.

Finally, we check that the conserving properties of the beam are inherited in the spatially

discretised weak forms.

It is worth noting that, although the developments given here follow the notation and

the vector algebra given in the preceding chapter, the geometrically exact theory can

be also described by resorting to the tools of geometric (Clifford) algebra [ML99]. The

detailed implications of such an approach in the numerical implementation of the theory

remain unexplored.

43

3.1 Beam kinematics

By defining a beam as a 3D body B whose size in one direction is much larger than

in the other two perpendicular directions, it is reasonable to assume that the straining

of the body will mainly take place along this direction and that the perpendicular planes

remain undeformed (Bernoulli hypothesis). This is in fact the basic and sole constraint

assumed by the Reissner-Simo beam theory used here. Consequently, the beam is fully

determined by the position and orientation of the cross-sections. The position is defined

by a time-dependent parametric curve

r(s, t) : S × R+ → R3,

that corresponds to the line of centroids of the beam, where S
.= [0, L] ⊂ R is the range

of the arc length parameter s ∈ S. In addition, for each point r(s, t) of the curve, a plane

or cross section initially perpendicular to the line of centroids is defined. Its orientation

is determined by an orthonormal moving basis gi(s, t), i = 1, 2, 3 rigidly attached to the

cross section (see Figure 3.1).

We will make the distinction between the reference configuration and the current con-

figuration as it is customary in continuum mechanics. The former corresponds to the

mapping φR : B → R3 of the material points of the beam B into R3 in such a way that the

longitudinal dimension of the beam is aligned with the vector E1 of the orthonormal basis

Ei (Figure 3.1). The current configuration is the mapping φt : B → R3 of the material

points of B into the deformed position at time t with respect to an inertial or fixed basis

denoted by ei. We note that purely for practical reasons, both bases ei and Ei will be

considered identical. However, the distinction between them is useful in the derivation

of the beam equations and the strain measures where quantities in the reference config-

uration and in the current deformed configuration must be distinguished. Henceforth,

quantities in the reference and current configuration will be called material and spatial

quantities respectively, and as a general rule, spatial vectors and spatial tensors will be

written in lower case whilst material vectors and tensors will be written in upper case.

From the beam assumptions and by considering a reference straight beam, the basis

Gi (basis gi in the reference configuration) has the same orientation as the basis Ei for all

s ∈ [0, L]. Hence, spatial vectors referring to the moving basis gi are expressed with the

same components as the related material vectors. In other words, the material description

in the basis Ei coincides with the description of an observer attached to the basis gi, and

therefore, vectors referring to the moving basis will be treated as material quantities.

As it has been seen at the end of the last chapter, the bases ei and gi are related via

44

Current configuration

Initial configuration
Reference configuration

g01

g02

g03

y g1

g2

θg3
φt

G1

G2

G3

B

re3 ≡ E3

e2 ≡ E2

e1 ≡ E1

φR

s

t = 0

t > 0x

Figure 3.1: Kinematics of a 3D beam.

a rotation matrix Λ(s, t) ∈ SO(3) which may be expressed as

Λ(s, t) = gi(s, t)⊗ ei.

The transformation of a vector v ∈ R3 with material components Vi = gi · v into a

spatial vector with components vi = ei · v is performed via the push forward operation

[MH94, BW97] which in the present beam model corresponds to the rotation Λ:

v = ΛV.

With these definitions at hand, the beam kinematics are fully represented by the

following configuration space C:

C .= {(r,Λ) : [0, L] ⊂ R→ R3 × SO(3)}.

The position vector x of any point of the beam can be split in the following way

x(s,X2, X3) = r(s) + y(s, X2, X3) = r(s) + Λ(s)Y(X2, X3), (3.1)

where y and Y are vectors in E3 contained in the cross section and referring to the

fixed basis ei and to the moving basis gi respectively. Since the cross section is assumed

to remain undeformed, the components of Y are constant throughout the deformation,

and are only non-zero in the directions of g2 and g3. Note that the moving vector g1

is not forced to remain tangent to the line of centroids, which allows for the presence of

shear deformation. Indeed, the only limitation on the orientation of the cross-sections is

that

45

r′(s) · g1(s) > 0 ∀s ∈ [0, L],

which precludes infinite shear deformation and local material penetration. Here and

throughout the rest of the thesis, the dash symbol (′) denotes the derivative with respect

to the length parameter s.

The initial position and orientation of the beam has been taken as a straight line with

orthogonal cross-sections, and is represented by r0(s) and g0i(s) (or Λ0) respectively, with

g01(s) = r′0. The orientations of g02(s) and g03(s) correspond to the principal axes of

inertia of the cross-section to make a right-handed orthonormal basis. An extension of the

theory to initially non-straight beams can be found in [Sim85, Ibr95]. We also note that

the undeformability of the cross-section limites the theory to moderate strains. Clearly,

large axial deformations for instance, would produce a variation of the cross-section area

for a strain-state consistent with the conservation of mass.

3.2 Equilibrium equations

It is convenient to introduce here the spatial inertia tensor jρ which is defined by

jρ
.= −ρ0

∫

A
ŷ2dA = −ρ0Λ

∫

A
Ŷ2dAΛT = ρ0Λ

∫

A

(‖Y‖2I−Y ⊗Y
)
dAΛT = ΛJρΛT,

(3.2)

where Jρ is the material inertia tensor, and thus independent of the beam orientation,

and A and ρ0 are the area of the cross-section and the density of the beam measured in

the reference configuration. For a cross-section with two axes of symmetry, Jρ is given by

the following diagonal matrix

Jρ = ρ0




I2 + I3 0 0

0 I2 0

0 0 I3


 ,

where I2 and I3 are the second moments of area with respect to the principal axes g2

and g3.

We will also recall that the spatial angular velocity w and the material angular velocity

W = ΛTw are given by (2.31):

Ŵ = ΛTΛ̇ and ŵ = Λ̇ΛT,

46

where here and onwards a superimposed dot ˙(•) denotes time-differentiation. With

these definitions and the kinematics description given in the preceding section, it is shown

in Appendix C that the balance (equilibrium) equations for continua reduce to the fol-

lowing beam equilibrium equations [Rei73, Ant74, Sim85]:

Aρ0r̈ = n′ + n̄

(jρw)̇ = m′ + m̄ + r̂′n,
(3.3)

where n and m are the spatial stress resultants. They correspond to the elastic contact

force and torque acting on the cross-section of the reference configuration, but given in

the fixed frame ei. Also, the vectors n̄ and m̄ are the applied external force and torque

per unit of beam length.

The left-hand side of (3.3) can be identified with the time derivatives of the specific

translational and rotational local momenta lf and lφ. They are given with respect to the

centroid of the cross-section, and are written in compact form as

l =

{
lf

lφ

}
.=

{
Aρṙ

jρw

}
=

{
Aρṙ

ΛJρW

}
(3.4)

where Aρ = Aρ0. The time-derivative of lφ may be expressed as

l̇φ = jρẇ + ŵjρw = Λ
(
ŴJρW + JρA

)
,

where A = Ẇ is the material angular acceleration.

The equilibrium equations of the beam (3.3) can be then rewritten in the following

compact form:

l̇ = f ′ + f̄ +

{
0

r̂′n

}
, (3.5)

where the six-dimensional spatial stress resultant f and external load vector f̄ are

defined by

f .=

{
n

m

}
and f̄ .=

{
n̄

m̄

}
. (3.6)

47

We remark that the use of compact six-dimensional representation is a common prac-

tice in rigid body dynamics [Fea87, Sel92], whereas it is hardly encountered in the context

of flexible multibody dynamics. Some recent developments can be found in [BB98].

3.3 Strain definition

In order to deduce a pair of conjugate strain and stress vectors acting on the cross-

section, we will express the internal power of the beam in the usual way of continuum

mechanics

V̇int
.=

∫

V
P : ḞdV =

∫

V
tr(PḞ

T
)dV =

∫

V
tr(PTḞ)dV. (3.7)

where F = ∂x
∂X = ∂xi

∂Xj
ei ⊗ Ej is the deformation gradient and P = Pijei ⊗ Ej is the

non-symmetric first Piola-Kirchhoff stress tensor. It will be convenient to split its matrix

components Pij as follows

P = [P1 P2 P3] (3.8)

where Pi = PEi is the spatial stress resultant on the plane i of the reference beam

(P1 acts on the cross-section, and P2 and P3 act on the lateral surface of the beam,

perpendicular to the cross-section). Using the concepts at the end of the previous chapter,

one has Λ′ = k̂Λ = ΛΥ̂ with k and Υ the spatial and material curvature1 related via

k = ΛΥ,

and thus y′ = k̂y. From the kinematic hypothesis in (3.1), the deformation gradient

and its time derivative are given by

F =
[
r′ + k̂y ∂X2y ∂X3y

]
and

Ḟ =
[
ṙ′ +

(
k̂ŵ + ̂̇

k
)

y ŵ∂X2y ŵ∂X3y
]
.

Using expression (3.8) for the stress tensor P and the following definitions of the stress

resultants n and m,
1Note that the curvature introduced here is an exclusively kinematic quantity, which has not been

related to any rotational strain measure as yet. We also point out that it is not the curvature of the

centroid line but the curvature associated to the orientation of a cross-section of the beam, i.e. k̂ = Λ′ΛT.

48

n .=
∫

A
P1dA

m .=
∫

A
ŷP1dA,

one obtains

∫

A
tr(PTḞ)dA =

∫

A

[
P1 ·

(
ṙ′ +

(
k̂ŵ + ̂̇

k
)

y
)

+ P2 · (ŵ∂X2y) + P3 · (ŵ∂X3y)
]
dA

= n · ṙ′ − k ·
∫

A
P̂1ŵydA + m · k̇ + w ·

∫

A
[(∂X2 ŷ)P2 + (∂X3 ŷ)P3] dA.

The last integral can be simplified using the identity (see equation (C.13) and the

footnote before it in Appendix C)

3∑

i=1

∂Xix× Pi =
(
r̂′ + ŷ′

)
P1 + ∂X2y × P2 + ∂X3y × P3 = 0,

which leads to

∫

A
tr(PTḞ)dA = n · ṙ′ − k ·

∫

A
P̂1ŵydA + m · k̇ −w ·

(
r̂′n +

∫

A
ŷ′P1dA

)
. (3.9)

Introducing the relation y′ = k̂y and noting that ̂̂ab = âb̂ − b̂â, the last term turns

into

−w ·
(

r̂′n +
∫

A
ŷ′P1dA

)
= −n · ŵr′ −w ·

∫

A
(k̂ŷ − ŷk̂)P1dA

= −n · ŵr′ −w · k̂m + k ·
∫

A
P̂1ŵydA.

Replacing the previous result in (3.9) and simplifying terms gives rise to

∫

A
tr(PTḞ)dA = n · (ṙ′ − ŵr′

)
+ m ·

(
k̇ − ŵk

)

= N · (ΛTṙ′ −ΛTŵr′
)

+ M ·
(
ΛTk̇ −ΛTŵk

)

= N · (ΛTr′
)
˙+ M · (ΛTk)˙= F · Σ̇, (3.10)

where

F .=

{
N

M

}
and Σ .=

{
ΛTr′

ΛTk

}
+ Σc (3.11)

49

are the conjugate six-dimensional material stress resultant and material strain measure

at the cross-section, and Σc = const. is a constant vector. By taking into account the

initial conditions of an undeformed straight beam

Σ0 = 0 and (ΛTr′)0 = G1,

we can deduce the following material strain measure2 Σ:

Σ =

{
Γ

Υ

}
=

{
ΛTr′ −G1

vec (ΛTΛ′)

}
, (3.12)

where vec(•) indicates the vector extraction from a skew-symmetric matrix. Hence,

the corresponding spatial strain measures ε and spatial stress resultants f are given by

ε =

{
ΛΓ

k

}
= Λ6Σ , f = Λ6F,

where Λ6
.=

[
Λ 0

0 Λ

]
is the six-dimensional push forward operator, which inherits

the properties of SO(3) : ΛT
6Λ6 = I6 and detΛ6 = +1, with I6 the 6× 6 unit matrix. Its

time derivative Λ̇6 parallels also the time derivative of Λ:

Λ̇6 = ŵ6Λ6

where ŵ6
.=

[
ŵ 0

0 ŵ

]
.

Introducing the result in (3.10) into equation (3.7), the internal power can be written

as

V̇int =
∫

L
F · Σ̇ds =

∫

L
f · ε̊ds, (3.13)

which shows that the work per unit volume is obtained by the product of the material

strain-stress conjugates Σ and F, or alternatively, the spatial conjugate vectors ε and f .

The co-rotational rate ε̊ is defined by (̊•) = •̇ − ŵ6(•) = Λ6
d
dt(Λ

T
6•). It is also known as

the Lie derivative [MH94], and corresponds to the push forward of the rate seen from an

observer attached to the moving basis gi.
2At this point, the kinematic curvature (of the cross-section) turns out to be the rotational strain

measure also; thus, no distinction in the notation will be made.

50

e1

Γ1 = (ΛT
r
′)1 − 1

Γ2 = (ΛT
r
′)2

Γ1 = 0

r
r

e2e2

e1

Γ2 = 0

Figure 3.2: Strain measures in the reference configuration.

Observing the expressions of the stress resultants, there is a remarkable similarity

between F = ΛT
6 f and the unsymmetrised form of the Biot stress tensor, RTP, with P the

previously introduced first-Piola stress tensor and R the orthogonal tensor stemming from

the polar decomposition of the deformation gradient F [Ogd84, BW97]. The columns of

the tensor P (spatial stress acting on the reference configuration) can be identified with

the vector n, and RT (which rotates P back in order to obtain its material form) can

in turn be observed to be similar to the matrix ΛT. Accordingly, the conjugate strain

vector Γ is closely related to Biot strain measure U− I where U is the right stretch tensor

[Ogd84] that measures the stretching of the body in the reference configuration, as Γ does,

but without violating the beam kinematic assumptions. Figure 3.2 depicts the geometric

interpretation of Γi. These components correspond to the co-rotated (in the reference

configuration) engineering strain measures ε1 = dr1
ds − 1 and ε2 = dr2

ds .

3.4 Constitutive law

In this thesis we are exclusively interested in the geometrical non-linearities, and there-

fore a simple linear elastic material will be considered. A St. Venant-Kirchhoff constitu-

tive law is taken into account, i.e. a material with the following quadratic function for

the elastic potential or stored strain energy :

W (Σ) =
1
2
Σ ·CΣ, (3.14)

where the constant constitutive matrix C is defined as

C .=

[
CN 0

0 CM

]
, CN

.=




EA 0 0

0 GA2 0

0 0 GA3


 , CM

.=




GJ 0 0

0 EI2 0

0 0 EI3


 , (3.15)

51

where E and G are the elastic and shear moduli of the material, A2 and A3 are the

shear areas in the direction of the principals axes g2 and g3, and J is the torsional inertial

moment of the cross-section. The total elastic potential of the beam, which will be used

in the next section, is defined as follows

Vint
.=

∫

L
W (Σ)ds =

1
2

∫

L
Σ ·CΣds. (3.16)

The constitutive law in (3.14) leads to the following material stress resultants F at the

cross-section

F = ∇ΣW =

{
∇ΓW

∇ΥW

}
=

{
CNΓ

CMΥ

}
= CΣ. (3.17)

3.5 Weak form of the equilibrium equations

The weak form of the governing equations is obtained by performing the dot-product of

the equilibrium equations (3.5) with a set of test (or weighting) functions and integrating

the result over the analysed domain (in our case, the length L of the reference beam).

Due to the particular form of the beam equations, the test functions, denoted by δp, will

contain three translational components and three rotational components. Alternatively,

and as it is well known [Cri86, Hug87], this weak form can be obtained by using a vari-

ational principle (i.e. the virtual work principle or Hamilton’s principle), where the test

functions turn out to be virtual displacements3. We will use the latter to show that the

rotation components of the test functions δp = {δr δϑ}, conjugate with equations (3.5),

are spin rotations. However, it is illuminating to demonstrate that the weak form can be

transformed using a vector of virtual translations and additive rotations δq = {δr δθ}
[Cri97, RC02], conjugate to another set of equivalent beam equations.

3.5.1 Multiplicative virtual rotations

The weak form associated with beam equations (3.5) is obtained by multiplying them

by the test functions δp = {δr δϑ} (or virtual displacements) and integrating the result

over the undeformed length L:

G
.=

∫

L

[
δp ·

(
l̇− f ′ − f̄

)
− δϑ · r̂′n

]
ds = 0. (3.18)

3Throughout the thesis we will call displacements the six-dimensional vector of translational and ro-

tational displacements.

52

In order to justify the use of spin virtual rotations in δp, we will deduce the weak

form of the equations from Hamilton’s principle [Lan70] and verify their spin character.

Hamilton’s principle states that from the Lagrangian function L .= T − V , with T and V

the kinetic and total potential energy of the system, it follows that

∫ t2

t1

δLdt = 0, (3.19)

provided that the Lagrangian function satisfies δL = 0 at times t1 and t2.

We will rewrite Hamilton’s principle for the geometrically exact beam by first writing

T and V as follows:

T =
1
2

∫

L
(lf · ṙ + lφ ·w)ds =

1
2

∫

L
(Aρṙ · ṙ + JρW ·W)ds =

1
2

∫

L
l · ṗds,

V = Vint + Vext,

(3.20)

where ṗ = {ṙ w} is the velocity vector, Vint is the total elastic potential in (3.16),

and Vext is the potential of the applied loads. We point out that we use multiplicative

infinitesimal rotations in the vectors δp and ṗ, and consequently we will also use p′ =

{r′ k}. We have thus defined

δp
.=

{
δr

δϑ

}
, ṗ

.=

{
ṙ

w

}
, p′ .=

{
r′

k

}
, (3.21)

although the vectors ϑ,
∫

wdt and
∫

kds do not exist per se, but only in their infinites-

imal form (as a variation of a rotation [Rei81]). We will denote by q the vector

q
.=

{
u

θ

}
, (3.22)

where u
.= r − r0 is the translational displacement and θ is the rotation vector that

rotates Λ0 into Λ, i.e. exp(θ̂) = ΛΛT
0 .

The term δT included in δL can be computed by first noting that the following relations

can be deduced from the definition of the specific momenta in (3.4) and from the symmetry

of Jρ:

δ(lf · ṙ) = 2Aρδṙ · ṙ = 2lf · ˙δr,

δ(lφ ·w) = δ(JρW ·W) = 2JρδW ·W = 2JρΛT ˙δϑ ·W = 2lφ · ˙δϑ

53

where the relation δW = ΛT ˙δϑ (see equation (2.34)) has been used. The expression

for δT can be now computed in a straightforward manner:

δT =
1
2

∫

L
(δ(lf · ṙ) + δ(lφ ·w)) ds =

∫

L

(
lf · ˙δr + lφ · ˙δϑ

)
ds =

∫

L
l · ˙δpds. (3.23)

On the other hand, the variation of the elastic potential δVint may be obtained from

expression (3.16) as follows

δVint =
∫

L
δΣ · Fds.

In order to obtain an explicit relationship between δΣ and δp, we also recall equation

(2.34) in Section 2.3.7 which implies δΥ = ΛTδϑ′. The vector δΣ is then given by

δΣ =

{
δ(ΛTr′)

δΥ

}
=

{
ΛTδr′ + ΛTr̂′δϑ

ΛTδϑ′

}
= ΛT

6 δp′ +

{
ΛTr̂′δϑ

0

}
,

and therefore it follows that

δVint =
∫

L

(
ΛT

6 δp′ · F + ΛTr̂′δϑ ·N)
ds =

∫

L

(
δp′ · f − δϑ · r̂′n)

ds. (3.24)

The variation of Vext can similarly be expressed through the work done by the applied

distributed loads f̄ and the loads at the ends of the beam, s = 0 and s = L, denoted by

s̄0 and s̄L (all referring to the inertial frame ei),

δVext = −
∫

L
δp · f̄ds− δp(0) · s̄0 − δp(L) · s̄L. (3.25)

Gathering the expressions obtained for δT , δVint and δVext in equations (3.23), (3.24)

and (3.25) respectively, and inserting them in the variation of the Lagrangian δL =

δT − δVint − δVext, Hamilton’s principle in (3.19) becomes

∫ t2

t1

{ ∫

L
l · ˙δpds−

∫

L

(
δp′ · f − δϑ · r̂′n− δp · f̄) ds + δp(0) · s̄0 + δp(L) · s̄L

}
dt = 0.

The term under the first integral
∫
L can be integrated by parts, leading to

−
∫ t2

t1

∫

L
l̇ · δpdsdt +

∫

L
[l · δp]t2t1 ,

54

where the second term vanishes as a consequence of Hamilton’s principle, which as-

sumes that the variation δ(T − V) at times t1 and t2 are zero for any values of T and V ,

which implies δpt1 = δpt2 = 0. Thus, equation (3.19) results in

−
∫ t2

t1

{∫

L
l̇ · δpds +

∫

L

(
δp′ · f − δϑr̂′n− δp · f̄) ds− δp(0) · s̄0 − δp(L) · s̄L

}
dt = 0.

Since the equation must be satisfied for all times t1 and t2, the term inside the first

integral is zero, and the following equation is obtained:

G
.=

∫

L

(
δp · (l̇− f̄)− δϑ · r̂′n + δp′ · f

)
ds− δp(0) · s̄0 − δp(L) · s̄L = 0, (3.26)

where we have changed the sign for convenience. From the orientation of the cross-

section and the continuity of stresses at both ends of the beam, the following relations

between the boundary terms of f and the external loads s̄0 and s̄L are satisfied:

f(0) = −s̄0 and f(L) = s̄L. (3.27)

Integrating (3.26) by parts, the weak form of the equilibrium equations first introduced

in (3.18) is finally recovered,

G
.=

∫

L

(
δp · (l̇− f ′ − f̄)− δϑ · r̂′n

)
ds = 0. (3.28)

Although the material form of the elastic potential Vint has been used here, the same

result can be deduced using a spatial description and the Lie derivative formalism for the

variation of the strain measures ε (see for instance [IFK95]).

The equivalence of equations (3.18) and (3.28) show that the test functions also cor-

respond to the virtual or admissible displacements δp. Reordering terms in (3.26) yields

G
.= Gd + Gv −Ge = 0, (3.29a)

where

Gd
.=

∫

L
δp · l̇ds, (3.29b)

Gv
.=

∫

L

(
δp′ · f − δϑ · r̂′n)

ds, (3.29c)

Ge
.=

∫

L
δp · f̄ds + δp(0) · s̄0 + δp(L) · s̄L. (3.29d)

55

are the dynamic, elastic and external parts of the weak form.

3.5.2 Additive virtual rotations

We will deduce an alternative weak form Ga by using the vector of displacements

q = {u θ} and its corresponding variations δq, q̇, q′ and δq′ given by

δq =

{
δr

δθ

}
, q̇ =

{
ṙ

θ̇

}
, q′ =

{
r′

θ′

}
, δq′ =

{
δr′

δθ′

}
. (3.30)

Note that they all use virtual translations and additive rotations. By recalling the

matrix T and its derivative with respect to s, T′, deduced in Appendix A, we also define

the six-dimensional matrix T6 and its derivative T′
6 as

T6(θ) =

[
I 0

0 T(θ)

]
, T′

6 =

[
0 0

0 T(θ)′

]
.

From the relations given in the previous chapter, the vectors with spin rotations and

those with additive rotations satisfy the following relationships:

ṗ = T6q̇ , δp = T6δq , δp′ = T′
6δq + T6δq

′. (3.31)

Inserting these equations into the variations of the kinetic energy, the virtual elastic

potential, and the potential of the applied loads given in equations (3.23), (3.24) and

(3.25), respectively, yields

δT =
∫

L
(T6δq)̇ · lds,

δVint =
∫

L

(
δq′ ·TT

6 f + δθ · (T′Tm−TTr̂′n
))

ds,

δVext = −
∫

L
δq ·TT

6 f̄ds− δq(0) ·TT
6 s̄0 − δq(L) ·TT

6 s̄L,

(3.32)

Reasoning analogously to the previous section, Hamilton’s principle now leads to the

following weak form:

Ga
.= Gad + Gav −Gae = 0, (3.33a)

where again, Gad, Gav and Gae are the dynamic, elastic and external parts of the weak

form Ga, which are given as

56

Gad
.=

∫

L
δq ·TT

6 l̇ds,

Gav
.=

∫

L

(
δq′ ·TT

6 f + δθ · (T′Tm−TTr̂′n
))

ds,

Gae
.=

∫

L
δpa ·TT

6 f̄ds + δq(0) ·TT
6 s̄0 + δq(L) ·TT

6 s̄L.

(3.33b)

Integrating the term δq′ ·TT
6 f by parts, the weak form may be written as

Ga
.=

∫

L

[
δq ·

(
TT

6 l̇− (TT
6 f)

′ −TT
6 f̄

)
+ δθ · (T′Tm−TTr̂′n

)]
ds = 0.

From the arbitrariness of the virtual displacements δq, the following alternative beam

equilibrium equations are satisfied:

TT
6 l̇ = (TT

6 f)
′ + TT

6 f̄ +

{
0

TTr̂′n−T′Tm

}
. (3.34)

The weak form Ga is analogous to G except for the fact that another set of virtual

rotations are being used, and therefore the virtual forces are conjugate to δθ instead of δϑ.

As will be shown in the next section, the use of Ga is very attractive because it reveals

the character of conservative applied moments and, in addition, leads to a symmetric

stiffness matrix. However, it is less interesting from the computational standpoint since

the symmetry of the Jacobian matrix in dynamic analysis is always lost, and its expression

is much more involved, increasing considerably the number of operations. We note that

the same weak form Ga was deduced in [IFK95, RC02], although their study was limited

to statics.

3.6 Conservation properties of the beam equations

3.6.1 Conservation of energy

The conservation of the total energy E = T+V for a conservative system can be verified

from the definitions of the kinetic energy T and the total potential energy V = Vint +Vext.

Moreover, from the expressions given for the terms δT and δVint in equations (3.23) and

(3.24) respectively, the following identities are deduced:

Ṫ =
∫

L
l · p̈ds =

∫

L
l̇ · ṗds,

V̇int =
∫

L

(
ṗ′ · f −w · r̂′n)

ds.

(3.35)

57

Note that the parallels between δT and δV , and Ṫ and V̇ can be drawn due to the

quadratic forms of T and V in (3.16) and (3.20)1. Besides, by considering only a conser-

vative system we will assume that an external potential Vext exists. Although its form is

unspecified, from the definition of a conservative function, Vext is only a function of r and

Λ, or alternatively, of the displacements q = {u θ}. Denoting also by vext the potential

per unit of length, the external distributed load and the end applied loads are given by

f̄V = −∇qvext,

s̄V 0 = −∇qV (0)ext,

s̄V L = −∇qV (L)ext,

where we have used the derivatives with respect to the configuration variables q, and

not p, since the latter only exist in the infinitesimal forms δp, ṗ or p′. The relation

between f̄V , s̄V 0 and s̄V L with the applied loads n̄ and m̄ will be deduced upon enforcing

the conservation of energy.

An expression for V̇ext = d
dt

(∫
L vextds + V (0)ext + V (L)ext

)
can be derived using the

previous definitions and recalling that from (3.31)1 one has q̇ = T−1
6 ṗ,

V̇ext =
∫

L
∇qvext

d

dt
qds +∇qV (0)ext

d

dt
q(0) +∇qV (L)ext

d

dt
q(L)

= −
∫

L
f̄V · q̇ds− s̄V 0 · q̇(0)− s̄V L · q̇(L)

= −
∫

L
T−T

6 f̄V · ṗds−T−T

6 s̄V 0 · ṗ(0)−T−T

6 s̄V L · ṗ(L).

Using this equation and (3.35), integrating the first term in V̇int by parts, and noting

that from (3.27) it follows that ṗ · f ∣∣L
0

= ṗ(0) · s̄0 + ṗ(L) · s̄L, we may express Ė =

Ṫ + V̇int + V̇ext as

Ė =
∫

L

[
ṗ ·

(
l̇− f ′ −TT

6 f̄V
)
−w · r̂′n

]
ds

−ṗ(0) · [s̄0 −T−T

6 s̄V 0

]− ṗ(L) · [s̄L −T−T

6 s̄V L

]

=
∫

L
ṗ · (f̄ −T−T

6 f̄V
)
ds + ṗ(0) · [s̄0 −T−T

6 s̄V 0

]
+ ṗ(L) · [s̄L −T−T

6 s̄V L

]
,

where the last identity follows from the equilibrium equations in (3.5). From this

equation we can first conclude that in the absence of external loads the energy is conserved,

and secondly deduce the nature of the external conservative loads. After noting that f̄V is

58

such that Ė = 0 (we are now restricting our attention to conservative systems), we arrive

at the following relation between f̄ and f̄V :

f̄V = TT
6 f̄ =

{
n

TTm

}
.

Therefore, constant spatial moments are not conservative (and neither are follower

moments M). This fact has been also confirmed by Argyris et al. [ABD+79] and Ritto-

Corrêa and Camotim [RC02]. As we have shown, the reason lies in the fact that none of

them is work-conjugate to the rotation vector θ, which is the configuration variable that

defines the current rotation of the cross-section. This is equivalent to saying that its time-

derivative θ̇ is an integrable kinematic measure, so that θ =
∫ t2
t1

θ̇dt, whereas the quantity∫ t2
t1

wdt has no physical meaning. In contrast, moments with constant values TTm̄ are

work-conjugate to the additive rotational displacements and therefore conservative. We

finally also point out that the potential of the external loads is well defined as long as

the rotations satisfy |θ| < 2π. If we consider unlimited angles, rotations that differ with

an angle 2π cannot be distinguished, and in general, the value of the work done by the

external loads would be path-dependent, which contradicts the definition of a potential.

3.6.2 Conservation of momenta

We will first rewrite the equilibrium equations using the following six-dimensional

vectors: momentum lO, stress resultant fO and external loads f̄O, f̄O(0) and f̄O(L) given

by

lO
.= l +

{
0

r̂lf

}
, fO

.= f +

{
0

r̂n

}
, f̄O

.= f̄ +

{
0

r̂n̄

}

s̄O0 = s̄0 +

{
0

r̂(0)n̄(0)

}
, s̄OL = s̄L +

{
0

r̂(L)n̄(L)

}
.

(3.36)

They correspond to the quantities l, f , f̄ , s̄0 and s̄L computed with respect to the

origin O of the inertial basis ei. The same concept was introduced in [BB94a, BB98]

where quantities with respect to the origin O were called fixed-pole vectors. As can be

observed, only the angular components must be modified in order to take into account

the moment contribution due to the position r of the centroid line. By making use of the

fact that ˙̂rln = ˙̂rṙAρ = 0, the equilibrium equations in (3.5) may be rewritten as

l̇O = f ′O + f̄O. (3.37)

59

The conservation of the total momentum ΠO
.=

∫
L lOds (translational and angular)

follows immediately from (3.37):

Π̇O =
∫

L
l̇Ods =

∫

L
(f ′O + f̄O)ds =

∫

L
f̄Ods + s̄O0 + s̄OL,

which vanishes if no external loads exist.

3.7 First discretisation of equations

After constructing the weak forms (3.29) and (3.33), we now proceed to discretise the

continuous test functions or virtual displacements δp or δq and obtain a set of weighted

residuals [Fin72]. This is the first step towards the numerical solution of the corresponding

non-linear equations (3.5) and (3.34).

Let us subdivide the length of the beam L by setting i = 1, . . . , N nodes at positions

s = Xi. Denoting by δph the discretised form of the virtual displacements, we can express

them by reverting to the standard Lagrangian polynomials I(s)i:

δp(s)h = I(s)iδpi (3.38)

where δpi are the nodal values of the test functions. Here, and throughout the thesis,

summation over repeated indices in superscript and subscript positions will be understood.

The elemental functions I(s)i of node i satisfy the usual completeness conditions:

N∑

i

I(s)i = 1 ⇒
N∑

i

I(s)i′ = 0.

Inserting (3.38) in the weak form (3.29a), the following equation is derived:

Gh .= δpi · gi = 0. (3.39)

By recalling that the nodal values δpi are completely arbitrarily, we obtain the following

system of equations:

gi .= gi
d + gi

v − gi
e = 0, i = 1, . . . , N (3.40a)

where gi is the residual vector for node i and

60

gi
d

.=
∫

L
Iil̇ds (3.40b)

gi
v

.=
∫

L

(
Ii′f − Ii

{
0

r̂′n

})
ds (3.40c)

gi
e

.=
∫

L
Iif̄ds + δ1

i s̄0 + δN
i s̄L. (3.40d)

are the dynamic, elastic and external force vectors. In the expression of gi
e we have

assumed that nodes 1 and N are at positions s = 0 and s = L of the beam, respectively.

Discretising the virtual displacements with additive rotations δq in the same way, the

following discretised weak form may be derived:

Gh
a

.= δqi · gi
a = 0, (3.41)

which leads to an equivalent system of equations

gi
a

.= gi
ad + gi

av − gi
ae = 0, i = 1, . . . , N (3.42a)

where gi
a is the nodal residual vector and

gi
ad

.=
∫

L
IiTT

6 l̇ds, (3.42b)

gi
av

.=
∫

L

(
Ii′TT

6 f + Ii

{
0

T′Tm−TTr̂′n

})
ds, (3.42c)

gi
ae

.=
∫

L
IiTT

6 f̄ds + δ1
i T

T
6 (0)̄s0 + δN

i TT
6 (L)̄sL, (3.42d)

are the corresponding dynamic, elastic and external force vectors conjugate to δqi.

61

4. Non-conserving

time-integration algorithms

The algorithms to be described next are here called non-conservative in the sense that

they are not designed to conserve constants of motion such as energy or momenta in the

non-linear regime.

We will perform the time discretisation of the non-linear equations given in (3.40) and

(3.42) by using the Newmark family of algorithms [New59] and the Hilber-Hughes-Taylor

algorithm [HHT77, CH93]. Due to the presence of large rotations, these schemes, which

were originally developed to deal with translational displacements and their derivatives,

must be adapted for the equations at hand. This chapter does not provide any accuracy

and stability analysis, which can be found in references [Hug76, Hug87, HHT77] for the

translational degrees of freedom and [SVQ88] for the rotational degrees of freedom. We

will present some adaptations of these two popular families of algorithms to problems with

rotations, and comment on their main differences. A general overview of time-integration

schemes and a short explanation of the terminology used in this context can be found

in Appendix D, or in more detail in many excellent books [AP98b, Gea71, HW91, IK66,

Lam91, Woo90].

4.1 Newmark algorithm

4.1.1 Translational degrees of freedom

This algorithm is specially designed for the solution of second-order differential equa-

tions [New59]. The original Newmark algorithm (as applied to problems involving trans-

lational degrees of freedom) is given by

rn+1 = rn + vn∆t +
1
2
an∆t2 + β∆t2 (an+1 − an)

vn+1 = vn + an∆t + γ∆t (an+1 − an) ,

(4.1)

62

where r is the position vector and v and a are the translational velocity and accel-

eration. The particular choice of β = 1/4 and γ = 1/2, also called trapezoidal rule or

average acceleration method, makes the algorithm second-order accurate (and is in fact

the maximum possible accuracy for unconditionally stable Newmark algorithms [GR94]).

It can be proved that the trapezoidal rule is not symplectic [STW92], conserves energy

[GR94] and is A-stable [Woo90] for linear problems (see Appendix D for the definition of

these terms). In non-linear problems, however, none of these properties are retained in

general. By setting

γ ≥ 1
2

and β =
1
4

(
γ +

1
2

)2

,

unconditional stability is ensured while adding numerical damping, but this choice

reduces the accuracy to first-order.

Relation (4.1) can be written in a more convenient way that gives the accelerations

and velocities at time tn+1 explicitly as a function of displacements at time tn+1 and other

variables at time tn as follows:

an+1 =
1

γ∆t
(vn+1 − vn) +

γ − 1
γ

an =
1

β∆t2
(rn+1 − rn) + ãn,

vn+1 =
γ

β∆t
(rn+1 − rn) + ṽn,

(4.2a)

where ãn+1 and ṽn+1 depend only on quantities at time-step tn, and are given by

ãn+1 = − 1
β∆t

vn −
(

1
2β

− 1
)

an,

ṽn+1 =
β − γ

β
vn + ∆t

2β − γ

2β
an.

(4.2b)

4.1.2 Rotational degrees of freedom

The version of the algorithm given in this section is an adaptation of the original

algorithm for problems with large rotations proposed in [SVQ88]. They proved that its

second-order accuracy is retained for the Newmark parameters β = 1
4 and γ = 1

2 . The

time stepping scheme is applied to the material configuration as follows:

Λn+1 = Λn exp(Ω̂n+1) = exp(ω̂n+1)Λn

Ωn+1 = ∆tWn +
1
2
∆t2An + ∆t2β (An+1 −An)

Wn+1 = Wn + ∆tAn + ∆tγ (An+1 −An)

(4.3)

63

where Wn and An are the body-attached angular velocity and acceleration such that,

Λ̇n = ΛnŴn,

An = Ẇn,
(4.4)

and ωn+1 and Ωn+1 are the spatial and material incremental rotations that transform

Λn to Λn+1, as shown in (4.3)1. From this equation it can be deduced that ω and Ω are

related through Λn or Λn+1 as follows:

ωn+1 = ΛnΩn+1 = Λn+1Ωn+1.

A similar equation to (4.2a) may be written for rotations as

Λn+1 = Λn exp(Ω̂n+1)

An+1 =
1

γ∆t
(Wn+1 −Wn) +

γ − 1
γ

An =
1

β∆t2
Ωn+1 + Ãn+1

Wn+1 =
γ

β∆t
Ωn+1 + W̃n+1

(4.5a)

with

Ãn+1 = − 1
β∆t

Wn −
(

1
2β

− 1
)

An

W̃n+1 =
β − γ

β
Wn + ∆t

2β − γ

2β
An.

(4.5b)

Comparing equations (4.2) and (4.5) reveals the remarkable parallels between the trans-

lational and the rotational variables (see Table 4.1).

Translational Rotational

rn+1 − rn Ωn+1 ; exp(Ω̂n+1) = ΛT
nΛn+1

vn+1 Wn+1

an+1 An+1

Table 4.1: Translational and rotational variables for the dynamic case.

As demonstrated in [SW91], the update of angular velocities and accelerations is per-

formed using the material (or body-attached) quantities, because they remain unchanged

under a constant rigid body rotation.

64

An alternative time-integration scheme for rotations will be outlined next. As shown

in formula (2.31)4, the angular velocity is related to the time derivative of the rotational

vector through the relation

W = T(θ)Tθ̇ = T(Ω)TΩ̇, (4.6)

where θ and Ω are the total and the (material) incremental rotation vectors. The

second identity follows after differentiating Λn+1 = Λn exp(Ω̂) with respect to time whilst

keeping Λn constant. An expression for the angular acceleration A can be deduced by

further differentiation of the previous equation,

A = Ẇ = ṪT(Ω)Ω̇ + T(Ω)TΩ̈. (4.7)

The fact that the angular velocity and acceleration are not the same as the first and

second time derivatives of a rotation suggests an alternative time-integration scheme,

which was developed by Cardona and Géradin [CG88]. Instead of adapting the Newmark

scheme using the spin variables W and A, they apply the algorithm to the derivatives

of the incremental rotation Ω, i.e. Ω̇ and Ω̈ (also referred to the material frame). This

leads to the following algorithm:

Λn+1 = Λn exp(Ω̂n+1),

Ω̈n+1 =
1

β∆t2
Ωn+1 − 1

β∆t
Ω̇n −

(
1
2β

− 1
)

Ω̈n,

Ω̇n+1 = Ω̇n + ∆t
[
(1− γ)Ω̈n + γΩ̈n+1

]
.

(4.8)

This is a “vectorial” form of the algorithm, rather than the spin form given in (4.5).

While it is obvious that, in the process of adaptation of Newmark’s formulae to the

problem at hand, rn+1−rn must be must be replaced by Ω, it is not immediately obvious

whether v and a should be replaced by W and A, or by Ω̇ and Ω̈. Cardona and Géradin

assert in [CG89] that their algorithm has the advantage of interpolating quantities in a

linear space, and thus using Ω̇ and Ω̈ instead of translational velocities and accelerations in

any three-stage time-integration algorithm1 will transport the convergence and accuracy

properties to the group of rotations SO(3). This assertion is not demonstrated as fact in

their paper, however. Simo and Vu-Quoc demonstrate that their version of the Newmark

algorithm is also second-order accurate when using the trapezoidal rule.
1A p-stage algorithm is the one that includes time-derivatives of order p−1 in its time-stepping scheme

[Woo90]. The Newmark algorithm, for instance, is a three-stage algorithm.

65

It must be noted that the inertial force vector gi
d and its linearisation have a much

simpler expressions when written as function of the spin vectors W and A, rather than

the additive quantities Ω̇ and Ω̈, according to equations (4.6) and (4.7). This increases

the computational cost of algorithm (4.8), which requires the linearisation of the matrices

T and Ṫ.

4.2 HHT algorithm

The need for damping out some spurious high frequency oscillations has been well doc-

umented (see [Hug87]p.498 and [CG89, BDT95, KR96] for some examples demonstrating

this). These oscillations are artefacts of numerical discretisation of the problem and do

not exist in the continuous problem defined by the differential equations. Besides, while

these high frequency modes might affect the stability of the time-integration, the modes

that are relevant from the engineering standpoint are usually those with lower frequency.

In linear analysis, adding numerical damping while retaining the unconditional stability

of the Newmark algorithm can be achieved at the expense of reducing the accuracy to

first-order. The Hilber-Hughes-Taylor algorithm (or just HHT [HHT77]) involves numer-

ical damping without degrading the second-order accuracy, while still being A-stable for

linear analyses. In our notation, the equilibrium equations are written with a weighted

value of the static and external force vectors via an additional parameter α as follows:

gi
n+1+α

.= gi
d,n+1 + gi

v,n+1+α − gi
e,n+1+α = 0 (4.9)

where α takes values in the range −1
3 ≤ α ≤ 0 in order to obtain effective numerical

dissipation and stability [HHT77]. The algorithm is supplemented with the Newmark

algorithm in (4.1), and as long as γ = (1−2α)/2 and β = (1−α)2/4, second-order accuracy

is ensured. We note that in the original algorithm given in [HHT77], no weighting was

applied to the external force vector ge. In fact, the expression in (4.9) corresponds to

the method proposed by Hughes [Hug83] or the generalised-α algorithm of Chung and

Hulbert [CH93] with the choice αm = 0.

The application of the method to problems with large rotations was explored in [CG89,

STD95, JC98]. In these references, the interpolation of the force vector gv between time-

steps n and n + 1 is performed in three different ways, which will be explained next.

66

4.2.1 HHT1: Linear interpolation of additive force vectors

Cardona and Géradin argued in [CG89] that the residual vector conjugate to virtual

spin rotations, gi, is not additive, and therefore, linear interpolation is not sensible.

They instead interpolate the residual which is conjugate to additive virtual rotations, gi
a.

According to their argument, and using the notation in equations (3.40) and (3.42), the

following definitions of the interpolated elastic and external forces must be employed:

gi
av,n+1+α

.= (1 + α)gi
av,n+1 − αgi

av,n

gi
ae,n+1+α

.= (1 + α)gi
ae,n+1 − αgi

ae,n,
(4.10a)

which leads to the equilibrium equation

gi
a,n+1+α

.= gi
ad,n+1 + gi

av,n+1+α − gi
ae,n+1+α = 0. (4.10b)

The algorithm given in [CG89], however, differs from the previous expression in two

main respects. First, their residual vectors are derived using material incremental virtual

rotations (in our notation, their residual is conjugate to δΩ instead of the total virtual

rotations δθ). Second, the transformation of the spin residuals into additive residuals

is done after the interpolation of spin virtual displacements, so that the T matrices in

(3.42) are evaluated at the nodal points and not at the integration points. Despite these

differences, both forms in (4.10) and [CG89] follow the same arguments. In writing the

virtual work equation at time tn, and using the virtual vector δΩ, they reduce to some

extent the computational cost of equations (4.10). Nevertheless, their version of the HHT

algorithm is still more involved than the following two forms.

4.2.2 HHT2: Linear interpolation of spin force vectors

The spin elastic and external force vectors gi
v and gi

e are linearly interpolated in [JC98]

as follows:

gi
v,n+1+α

.= (1 + α)gi
v,n+1 − αgi

v,n,

gi
e,n+1+α

.= (1 + α)gi
e,n+1 − αgi

e,n.
(4.11)

This act is justified by suggesting that only an algorithmic interpolation of elastic and

external force vector is performed, and therefore no conjugacy issues as in algorithm HHT1

need be considered. Following their argument, residual vectors gi
n+1+α and gi

a,n+1+α

67

(in conjunction with equations (4.9) and (4.10b), respectively) are both perfectly valid

adaptations of the HHT algorithm.

4.2.3 HHT3: Linear interpolation of kinematics

In Remark 5.1 of [STD95], Simo and co-workers introduced an extension of the HHT

algorithm to problems with large rotations which evaluates the spatial stress resultants

f = {n m} at an interpolated configuration rn+1+α and Λn+1+α, and constructs the

elastic and external force vectors as follows:

rn+1+α = (1 + α)rn+1 − αrn

θn+1+α = (1 + α)θn+1 − αθn → Λn+1+α = exp(θ̂n+1+α) (4.12)

fn+1+α = CΣn+1+α = C

{
ΛT

n+1+αr′n+1+α −G1

T(θn+1+α)Tθ′n+1+α

}

gv,n+1+α =
∫

L

(
Ii′fn+1+α + Ii

{
0

r̂′n+1+αnn+1+α

})
ds

ge,n+1+α = (1 + α)ge,n+1 + αge,n.

We note that the choice of Λn+1+α is not unique. It could alternatively be defined as

[Hul00]

exp(θ̂n+1+α) .= Λ(αω̂n+1)Λn+1

with ωn+1 the spatial incremental rotation, or also via Λn+1+α
.= (1+α)Λn+1 +αΛn,

which implies some additional complexities since then Λn+1+α /∈ SO(3). In [STD95] no

details were given, and here we have assumed the expression in (4.12) to follow that for

the translational field. The dynamic residual is in turn modified, so instead of computing

gd,n+1 from the accelerations given by the Newmark algorithm, they give the expression

gd,n+1 =
∫

L
Ii

(
1

γ∆t
(ln+1 − ln) +

γ − 1
γ

l̇n

)
ds. (4.13)

Therefore, in contrast to the standard HHT algorithm, the vector l̇ in the inertial force

vector is interpolated in the same way as the accelerations in the Newmark algorithm, i.e.

l̇n+1 =
1

γ∆t
(ln+1 − ln) +

γ − 1
γ

l̇n.

68

Whereas this is equivalent to applying the Newmark scheme to l̇f,n+1 = Aρan+1, it is

a different result from applying the adapted Newmark scheme for rotations to the angular

velocities and acceleration in l̇φ,n+1 = Λn+1Ŵn+1JρWn+1 + Λn+1JρAn+1.

4.3 Time-discretisation of residuals

For algorithms HHT1 and HHT2, we can express the time-differentiation of l at time-

step tn+1 as follows:

l̇n+1 =

{
Aρan+1

Λn+1Ŵn+1JρWn+1 + Λn+1JρAn+1

}
.

By replacing an+1, Wn+1 and An+1 with the expressions given in (4.2) and (4.5), and

inserting l̇n+1 in the inertial force vectors gd,i and gad,i in (3.40b) and (3.42b) respectively,

we can write the corresponding time-discretised forms:

gi
d,n+1

.=
∫

L
Iil̇n+1ds,

gi
ad,n+1

.=
∫

L
IiTT

6 l̇n+1ds,

(4.14)

where the matrix TT
6 is computed using the total rotation vector θn+1, and

l̇n+1 =





Aρ

(
1

β∆t2
(rn+1 − rn) + ãn

)

−l̂φ,n+1Λn+1

(
γ

β∆tΩn+1 + W̃n+1

)
+ Λn+1Jρ

(
1

β∆t2
Ωn+1 + Ãn+1

)


 .

The elastic and external force vectors in (3.40) and (3.42) are left unchanged, and

computed at time-step tn+1 if α = 0, or otherwise at both time-steps, tn and tn+1, and

interpolated accordingly.

For the algorithm HHT3, the time-discretisation is indicated by equation (4.13). In all

the three cases, the inertial force vector can be expressed as a function of the unknown

position vector rn+1 and incremental rotation Ωn+1, and the kinematics at the previous

time-step.

4.4 Final remarks about the non-conserving algorithms

We can summarise the algorithms given in this chapter with the following two equilib-

rium equations:

69

gi
n+1+α

.= gi
d,n+1 + gi

v,n+1+α − gi
e,n+1+α = 0, (4.15a)

gi
a,n+1+α

.= gi
ad,n+1 + gi

av,n+1+α − gi
ae,n+1+α = 0 (4.15b)

and the time-integration schemes given in (4.1) and (4.3). Algorithm HHT1 is de-

signed for the equilibrium equations (4.15b), whereas algorithms HHT2 and HHT3 can

be employed in conjunction with both set of equations, (4.15a) and (4.15b). By setting

α = 0, the Newmark algorithm is recovered and applied to the non-linear equations (3.40)

or (3.42). Any other choice −1
3 < α < 0 with γ = 1−2α

2 and β = (1−α)2

4 gives a non-linear

extension of the HHT method.

From the robustness and accuracy standpoint, none of the three adaptations of the

HHT methods shows any clear advantage over the other two. Algorithms HHT1 and

HHT2, in equations (4.10) and (4.11) respectively, appear as direct extensions of the HHT

algorithm. The HHT3 algorithm departs from the original version in [HHT77], which was

applied to linear equations. This can be considered as more an adaptation of the HHT

algorithm to non-linear problems than to problems with rotations. It should be noted that

in the linear case, the linear interpolation of kinematics and the linear interpolation of

force vectors lead to identical equations, and therefore the three adaptations are obviously

equivalent. We also point out that the form of HHT3 has some resemblance with the

midpoint interpolation of the kinematics given in the conserving schemes, which will be

described in Chapter 6.

The analysis of the three options is beyond the scope of this thesis, in particular

since the conserving schemes are proved to perform generally better than the algorithms

described here. The conserving schemes will be described in Chapter 6, and their superior

performance will be shown by the numerical examples in Chapter 12.

70

5. Spatial interpolation

This chapter concerns the spatial interpolation and update of the rotational variables.

Because of the non-linear nature of finite rotations, the distinction between iterative,

incremental and total rotations must be made during the numerical implementation of

the equations at hand. This is in contrast with the translational degrees of freedom,

where the three mentioned quantities give rise to identical formulations. In particular, it

is shown that the interpolation of rotations is strongly linked to the solution and update

process. The subtleties concerning the different choices will be addressed.

Two families of rotations are interpolated in Sections 5.2 and 5.3: global rotations

(total, incremental and iterative) and local rotations. The former suffer from path-

dependence and lead to a formulation which is not objective [JC99a]. The latter are

in fact specially designed to avoid such problems.

The interpolation of tangent-scaled incremental rotations, which is closely linked to

the design of energy-momentum algorithms, will be described in the next chapter.

5.1 Preliminary issues

5.1.1 Solution procedure of the non-linear equations

We aim to solve numerically the non-linear beam equations (3.5) or (3.34) by resorting

to a spatial finite element discretisation. This process requires a choice of suitable trial

functions that interpolate the continuous beam kinematics1 (r(s),Λ(s)) from the values

at a certain discrete points s = Xi or nodes. As has been shown in Chapter 3, in the

geometrically exact beam theory (with a known material constitutive law), the stress

resultants and the strain measures are indeed both dependent on the kinematic variables,

and are therefore computed from the interpolated kinematics.

Using the time discretisation given in the previous chapter, the non-linear equations
1Since we will focus only on spatial interpolation, we will omit the dependence on t of all variables

throughout this chapter.

71

have been written in the compact form

gn+1 = 0,

which will be solved by using the Newton-Raphson method. By approximating the

residual vector gn+1 at iteration k + 1 as

gk+1
n+1 = gk

n+1 + Kn+1∆p,

with Kn+1 = ∇p gn+1 the Jacobian matrix and ∆p the vector of iterative displace-

ments, the following system of equations is iteratively solved:

gk
n+1 + Kk

n+1∆p = 0.

The character of the iterative displacements ∆p and the corresponding expression for

the matrix K are as yet left unspecified.

Due to the special character of rotations, their interpolation is less straightforward than

that of the translational variables. The choice of interpolated quantities is relevant in the

sense that it will determine the properties of the final formulation, such as computational

cost, strain-objectivity or path-dependence.

5.1.2 Interpolation of displacements

The interpolation of the position vector r is performed following the same procedure for

the discretisation of the test functions in (3.7). Using the same arc-length subdivisions s =

Xi and resorting to the same standard Lagrangian polynomials I(s)i, the approximated

field r(s)h is given by

rh = Iiri, (5.1)

where ri are the nodal values of the position vector, and the dependence on the pa-

rameter s has been dropped to avoid cluttering the notation. In fact, throughout this

chapter, quantities without subscript i are understood as values dependent on s.

72

5.2 Interpolation of global rotations

A first attempt to interpolate the rotations might be made by mimicking the transla-

tional field and applying equation (5.1) directly using the nodal rotation matrices Λi:

Λh = IiΛi. (5.2)

Clearly, the interpolated rotation matrix Λh will in general fail to preserve the uni-

modularity and orthogonality conditions detΛ = +1 and Λ−1 = ΛT. There exist in

the literature other possible interpolations that also fail to preserve the structure of the

group SO(3), but they have other convenient properties such as strain-objectivity. In

[RL98, BS02b, RA02] the interpolation of the director vectors gi of the moving basis

is suggested (which is equivalent to interpolating rotations according to equation (5.2)),

but this requires a correction to the strain definitions. Additionally, in [RA03] another

strategy is proposed which orthogonalises the interpolated quantities. However, any of

these procedures can lead to singularities in the interpolated rotation matrix.

Alternatively, we can obtain an interpolation that preserves the orthogonality if, in-

stead of interpolating elements of the Lie group SO(3), we choose to interpolate the

rotational vectors and obtain an interpolated matrix via the exponential map:

θh = Iiθi → Λh = exp(θ̂
h
). (5.3)

In a similar vein, we might also interpolate any of the vector-like parametrisations of

the rotation matrix. Indeed, it is on this sort of interpolation that we will concentrate

our attention first.

5.2.1 Total, incremental and iterative rotations

In this section we will distinguish between the different variations of rotations that

we encounter during the iterative process of a finite element analysis. We will consider

an equilibrium state at time-step tn (or increment in static non-linear analysis) with a

rotation matrix Λn, and a certain iteration k during the solution process towards the new

time-step tn+1. With this situation in mind, we define the following rotation vectors:

• Total rotation θn+1. Rotation vector of the rotation matrix that transforms the

initial moving basis gi0 into its current orientation. At iteration k, this is given by,

exp(θ̂
k

n+1) = Λk
n+1.

73

• Incremental rotation ω. Rotation vector of the matrix that transforms Λn into

Λn+1. At iteration k, it is defined by

exp(ω̂k) = Λk
n+1Λ

T
n.

We note that we are using the spatial incremental vector, although the material

form Ωk = ΛT
nωk could be employed instead.

• Iterative rotations ∆ϑ and ∆θ. The first of these is the spin variation of rotation

Λk
n+1. In order to obtain an orthogonal matrix at the new iteration k + 1, the

exponential map of ∆ϑ is superimposed onto Λk
n+1, which leads to the following

update

Λk+1
n+1 = exp(∆̂ϑ)Λk

n+1.

The second is the corresponding additive iterative rotation such that

Λk+1
n+1 = exp(θ̂

k

n+1 + ∆̂θ).

We remark that since the two variations ∆ϑ and ∆θ are finite and not infinitesimal,

these two equations will lead to different values of Λk+1
n+1 if they are related via

∆ϑ = T(θk
n+1)∆θ. For reasons that will be given later, when referring to the

iterative rotation, we will consider the spin vector ∆ϑ.

As for the incremental vector, we can use the material iterative vector ∆ϕ =

Λk
n+1

T
∆ϑ.

TOTAL ITERATIVEINCREMENTAL

∆θω
k+1

ω
k

θ
k
n+1

θn θ
k+1
n+1

k + 1

k

t = tn

t = 0

Figure 5.1: Schematic of the total, incremental and iterative rotation vectors.

Figure 5.1 illustrates the meaning of the total, incremental and iterative rotations.

We see that, a priori, any of them can be interpolated and are all valid candidates to

74

update the rotation matrix and the curvature Υ from iteration k to iteration k +1. With

the values of θk+1
n+1 and Υk+1

n+1 at the integration points, we will be able to compute other

variables such as the strain measures and the stress resultants and, from them, the residual

vector and the Jacobian matrix. The processes of updating and interpolation of rotations

are linked and will be studied together in the following paragraphs.

5.2.2 Total, incremental and iterative updates

In order to point out the differences between the translational and rotational fields, we

will formally introduce the operations update Ua and interpolate I. When dealing with

translations, they are defined as follows:

Ua : (∆r, rk) → rk+1 = rk + ∆r

I : ri → rh = Iiri,

with ∆r the iterative position vector, ri the set of nodal values and rk and rk+1

the position vectors at iterations k and k + 1. The interpolation and update process of

translations is given by:

rh,k+1 = I(Ua(∆ri, r
k
i)) = Iirk+1

i = Ii(rk
i + ∆ri) = Iirk

i + Ii∆ri

= I(ri) + I(∆ri) = Ua(I(∆ri), I(rk
i)).

It is clear that the linearity of the space E3 permits the interchange of operations

interpolate and update of the translational variables. However, this is not always the case

when dealing with the rotational field. To show this, we will first define the operation

spin update Us. For a given matrix Λk = exp(θ̂
k
) at iteration k and an iterative spin

variation ∆ϑ, it is defined as

Us : (∆ϑ, θk) → θk+1 | exp(θ̂
k+1

) = exp(∆̂ϑ) exp(θ̂
k
),

which consists of the exponential mapping of ∆ϑ and the extraction of the rotational

vector2 θk+1. By considering the rotation Λk and the nodal iterative spin variations

∆ϑi, the update procedure using the interpolation of iterative rotations can be done in

the following two ways:
2The extraction of the rotation vector from a rotation matrix can be performed by resorting to Spurrier’s

algorithm [Spu78] as given in [SVQ86].

75

θk+1
n+1 = Us(I(∆ϑi),θk),

θk+1
n+1 = Ua(T(θk)−1I(∆ϑi), θk).

It can be verified that, in contrast to Ua and I, the operations Us and I do not commute.

We can construct similar update procedures by using the interpolation of incremental

or total rotations, i.e.

ωh = Iiωi and θh = Iiθi.

All six possible formulations using the three interpolations and the two updates are

given in Table 5.1, expressed with the symbols Ua, Us and I. Their corresponding explicit

operations are given in Table 5.2. The total, incremental and iterative formulations are

also described in the literature as total Lagrangian, updated Lagrangian and Eulerian,

and have been employed in [IFK95], [CG88] and [SVQ86] respectively.

TOTAL INCREMENTAL ITERATIVE

ADDITIVE I(Ua(∆θi, θ
k
i)) Us(I(Ua(∆ωi, ω

k
i)), θn) Ua(T(θk

n+1)
−1I(∆ϑi), θk)

SPIN I(Us(T(θk
i,n+1)∆θi, θ

k
i)) Us(I(Us(T(ωk

i)∆ωi, ω
k
i)), θn) Us(I(∆ϑi), θk

n+1)

Table 5.1: Schematic of the additive and spin update procedure for rotations.

TOTAL INCREMENTAL ITERATIVE

ADDITIVE θk+1
i = θk

i + ∆θi ωk+1
i = ωk

i + ∆ωi No nodal update

UPDATE θk+1 = Iiθk+1
i ωk+1 = Iiωk+1

i ∆θ = T(θk
n+1)I

i∆ϑi

No update at s No update at s θk+1 = θk + ∆θ

Λk+1
n+1 = exp(θ̂

k+1
) Λk+1

n+1 = exp(ω̂k+1)Λn Λk+1
n+1 = exp(θ̂

k+1
)

SPIN ∆ϑi = T(θk
i,n+1)∆θi ∆ϑi = T(ωk

i)∆ωi No spin nodal

UPDATE exp(θ̂
k+1

i) = exp(∆̂ϑi)Λk
i,n+1 exp(ω̂k+1

i) = exp(∆̂ϑi) exp(ω̂k
i) update

θk+1 = Iiθk+1
i ωk+1 = Iiωk+1

i ∆ϑ = Ii∆ϑi

Λk+1
n+1 = exp(θ̂

k+1
) Λk+1

n+1 = exp(ω̂k+1)Λn Λk+1
n+1 = exp(∆̂ϑ)Λk

n+1

Table 5.2: Additive and spin update procedure with total, incremental and iterative

interpolated rotations.

The update procedures in Tables 5.1 and 5.2 give the total rotation at the integration

points θk+1
n+1. The evaluation of other necessary rotational quantities at the integration

76

points must also be done carefully. In particular, the curvature can be computed employ-

ing the total rotation vector as

Υk+1
n+1 = T(θk+1

n+1)
Tθk+1

n+1
′. (5.4)

However, in the incremental and iterative formulations we do not have an update

procedure to obtain θk+1
n+1

′. We can nevertheless resort to the formulae

Υk+1
n+1 = Υn + ΛT

nT(ωk+1)Tωk+1′,

Υk+1
n+1 = Υk

n+1 + Λk
n+1

T
T(∆ϑ)T∆ϑ′,

(5.5)

that have been deduced in Appendix E. The curvatures at the new iteration are

computed in the previous formulae with the corresponding interpolated variations which

can be obtained via the shape functions

ωk+1′ = Ii′ωk+1
i and ∆ϑ′ = Ii′∆ϑi.

In the rest of this section, we will analyse the properties of the three formulations, in

namely: the computational cost, the path-dependence and the strain invariance.

Linearisation of equations

The three different interpolations lead to different Jacobian matrices, and although

we shall not give here the explicit form of any of them, it is important to outline the

consequences of using each of the formulations in the linearisation process.

As can be observed in Tables 5.1 and 5.2, the total and incremental rotations assume

that the solution process provides the nodal additive iterative rotations ∆θi and ∆ωi.

This is consistent with the interpolation of rotations that they use (total and incremental,

respectively):

θ =Iiθi ⇒ ∆θ = Ii∆θi,

ω =Iiωi ⇒ ∆ω = Ii∆ωi.

We can construct our Jacobian matrix K in such a way that our system of equations

furnishes the consistent nodal iterative rotations for each formulation. The different form

of K for each formulation can be illustrated by linearising the product of the rotation

matrix Λk
n+1 with a constant vector v:

77

TOTAL INCREMENTAL ITERATIVE

∆(Λk
n+1v) = −Λ̂k

n+1vT(θk
n+1)I

i∆θi −Λ̂k
n+1vT(ωk

n+1)I
i∆ωi −Λ̂k

n+1vIi∆ϑi

It can be observed that the interpolation of spin iterative rotations ∆ϑi is the one that

gives the simplest expression for K, and it is indeed this interpolation that was used in the

early work of Simo and Vu-Quoc [SVQ86]. On the other hand, applying the interpolation

of total rotations to the weak form Ga, given in (3.33) of Chapter 3, leads to a symmetric

stiffness matrix [IFK95, RC02] (although they are path-dependent and non-objective, as

will be shown next). This can be explained by the fact that both virtual rotations δθ and

the iterative rotations ∆θ belong to the same linear vector space3 E3. We have derived

in Appendix F the expressions for the Jacobian using interpolation of iterative rotations

and total rotations.

We could alternatively modify the expressions in the Jacobian matrix so that we always

get the iterative nodal spin rotations ∆ϑi by modifying the previous linearisation process

as follows (the iterative update is performed as before):

TOTAL INCREMENTAL

∆(Λk
n+1v) = −Λ̂k

n+1vT(θk
n+1)I

iT(θk
n+1,i)∆ϑi −Λ̂k

n+1vT(ωk
n+1)I

iT(ωk
n+1,i)∆ϑi

The matrices T(θk
n+1)I

iT(θk
n+1,i) and T(ωk

n+1)I
iT(ωk

n+1,i) can be also regarded as

configuration-dependent shape functions [JC98]. We have here preferred to keep only the

Lagrangian functions Ii as our shape functions.

Path-dependence analysis

It was reported in [JC99a] that the interpolation of incremental and iterative rotations

are path-dependent in static analysis (non-linear dynamic analysis is in general genuinely

path-dependent). We will consider two sources of path-dependence in order to establish

this statement.

Curvature path-dependence

The different update of the curvature in the total, incremental and iterative formu-

lations (equations (5.4), (5.5)1 and (5.5)2 respectively) reveals the possibility of path-

dependent results. In the total formulation, we can compute the derivative of the rotation
3It can be inferred that a weak form with incremental additive rotations δω and incremental additive

rotations ∆ω would also lead to a symmetric stiffness matrix. This formulation would also suffer from

being path-dependent and non-objective, but would benefit from being limited to values ω < 2π, which

is a better limit than θ < 2π. This is in fact the formulation used by Cardona and Géradin [CG89].

78

vector as θ′ = Ii′θi, and therefore no functional dependence on the past configuration is

present in the computation of the curvature at the integration points in (5.4). In contrast,

the formulae for the incremental and iterative updates (5.5) are clearly dependent on the

past equilibrium configurations and the past iterative solutions, respectively.

Rotation path-dependence

We want to see if, for given nodal rotations, the interpolated rotation depends on the

history of these nodal values. By observing the update process of the incremental and

the total formulations in Table 5.2, it is clear that in the total formulation the rotation

θn+1 is independent of the size of the increment ωi as long as the updated nodal values

θn+1,i remain unchanged. However, we see that the incremental formulation will provide

different interpolated values for configurations that have the same total nodal rotation

but different nodal incremental rotations ωi; the rotations at the integration points will

depend on the size of the increments. A similar reasoning using iterative spin rotations

leads to the same conclusion.

We can give the condition for rotational path-dependence when using global rotations

as follows: whenever we use the exponential map (Us), or matrices T or T−1 at the

integration points, the formulation will have rotational path-dependence. This is the same

as stating that whenever Us, T or T−1 act after I, the formulation will suffer this path-

dependence.

We note that by using interpolation of additive iterative rotations ∆θi and, an additive

update (a choice not given in Tables 5.1 and 5.2, which show the case of spin iterative

rotations), no rotation path-dependency will exist. In fact, this combination is equivalent

to the total formulation with additive update, although the update and interpolation are

done in a different order, and the former does not store total nodal rotations.

Table 5.3 summarises the previous results.

Additive update Spin update Path-dep.

Curv. Rotat. Curv. Rotat.

TOTAL NO NO NO NO NO

INCREMENTAL YES YES YES YES YES

ITERATIVE YES YES YES YES YES

Table 5.3: Path-dependence with respect to the curvature and rotations in the total,

incremental and iterative formulations.

79

Other properties of global interpolation of rotations

Although it has been shown that the total interpolation has some beneficial properties,

it has the disadvantage of being limited to rotations θ < 2π. This is due to the singularity

of T for θ = 2π and to problems associated with the interpolation of large nodal rotations.

It was demonstrated in [CJ99, JC99a] that all three interpolations are in fact non-

objective. By objectivity we understand the same material internal strain measures and

stress resultants for two given deformed configurations to be provided, which only differ

in a rigid body motion. In the next section an alternative interpolation that preserves

this important property is described.

5.3 Interpolation of local rotations

The study of strain-objective formulations for beams has attracted some attention in

recent years. References [CJ99, JC99a] show that the global interpolations discussed in

the preceding section give in general different strain measures if a rigid body rotation is

applied. This pitfall was eliminated by splitting the total rotation of the beam into a

rigid body rotation Λrig and a local rotation ΛL:

Λ = ΛrigΛL = Λrig exp(Θ̂
L
), (5.6)

where we note that the local rotation vector ΘL refers to the body-attached basis gi.

By interpolating the local rotation vector ΘL, which is not affected by a rigid body motion,

strain invariance can be recovered. Although the method has some similarities with the

co-rotational approach, we emphasise than in the the present formulation the kinematics

of the beam is not approximated (in contrast to some co-rotational formulations [Col90,

Cri90]), and thus the formulation remains geometrically exact. As has been already said,

other solutions have been proposed in [BS02b, RA02], but the interpolated matrix that

they furnish is not orthogonal, and requires modification of the strain-stress relationship.

5.3.1 Generalised shape functions

The rigid rotation Λrig can be selected from the nodal rotations in different ways. It

is suggested in [JC99a] that, in order to minimise the amount of the local rotation ΘL,

the rigid rotation should be chosen according to the following criteria:

1. Averaged rigid rotation. Λrig corresponds to the midpoint rotation between two

80

reference nodes I and J :

exp(Θ̂IJ) = ΛT
I ΛJ → Λrig = ΛI exp(

1
2
Θ̂IJ). (5.7)

This criterion is recommended for minimising the local rotations for an element with

an even number of nodes.

2. Nodal rigid rotation. Λrig is taken as the rotation of a reference node I: Λrig = ΛI .

It minimises the local rotation if the element has an odd number of nodes and I is

the middle node. This choice corresponds to ΘIJ = 0 in (5.7).

We will first describe the latter choice, which leads to slightly simpler expressions.

Later on, the first criterion will be explained, which corresponds to the formulae given in

[JC99a].

Nodal rigid rotation

The iterative changes of the nodal rotations can be obtained by performing the in-

finitesimal variation of (5.6), which leads to

∆ϑ = ∆ϑI + Λrig∆ϑL = ∆ϑI + ΛrigT(ΘL)∆ΘL, (5.8)

where ∆ϑ, ∆ϑrig and ∆ϑL are the spin iterative variations of the rotation matrices

Λ, Λrig and ΛL respectively; and the second equality follows from (2.19) in Chapter 2.

By using the standard Lagrangian shape functions Ii, the vectors ΘL and ∆ΘL can be

interpolated from their nodal values via:

ΘL = IiΘL
i and ∆ΘL = Ii∆ΘL

i . (5.9)

By inserting them into (5.8), ∆ϑ is given by

∆ϑ = ∆ϑI + ΛrigT(ΘL)T i∆ϑL
i , (5.10)

where T i .= IiT(ΘL
i)−1 (no summation). On the other hand, for each node i, equation

(5.8) implies ∆ϑi = ∆ϑI + Λrig∆ϑL
i , and therefore ∆ϑL

i = ΛT
rig(∆ϑi −∆ϑI) which,

after inserting into (5.10) and setting ∆ϑiI = ∆ϑi −∆ϑI , gives rise to

∆ϑ = ∆ϑI + ΛrigT(ΘL)T iΛT
rig∆ϑiI = Ii

g∆ϑi. (5.11)

81

The matrices Ii
g are the generalised shape functions given by,

Ii
g = Λrig

[
T(ΘL)T i + δI

i

(
I−T(ΘL)T̄

)]
ΛT

rig, i = 1, . . . , N (5.12)

where T̄ .= IjT(ΘL
j)−1 (summation over j = 1, . . . , N). We can alternatively write Ii

g

as

Ii
g = I−ΛrigT(ΘL)(T̄−Ti)ΛT

rig if i = I,and

Ii
g = ΛrigT(ΘL)T iΛT

rig otherwise.

The derivatives of Ii
g can be expressed by resorting to the matrix T′ given in equation

(A.17), Appendix A:

Ii
g
′ = Λrig

[
T(ΘL)′T i + T(ΘL)T i′ − δI

i

(
T(ΘL)′T̄ + T(ΘL)T̄′)]ΛT

rig,

where T̄′ = Ij ′T(ΘL
j)−1 and T i′ = Ii′T(ΘL

i)−1. It is clear from definition (5.12) that
∑N

I Ii
g = I, and therefore

∑N
I Ii

g
′ = 0.

It is interesting to point out that Borri and Bottasso [BB94a, BB94b] obtained a similar

result (although they employed spatial local rotations and only two-noded elements), even

though they did not directly address the invariance properties.

Averaged rigid body rotation

The expressions for a rigid rotation when ΘIJ 6= 0 require an expression involving

∆ϑrig and the nodal changes ∆ϑI and ∆ϑJ . Let us first note from (5.7) that ΘL
I = −ΘL

J ,

and therefore ∆ΘL
I = −∆ΘL

J . By using this identity, the following relationship can be

deduced (see [JC99a] for details):

∆ϑrig = Λrig

(
υIΛT

rig∆ϑI + υJΛT
rig∆ϑJ

)
, (5.13)

where υI and υJ are given by

υI
.=

1
2

(
I +

1
ΘIJ

tan
ΘIJ

4
Θ̂IJ

)
,

υJ
.=

1
2

(
I− 1

ΘIJ
tan

ΘIJ

4
Θ̂IJ

)

82

and ΘIJ = ‖ΘIJ‖. Replacing ∆ϑI in (5.11) (and also in the term ∆ϑiI = ∆ϑi−∆ϑI)

with ∆ϑrig in (5.13), we obtain the following generalised shape functions:

Ii
g = Λrig

[
(δI

i + δJ
i)

(
I−T(ΘL)T̄

)
υi + T(ΘL)T i

]
ΛT

rig,

which can be also written as

Ii
g = Λrig

[(
I−T(ΘL)T̄

)
υi + T(ΘL)T i

]
ΛT

rig if i = I, J ,and

Ii
g = ΛrigT(ΘL)T iΛT

rig otherwise.
(5.14)

It can be verified that the completeness condition
∑N

I Ii
g = I still holds. The derivatives

are given by

Ii
g
′ = Λrig

[
−(δI

i + δJ
i)

(
T(ΘL)′T̄ + T(ΘL)T̄′)υi + T(ΘL)′T i + T(ΘL)T i′

]
ΛT

rig.

5.3.2 Update of rotations and curvature

As for the interpolation of global rotations, we can choose between a spin or an additive

update process. Since the generalised functions provide the iterative spin rotations, the

former appears to be more convenient. Both of them are given in Table 5.4, where the

extraction of the rigid rotation Λrig is indicated for an averaged rigid body rotation. The

only requirement for obtaining a strain-invariant procedure is to use (5.9) as the only

interpolation.

It follows from (5.6) and (2.29) that

Λ′ = ΛrigΛL′ = ΛrigΛL ̂T(ΘL)T
ΘL′ = Λ ̂T(ΘL)T

ΘL′.

Inserting this relationship into the definition of the (material) curvature Υ̂ = ΛTΛ′

leads to

Υ = T(ΘL)
T
ΘL′. (5.15)

Since only the local rotations are employed for the computation of the curvature, the

formulation is clearly strain-invariant. Moreover, since the rigid and local rotations are

computed via their total values (no reference to the iterative or incremental rotations

is made), the formulation is also path-independent. On the other hand, the amount of

83

Spin update Additive update

Λk+1
i = exp(θ̂

k+1

i) = exp(∆̂ϑi)Λk+1
i ∆θi = T(θk

i)∆ϑi

θk+1
i = θk

i + ∆θi

Both:

exp(Θk+1
IJ) = Λk+1

I

T
Λk+1

J

Λk+1
rig = Λk+1

I exp(1
2Θ̂IJ)

exp(Θ̂
L,k+1

i) = Λk+1
rig

T
Λk+1

i

ΘL,k+1 = IiΘL,k+1
i

Λk+1 = Λrig exp(Θ̂
L,k+1

)

Table 5.4: Nodal update and interpolation procedures using local rotations.

rotation is limited to Θ < 2π. This means that the nodal rotations of an element cannot

differ by an angle larger than 2π, which is for practical purposes a very mild limitation.

In summary, although the interpolation of local rotations is computationally more

demanding, the advantages mentioned above make it preferable to the interpolation of

global rotations.

84

6. Conserving time-integration

schemes

We will now describe some time-integration algorithms specially designed for the

conservation of energy and momenta. This kind of integration, which concentrates on

preservation of the geometric properties of the underlying mechanical system such as

the constants of motion, or the symplectic structure, is called geometric integration

[BI99, HLW02]. We will focus our attention on algorithms that conserve momenta or

energy and momenta.

These algorithms date back to some early work [Bau72, BI75, LG76, CHMM78, Sas76]

where the preservation of certain invariants of motion was enforced in the time-discretisa-

tion of the governing equations. Simo and co-workers developed these ideas in order

to obtain energy- and momentum-conserving algorithms for elastodynamics and rigid

bodies [ST92, SW91], and later extended these algorithms to geometrically exact beam

theory [STD95]. A similar energy-conserving algorithm for 3D beams can be also found

in [BDT95]. Once again, due to the presence of the rotational field, special care must be

exercised in order to conserve the constants of motion. We will show in this chapter that

the interpolation of nodal rotations (local, incremental, total or iterative) has important

consequences for the conservation properties of the resulting algorithm. As yet, our

objective is to provide an energy-momentum algorithm that is strain-invariant.

It is worth mentioning some recent work [BT96, BB98, AR01] which constructs energy

decaying algorithms in order to eliminate undesirable high frequencies in the response of

the system. Following a similar route as Hughes et al. [HCL78], Kuhl and Ramm [KR96]

designed an algorithm which uses a choice of Newmark’s parameters which would normally

dissipate energy, while actually enforcing the conservation of energy and momenta via

Lagrange multipliers. In linear analysis, this act is equivalent to transferring the dissipated

energy in the higher modes to the lower modes of vibration. In a similar vein, in [CHT00],

the energy of the system is constrained by adding a correction to the accelerations. This

fact is justified by noting that instabilities in the accelerations are not reflected in the

85

computation of the energy. In the majority of the algorithms mentioned, an initially

conserving scheme is constructed and modified to provide some energy dissipation, which

might be convenient in sudden motions or in presence of high frequency oscillations. In

all cases, conservation of energy or momenta or both is taken as a desirable condition for

non-linear stability.

Some necessary computations that will be used throughout this chapter are derived in

Section 6.1. From these results, and resorting to the interpolation of incremental tangent-

scaled and unscaled rotations, two different algorithms are constructed in Sections 6.2 and

6.3.

It is important to point out that in the elaboration of theses algorithms, translations

and rotations are treated separately. In contrast, a formulation that deals with a mixed

field can be found in [BB98]. This leads to a novel approach with many interesting

properties and some advantages concerning the time-integration of the beam equations.

However, the application of this approach to the formulation of joints to be described in

Part II of this thesis, is not as straightforward as the use of translations and rotations as

separate variables.

6.1 Preliminary considerations

We will impose the conservation of energy between two time-steps tn and tn+1 by using

the increments of the kinetic energy T , the total elastic potential Vint and the potential

of the external loads Vext,

En+1 − En = ∆E = ∆T + ∆Vint + ∆Vext = 0, (6.1)

where here and elsewhere the sign ∆ denotes incremental variations, i.e. ∆(•) =

(•)n+1−(•)n (and should not be confused with the boldface delta ∆ used for the iterative

values). Equation (6.1) can be seen as an incremental version of the weak form G
.=

δp · g = 0, which states that the infinitesimal variation of energy is zero. It is clear that

the algorithm will inherently conserve energy if (6.1) is satisfied. As mentioned above,

this is in contrast to other techniques where conservation of energy is imposed upon a

given algorithm using Lagrange multipliers [Bau72, HCL78, KR96], or where the energy

evolution is stabilised via the use of a penalty parameter [LC97, AP98a].

We will aim to write the three different increments in equation (6.1) as a product of

a vector of nodal incremental kinematics ∆pi and a conjugate vector of residuals gi as

86

follows:

∆E = ∆pi · gi = 0, (6.2)

in a similar way as the weighted version of the variational formulation given in Chap-

ter 3. The particular form of ∆pi and gi in (6.2) can furnish additional conserving

properties to the algorithm. In Section 6.2, an energy-momentum algorithm that inter-

polates tangent-scaled rotations is described [STD95]. In contrast, Section 6.3 makes use

of unscaled incremental rotations, and two algorithms that conserve energy or angular

momentum (bot not both), while including strain-invariant properties are developed. The

version of these algorithms that conserves momenta will be modified in such a way that

the energy increment is corrected [CJ00], yielding a fully energy-momentum conserving

algorithm with strain-invariant properties.

6.1.1 Increment of energy over a time-step

Increment of kinetic energy

Recalling the definition of the kinetic energy T and the vector of momenta l in (3.20)1
and (3.4), and also defining the vector of velocities ṗn at time tn as

ṗn
.=

{
vn

wn

}
=

{
vn

ΛnWn

}
,

the increment of the kinetic energy over a time-step ∆t may be written as

∆T =
1
2

∫

L

(
ln+1 · ṗn+1 − ln · ṗn

)
ds =

∫

L
ṗn+ 1

2
·∆lds

=
∫

L

(
Aρvn+ 1

2
·∆v + JρWn+ 1

2
·∆W

)
ds, (6.3)

where the subscript n + 1
2 denotes averaged quantities between time-steps tn and tn+1,

i.e. (•)n+ 1
2

= 1
2 [(•)n + (•)n+1].

Increment of total elastic potential

Remembering the definition of the elastic potential of the beam Vint in (3.16), and the

definition of the strain measure Σ in (3.12), the increment over a time-step follows as

87

∆Vint =
1
2

∫

L
(Σn+1 ·CΣn+1 −Σn ·CΣn) ds =

∫

L
∆Σ ·CΣn+ 1

2
ds

=
∫

L

{
(ΛTr′)n+1 − (ΛTr′)n

∆Υ

}
· Fn+ 1

2
ds, (6.4)

where F = {N M} is the material stress resultant vector.

It is demonstrated in Appendix E, equation (E.9)1, that the increment of the material

curvature may be written as

∆Υ = ΛT
nS(ω)Tω′, (6.5)

where ω is the tangent-scaled incremental rotation such that Λn+1 = cay(ω)Λn (with

cay(•) given in (2.8)), and S(ω) is the transformation matrix deduced in Appendix A

and given in (2.23). On the other hand, we can write the translational part of the strain

vector ∆Σ as

(ΛTr′)n+1 − (ΛTr′)n = ΛT

n+ 1
2
∆r′ + ∆ΛTr′

n+ 1
2
.

The term ∆ΛT can be computed by using the definition of the Cayley transform in

(2.11),

cay(ω) =
(
I− 1

2
ω

)−1 (
I +

1
2
ω

)
.

Inserting this result into Λn+1 = cay(ω)Λn, the following remarkable identity is ob-

tained:

Λn+1 −Λn =
1
2
ω̂ (Λn+1 + Λn) ⇔ ∆Λ = ω̂Λn+ 1

2
. (6.6)

Substituting (6.5) and (6.6) into (6.4), we can finally write ∆Vint as

∆Vint =
∫

L

(
∆r′ ·Λn+ 1

2
Nn+ 1

2
− ω · r̂′n+ 1

2
Λn+ 1

2
Nn+ 1

2
+ ω′ · S(ω)ΛnMn+ 1

2

)
ds. (6.7)

We note that by introducing the unscaled incremental rotations ω such that Λn+1 =

exp(ω̂)Λn, the increment of the material curvature can be written as

∆Υ = ΛT
nT(ω)Tω′

88

(see equation (E.3) in Appendix E) . Using this equation, and remembering that

ω = tan(ω/2)
ω/2 ω, with ω = ‖ω‖, we can rewrite ∆Vint in (6.7) as

∆Vint =
∫

L

(
∆r′ ·Λn+ 1

2
Nn+ 1

2
− ω · tan(ω/2)

ω/2 r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2
+ ω′ ·T(ω)ΛnMn+ 1

2

)
ds.

(6.8)

Increment of the potential of the external loads

We will restrict our attention to conservative loads (i.e. the loads for which the energy

is conserved and, therfore, for which the present discussion applies). In particular, we will

consider only dead loads, i.e. a constant distributed external load n̄ (point loads without

an associated mass do not represent a dead load). The increment of the external potential

is then given by

∆Vext = −
∫

L
(rn+1 · n̄− rn · n̄)ds = −

∫

L
∆r · n̄ds. (6.9)

6.2 Interpolation of tangent-scaled rotations and non-linear

angular velocity update: STD algorithm. [STD95]

Time-discretisation

By using the following time-integration scheme:

vn+ 1
2

=
∆r

∆t
and Wn+ 1

2
=

Wn+1 + Wn

2
=

Ω
∆t

, (6.10)

we can write the increment of kinetic energy in (6.3) as

∆T =
1

∆t

∫

L
(∆r ·Aρ∆v + Ω · Jρ∆W) ds,

where Ω is the material tangent-scaled incremental rotation such that cay(Ω) =

ΛT
nΛn+1. Recalling that the tangent-scaled incremental rotations ω and Ω are related

via ω = ΛnΩ = Λn+1Ω, the previous expression turns into

∆T =
1

∆t

∫

L
(∆r ·Aρ∆v + ω ·∆lφ) ds =

1
∆t

∫

L
∆p ·∆lds, (6.11)

89

where ∆p is the vector of incremental displacements given by

∆p
.=

{
∆r

ω

}
.

Spatial-discretisation

Analogous to the variational formulation described in Section 3.7, we will discretise

∆p using N nodal Lagrangian functions Ii and N nodal incremental displacements ∆p
i

as follows:

∆ph = Ii∆p
i

and ∆ph′ = Ii′∆p
i
.

Introducing this discretisation into the expressions of ∆T , ∆Vint and ∆Vext in equations

(6.11), (6.7) and (6.9), respectively, the energy increment takes the form

∆E = ∆p
i
· gi

∆
, (6.12a)

where gi
∆

= gi
∆,d

+ gi
∆,v

− gi
∆,e

is the residual vector, conjugate to the incremental

displacements ∆p
i
. The explicit form of the dynamic, elastic and external force vectors

is given by (see [STD95]):

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds, (6.12b)

gi
∆,v

.=
∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

S(ω)ΛnMn+ 1
2



 ds, (6.12c)

gi
∆e

.=
∫

L

{
Iin̄

0

}
ds. (6.12d)

Therefore, the condition of energy conservation for any ∆p
i

is now equivalent to the

following non-linear equations:

gi
∆

= 0 i = 1, . . . , N.

It is demonstrated in Appendix H that by using this residual, the algorithm also

conserves the translational and angular momenta.

It is important to note that for the conservation of energy it is vital to interpolate

the incremental displacements via ∆p = Ii∆p
i
, as we have done in the construction of

90

equations (6.12). If the interpolation of ∆p were not used for the kinematics of the beam

and update process, the energy increment could not be written in the form (6.12a), which

would lead to only approximate energy conservation. Consequently, the conservation of

energy imposes the interpolation of the test functions ∆p, which are also the kinematic

variables. Hence, if we want to interpolate local rotations in order to achieve strain-

invariance, we would then have ∆p 6= Ii∆p
i
, and therefore the conservation of energy

would be spoiled. It follows that with the residual gi
∆

in (6.12), we have to choose energy-

conservation or strain-invariance. This is in contrast with the variational approach, where

the interpolation of the test functions was independent of the properties of the resulting

time-integration algorithm.

Moreover, the non-linear velocity update for rotations given in (6.10)2 has detrimental

effects on the objectivity of the formulation. This was proven with a simple problem in

[JC02b]: a two-noded straight beam with applied initial angular velocity in the direction

of its longitudinal axis. It can be shown that if we compare two situations where the nodes

have the same initial relative angular velocities, but which differ by a constant amount,

the velocity update given by (6.10)2 furnishes different interpolated angular velocities.

This can be called a dynamical non-objectivity. It can be verified that the linear velocity

update given in the next section does not suffer this drawback [JC02b].

Besides, the interpolation of tangent-scaled rotations has the disadvantage of being

singular for ω = (2n + 1)π, n ∈ N, although is a relatively mild limitation given that ω

is the incremental rotation between two consecutive time-steps.

6.3 Interpolation of unscaled rotations and linear angular

velocity update

Time-discretisation

Instead of relation (6.10), we can alternatively use the following time-integration

scheme:

vn+ 1
2

=
vn+1 + vn

2
=

∆r

∆t
and Wn+ 1

2
=

Wn+1 + Wn

2
=

Ω
∆t

, (6.13)

where Ω is the material unscaled incremental rotation such that exp(Ω̂) = ΛT
nΛn+1.

In a similar manner to the previous section, from relations ω = ΛnΩ = Λn+1Ω, the

increment of kinetic energy becomes

91

∆T =
1

∆t

∫

L
(∆r ·Aρ∆v + ω ·∆lφ) ds =

1
∆t

∫

L
∆p ·∆lds,

with ∆p the vector of incremental displacements, which is now given by

∆p
.=

{
∆r

ω

}
.

Spatial-discretisation

We will also discretise ∆p using N nodal Lagrangian functions Ii and N nodal incre-

mental displacements ∆pi as follows:

∆ph = Ii∆pi and ∆ph′ = Ii′∆pi.

The condition of energy conservation for any ∆pi is now equivalent to the following

non-linear equations:

∆E = 0 ⇔ gi
∆

.= gi
∆,d + gi

∆,v − gi
∆,e = 0 i = 1, . . . , N (6.14a)

where gi
∆,d, gi

∆,v and gi
∆,e are the inertial, elastic and external force vectors given by

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds, (6.14b)

gi
∆,v

.=
∫

L


 Ii′I 0

−Ii tan(ω/2)
ω/2 r̂′n+ 1

2
Ii′I








Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds, (6.14c)

gi
∆,e

.=
∫

L

{
Iin̄

0

}
ds. (6.14d)

Note that, with respect to the previous residual gi
∆

, only the expression of elastic

force vector has been modified. These force vectors provide energy conservation but, as

demonstrated in Appendix H, they fail to preserve the angular momentum.

As pointed out earlier, energy conservation is achieved if the interpolation of incremen-

tal rotations is performed. Therefore, energy conservation and strain-invariance (which

require the interpolation of local rotations) can neither be simultaneously satisfied for

this algorithm. We will propose in Section 6.3.2 two similar algorithms that manage to

recover energy conservation and use strain-invariant interpolation.

92

6.3.1 Momentum-conserving algorithms

In order to achieve momentum conservation, we first give the expression for the incre-

ment of angular momentum Πφ in the preceding energy-conserving algorithm, which has

been computed in Appendix H as

∆Πφ =
∫

L

(
1− tan(ω/2)

ω/2

)
r̂′n+ 1

2
Λn+ 1

2
Nn+ 1

2
ds. (6.15)

Turning this energy-conserving algorithm into a momentum-conserving algorithm there-

fore involves making ∆Πφ = 0. We propose two ways in which this can be achieved.

Algorithm M1

An angular momentum conserving algorithm can be directly constructed by replacing

the factor tan(ω/2)
ω/2 in (6.15) by unity, and keeping the same time-integration scheme (6.13).

The elastic load vector is then given by

gi
∆,v

.=
∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds. (6.16)

By employing this expression, the angular momentum increment ∆Πφ vanishes at the

expense of losing energy conservation. The increment of energy is then

∆E1 =
∫

L

(
1− tan(ω/2)

ω/2

)
Iiωi · r̂′n+ 1

2
Λn+ 1

2
Nn+ 1

2
ds. (6.17)

Other possible momentum conserving algorithms that use the time-integration scheme

(6.13) (and therefore unscaled rotations) can be found in [JC99b], where it is demonstrated

that any algorithm using an elastic residual of the form

gi
∆,v =

∫

L


 Ii′A 0

−IiAr̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds (6.18)

will preserve angular momentum for any 3× 3 matrix A.

It is also shown in reference [JC99b] that the residuals in (6.14) can be generalised

to furnish other energy conserving algorithms, all based on the same scheme and using

interpolation of incremental displacements.

93

Algorithm M2

We can alternatively think of modifying the time-integration scheme (6.13) in such a

way that we still have conservation of momenta. It is demonstrated in Appendix H that

using the time-integration scheme

vn+1 =
∆r

∆t
, Wn+ 1

2
=

Wn+1 + Wn

2
=

Ω
∆t

, (6.19)

the angular momentum is conserved if we used the following form of the elastic load

vector:

gi
∆,v =

∫

L

[
Ii′I 0

−Iir̂′n Ii′I

]



Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds (6.20)

together with gi
∆,d and gi

∆,e as previously stated in (6.14b) and (6.14d). Note that

the translational velocities use now a backward Euler time-stepping, different from the

mid-point rule in (6.13), and that r̂′ in (6.20) is now computed at time tn. It is shown in

Section H.3 that the increment of energy is then given by

∆E2 = ωi ·
∫

L
Ii

(
r̂′n −

tan(ω/2)
ω/2

r̂′n+ 1
2

)
Λn+ 1

2
Nn+ 1

2
ds− 1

2

∫

L
‖∆v‖2Aρds

= ∆E1 − 1
2

∫

L
ω · ∆̂r′Λn+ 1

2
Nn+ 1

2
ds− 1

2

∫

L
‖∆v‖2Aρds, (6.21)

where ∆E1 is the expression for the energy increment obtained in (6.17) for algorithm

M1. Although nothing can be said about the sign of the first integral, the second is always

negative, which implies that, with respect to algorithm M1, this term will add an energy

decaying contribution (while preserving the angular momentum). The numerical results

from this algorithm confirm the dominant role of this term. This is in fact a consequence

of the well known dissipative character of the Euler backward formula [GR94], which in

this case has been employed for the translational displacements in (6.19). Although it

reduces the order of accuracy [Woo90], it will be convenient under certain circumstances

when modelling the sliding joints.

94

6.3.2 Strain-invariant energy-momentum algorithms

β1-algorithm

In attempting to construct a strain-invariant energy-momentum algorithm, we can first

consider Algorithm 1 of the previous section, which uses the nodal residual vector

gi
∆ = gi

∆,d + gi
∆,v(Nn+ 1

2
,Mn+ 1

2
)− gi

∆,e (6.22a)

with the following definitions:

gi
∆,d =

1
∆t

∫

L
Ii∆lds

gi
∆,v(Nn+ 1

2
,Mn+ 1

2
) =

∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds

gi
∆,e =

∫

L

{
Iin̄

0

}
ds.

(6.22b)

We will apply the interpolation of local rotations described in Section 5.3 of Chapter

5. We know that in this case

∆pi · gi
∆ 6= ∆E

which is due to (i) the absence of interpolation of incremental rotations, and (ii) the

removal of the factor tan(ω/2)
ω/2 in the elastic residual. It is shown in [CJ00, MJC02b] that

conservation of energy can be restored by adding a variable additional parameter that

multiplies a similar form of the force vector. The increment of energy is then written as

∆E = ∆pi · gi
∆ + β1∆pi · gi

∆,v(∆N,0) = ∆pi · gi
β1, (6.23)

where gi
β1 = gi

∆ + β1g∆,v(∆N, 0) and β1 is such that the identity ∆E = 0 is satisfied,

i.e.

β1 =
∆E −∆pi · gi

∆

∆pi · gi
∆,v(∆N,0)

. (6.24)

Therefore, solving the system of equations

gi
β1 = 0, i = 1, . . . , N (6.25)

95

is equivalent to preserving of the total energy of the system. It is demonstrated

in Section H.4 of Appendix H that the resulting elastic residual gi
∆,v(Nn+ 1

2
,Mn+ 1

2
) +

gi
∆,v(∆N,0) conserves the angular momentum.

β2-algorithm

In a similar vein, we can apply the interpolation of local rotations to algorithm STD.

This will spoil the conservation of energy, which we will then restore by adding an anal-

ogous additional term multiplied by a parameter β2. The resulting algorithm therefore

uses the following residual vector:

gi
β2

= gi
∆

+ β2∆pi · gi
∆,v

(∆N,0), (6.26a)

where gi
∆

= gi
∆,d

+ gi
∆,v

(Nn+ 1
2
,Mn+ 1

2
)− gi

∆,e
and the force vectors are defined as

gi
∆,d

=
1

∆t

∫

L
∆lds, (6.26b)

gi
∆,v

=
∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

S(ω)ΛnMn+ 1
2



 ds, (6.26c)

gi
∆e

=
∫

L

{
Iin̄

0

}
ds. (6.26d)

The parameter β2 is now given by

β2 =
∆E −∆p

i
· gi

∆

∆p
i
· gi

∆,v
(∆N,0)

. (6.27)

We remark that, in fact, the only differences between algorithms β1 and β2 are: (i) the

different definition the parameters β1 and β2, (ii) the elastic force vectors g∆,v and g
∆,v

,

and (iii) the time-integration of rotations, which uses unscaled incremental rotations in the

β1-algorithm, and tangent-scaled incremental rotations in the β2-algorithm. In the latter

case, some computational cost is involved, since the unscaled rotations must be scaled in

order to obtain the angular velocity W, according to the time-stepping in (6.10), (used

also in the STD algorithm). Moreover, this algorithm suffers from being dynamically

non-objective, due to this non-linear velocity update.

However, we point out that the correction that the parameter β2 provides must com-

pensate the error in the increment of energy due to one reason only: the interpolation

of local rotations instead of tangent-scaled incremental rotations. This is an advantage

96

with respect to the two sources of discrepancy in the equality ∆E = ∆pi · gi
∆ in the β1

algorithm.

97

Part II

Modelling of joints

98

7. Node-to-node master-slave

approach

In this part of the thesis, we will focus on lower-pair mechanisms; that is, the joints

connecting two mechanical elements via a wrapping action, and where the contact takes

place along a surface [Ang82, GC01]. In contrast, higher-pair mechanisms are joints

where the contact takes place along a line or a point. The latter are more difficult to

model, but can be in general decomposed into several lower-pairs.

In this chapter, we describe the basis of the master-slave approach, also known as the

parent-child approach or minimum set method [Mit97, IM00a]. The latter stands for the

fact that we only add to the system the additional degrees of freedom due to the presence

of the joints, so that the number of parameters is kept to a minimum.

In the master-slave approach, the joint is defined by the relationship between the

variations of the nodal positions in a spatially discretised weak form. In this sense, the

approach seems particularly convenient for finite-element implementation, whereby com-

patibility relationships of this type are handled at the point of assembling the structural

equilibrium from the element equilibria.

We will define in this chapter the kinematic relationship between two nodes: a master

and a slave node, which remain as such all throughout the motion. We will call this

formulation the node-to-node master-slave approach. This is in contrast with the node-

to-element master-slave relationship given in the next chapter, where the all the nodes of

one element are the master nodes and form a master element. As will be shown, the reason

for that lies in the desire to provide a realistic model when joints with sliding conditions

are present. Nevertheless, the node-to-node formulation embraces many practical models

of joints with only released rotations (revolute, spherical or cardan joint), joints where

the sliding segments are rigid or those whose flexibility can be neglected.

After giving the basic definitions and establishing the master-slave relationship in

Section 7.1, we derive the infinitesimal and incremental form in Sections 7.2 and 7.3,

99

respectively. We will then be able to rewrite the weak forms with the new set of master

and released degrees of freedom and obtain a modified version of the system of equations.

The theory can be found in detail in [JC96, JC01, MJC02a]; here a summary will be given

in order to prepare the ground for the implementation of the more complex joints in the

forthcoming chapters.

7.1 Kinematic description of the joint

A joint will be formed when two elements of a system are not rigidly attached to

each other. The kinematic relationship between two nodes of two different element ends

connected to the same joint can be given as an algebraic equation. In the master-slave

approach, the degrees of freedom of one of the two nodes (the slave node) are related to

the degrees of freedom of the other node (the master node) through the released degrees

of freedom (relative displacements of the slave node with respect to the master node given

in the body-attached frame).

We will denote by

qm
.=

{
rm

θm

}
and q

.=

{
r

θ

}

the displacements of the master and slave nodes, respectively, which are given in the

inertial frame ei. We also use

qR
.=

{
rR

θR

}

to denote the released displacements given in the moving basis gi of the master node.

Thus, in what follows, kinematic quantities without a subscript are assumed to be slave

variables.

Some standard joints are sketched in Figures 7.1a-e, and Table 7.1 gives the general

components of the released translations rR and released rotations θR for these joints. We

note that in some cases there is neither a unique choice of the master and the slave nodes,

nor only one possible vector pR. Different orientations of the joint and the connected

beams yield different non-zero components of rR and θR (albeit with the same number

of released degrees of freedom), and those given in Table 7.1 illustrate some possible

combinations. Figure 7.1f shows a general joint, with all degrees of freedom released and

indicating the notation used.

100

Y

f)

Y
X

Z

Master node

Y

Z

X

Slave node
e)d)

c)b)a)

Y

Z

X

X

Z

rm, θm

r ,θ

rR,θR

XC

θY

XC

θY

θZθY

Figure 7.1: Prismatic joint (a), cylindrical joint (b), revolute joint (c), spherical joint

(d), cardan or universal joint (e) and notation used (f).

rR θR

Prismatic {XC 0 0} {0 0 0}
Cylindrical {XC 0 0} {0 θY 0}
Revolute {0 0 0} {0 θY 0}
Spherical {0 0 0} {θX θY θZ}
Cardan {0 0 0} {0 θY θZ}

Table 7.1: Released degrees of freedom for several kind of joints.

The kinematic relation between the master and slave dof may be written as follows,

r = rm + ΛmrR, (7.1a)

Λ = ΛmΛR, (7.1b)

where Λ = exp(θ̂), Λm = exp(θ̂m) and ΛR = exp(θ̂R) are the slave, master and

released rotation matrices, respectively. Note again that according to relations (7.1), rR

and ΛR are the released translations and the triad of released rotations referring to the

body-attached frame of the master node.

101

We will next derive a variational and an incremental form of the master-slave relations

(7.1), which will be associated with the weak form G in (3.29) and the increment of energy

∆E in Chapter 6, respectively.

7.2 Variational form

7.2.1 Master-slave relationship

We will define the slave, master, and released virtual displacements by

δpm
.=

{
δrm

δϑm

}
, δp

.=

{
δr

δϑ

}
and δqR

.=

{
δrR

δθR

}
. (7.2)

The virtual rotations are such that

δΛm = δ̂ϑmΛm , δΛ = δ̂ϑΛ , δΛm = T̂RδθRΛR, (7.3)

where TR
.= T(θR), and the matrix T is given in (2.18). Note that the master and

slave rotations are spin variations, whereas the released rotations are additive infinitesimal

rotations. This is required by certain type of joints like the cardan joint, where the null

component of θR is preserved in the solution and update process only when additive

rotations are used [JC01]. The same argument applies if a spherical joint with a prescribed

rotation in one of the directions is considered.

By using relations (7.3), the variation of δp can be expressed by resorting to equation

(7.1) as follows:

δr = δrm + ΛmδrR + δ̂ϑmΛmrR,

δΛ = δ̂ϑΛ = δ̂ϑmΛmΛR + ΛmT̂RδθRΛR.
(7.4)

The last equation yields δϑ = δϑm+ΛmTRδθR, which together with the first equation

gives rise to the matrix relationship

δp = NδδpRm, (7.5a)

where

δpRm
.=

{
δqR

δpm

}

102

is a vector of released and master displacements and Nδ is given by

Nδ
.=

[
Λm 0 I −Λ̂mrR

0 ΛmTR 0 I

]
=

[
Rδ Lδ

]
, (7.5b)

with

Rδ
.=

[
Λm 0

0 ΛmTR

]
, Lδ

.=

[
I −Λ̂mrR

0 I

]
. (7.5c)

7.2.2 Equilibrium equations

The following spatial-discretisations of the weak form were derived in Chapter 3:

Gh .= δpi · gi = 0,

Gh
a

.= δqi · gi
a = 0,

(7.6)

where the residuals gi and gi
a are given in expressions (3.40) and (3.42). Here, δpi and

δqi are the virtual displacements of node i with spin and additive infinitesimal rotations,

respectively. After introducing the time-discretisation described in Chapter 4, the weak

forms in (7.6) take the following expressions:

Gh .= δpi · gi
n+1+α = 0

Gh
a

.= δqi · gi
a,n+1+α = 0.

(7.7)

In what follows, we will focus our attention on the first discretised form Gh, which uses

virtual spin rotations, like the master-slave relationship in (7.5). Similar developments

could be derived using the second weak form and a master-slave relationship with additive

infinitesimal rotations. However, this route would lead to more involved expressions with

no apparent advantage.

As has been pointed out in Chapter 4, by setting α = 0, a version of the Newmark

algorithm for large 3D rotations is used. For α 6= 0, a second-order accurate numerically

dissipative time-integration scheme is obtained.

We will hereafter simplify the notation of the residual gi
n+1+α, and write it as gi for

short. Whenever necessary, we will also refer to its translational and rotation parts as gi
f

and gi
φ, so that gi = {gi

f gi
φ}.

103

Also, we will henceforth assume that all nodes have a joint attached to them. By doing

this we can associate to each node a set of nodal released, master and slave displacements

related via equation (7.5). The virtual displacements in the weak form Gh then correspond

to the nodal slave virtual displacements δpi, i.e. those that actually belong to the element.

By inserting relation (7.5) into (7.7)1 we obtain the following modified weak form:

Gh .= δpi · gi = δpRm,i · gi
Rm = 0,

where δpRm,i
.= {δpR,i δpm,i} is the nodal vector of released and master displace-

ments and gi
Rm

.= NT
δ,ig

i, with Nδ,i the nodal master-slave transformation matrix. Since

the displacements δpRm,i are arbitrary, we can deduce the following extended system of

equations:

gi
Rm

.= NT
δ,ig

i = 0. (7.8)

Some computational aspects concerning the implementation of these equations in a

finite element program will be addressed in Section 7.4. We just comment here that the

form of equation (7.8) corresponds to two sets of equations which may be written as (no

summation over i)

gi
R

.= RT
δig

i = 0,

gi
m

.= LT
δig

i = 0.
i = 1, . . . , N (7.9)

By observing the explicit expressions for R and L in (7.5c), it can be inferred that gi
R

corresponds to the residual forces conjugate to the released displacements, and therefore,

imposing gi
R = 0 is equivalent to imposing that the residual forces perform no work in the

directions of the released displacements. The second set of equations gi
m = 0 corresponds

to the transport of the residual forces from the slave node to the master node, in the same

way as distant loads and moments are transferred (see Figure 7.2):

gi
m

.= LT
δig

i =

{
gi

f

gi
φ + r̂rg

i
f

}
= 0,

where rr = ΛmrR is the released position vector referred to the inertial frame ei,

i = 1, 2, 3.

Observe that we have introduced the kinematics of the joint without actually adding

any constraint equations. The extended equilibrium equations (7.9) just have the new

104

g
i

Slave node

Master node

rr

Figure 7.2: Scheme of the master and slave nodes, and the residual gi acting on the slave

node.

released dof of the joint. Indeed, the displacements of the joint that are not released can

be treated as prescribed dof, and therefore removed from the system of equations to be

solved.

7.3 Incremental form

7.3.1 Master-slave relationship

Let us introduce the incremental slave, master and released displacements between two

time-steps n and n + 1 as

∆p
.=

{
∆r

ω

}
, ∆p

m

.=

{
∆rm

ωm

}
, ∆p

R

.=

{
∆rR

ωR

}

where we have used the same notation as in Chapter 6, i.e. ∆(•) = (•)n+1 − (•)n

and cay(ω̂) = Λn+1ΛT
n, with cay(•) defined in (2.8). Our aim is to write a relationship

between ∆p and the released and master incremental displacements ∆p
R

and ∆p
m

. The

need for tangent-scaled incremental rotations will be made clear below. We just note here

that they will enable us to write the incremental master-slave relationship and, at the

same time, to embed it not only in the STD energy-momentum scheme of Section 6.2 (and

without spoiling its conserving properties), but also in the invariant energy-momentum β-

algorithms of Section 6.3.2, even though they do not interpolate tangent-scaled rotations.

By subtracting relations (7.1a) at two time-steps n + 1 and n, and rewriting (7.1b) at

time-step n + 1, we get the following equations:

∆r = ∆rm + Λm,n+1rR,n+1 −Λm,nrR,n

= ∆rm + Λm,n+ 1
2
∆rR + ∆ΛmrR,n+ 1

2

cay(ω̂)Λn = cay(ω̂m)Λm,ncay(ω̂R)ΛR,n.

(7.10)

105

After noting that Λm,ncay(ω̂R) = cay(Λm,nω̂R)Λm,n and also that Λn = Λm,nΛR,n,

the second equation yields

cay(ω̂) = cay(ω̂m)cay(Λm,nω̂R). (7.11)

In order to derive a master-slave relationship, we recall first equation (6.6) which states

that

∆Λ =
tan(ω/2)

ω/2
ω̂Λn+ 1

2
= ω̂Λn+ 1

2
.

By inserting this identity into ∆Λm in equation (7.10)1, and the formula for compound

tangent-scaled rotations (2.9) into equation (7.11), we get the expressions

∆r = ∆rm + Λm,n+ 1
2
∆rR + ω̂mΛm,n+ 1

2
rR,

ω =
1

1− 1
4ωm ·Λm,nωR

(
ωm + Λm,nωR +

1
2
ω̂mΛm,nωR

)
.

(7.12)

It is now clear that such an explicit relationship between ω and the incremental rota-

tions ωR and ωm is only possible if tangent-scaled rotations are used. Equations (7.12)

may be written in compact form as

∆p = N∆∆p
Rm

, (7.13)

where, as in the previous section,

∆p
Rm

.=

{
∆p

R

∆p
m

}

is the vector of released and master displacements, but now with tangent-scaled incre-

mental rotations. It is important to note that the choice of a matrix N∆ that satisfies

relationships (7.12) is not unique, due to the non-linear dependence of ∆p on ∆p
Rm

in

these equations. We will give N∆ in the general form

N∆ =
[

R∆ L∆

]
, (7.14a)

with R∆ and L∆ given by

R∆ =

[
N11 0

0 N22

]
and L∆ =

[
I N14

0 N24

]
. (7.14b)

106

At this stage, the 3× 3 matrices N11, N14, N22 and N24 are left undetermined. Their

explicit expression will be given in the next subsection, upon the desired conservation of

energy and momenta.

7.3.2 Equilibrium equations of conserving schemes

In this section we will embed the incremental form of the master-slave relationship in

some of the conserving algorithms described in Chapter 6. We will use equation (7.13)

and determine the components of N∆ in order to preserve the conserving properties of

the STD- and β-algorithms.

STD algorithm

The energy increment over a time-step ∆E has been written in Section 6.2 as

∆E = ∆p
i
· gi

∆
, (7.15)

where the inertial, elastic and external force vectors contained in the residual gi
∆

=

gi
∆,d

+gi
∆,v

−gi
∆,e

are defined in (6.12b)-(6.12d). By noting that the incremental displace-

ments ∆pi
∆

in this equation correspond to the slave degrees of freedom, and inserting the

master-slave relationship (7.13) into (7.15), the latter turns into

∆E = ∆p
Rm,i

· gi
Rm

, (7.16)

with gi
Rm

= NT
∆,ig

i
∆

. By imposing ∆E = 0, from the arbitrariness of the incremental

displacements we arrive at the following system of equations:

NT
∆,ig

i
∆

= 0 i = 1, . . . , N. (7.17)

By solving these equations for a transformation matrix N∆,i that satisfies relation

(7.13), we are maintaining the conservation of energy. It is shown in [JC01] that the

conservation of translational and angular momenta is also possible, but in this case the

matrices N11, N14, N22 and N24 must have the following expressions:

107

N11 =
(
I− 1

4
ω̂2

m

)
Λm,n+ 1

2

N14 = −1
2

(
Λ̂m,nrR,n + ̂Λm,n+1rR,n+1

)

N22 =
1

1− 1
4ωm ·Λm,nωR

S(ωm)−TΛm,n

N24 = I.

(7.18)

It can be verified that by inserting (7.18) into the expression for N∆, the master-salve

equation (7.13) holds. We emphasise that, although this algorithm conserves energy and

momenta, it is not strain-invariant. As mentioned in Chapter 6, this is due to the necessity

to interpolate tangent-scaled incremental rotations instead of local rotations in order to

satisfy the condition ∆E = 0. Furthermore, and as explained in the STD algorithm, this

algorithm also fails to be dynamically objective, due to the non-linear update of angular

velocities in (6.10).

β-algorithms

Let us recall the expression for the increment of energy for algorithms β1 and β2 in

Section 6.3.2:

β1 : ∆E = ∆pi ·
(
gi

∆ + β1g
i
∆,v(∆N,0)

)
,

β2 : ∆E = ∆p
i
·
(
gi

∆
+ β2g

i
∆,v

(∆N,0)
)

,
(7.19)

where β1 and β2 are given in (6.24) and (6.27), respectively, and are such that the

condition ∆E = 0 holds. For the β1-algorithm, the force vectors in gi
∆ = g∆,d+g∆,v−g∆,e

are defined in (6.22b) as

gi
∆,d

.=
1

∆t

∫

L
∆lds,

gi
∆,v

.=
∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds,

gi
∆e

.=
∫

L

{
Iin̄

0

}
ds.

The force vectors for the β2-algorithm are the same except for the elastic force vector,

which is given in (6.26b) as

108

gi
∆,v

.=
∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

S(ω)ΛnMn+ 1
2



 ds.

By observing that the incremental form of the master-slave relation in (7.13) relates

the tangent-scaled rotations, and therefore the underlined displacements vectors ∆p, it

is more sensible from the point of view of the conservation of energy to use algorithm

β2 than β1. It is important to remember here that both of these algorithms can use a

strain-invariant interpolation of rotations, in spite of the presence of ∆p in algorithm β2.

Inserting the master slave relationship into the expression of ∆E for the β2-algorithm in

(7.19) leads to

∆E = ∆p
Rm,i

·NT
∆,i

(
gi

∆
+ β2g

i
∆,v

(∆N,0)
)

.

Since the energy must be conserved for any displacements ∆p
Rm,i

, we get the following

system of equations:

NT
∆,i

(
gi

∆
+ β2g

i
∆,v

(∆N,0)
)

= 0 i = 1, . . . , N. (7.20)

We note that ∆E 6= ∆p
i
·gi

∆
due to the interpolation of local rotations rather than the

tangent-scaled incremental rotations. We also remark that this formulation uses the time-

integration scheme in (6.10), which employs the tangent-scaled incremental rotations, and

therefore is dynamically non-objective.

The application of algorithm β1 can be done if we approximate the unscaled incre-

mental rotations ω with the tangent-scaled incremental rotations ω. In doing that, we

are stating that ∆p ≈ N∆p
Rm

, which inserted into algorithm β1 leads to the following

equations:

NT
∆,i

(
gi

∆ + β1g
i
∆,v(∆N,0)

)
= 0 i = 1, . . . , N. (7.21)

In contrast, this algorithm uses the time integration scheme in (6.13), which has un-

scaled incremental rotations. However, we have that ∆E 6= ∆p
i
·gi

∆ due to three reasons:

(i) modification in the elastic force vector (removal of factor tan(ω/2)
ω/2); (ii) interpolation

of local rotations instead of unscaled incremental rotations; and (iii) the approximation

done when stating ∆p = N∆p
Rm

, instead of relation ∆p = N∆p
Rm

in (7.13). It can be

then inferred that the correction in the energy furnished by β1 is larger than that supplied

by β2. Nevertheless, the algorithm β1 is dynamically invariant.

109

7.4 Computational aspects

As is customary in the finite element method, each nodal equation must be assembled

into the whole system of equations, first for the element and then for the structure. In

doing this, we would additionally insert the released degrees of freedom into the global

system of equations. It is worth noting that the released displacements are in fact internal

variables (that are not coupled with the displacements of the other elements), and there-

fore a condensation process can be performed. The assembly of the elemental residual

and the process of condensation will be described in the following paragraphs.

For an element with N nodes, we will rewrite the system of N equations in (7.8) as

gi
R

.= RT
i gi = 0

gi
m

.= LT
i gi = 0,

(7.22)

where the matrices Ri and Li can be those of the variational form (contained in matrix

Nδ) or those of the incremental form (contained in matrix N∆). By gathering all the nodal

equations gi
R = 0 and gi

m = 0, and denoting by g = {g1 . . . gN} the elemental residual

that contains the nodal residual vectors gi, we can rewrite the N equations in (7.22) in

the following compact way:

gRm
.= NTg = 012N (7.23a)

where 012N is the zero vector of dimension 12N , and the elemental master-slave trans-

formation matrix N is defined by

N .=

[
R 06N×6N

06N×6N L

]
,R .=




R1 . . . 0
...

. . .
...

0 . . . RN


 ,L .=




L1 . . . 0
...

. . .
...

0 . . . LN


 . (7.23b)

With this notation, the extended elemental residual can then be split into two parts

as follows:

gRm
.= NTg =

{
RTg

LTg

}
=

{
gR

gm

}
.

The system of non-linear equations is solved iteratively, which requires the linearisation

of gRm. It is shown in Appendix G, equations (G.5) and (G.12), that the linear part of

110

NT
i gi may be written as

∆(NT
i gi) = Kij∆pRm,j , (7.24a)

where Kij is given by

Kij =

[
Kij

RR Kij
Rm

Kij
mR Kij

mm

]
, (7.24b)

and the matrices Kij
RR, Kij

Rm, Kij
mR and Kij

mm can be found for the variational form

in (G.5), and for the incremental form in (G.12). It then follows that the linearisation of

the elemental residual gRm in (7.23) may be written as

∆(NTg) = K∆pRm =

[
KRR KRm

KmR Kmm

]{
∆pR

∆pm

}
,

where ∆pR = {∆pR,1 . . . ∆pR,N} is the elemental vector of iterative released dis-

placements, and ∆pm = {∆pm,1 . . . ∆pm,N} is the elemental vector of iterative master

displacements. The iterative Newton-Raphson solution procedure of equations gRm =

012N is written at iteration k as

[
KRR KRm

KmR Kmm

]k {
∆pR

∆pm

}
= −

{
gR

gm

}k

↔ Kk∆pRm = −gk
Rm. (7.25)

(Note that the superscripts in (7.25) do not indicate exponentiation.) The vector gR

contains only internal degrees of freedom (that are not assembled with the rest of the

structure), whereas gm is inserted into the global residual vector. This fact allows us to

perform the condensation of the system of equations (7.25). By isolating the iterative

released displacements in the upper part of equation (7.25) as

∆pR = −K−1
RR (gR + KRm∆pm) , (7.26)

and replacing this expression in the lower part of (7.25), the condensed form of the

equations is obtained:

(
Kk

mm −Kk
mRKk

RR
−1

Kk
Rm

)
∆pm = −gk

m + Kk
mRKk

RR
−1

gk
R.

This process is in general computationally cheap, since KRR is usually a matrix of low

rank (the number of released degrees of freedom of the element). The iterative master

111

displacements ∆pm are then obtained from the solution of the global system of equations.

The iterative released displacements ∆pR are in turn computed according to (7.26) at

the elemental level.

On some occasions, this condensation process might not be desirable. This is the case

when some of the released degrees of freedom are prescribed, as numerical examples in

Chapter 12 show. Indeed, while implementing the master-slave formulation, two sets of

elements have been developed: one with 6N degrees of freedom, and the released displace-

ments condensed; and another with master and released displacements, and therefore 12N

dof. The latter become very useful for the modelling of rigid segments (a prismatic or

cylindrical joint with constant released translations), or joints with applied prescribed

released degrees of freedom.

112

8. Node-to-element master-slave

approach: sliding joints

In this chapter, we will present an alternative master-slave approach. In the node-to-

node (NN) formulation described in Chapter 7, the slave node slides along the line going

through the centroid of the cross-section, and orthogonal to it (see Figure 8.1). While this

behaviour is acceptable for joints with only rotational degrees of freedom, or those with

rigid segments, it leads to unrealistic configurations when the deformation of the master

element is significant.

In order to amend this situation, the displacement of the slave will now be related to all

nodes of the master element, leading to the node-to-element (NE) master-slave approach.

Such a joint will here be called a sliding joint, where the slave node will follow the deformed

line of centroids of the master element. This is our basic contact assumption, which will

be limited here to frictionless bilateral contact. The resulting formulation leads to a more

involved master-slave relationship, but still one that in essence uses the same principle

introduced in Chapter 7. Figure 8.1 gives an example of the deformation obtained with

the NN and NE master-slave approaches.

The description of the formulation given here can be also found in [MJ04], where the

sliding contact conditions are also described in the more general context of elastodynam-

ics. A similar technique has been recently derived in [MM03], where a two-dimensional

spring sliding along a planar beam is considered. On the other hand, the treatment of

sliding contact with Lagrange multipliers or augmented Lagrange formulations have been

reported in [LC97, AP98a, Bau00, BB01, SES03], among other publications. The reader

is also referred to a related problem discussed in [BT98a, BT98b, VQL95] and references

therein, where sliding beams that are deployed or retrieved through a spatially fixed joint

are modelled in a time-varying spatial domain.

The outline of this chapter is slightly different to given in Chapter 7. We will first de-

scribe in Section 8.1 the kinematic assumptions of the sliding contact. From them, taking

into account the contact forces and torques due to the sliding joint, we rewrite in Section

113

Initial configuration

1

1

b) NE :

Deformed configuration

Deformed configuration

a) NN :

Deformed configuration

Deformed configuration

2

2Initial configuration

Figure 8.1: Configurations obtained with the (a) node-to-node and the (b) node-to-

element master-slave approach.

8.2 the equilibrium equations and the corresponding weak form for two beams in contact.

The master-slave relationship, derived in Section 8.3, is first written for the continuous

problem, and afterwards completed by introducing the finite-element discretisation. It

is also shown that this formulation can deal with the transition of the contact element

through a set of master elements, here called slideline, by defining a coupling element.

Finally, some issues concerning the implementation of the method are discussed in Section

8.4.

In this chapter, we give the variational form of the master-slave relationship. The

incremental form, necessary for the design of conserving algorithms, requires special at-

tention in order to retain most of the advantages of the time-integration scheme without

violating the contact conditions. These topics will be discussed in detail in Chapter 9.

8.1 Kinematic assumption of the sliding contact

In order to model the sliding contact between beams, let us consider two beams denoted

as BA and BB which are in contact at the points A1 and B1 of the centroid axes, as shown

in Figure 8.2. The contact condition relating the displacements of these points is written

as1

1Note that we use X instead of s to denote the arc-length coordinate. Since the reference configuration

of both beams is a straight beam aligned with the global X axis, this axis and the reference centroid line

are parallel. This notation will be used here and in the subsequent chapters in order to emphasise that

114

r(XA1) = r(XB1) (8.1a)

Λ(XA1) = Λ(XB1)Λrel, (8.1b)

where the constant matrix Λrel in (8.1b) is the relative rotation between the two beams

at the initial configuration, i.e. Λrel = Λ0(XB1)
TΛ0(XA1), with Λ0 the rotation at t = 0.

Figure 8.2 illustrates this situation.

Initial
Configuration

Current
Configuration

m̄A1
B

A

B
B

A1

B1
B

B

r(XB1
, 0)

B
B

B
A

XA1

ej
r(XA1

, t) = r(XB1
, t)

r(XA1
, 0)

B1

n̄A1

m̄B1
n̄B1

B
AΛB1

= ΛA1
Λrel

Figure 8.2: Kinematics of beams BA and BB in contact.

Let us introduce the following basic set of hypotheses consistent with the considered

beam model and the contact conditions at hand:

H1: At time t, beam BA exerts a force n̄B1 on point B1 of beam BB. This force is taken

to be equal in magnitude and opposite in direction to force n̄A1 exerted by beam

BB on point A1 of beam BA:

n̄B1 = −n̄A1 .

The beam kinematics, and in particular equation (8.1b), make it reasonable to

supplement this assumption with the following additional kinetic hypothesis related

to the transmission of contact torques.

H2: At time t, beam BA exerts a torque m̄B1 on point B1 of beam BB. This torque is

taken to be equal in magnitude and opposite in direction to torque m̄A1 exerted by

beam BB on point A1 of beam BA:

m̄B1 = −m̄A1 .

we are assuming initially straight beams.

115

H3: Frictionless bilateral contact is assumed, i.e. the forces of interaction between the

bodies along the tangent to the centroid lines of beams BA and BB will be considered

equal to zero:

n̄A1 · r′A1
= 0 and n̄B1 · r′B1

= 0.

8.2 Beam equilibrium equations

We will consider the governing equations for each of the beams BA and BB separately,

and deduce the corresponding weak form of the complete system by introducing the

infinitesimal form of the sliding condition.

The local equilibrium equations have been given in (3.5) as

l̇ = f ′ + f̄ +

{
0

r̂′n

}
, (8.2)

where f = {n m} is the vector of (spatial) stress resultants, f̄ = {n̄ m̄} contains the

distributed load and torque per unit of undeformed length applied on X ∈ [0, LI], and

l = {lf lφ} is the vector of specific local momenta defined in (3.6).

The governing equations must be supplemented with the boundary conditions corre-

sponding to the end loads (for simplicity, no prescribed displacements will be considered)

i.e.,

fXI=0 = −s̄I
0 , fXI=LI = s̄I

L I = A,B (8.3)

where s̄I
0 = {n̄(0)I m̄(0)I} and s̄I

L = {n̄(L)I m̄(L)I} are the concentrated loads and

torques at the two ends of each beam BI . Also, there exist the concentrated force and

torque due to the bilateral contact:

s̄I1 =

{
n̄I1

m̄I1

}
= lim

ε→0

∫ XI1
+ε

XI1
−ε

f̄ds I = A,B. (8.4)

As explained in Chapter 3, the weak form of the equilibrium equations is obtained by

dot-multiplying (8.2) with the virtual displacements (or test functions) δp = {δr δϑ} and

integrating over the length LI of each beam I = A,B:

116

G(r,Λ, δp) .=
∑

I=A,B

∫

LI

(
δp · (l̇− f ′)− δϑ · r̂′n

)
ds

−
∑

I=A,B

[∫

LI\XI1

δp · f̄ds + lim
ε→0

∫ XI1
+ε

XI1
−ε

δp · f̄ds

]
= 0.

In order to simplify this expression, we note first that the last term corresponds to the

virtual work done by the external load s̄I1 = {n̄I1 m̄I1}:

lim
ε→0

∫ XI1
+ε

XI1
−ε

δp · f̄ds = δpI1 · s̄I1 ; I = A, B,

where δpI1 are the virtual displacements evaluated at points I1. By using this result,

integrating by parts the term with f ′ and substituting the boundary conditions (8.3) and

(8.4), the weak form can be expressed as

G(r,Λ, δp) .=
∑

I=A,B

(
GI

d + GI
v −GI

e

)−
∑

I=A,B

δpI1 · s̄I1 = 0 (8.5)

where GI
d, GI

v and GI
e are the dynamic, internal and external contributions to the weak

form, given by

GI
d

.=
∫

LI

δp · l̇ds

GI
v

.=
∫

LI

δp′ · fds−
∫

LI

δϑ · r̂′nds

GI
e

.=
∫

LI

δp · f̄ds + δpI
L · s̄I

L + δpI
0 · s̄I

0.

(8.6)

8.3 Master-slave relationship

8.3.1 Infinitesimal kinematic contact conditions

Let the deformed configuration be perturbed by a kinematically admissible virtual

displacement εδp. We will assume that contact point A1 remains in contact with beam

BB permanently, whereas the contact point of beam BB changes during the perturbation

(see Figure 8.3). In the deformed configuration, the contact is established at point B1,

while in the perturbed configuration it is established at B2.

The contact conditions (8.1) in the perturbed configuration are given by

117

Current

Configuration
Perturbed

Configuration

Configuration

Initial

ǫδuB2

B
A

B
A

g1

g2

g3

B1

B
B

Λǫ(XA1
) = Λǫ(XB2

)Λrel

r(XA1
) = r(XB1

)

Λ(XA1
) = Λ(XB1

)Λrel

r(XB2
)

rǫ(XA1
) = rǫ(XB2

)

ǫδX

B2

r0(XB1
)

r0(XB2
)

XB1

B
B

B
A

B2

ǫδuA1

B
B

Figure 8.3: Initial, current and perturbed configuration of beams BA and BB.

rε(XA1) = rε(XB2),

Λε(XA1) = Λε(XB2)Λrel.
(8.7)

This provides the following relationships between virtual quantities:

δrA1

.=
d

dε

∣∣∣
ε=0

rε(XA1)

=
d

dε

∣∣∣
ε=0

[r(XB1 + εδX) + εδu(XB1 + εδX)]

= r′(XB1)δX + δuB1 ,

δ̂ϑA1Λ(XA1)
.=

d

dε

∣∣∣
ε=0

Λε(XA1)

=
d

dε

∣∣∣
ε=0

[
exp(εδ̂ϑ(XB1 + εδXB1))Λ(XB1 + εδX)Λrel

]

=
(
k̂(XB1)δX + δ̂ϑB1

)
Λ(XB1)Λrel,

where δX is the variation of the contact point on the reference configuration and

k(XB1) = Λ(XB1)Υ(XB1) is the (spatial) curvature of the beam evaluated at XB1 . Using

this result along with the contact condition (8.1b) gives the important relationships

δrA1 = r′B1
δX + δrB1 ,

δϑA1 = kB1δX + δϑB1 ,
(8.8)

118

where r′B1

.= r′(XB1) and kB1

.= k(XB1). Substituting (8.8) into (8.5), and making

use of hypotheses H1-H3, provides the result

G(r,Λ, δp) .=
∑

I=A,B

(
GI

d + GI
v −GI

e

)− kB1 · m̄A1δX = 0, (8.9)

in which the interaction torque between the two beams, m̄B1 , will be related to the

vector of nodal residuals upon the introduction of the spatial discretisation in Section

8.3.2.

We will extend equation (8.8)2 to contact conditions with a variable relative rotation

between the two beams. This will allow us to model joints with released rotations such

as a cylindrical joint sliding along a flexible beam. The rotational contact condition

set in (8.1b) assumes that the relative rotation of beams BA and BB remains constant

throughout the motion. In cases where this relative rotation is not constant, a new

rotation matrix ΛR is introduced, which then redefines the rotation at point A1 of beam

BA to be

Λ(XA1) = Λ(XB1)ΛRΛrel. (8.10)

The matrix ΛR measures the released rotation at XA1 with respect to the rotation

Λ(XB1) (rotation of beam BB at point B1), without accounting for the initial relative

rotation Λrel. Note that we use the released rotation matrix ΛR measured in the moving

frame gi of beam BB. Equation (8.10) is linearised in the standard way to give

δϑA1 = kB1δX + δϑB1 + ΛB1δϑR (8.11)

with δϑR as the virtual released rotation and ΛB1 = Λ(XB1). As explained in the

previous chapter, instead of using the spin vector δϑR we will instead use the additive

infinitesimal variation δθR = T(θR)−1δϑ, in order to consistently model certain kinds of

joints [JC01].

Substituting δϑR = T(θR)δθ into (8.11), we obtain

δϑA1 = kB1δX + ΛB1TRδθR + δϑB1 (8.12)

where TR
.= T(θR); the expression of T can be found in (2.18). By using relation

(8.12) instead of (8.8), a new term arises in the weak form (8.9), which is given by

119

G(r,Λ, δp) .=
∑

I=A,B

(
GI

k + GI
d −GI

e

)− kB1 · m̄A1δX + ΛB1T
−1
R δθR · m̄B1 = 0.

The last term represents the virtual work done by the contact torque m̄B1 under a

virtual released rotation δϑr = ΛB1δϑR. If no friction is considered at the contact point

under a relative rotation, no reaction torque exist in the direction of the virtual released

rotation, and therefore this term vanishes, i.e. δϑr · m̄B1 = 0. We are in fact assuming

an equivalent hypothesis to H3 for the case of rotations i.e.,

H4: Frictionless released rotations. The interaction forces between the bodies under

admissible released rotations δϑr = ΛB1δϑR between beams BA and BB will be

considered equal to zero:

m̄B1 · δϑr = m̄A1 · δϑr = 0.

8.3.2 Finite element discretisation and coupling element definition

Let us discretise the beams BA and BB using NA and NB nodes, respectively. The

vector δp(X) will be discretised using the standard Lagrangian polynomials as

δph(X) = Ij(X)δpj . (8.13)

By replacing the vector δp in (8.9) with δph, the discretised weak form Gh is readily

obtained as

Gh(r,Λ, δph) .=
∑

I=A,B

δpI · gI − kB1δX · m̄A1 = 0, (8.14)

where δpI = {δpI
1 . . . δpI

NI
} is the vector of elemental virtual displacements and gI =

{gI,1 . . . gI,NI} is the elemental residual vector of element I. This residual comprises the

dynamic, internal and external nodal force vectors gI,j
d , gI,j

v and gI,j
e respectively, i.e.

gI,j = gI,j
d + gI,j

v − gI,j
e . They are obtained from (8.6) as

gI,j
d

.=
∫

LI

Ij l̇ds,

gI,j
v

.=
∫

LI

I ′jfds−
∫

LI

Ij

{
0

r̂′n

}
ds,

gI,j
e

.=
∫

LI

Ij f̄ds + δj
1s̄

I
0 + δj

NI
s̄I
L.

(8.15)

120

The master-slave relationship (8.8)1 and (8.12) may be rewritten as

δpNA
=

{
r′B1

kB1

}
(δuR ·G1) +

{
0

ΛB1TRδθR

}
+ Ij

Bδpj , (8.16)

where δuR = {δX 0 0} is the vector of released translations. As in the node-to-node

master-slave approach, we assume that the sliding point on element A corresponds to node

NA throughout the motion. We will define the slave and master and released vectors of

virtual displacements as

δpA .=





δpA
1

...

δpA
NA





and δpA
Rm

.=





δpR

δpA
1

...

δpA
NA

δpB
1

...

δpB
NB





, (8.17)

where δpR = {δrR δθR} is the vector of virtual released displacements. Using (8.16)

we can relate the two vectors as

δpA = N∗
δδp

A
Rm, (8.18)

with

N∗
δ

.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
. . .

...
...

...
. . .

...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R∗
δB 0̄ . . . 0̄ 0̄ I1

B Ī . . . INB
B Ī




, R∗
δB

.=

[
r′B1

⊗G1 0

kB1 ⊗G1 ΛBTR

]
,

(8.19)

where 0̄ and Ī are the 6× 6 zero and unit matrices.

In order to deal with with the contact torque term in the weak form Gh, we insert the

master-slave relationship (8.18) into equation (8.14), which leads to

Gh(r,Λ, δp) .= δpA
Rm ·N∗T

δ gA + δpB · gB − δuR · (G1 ⊗ kB1) m̄A1 = 0. (8.20)

121

We now note that the discretised weak form Gh in (8.14) can be split into two weak

forms Gh
A and Gh

B given by

Gh
A(r,Λ, δp) .= δpA · gA − δpA

NA
· f̄A1 = 0

Gh
B(r,Λ, δp) .= δpB · gB − Ij

BδpB
j · f̄B1 = 0

(8.21)

which correspond to the application of the virtual work principle to each beam sepa-

rately. The weak form in (8.20) is in fact the sum of the two parts: Gh = Gh
A + Gh

B = 0.

Gathering the terms multiplying the virtual rotations of node NA in equation (8.21)1, we

obtain the identity

gNA
φ − m̄A1 = 0,

where gNA
φ is the rotational part of the residual vector gNA . Inserting this equation

into (8.20) and making use of (8.19) finally gives

Gh(r,Λ, δp) .= δpA
Rm ·NT

δ gA + δpB · gB = 0, (8.22)

with

Nδ
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
. . .

...
...

...
. . .

...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

RδB 0̄ . . . 0̄ 0̄ I1
B Ī . . . INB

B Ī




and RδB
.=

[
r′B ⊗G1 0

0 ΛBTR

]
.

(8.23)

We see that the virtual work performed by element A can be expressed as the dot

product of a new set of master and released degrees of freedom, δpA
Rm in (8.17), and an

extended residual work-conjugate to them, which is given by

gA
Rm

.= NT
δ gA =





RT
δBgNA

gA,1

...

gA,NA−1

0

LT
δBgNA





, with LδB
.=

[
I1
B Ī . . . INB

B Ī
]
. (8.24)

122

Let us define a coupling element as the element whose elemental displacement vector

is δpA
Rm. Such a coupling element has the following 6× (NA +NB +1) degrees of freedom:

displacements of the nodes in element A, the released displacements of node NA and the

degrees of freedom of all the nodes in element B. The extended residual gA
Rm = NT

δ gA of

the coupling element is assembled into the global residual in accordance with the pattern

given by δpA
Rm in (8.17). We emphasise that gA

Rm depends on the residual gA of element

A and the terms RδB and LδB which depend on element B. Equation (8.22) can now be

solved using the Newton-Raphson iterative procedure in a standard manner.

The reader will realise that in the node-to-node master-slave approach described in

the previous chapter, the equilibrium equations were not restablished as is done in the

present case. This is due to the fact that in the previous case no real contact existed.

As explained in the previous chapter, the NN approach is equivalent to considering a

residual force applied at a certain distance (released translation), regardless of whether

the location of the slave node is on the master element or not. In the present case, the

contact is ensured by the kinematic contact conditions in (8.1), and therefore we have

to consider contact loads and torques s̄ in the equilibrium equations. As before, we can

analyse the character of the new equilibrium equations:

gA,i = 0, i = 1, . . . , NA − 1, (8.25a)

RT
δBgA,NA = 0, (8.25b)

gB,j + Ij
BgA,NA = 0, j = 1, . . . , NB. (8.25c)

Equations (8.25a) are the standard equilibrium equations for all the nodes on element A

except the sliding node NA. The second equation (8.25b) corresponds to the enforcement

of no work associated with the released displacements δpA
R. Equation (8.25c) establish the

equilibrium of the master nodes, taking into account the residuals of the master element

gB,j plus the contribution of the sliding node NA weighted by the shape function Ij
B of

the corresponding element. Figure 8.4 shows a schematic with the location of the different

residuals appearing in equations (8.25).

g
B,2

Slave node

Master nodes
g

A,1

g
B,NB

g
A,NA

g
B,1

Figure 8.4: Schematic of the master and slave nodes, and residuals acting on the model.

123

It is now obvious that if the sliding is not limited to the surface of a single element,

we only need to evaluate RδB and LδB at the contact point of a newly contacted element

in order to formulate the new coupling element. The issue of the dynamically changing

coupling element will be dealt with in the next section.

8.4 Computational issues

8.4.1 Newton-Raphson solution procedure and update

After assembling all of the elemental residuals, including the extended residual gA
Rm in

(8.22), the non-linear vector equation

g = 0 (8.26)

is obtained, where g is the global dynamic residual of the structure. Upon the intro-

duction of a suitable interpolation for the unknown displacements along each element,

this equation may be solved using the Newton-Raphson iterative procedure. Within this

procedure, the system of equations gi+1 = 0 leads to

gi + Ki∆p = 0, (8.27)

where Ki = ∇pgi is the global tangent operator and ∆p is the global vector of the

iterative corrections to the nodal unknowns. Note that if a strain-invariant formulation

is desired, the rotational field must not be interpolated in the same way as the virtual

rotation δϑ in (8.13), but with the generalised shape functions given in Chapter 5. In the

present approach, it must be borne in mind that the global residual contains the residual

of the coupling element, which will give rise to additional terms in the tangent operator.

Indeed, linearising the residual gA
Rm leads to ∆gRm = ∇pRm

gA
Rm = Kcp∆pRm, where Kcp

is the local tangent operator of the coupling element, and may be expressed as

Kcp = NT
δ KAN∗

δg +




KRR 06×6NA
KRm

06NA×6 06NA×6NA
06NA×6NB

KmR 06NB×6NA
06NB×6NB


 . (8.28)

This result has been derived in Appendix G: see equation (G.16). The matrix N∗
δg

is given in (G.14) and corresponds to N∗
δ but using the generalised shape functions Ii

g

for the rotational field, instead of the standard functions Ii. Matrices KRR, KRm and

KmR are given in equation (G.15). Clearly, this matrix has some coupling terms between

124

the degrees of freedom of slave element A and those of master element B. These terms

have to be processed carefully whenever the contact point switches from one element to

another on the slideline. This is described in more detail in the following subsection.

In order to ensure that the sliding contact condition is preserved exactly, the itera-

tive solution of the equations must include a consistent update of the kinematics. Once

the iterative changes ∆X = ∆rR · G1 and ∆θR are obtained from the solution of the

system of equations (8.27) and the master and released variables are updated, the slave

kinematics (rNA
,ΛNA

) at the new iteration i + 1 are obtained according to the update

process summarised in Table 8.1. Note that the matrix Λ(Xi+1
B) depends on the actual

interpolation of the rotational degrees of freedom within the beam finite element used.

Xi+1
B = Xi

B + ∆X

Translations Rotations

ri+1
NA

= r(Xi+1
B) = Ij(Xi+1

B)rj Λi+1
R = exp(T̂∆θR)Λi

R

Λi+1
B nodal update

Λi+1
NA

= Λi+1
B Λi+1

R Λrel

Table 8.1: Update of slave node kinematics (rNA
,ΛNA

).

With all the nodal slave degrees of freedom at hand, it is now possible to update the

kinematics at each integration point for every element, using the adopted interpolation

for the displacements. This in turn enables the update of the elemental contributions to

the dynamic residual (8.15). In order to update the vector of inertial forces, one needs

to perform the velocity and acceleration update described in Chapter 4. To update the

vector of internal forces, of course, it becomes necessary to update the values of the strain

measures.

8.4.2 Contact element transition

The present approach enables a straightforward transition of the contact point along

a set of elements forming a slideline. Let us assume that at time t1 the contact point is

established between elements A and B (see Figure 8.5), and that elements B and C are

adjacent to each other in a string of elements on the slideline.

The contact element can be easily obtained from the value of XR and the lengths of the

elements on the slideline in the reference configuration (see Figure 8.5). If the transition

of the contact point between elements occurs during the iterative process, the generic

definition of the coupling element allows us to consider a different contact element by

125

simply replacing RδB and Ij
B in gA

Rm with the corresponding values for the new element

C, i.e. RδC and Ij
C . Of course, special care must be exercised during the assembly of the

resulting Jacobian matrix, since some terms couple the current contact element on the

slideline (master element) with the slave element A. When the contact point moves to

another element, the topology of the coupling element still remains the same provided the

new element (and, by induction, all the elements on the slideline) have the same topology.

However, the vector LT
δ gNA in the residual, and the coupling terms of Kcp in (8.28), will

be placed in different positions in the global residual and the Jacobian matrix.

Coupling element
Coupling element

Slave nodes

Master nodes

NB

NB

1

1

NA
Element B 1

1

NA

Element C

Reference Configuration

XR(t1)

XR(t2)

Sliding line

Element B Element C

Element A

Element A
Element A

Time t1
Time t2

Figure 8.5: Coupling element definition and schematic of the contact element transition.

Implementing this facility requires some modification to the standard data structure.

Basically, it is required to keep track of the current contact element and provide the

relevant terms of the residual vector and the Jacobian matrix for the coupling element.

In addition, the kinematics of the current contact element must be retrieved in order to

update the variables at the slave node NA (see Table 8.1). A schematic of the differ-

ent stages required for the update and construction of the coupling element during the

iterative process is outlined in Figure 8.6.

126

Obtain contact element.

Retrieve rB,ΛB, I
j
B, I

′j
B , I

j
gB, kB, r′

B, and r′′

B from contact (master) element.

Solve and obtain ∆rR, ∆θR.

Update slave node kinematics ri+1

NA
, Λ

i+1

NA
(Table 8.1).

(Xi
R, θi

R) :

Compute gA
Rm,K (equations (8.23), (G.14), (G.14b) and (G.16)) and

Update master and released variables.

copy them into the global stiffness matrix and residual.

Figure 8.6: Contact element update dealing with contact transition.

127

9. Momentum-conserving and

strain-invariant time-integration

algorithms within the NE

approach

The design of conserving time-integration schemes dealing with the node-to-element

master-slave approach (or sliding joint) is investigated in this chapter. Similar techniques

to those described in Chapter 6 will be employed here, namely the mid-point rule for the

time-integration scheme and the use of incremental displacements. In order to achieve

strain-invariance, we will concentrate on algorithms that use unscaled rotations. In par-

ticular, the momentum conserving algorithms M1 and M2 derived in Chapter 6 will be

recast in Section 9.1 and taken as the basis for the resulting formulations.

The extension of these conserving algorithms to problems with joints first requires a

derivation of the master-slave relationship in incremental form, and second to embed it in

a coupling element similar to the one defined in the previous chapter. However, in doing

so, two main concerns arise: the desired algorithm should preserve the time-integration

properties when the contact point moves along a slideline of finite elements, and the

kinematic constraints of the sliding joint should not be violated. These requirements will

be analysed in Section 9.2: first for the contact point sliding within a single element,

and then for the contact point jumping to an adjacent element. The imposition of the

conserving properties or the kinematic sliding conditions (or both) in each situation is

studied in conjunction with the momentum conserving algorithms M1 and M2. They

give rise to two families of algorithms, SM1 and SM2, explained in Sections 9.3 and 9.4,

respectively. From them, a set of time-integration strategies that combine the proposed

algorithms is suggested in Section 9.5.

Let us note that the design of conserving algorithms within the master-slave approach

for the modelling of sliding joints has not been explored in the literature. The contents of

128

the present chapter will be also included in a forthcoming paper [MJ]. Some algorithms

with conserving properties in the context of sliding contact are also analysed in [LC97,

AP98a, Bau00]. The first two papers concern contact problems in elastodynamics using a

penalty method or augmented Lagrangian technique, where a potential is associated with

the contact of surfaces. The latter paper uses Lagrangian multipliers within 3D beams

in combination with energy conserving and energy decaying algorithms. Consequently,

these formulations inherit the problems associated with the use of penalty parameters or

Lagrange multipliers mentioned in the introduction of this thesis.

9.1 Momentum conserving time-integration schemes

Two momentum conserving algorithms, M1 and M2, were developed in Chapter 6.

They stem from a weak form G, which for both algorithms is written as

G
.= ∆p · g∆

.= 0, (9.1)

where ∆p
.= {∆p1 . . . ∆pN} contains the nodal incremental displacements ∆pi

.=

{∆ri ∆ϑi}. The elemental residual g
.= {g1

∆ . . . gN
∆} is formed by the nodal residual

vectors gi
∆

.= gi
∆,d + gi

∆,v − gi
∆,e, where the explicit expression of the dynamic, internal

and external nodal load vectors depends on the algorithm under consideration. It has

been shown in Chapter 6 that by solving the system

gi
∆ = 0, i = 1, . . . , N (9.2)

both algorithms, M1 and M2, provide automatically conservation of momenta. How-

ever, it has also been demonstrated that they fail to conserve the total energy E for a

conservative system, i.e.

G
.= ∆p · g∆ 6= ∆E.

The dynamic and external load vectors for both algorithms are given in equations

(6.14b) and (6.14d), and the elastic load vectors can be found in (6.16) and (6.20), re-

spectively. They may be written as

129

M1 M2

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds, (9.3a)

gi
∆,v

.=
∫

L

[
Ii′I 0

−Iir̂′t Ii′I

]



Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds , r′t

.= r′
n+ 1

2
r′t

.= r′n (9.3b)

gi
∆,e

.=
∫

L

{
Iin̄

0

}
ds. (9.3c)

The Lagrangian polynomials Ii(X), i = 1 . . . N , satisfy the usual completeness condi-

tions

N∑

i=1

Ii(X) = 1 and
N∑

i=1

Ii′(X) = 0 , X ∈ [0, L]. (9.4)

We remember that, in these algorithms, the time-integration schemes for translations

and rotations are given in (6.13) and (6.19) as

M1 : vn+ 1
2

=
∆r

∆t
, Wn+ 1

2
=

Wn+1 + Wn

2
=

Ω
∆t

, (9.5a)

M2 : vn+1 =
∆r

∆t
, Wn+ 1

2
=

Wn+1 + Wn

2
=

Ω
∆t

. (9.5b)

Also note that both schemes employ material unscaled incremental rotations Ω, which

are such that Λn+1 = Λn exp(Ω̂).

We emphasise here that algorithm M2 has an energy decaying contribution, as demon-

strated in Chapter 6, and in addition uses the first-order accurate backward Euler time

stepping for the translations. In consequence, all algorithms stemming from M1 will

inherit these properties.

9.2 Incremental form of the sliding contact conditions

Two situations will be distinguished in the subsequent sections: a first one where

the contact point slides within one element only, and another where the contact point

moves to an adjacent element. The two possibilities are illustrated in Figures 9.1 and

9.2. They show a slave node NA sliding from point rXn = r(Xn) on element B, to point

rXn+1 = r(Xn+1), which is on element B in Figure 9.1 and on element C in Figure 9.2. The

distinction between the two situations is important because they require different types

of approximations when considering the increments of the slave displacements ∆pNA
.

130

element A

element B
element B

element A

tn+1

NA

1

1

NB NB

1

1

NA

rXn

rX
n+1

tn

Figure 9.1: Simplified mesh for problems without element transition.

element B
element C

element A element A

element B
element C

rXn

rX
n+1

tn+1

NC

1
1

NB NB

1
1

NC

1

NA

1

NA

tn

Figure 9.2: Simplified mesh for problems with element transition.

We denote by NA, NB and NC the number of nodes of elements A, B and C, respec-

tively. Note that, as in the previous chapter, we have assumed that the slave node is node

NA in element A to simplify the forthcoming formulae. Also, we will as usual represent

the master and slave nodes in the figures by the symbols ¤ and ©, respectively.

By resorting to the Lagrangian interpolating functions Ij , the sliding kinematic con-

ditions are written as follows:

tn tn+1

NT: rNA,n = rXn = Ij
Xn

rj,n rNA,n+1 = rXn+1 = Ij
Xn+1

rj,n+1 (9.6a)

T: rNA,n = rXn = Ij
Xn

rB
j,n rNA,n+1 = rXn+1 = Ij

Xn+1
rC

j,n+1, (9.6b)

where rNA,n
.= r(XNA

, tn), rNA,n+1
.= r(XNA

, tn+1), Ij
Xn

.= Ij(Xn), and Ij
Xn+1

.=

Ij(Xn+1). The acronyms NT and T stands for ’contact with no transition’ and ’contact

with transition’. We have also added a superscript to the nodal position vectors in (9.6b)

in order to distinguish the element to which they belong. These equations will be used

to construct the master-slave incremental relationship in the subsequent sections.

It will become helpful to have at hand the diagrams of Figure 9.3. It gives an insight

into the position of the contact point in the two sliding situations mentioned above. They

131

represent deformed configurations where no horizonal displacements of the master nodes

exist. In this case, the x axis of the figure is representative of the arc-length coordinate

X. The deformed configuration at a mid-time tn+ 1
2
, which for the master nodes is given

by rn+ 1
2

= Ijrj,n+ 1
2
, is also depicted in Figure 9.3. It can be observed that the position

of the slave nodes is consistent with the kinematic conditions (9.6).

NT T

r
C
j,n

Xn+1XnXn+1Xn

X

tn

tn+
1
2

tn+
1
2

tn+1

r
B

j,n+
1
2

r
B
j,n

r
C

j,n+
1
2

r
C
j,n+1

element Celement B

X

tn+1

tn

∆X

rXn+1

rXn

∆X

rXn+1

rXn

r1,n+1

r
1,n+

1
2

r1,n

r
B
j,n+1

rNB,n+1

rNB,n+
1
2

rNB,n

Figure 9.3: Location of the contact points without and with contact transition.

9.2.1 Translations with no contact transition (NT)

We will focus here on the model depicted in Figure 9.1 in conjunction with the contact

conditions (9.6a). From these, it follows that the incremental displacement of node NA is

written as

∆rNA

.= rNA,n+1 − rNA,n = Ij
Xn+1

rj,n+1 − Ij
Xn

rj,n

= Ij

X 1
2

∆rj + ∆Ijrj,n+ 1
2
, (9.7)

where the following definitions have been made:

Ij

X 1
2

.=
1
2

(
Ij
Xn

+ Ij
Xn+1

)
,

∆Ij .= Ij
Xn+1

− Ij
Xn

,

∆rj
.= rj,n+1 − rj,n.

A graphical interpretation of equation (9.7) can be made with the help of Figure 9.4. It

can be observed that the vector ∆rNA
is expressible through the following two identities:

132

∆rNA
= (r(Xn+1, tn)− r(Xn, tn)) + (r(Xn+1, tn+1)− r(Xn+1, tn))

= ∆rtn + ∆rXn+1 ,

∆rNA
= (r(Xn, tn+1)− r(Xn, tn)) + (r(Xn+1, tn+1)− r(Xn, tn+1))

= ∆rXn + ∆rtn+1 ,

(9.8)

which correspond to the paths rXn → Q → rXn+1 and rXn → P → rXn+1 in Figure 9.4.

The increments ∆rtn and ∆rtn+1 are due to the variation of the contact point coordinate

at times tn and tn+1, respectively, whereas ∆rXn and ∆rXn+1 are the increments of the

position vectors due to the time variation at coordinates Xn and Xn+1, respectively. We

can interpolate the two identities in (9.8) using a parameter γ ∈ R as follows:

∆rNA
= (1− γ)

(
∆rtn + ∆rXn+1

)
+ γ

(
∆rXn + ∆rtn+1

)

=
(
(1− γ)∆rtn + γ∆rtn+1

)
+

(
γ∆rXn + (1− γ)∆rXn+1

)
. (9.9)

It follows that the result in (9.7) is the special case of this result for γ = 1
2 . Moreover,

by setting γ = 0 or γ = 1, the paths via points Q or P in Figure 9.4 are recovered.

rNB,n

rNB,n+
1
2

rNB,n+1

r1,n

r
1,n+

1
2

r1,n+1

∆rtn+1

∆rtn

∆rXn+1

∆rXn
tn+

1
2

Q

P
tn+1

X

r

tn

∆rNA

Xn+1Xn ∆X

rXn+1

rXn

Figure 9.4: Translational increments over one time-step within one element.

On the other hand, we can express the vectors ∆rtn and ∆rtn+1 as follows:

∆rtn =
∆rtn

∆X
∆X =

1
∆X

(∆rtn ⊗G1)∆rR,

∆rtn+1 =
∆rtn+1

∆X
∆X =

1
∆X

(∆rtn+1 ⊗G1)∆rR,

133

which, after using the standard nodal interpolation, leads to

∆rtn =
1

∆X
(∆Ijrj,n ⊗G1)∆rR,

∆rtn+1 =
1

∆X
(∆Ijrj,n+1 ⊗G1)∆rR.

(9.10)

Note that in the case ∆X → 0, the terms ∆rtn or ∆rtn+1 are given by

∆rtn = lim
∆X→0

r(Xn + ∆X, tn)− r(Xn, tn)
∆X

= r′n,

∆rtn+1 = lim
∆X→0

r(Xn + ∆X, tn+1)− r(Xn, tn+1)
∆X

= r′n+1.

Inserting equations (9.10) into (9.9), one arrives at the expression

∆rNA
= (∆Ijrj,n(1−γ) ⊗G1)∆rR + Ij

Xγ∆rj , (9.11)

where the following definitions have been made:

Ij
Xγ = γIj

Xn
+ (1− γ)Ij

Xn+1
,

∆rj,n(1−γ) = (1− γ)rj,n + γrj,n+1.

9.2.2 Translations with contact transition (T)

We now consider the sliding contact conditions as given in (9.6b). The incremental

displacements of the slave element are now written as

∆rNA

.= rNA,n+1 − rNA,n = rXn+1 − rXn . (9.12)

Before deriving a master-slave relationship between the incremental displacements, let

us state the requirements that the desired formulation should satisfy, or at least reasonably

approximate:

1. The master-slave transformation must relate the displacements of the slave element

to those of the new contacted master element (in our notation, element C, see

Figure 9.3b). In doing this we ensure that the residual vector and the Jacobian

matrix (which will be given below) will have the same structure for all contact

134

points on the slideline. In other words, the master-slave relationship must couple

element A with only one master element. Note that, in addition, if all the master

elements on the slideline have the same number of nodes, the residual and Jacobian

matrix will have also the same dimensions for all the contact points on the slideline.

2. It is desirable to retain the conservation of angular momentum, and also the contact

conditions. If some of them cannot be satisfied, a reasonable approximation should

be obtained instead.

We remark that Point 1 is in fact stating that the value γ = 0 must be chosen when

using approximation (9.9). For γ 6= 0, element A would have to be processed alongside

elements B and C. Therefore, keeping this condition in mind, and using the notation in

Figure 9.5, equation (9.12) may be written as

∆rNA
= ∆r

∣∣∣
t=tn

+ ∆r
∣∣∣
X=Xn+1

= ∆rtn + ∆rXn+1 , (9.13)

which corresponds to the path rXn → Q → rXn+1 . As mentioned above, this expression

is required in order to avoid employing the vector ∆rXn , which would lead to a coupling

of the incremental displacements of three elements, A, B and C.

rXn

rXn+1

Xn+1∆XBXn

r
B

j,n+
1
2

r
B
j,n+1

r
B
j,n

r
C
j,n

r
C

j,n+
1
2

r
C
j,n+1

tn+
1
2

tn

r

X

tn+1

element Celement B

Q

∆rXn+1

∆rtn

Figure 9.5: Translational increments over one time-step in the case where element tran-

sition occurs.

Regarding the approximations used for ∆rtn in (9.10), it must be pointed out that

the identities used in that equation cannot be employed in the present case. The nodal

position vectors rj at times tn and tn+1, and also the interpolation functions Ij at points

Xn and Xn+1, belong now to different master elements. In the current notation, the

approximations will be written as follows

135

∆rtn =
1

∆t

(
(Ij

Xn+1
rC

j,n − Ij
Xn

rB
j,n)⊗G1

)
∆rR

=
1

∆X
(∆rBC,n ⊗G1)∆rR, (9.14a)

where

∆rBC,n
.= (Ij

Xn+1
rC

j,n − Ij
Xn

rB
j,n). (9.14b)

Note that since γ = 0, the term ∆rtn+1 is not needed now. Inserting equation (9.14a)

into (9.13), we arrive at the following result:

∆rNA
=

1
∆X

(∆rBC,n ⊗G1)∆rR + Ij
Xn+1

∆rC
j . (9.15)

Note that this relationship introduces no approximation (other than the FE discreti-

sation) if the sliding conditions are satisfied.

9.2.3 Rotations

With regard to the incremental rotations, we write the contact conditions at times tn

and tn+1 as follows:

ΛNA,n = ΛXnΛR,nΛrel (9.16a)

ΛNA,n+1 = ΛXn+1ΛR,n+1Λrel, (9.16b)

where, as in the previous chapter, Λrel is the matrix of relative rotation between the

beams at the contact point in the initial configuration, i.e. Λ0(XNA
) = Λ0(X0)Λrel, and

ΛR is the matrix of released rotation. By using the tangent-scaled incremental rotation

ω, such that Λn+1 = cay(ω)Λn with cay(•) the Cayley transformation defined in (2.8),

the following relationships can be established:

ΛNA,n+1 = cay(ωNA
)ΛNA,n,

ΛXn+1 = cay(ωX)ΛXn ,

ΛRn+1 = cay(ωR)ΛRn ,

which, when inserted into (9.16b) and making use of the contact condition (9.16a),

give rise to

136

cay(ωNA
)ΛNA,n = cay(ωX)ΛXncay(ωR)ΛR,nΛrel

= cay(ωX)cay(ΛXnωR)ΛNA,n,

whence

cay(ωNA
) = cay(ωX)cay(ΛXnωR).

By using to the formula for compound tangent-scaled rotations in (2.9), the following

relationship between the incremental rotations is obtained:

ωNA
=

1
1− 1

4ωX ·ΛXnωR

(
ωX + ΛXnωR +

1
2
ω̂XΛXnωR

)
. (9.17)

It is also shown in Appendix H, Section H.5.1, that the conservation of angular mo-

mentum requires a master-slave relationship of the form

ωNA
= ωX + BωR. (9.18)

Note that in contrast to (9.17), equation (9.18) uses incremental unscaled rotations.

We will derive next a similar expression that uses tangent-scaled incremental rotations.

This can be achieved by setting

c
.=

1
1− 1

4ωX ·ΛXnωR

, (9.19)

and manipulating (9.17) as follows:

ωNA
= ωX + (c− 1)ωX + c

(
ΛXn +

1
2
ω̂XΛXn

)
ωR

= ωX + c

(
1
4
(ωX ·ΛXnωR)ωX + ΛXnωR +

1
2
ω̂XΛXnωR

)

= ωX + cS(ωX)−TΛXnωR,

where the relation c− 1 = c1
4ωX ·ΛXnωR has been used, and the matrix S−1 is given

in (2.24) as

S(θ)−1 = I− 1
2
θ̂ +

1
4
θ ⊗ θ.

137

In order to write the master-slave relationship with unscaled rotations in (9.18), we

will substitute the tangent-scaled incremental rotations ωX and ωR with their unscaled

counterparts ωX and ωR, which leads to

ωNA
= ωX + cS(ωX)−TωR. (9.20)

This approximation is to some extent justified by noting that, from the Taylor ex-

pansion of the tan(•) function, unscaled and tangent-scaled rotations differ only in the

second- and higher-order terms.

Similarly to the translational dof, the increment ωX includes changes due to the vari-

ation of the contact point ∆X and the time increment ∆t, and thus, in general,

ωX 6= ωXn

.= ω(Xn)

ωX 6= ωXn+1

.= ω(Xn+1).

We will, however, use a similar approximation to the one used in (9.9):

ωX ≈ ωXγ = Ij
Xγωj . (9.21)

which leads to

ωNA
= Ij

Xγωj + cS(ωX)−TωR. (9.22)

As in the translational field, we could have split the incremental rotation ωX into two

parts: one due to the released displacement ∆X and another due to the time-increment

∆t. This route is taken in the following chapter, where an exact relationship between the

incremental rotations ωNA
, ωX and ωR is derived. Because of the complexities of such

an approach, we use here the simplified formula in (9.22), which neglects the incremental

changes due to the released displacement ∆X.

We note that in deriving equation (9.22) we have introduced two approximations: one

by substituting tangent-scaled rotations with unscaled rotations, i.e. ωX ≈ ωX and

ωR ≈ ωR, and the other by stating ωX = Ij
Xγωj . These approximations have been

made while constructing the equilibrium equations, and therefore will have consequences

for energy conservation, but not for the accuracy of the kinematics, which is always

preserved by performing the right update in the implementation of the formulation. We

will discuss these issues in more detail in Section 9.5.

138

9.2.4 Master-slave relationship

Let us first define the vector of elemental slave incremental displacements ∆pA, and

the vector of released and master incremental displacements ∆pA
Rm as

∆pA .=





∆pA
1

...

∆pA
NA





and ∆pA
Rm

.=





∆pR

∆pA
1

...

∆pA
NA

∆pI
1

...

∆pI
NB





, (9.23)

where ∆pR = {∆rR ∆ωR} is the vector of incremental released displacements. With

our notation, the superscript I in the vector ∆pA
Rm corresponds to the contacted element

at time tn+1 (element B when no transition exists, or element C otherwise).

It is now clear that equations (9.11) (or (9.15)) and (9.22) provide the necessary rela-

tionships to build the transformation matrix N∆ such that

∆pA = N∆∆pA
Rm, (9.24)

with

N∆
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
. . .

...
...

...
. . .

...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R∆ 0̄ . . . 0̄ 0̄ I1
X Ī . . . INI

X Ī




(9.25a)

and the matrix R∆ given by

R∆
.=

[
1

∆X ∆rX ⊗G1 0

0 cS(ωX)−TΛXn

]
. (9.25b)

The values of Ij
X , ∆rX and γ in matrix N∆ are given in Table 9.1.

In contrast to matrix Nδ in Chapter 8, which transforms infinitesimal translations

and rotations, matrix N∆ relates the incremental displacements of element A to the

incremental released and master displacements.

139

No Transition (NT) with Transition (T)

Ij
X Ij

Xγ Ij
Xn+1

∆rX ∆Ijrj,n(1−γ) ∆rBC,n = (Ij
Xn+1

rC
j,n − Ij

Xn
rB

j,n)

γ γ ∈ R 0

Table 9.1: Values of Ij
X , ∆rX and γ in matrices N∆ and R∆.

As in the previous chapter, we can now modify the weak form (9.1), which, for the

reduced model of three elements depicted in Figure 9.2, is written as

G
.= ∆pA · gA

∆ + ∆pB · gB
∆ + ∆pC · gC

∆ = 0.

By inserting relationship (9.24), we have

G
.= ∆pA

Rm · gA
Rm + ∆pB · gB

∆ + ∆pC · gC
∆ = 0,

with gA
Rm

.= NT
∆gA

∆. Note that ∆pA
Rm contains incremental displacements of the master

element C. If the situation in Figure 9.1 is considered, the term ∆pC · gC does not exist

and the vector ∆pA
Rm contains the incremental displacements of element B. In both

cases, we can define a coupling element with the extended residual vector gA
Rm and nodal

displacements indicated by ∆pA
Rm in (9.23)2. Such an element would have the same

structure than defined in Section 8.4 in the context of the variational formulation.

However, special care must be exercised when element transition occurs. In this case,

only the transformation matrix N∆ of the NT formulation (defined by equations (9.25)

and Table 9.1) can be used.

In the next two sections, we will analyse the two formulations, NT and T, in conjunction

with the M1 and M2 algorithms. This leads to two families of algorithms, SM1 and SM2,

which will involve different expressions of matrix N∆.

9.3 SM1 algorithms

Four algorithms are described in this section, denoted by SM1-NTa, SM1-NTb, SM1-

Ta and SM1-Tb. The first two are limited to cases where no contact transition between

elements exists, whereas the third and fourth are specifically designed to deal with such

a transition. They are all based on the momentum conserving algorithm M1 described in

Section 9.1; therefore, throughout this section, the residual g∆ should be interpreted as

140

the residual with the force vectors defined in (9.3) (with values indicated in M1), and the

time-integration scheme in (9.5a). It will be shown that the ’a’ versions of the algorithms

satisfy the conservation of angular momentum but fail to retain the kinematic sliding

conditions, whereas the ’b’ versions do the opposite.

9.3.1 No contact transition: SM1-NT algorithms

These algorithms correspond to the first column of Table 9.1, with γ = 1
2 . It is

demonstrated in Section H.5.1 of Appendix H that, with this choice, the conservation of

angular momentum requires the kinematic condition

rNA,n+ 1
2

=
NB∑

j

Ij

X 1
2

rj,n+ 1
2

(9.26)

to hold. This equation approximates the contact condition of the sliding node at

time tn+ 1
2
, which is generally incompatible with (9.6a), the kinematic restrictions on the

sliding joint at the end-time points tn and tn+1. Note that if the displacements of all of

the master nodes were along one direction only, a value for γ that satisfies both kinematic

conditions, (9.6a) and (9.26), could be found. By contrast, in the multidimensional case,

both kinematic conditions cannot be satisfied simultaneously. If the constraints for the

sliding joint in (9.6a) hold, the error in the sliding contact is

rNA,n+ 1
2
−

NB∑

j

Ij

X 1
2

rj,n+ 1
2

=
1
4
∆Ij

X∆rj ,

and the increment of angular momentum Πφ is given by

∆Πφ =
∆t

4
∆Ij

X∆̂rjg
A,NA

f . (9.27)

Choosing to satisfy either the sliding conditions (at the ends of a time-step) or the

conservation of momenta leads to two algorithms with the following properties:

• SM1-NTa: Conservation of angular momentum is guaranteed, but the sliding con-

ditions at the time-end points are relaxed; in fact, a mid-point contact condition is

satisfied at time tn+ 1
2
, as given in (9.26).

• SM1-NTb: Angular momentum is not preserved (its increment is given in (9.27)),

but the sliding contact conditions at times tn and tn+1 (equation (9.6a)) are satisfied.

141

Figure 9.6 indicates with bold circles the contact points for which the sliding condition

is satisfied, for each of the two algorithms, SM1-NTa and SM1-NTb. By satisfying the

sliding condition at the mid-time tn+ 1
2
, it is sensible to assume that, in the SM1-NTa

algorithm, the position of the slave node NA at times tn and tn+1 will be kept reasonably

close to the centroid line of the master element, varying according to the size of the

time-step.

SM1−NTbSM1−NTa

rNB,n

rNB,n+
1
2

rNA,1
2

rNB,n+1
rXn+1

= rNA,n+1

r1,n

r
1,n+

1
2

r1,n+1

rXn = rNA,n

rXn+1

rXn

rNA,1
2

tn

r

tn+1

Xn+
1
2

tn+
1
2

rNA,n+1

rNA,n

X

tn+
1
2

Xn+
1
2

tn+1

r

tn

X
Xn ∆XB Xn+1 ∆XB Xn+1

r1,n+1

r
1,n+

1
2

r1,n

rNB,n+1

rNB,n+
1
2

rNB,n

Figure 9.6: Sliding contact point for the SM1-NTa and SM1-NTb algorithms.

Note that the implementation of each algorithm is different, although both use the

same expression of the N∆ matrix, and therefore the same extended residual gA
Rm. The

distinction between the two kinematic restrictions lies in the computation of the nodal

slave displacement and also the update process, which should be performed according to

Table 9.2. In addition, the different kinematic condition is also reflected in the expression

of the Jacobian matrix. Table 9.2 also shows the expressions of the linear part of the slave

position vector, ∆rNA
, for the two algorithms.

9.3.2 Contact transition: SM1-T algorithms

This algorithm is constructed by using the second column of Table 9.1, and therefore

setting γ = 0. In this case, the kinematic condition for the conservation of the angular

momentum is derived in Appendix H as

rNA,n+ 1
2

=
NC∑

j

Ij
Xn+1

rC
j,n+ 1

2

. (9.28)

This is indicated graphically with a bold circle in Figure 9.7a. It can be observed that

this is a poorer estimation of rNA
at time tn+ 1

2
than that given by the SM1-NT algorithms

in (9.26). Note that the larger the error in the kinematic condition, the less accurate the

142

SM1-NTa Kinematics rNA,n+1 = 2Ij

X 1
2

rj,n+ 1
2
− rNA,n

Update* rk+1
NA,n+1 = 2Ij,k+1

X 1
2

rk+1
j,n+ 1

2

− rNA,n

Linearisation ∆rNA
=

(
Ij
Xn+1

′
rj,n+ 1

2
⊗G1

)
∆rR + Ij

X 1
2

∆rj,n+1

SM1-NTb Kinematics rNA,n+1 = Ij
Xn+1

rj,n+1

Update rk+1
NA,n+1 = Ij,k+1

Xn+1
rk+1

j,n+1

Linearisation ∆rNA
=

(
Ij
Xn+1

′
rj,n+1 ⊗G1

)
∆rR + Ij

Xn+1
∆rj,n+1

*Note that 2Ij,k+1

X 1
2

= Ij,k+1
Xn+1

+ Ij
Xn

and rk+1
j,n+ 1

2

= 1
2(rk+1

j,n+1 + rj,n)

Table 9.2: Position vectors, update process and linearisation of rNA
in the SM1-NTa and

SM1-NTb algorithms.

master-slave relationship furnished by the matrix N∆ becomes. This, as will be explained

later, has consequences for the error in the energy increment between time-steps. Hence,

it looks reasonable to violate the condition in (9.28), and retain the contact conditions

at the end-time points tn and tn+1 given in (9.6b). In this case, the increment of angular

momentum is given by

∆Πφ =
∆t

2

(
r̂B

Xn,n − r̂Xn+1,n

)
gA,NA

f , (9.29)

where rXn+1,n = Ij
Xn+1

rC
j,n. For the sake of completeness, however, we will consider

both cases, which result in the following versions of the algorithm:

• SM1-Ta: The angular momentum is conserved and the sliding conditions at the

time-end points are relaxed. The contact conditions for the conservation of momenta

are given by (9.28) and depicted in Figure 9.7a.

• SM1-Tb: Angular momentum is not preserved, and its increment is given in (9.29).

The sliding contact conditions at both times tn and tn+1 (equation (9.6b)) are

satisfied, as shown in Figure 9.7b.

9.4 SM2 algorithms

The next algorithm to be introduced is based on the momentum conserving algorithm

M2 described in Section 9.1; therefore, we will be referring to the residual vector g∆

143

b) SM1−Tba) SM1−Ta

Xn+1XnXn Xn+1

r
C

j,n+
1
2

rNA,n+
1
2

r
B

j,n+
1
2

r
B
j,n+1

r
B
j,n

r
C
j,n

r
C
j,n+1

tn+
1
2

tn

r

X

tn+1

element Celement B element B element C

tn+1

X

r

tn

tn+
1
2

r
C
j,n+1

r
C
j,n

r
B
j,n

r
B
j,n+1

r
B

j,n+
1
2

rXn

rXn+1

rXn = rNA,n

rXn+1
= rNA,n+1

r
C

j,n+
1
2

Figure 9.7: Diagram of the sliding contact point for the SM1-Ta and SM1-Tb algorithms.

defined by the force vectors given in (9.3) as applied to algorithm M2, together with the

time-integration rule (9.5b).

9.4.1 No contact transition: SM2-NT algorithm

Let us consider the reduced model depicted in Figure 9.1. It is demonstrated in

Appendix H that the condition for the conservation of angular momentum is

rNA,n −
NB∑

j

Ij
Xγrj,n = 0

It can be observed that by setting γ = 1, this condition is compatible with the sliding

contact kinematics in (9.6a). Therfore, this algorithm achieves conservation of momenta

and does not violate the contact conditions, as long as no contact transition between

elements exist.

For other values of γ, we could choose between two similar options as in the SM1-NT

algorithms: (i) an algorithm that conserves momenta but violates the sliding condition,

and (ii) another which does not conserve angular momentum but satisfies the sliding

condition. However, given that the choice γ = 1 satisfies both conditions, we will just

select this value and denote the resulting algorithm as SM2-NT.

144

9.4.2 Contact transition: SM2-T algorithms

As previously stated, the value γ = 0 is necessary to enable the transition of the

contact point. In this case, the conservation of angular momentum requires the following

kinematic constraint:

rNA,n =
NC∑

j=1

Ij
Xn+1

rC
j,n. (9.30)

This clearly conflicts with the sliding contact conditions in (9.6b). If we impose the

latter, the increment of angular momentum becomes

∆Πφ = ∆t
(
r̂Xn,n − r̂Xn+1,n

)
gA,NA

f . (9.31)

As before, we can choose between enforcing the kinematic condition (9.30) together

with ∆Πφ = 0, or satisfying the sliding contact conditions in (9.6b). The two options

lead to the following algorithms:

• SM2-Ta: This is a momentum conserving algorithm, where a mid-point contact

condition is satisfied at time tn (equation (9.30)), as shown in Figure 9.8b.

• SM2-Tb: This non-conserving algorithm has the increment of angular momentum

given in (9.31); the sliding contact conditions (9.6b) are satisfied.

a) SM2−Taa) SM2−NT

rNB,n

rNB,n+
1
2

rNB,n+1

r1,n

r
1,n+

1
2

r1,n+1

Xn

X

tn+
1
2

tn+1

r

tn

element B element C

tn+1

X

r

tn

tn+
1
2

r
C
j,n+1

r
C
j,n

r
B
j,n

r
B
j,n+1

r
B

j,n+
1
2

rNA,n+
1
2

r
C

j,n+
1
2

Xn+1 Xn Xn+1

rXn = rNA,n

rXn+1
= rNA,n+1

rXn+1

rXn

Figure 9.8: Diagram of the sliding contact points for the SM2-NT and SM2-Ta algorithms.

145

9.5 Summary of conserving time-integration schemes

9.5.1 Master-slave transformation matrix and linearisation of residuals

In Section 9.2.4, we derived the preliminary form of the master-slave transformation

matrix N∆. We will repeat the general form (9.25) here

N∆
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
. . .

...
...

...
. . .

...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R∆ 0̄ . . . 0̄ 0̄ I1
X Ī . . . INI

X Ī




(9.32a)

with R∆ given by

R∆
.=

[
1

∆X ∆rX ⊗G1 0

0 cS(ωX)−TΛXn

]
. (9.32b)

Table 9.1 gives the values of γ according to the existence of transition or not, regardless

of the time-integration scheme we are using. After defining the two families of algorithms

SM1 and SM2, we can specify particular algorithms by assigning certain values of γ, Ij
X

and ∆rX in the matrices N∆ and R∆, as shown in Table 9.3.

SM1-NTa SM1-NTb SM1-Ta SM1-Tb SM2-NT SM2-Ta SM2-Tb

γ 1
2

1
2 0 0 1 0 0

Ij
X Ij

X 1
2

Ij

X 1
2

Ij
Xn+1

Ij
Xn+1

Ij
Xn

Ij
Xn+1

Ij
Xn+1

∆rX ∆Ijrj,n+ 1
2

∆Ijrj,n+ 1
2

∆rBC,n ∆rBC,n ∆Ijrj,n+1 ∆rBC,n ∆rBC,n

Table 9.3: Values of γ, Ij
X and ∆rX in matrix N∆ for each algorithm.

For each algorithm, the linearisation of the residual of the coupling element gA
Rm =

NT
∆gA leads to its corresponding Jacobian matrix. They have been derived in Section

G.2.2 of Appendix G, and have the same general structure for the algorithms, given by

Kcp = NT
∆KAN∗

∆g +




KRR 06×6NA
KRm

06NA×6 06NA×6NA
06NA×6NB

KmR 06NB×6NA
06NB×6NB


 . (9.33)

The particular expressions of matrices N∗
∆g, KR, KRm and KmR can be found in

Section G.1.2. We note that, as in the previous chapter, the resulting Jacobian matrix

Kcp has some terms coupling the slave element and the current master element.

146

9.5.2 Conserving properties and time-integration strategy

The properties of the different algorithms described in this section are given in Table

9.4. It shows the increment of angular momentum (the value 0 implies the conservation

of momenta) and the kinematic condition that the sliding node must satisfy. The tick
√

denotes that the sliding kinematic conditions in (9.6) are satisfied.

∆Πφ Sliding contact condition

SM1-NTa 0 rNA,n+ 1
2

=
∑NB

j Ij

X 1
2

rj,n+ 1
2

SM1-NTb ∆t
4 ∆Ij

B∆̂rjg
A,NA

f

√

SM1-Ta 0 rNA,n+ 1
2

=
∑NC

j=1 Ij
Xn+1

rC
j,n+ 1

2

SM1-Tb ∆t
(
r̂Xn,n − r̂Xn+1,n

)
gA,NA

f

√

SM2-NT* 0
√

SM2-Ta* 0 rNA,n =
∑NC

j=1 rC
j,nIj

Xn+1

SM2-Tb* ∆t
(
r̂Xn,n − r̂Xn+1,n

)
gA,NA

f

√

* Energy decaying contribution

Table 9.4: Summary of conservation and kinematic properties of algorithms SM1 and

SM2.

From this table it can be inferred that the only algorithm that conserves angular

momentum and satisfies the contact conditions is SM2-NT. However, as pointed out in

the description of the M2 algorithm in Section 6.3.1, it has an additional energy decaying

contribution with respect to M1, and it is limited to situations where no contact transition

exists. We also remember that the use of the Euler backward formula for the time-

integration of translations in the SM2 family of algorithms reduces the order of accuracy

from second-order to first-order [Woo90].

It is worth noting that the algorithms in Table 9.4 can be combined within the same

analysis. In selecting suitable combinations of them, the following points should be kept

in mind:

• It is not recommended to combine the SM1 and SM2 algorithms. That would

definitely add an undesirable discontinuity in the measure of velocities.

• The errors (either in the increment of angular momentum or the contact sliding

conditions) of the T algorithms are in general larger than those of the NT algorithms.

Thus, we suggest applying the latter algorithms when the contact point slides within

the same element, and use the former only when element transition occurs.

147

• Due to the poor approximation of the sliding condition by algorithms SM1-Ta and

SM2-Ta, their use is not advised (see the contact conditions that they impose in

Table 9.4).

As a result, we propose the four strategies summarised in Table 9.5. The first three sac-

rifice the conservation of momenta when contact transition takes place. Options ALG1

and ALG2 give priority to the conservation of momenta whenever the contact point

remains in the same element. ALG2 also preserves the contact conditions in all cir-

cumstances . The third option ALG3 does not conserve the angular momentum, but

always satisfies the contact conditions. The option ALG4 conserves always the angular

momentum, but introduces an error in the sliding conditions, which is larger when el-

ement transition occurs. This strategy has been introduced solely to test the effects of

the contact error. Observing the properties of the algorithms in Table 9.5, one could

conclude that ALG2 maintains the maximum number of beneficial properties. However,

as mentioned above, this algorithm has an energy decaying trend, as it is demonstrated

in the numerical examples of Chapter 12. This can be seen as an undesirable side effect

or a beneficial feature, depending on the problem analysed. However, in any case, the

reduction to first-order of accuracy is a clear drawback in all M2 algorithms.

No Transition Transition

ALG1 SM1-NTa M SM1-Tb S

ALG2 SM2-NT M-S SM2-Tb S

ALG3 SM1-NTb S SM1-Tb S

ALG4 SM1-NTa M SM1-Ta M

M-Conservation of momenta

S-Sliding condition is satisfied

Table 9.5: Algorithms used in the four suggested time-integration strategies.

9.5.3 Comments on the energy conservation and update of slave dis-

placements

In the M1 and M2 algorithms, the total energy is not conserved. The reasons are

indicated in the description of these algorithms in Chapter 6. The algorithms SM1 and

SM2 developed in this chapter will consequently inherit this disadvantage. In addition,

the approximations made when deriving equation (9.22) are another reason for the non-

conservation of the total energy E. Non-fulfilment of the sliding conditions further adds

148

to the energy error. In other words, while in the weak form provided by the M1 and M2

algorithms we have

GM
.= ∆pA · gA

∆ + ∆pB · gB
∆ ≈ ∆E,

after inserting the master-slave relationship it follows that

G
.= ∆pA

Rm ·NT
∆gA

∆ + ∆pB · gB
∆ ≈ GM , (9.34)

where the last approximation is due to the master-slave relationship. By minimising

the error in the master-slave transformations, we in turn keep the error in the energy

increment to a minimum. In this sense, the conservation of momentum when contact

transition occurs introduces errors in the sliding kinematics and in the conservation of

energy. For this reason, it appears more advantageous to sacrifice the conservation of

angular momentum in the T case, and avoid a discontinuity in the sliding conditions, as

in fact strategies ALG1, ALG2 and ALG3 all do. The results in Chapter 12 support this

reasoning.

As mentioned before, the errors in the master-slave relationship do not affect the

accuracy of the contact sliding conditions in the ’b’ versions of the algorithms (including

also SM2-NT). In the ALG2 and ALG3 algorithms, the sliding conditions (9.6) are always

preserved as long as we compute the kinematics and update according to Tables 9.6 and

9.7. Note that the update of rotations must be consistent with the interpolation used for

the element. In this sense, if the interpolation of local rotations is performed (in order to

achieve a strain-invariant formulation), the rotation at the contact point is obtained via

the interpolated local rotation ΘL
Xn+1

= Ij
Xn+1

ΘL
j,n+1, as shown in Table 9.7.

It is important to note that we could have used the residual of the STD algorithm in

Chapter 6, which is genuinely energy conserving and employs tangent-scaled rotations.

However, even in this case, the energy conservation would have been spoilt due to the

approximate relationship (9.22), which is used even if no released rotations exist. A

fully energy-conserving algorithm which avoids this approximation is described in the

next chapter. However, we note that, with the present algorithms, strain and dynamical

invariance can be achieved, which is not the case for the algorithm to be described.

149

NO TRANSITION:

ALG1, ALG4 (’a’ versions) ALG2, ALG3 (’b’ versions)

Kinematics rNA,n+1 = 2Ij

X 1
2

rj,n+ 1
2
− rNA,n rNA,n+1 = Ij

Xn+1
rj,n+1

Update* Xk+1
n+1 = Xk

n+1 + ∆X

Ij,k+1
Xn+1

= Ij(Xk+1
n+1)

rk+1
NA,n+1 = 2Ij,k+1

X 1
2

rk+1
j,n+ 1

2

− rNA,n rk+1
NA,n+1 = Ij,k+1

Xn+1
rk+1

j,n+1

TRANSITION:

ALG4 (’a’ versions) ALG1, ALG2, ALG3 (’b’ versions)

Kinematics rNA,n+1 = 2Ij
Xn+1

rj,n+ 1
2
− rNA,n rNA,n+1 = Ij

Xn+1
rj,n+1

Update* Xk+1
n+1 = Xk

n+1 + ∆X

Ij,k+1
Xn+1

= Ij(Xk+1
n+1)

rk+1
NA,n+1 = 2Ij,k+1

Xn+1
rk+1

j,n+ 1
2

− rNA,n rk+1
NA,n+1 = Ij,k+1

Xn+1
rk+1

j,n+1

*Note that 2Ij,k+1

X 1
2

= Ij,k+1
Xn+1

+ Ij
Xn

and rk+1
j,n+ 1

2

= 1
2(rk+1

j,n+1 + rj,n).

Table 9.6: Computation of the slave node position vector and update for translations

from the algorithms in Table 9.5.

150

ROTATIONS (all algorithms)

Kinematics ΛNA,n+1 = ΛXn+1ΛR,n+1Λrel

cay(ωX) = ΛXn+1Λ
T
Xn

Master nodes update* Λk+1
j,n+1 = exp(∆̂ϑj)Λk

j,n+1

exp(Θ̂
L,k+1

j,n+1) = Λk+1
rig,n+1

T
Λk+1

j,n+1

Update of rotation of the Xk+1
n+1 = Xk

n+1 + ∆X

master element at the Ij,k+1
Xn+1

= Ij(Xk+1
n+1)

contact point ΘL,k+1
Xn+1

= Ij,k+1
X ΘL,k+1

j,n+1

Λk+1
Xn+1

= Λk+1
rig,n+1 exp(Θ̂

L,k+1

Xn+1
)

Update of released rotation Λk+1
R,n+1 = exp(∆̂ϑR)Λk

R,n+1

Slave node update Λk+1
NA,n+1 = Λk+1

Xn+1
Λk+1

R,n+1Λrel

*The update of the rigid body rotation of the master node is done

according to the steps indicated in Chapter 5.

Table 9.7: Computation of the rotation of the slave node and strain-invariant rotational

update.

151

10. Energy-momentum conserving

algorithms with the NE approach

We will describe a family of algorithms that, when used in conjunction with the STD

algorithm described in Chapter 6, manage to preserve the energy (for conservative sys-

tems) as well as the vectors of translational and angular momenta.

In order to conserve both the energy and momenta while, also satisfying the slid-

ing contact conditions, we will use an alternative interpolation for the slave incremental

displacements. Due to the interpolation of incremental rotations, and the non-linear up-

date of velocities, the algorithm is not strain- and dynamically-invariant [JC99a, JC02b].

Consequently, no examples will be given in Chapter 12, but it will be presented here to

show that is possible to conserve simultaneously energy and momenta, while satisfying

kinematic sliding.

10.1 Incremental master-slave relationship

10.1.1 Translations

We use the same expression for the incremental translations that we used in (9.9),

∆rNA
= (1− γ)

(
∆rtn + ∆rXn+1

)
+ γ

(
∆rXn + ∆rtn+1

)

=
(
(1− γ)∆rtn + γ∆rtn+1

)
+

(
γ∆rXn + (1− γ)∆rXn+1

)

= γ∆rtn+1 + (1− γ)∆rtn + (1− γ)∆rXn+1 + γ∆rXn , (10.1)

where the meaning of ∆rtn , ∆rtn+1 , ∆rXn and ∆rXn+1 is illustrated in Figure 9.4,

and defined as follows:

152

∆rtn = (Ij
Xn+1

− Ij
Xn

)rj,n,

∆rtn+1 = (Ij
Xn+1

− Ij
Xn

)rj,n+1,

∆rXn = Ij
Xn

∆rj ,

∆rXn+1 = Ij
Xn+1

∆rj .

We emphasise that, in writing these expressions, no approximation other than the

standard FE interpolation has been introduced. For reasons that will become clear later

on, we will now generalise these expressions with the use of a different parameter γi for

each component of the position vector. By setting

γ =




γx 0 0

0 γy 0

0 0 γz


 ,

Ij
Xγ = Ij

Xn
γ + Ij

Xn+1
(I− γ),

∆rn(1−γ) = (I− γ)∆rtn + γ∆rtn+1 ,

we can rewrite (10.1) as

∆rNA
= ∆rn(1−γ) + Ij

Xγ∆rj . (10.2)

As in the previous chapter, we will express the vector ∆rn(1−γ) as

∆rn(1−γ) =
∆rn(1−γ)

∆X
∆X =

1
∆X

(∆rn(1−γ) ⊗Gr)∆rR,

which when inserted into (10.2) leads to

∆rNA
=

1
∆X

(∆rn(1−γ) ⊗Gr)∆rR + Ij
Xγ∆rj . (10.3)

Note that if ∆X = 0, we have ∆rn(1−γ) = 0 ∀ γx, γy, γz ∈ R3, and hence ∆rNA
=

∆rXn+1 = ∆rXn . However, reasoning as in Section 9.2.1, the limit ∆X → 0 leads to the

following result:

lim
∆X→0

∆rn(1−γ)

∆X
= (I− γ) lim

∆X→0

∆rtn

∆X
+ γ lim

∆X→0

∆rtn+1

∆X
= (I− γ)r′tn + γr′tn+1

= r′n(1−γ).

(10.4)

153

The values γ = 0 and γ = I recover the paths rXn −Q− rXn+1 and rXn −P − rXn+1 ,

respectively.

10.1.2 Rotations

It has been found in Section 9.2 that the master, slave and released incremental

tangent-scaled rotations are related via

cay(ωNA
)ΛNA,n = cay(ωX)ΛXncay(ωR)ΛR,nΛrel

= cay(ωX)cay(ΛXnωR)ΛNA,n. (10.5)

In order to derive an exact relationship between the slave rotation ωNA
and the master

and released rotations ωX and ωR, we will mimic the translational field by splitting the

incremental rotation ωX (which is due to the increments ∆X and ∆t) into two parts, as

follows:

ΛXn+1 = cay(ωX)ΛXn = cay(ωXn+1
)cay(ωtn)ΛXn ,

whence

cay(ωX) = cay(ωXn+1
)cay(ωtn). (10.6)

Figure 10.1 indicates the meaning of the incremental rotations ωtn and ωXn+1
. The

former is the rotation between points Xn and Xn+1 with the time ’fixed’ at tn, whereas

the latter is the incremental rotation at point Xn+1 of the master element. Note that the

released rotation ΛR, also to be considered, is not represented in the figure, and the rela-

tion in (10.6) corresponds to the path ΛXn−ΛQ−ΛXn+1 . We could have also considered,

as with the translational displacements, a path through a rotation ΛP , and constructed a

mid-way incremental rotation using a parameter equivalent to γ. However, the complex-

ities of the forthcoming expressions render this practice infeasible. Furthermore, it will

be seen that expression (10.6) provides a convenient relation when dealing with contact

transition.

Inserting equation (10.6) into (10.5) we get

cay(ωNA
)ΛNA,n = cay(ωXn+1

)cay(ωtn)cay(ΛXnωR)ΛNA,n,

154

ΛP

ωtn

ωX

ωXn+1

ΛQ

ΛXn

r
1
n+1

ΛXn+1

tn+
1
2

tn+1

X

r

tn

r
1

n+
1
2

r
NB
n

r
NB
n+1

r
NB

n+
1
2

r
1
n

Xn+1Xn ∆X

Figure 10.1: Rotational increments over a single time-step within one element.

which implies that ωNA
= ωXn+1

◦ωtn ◦ΛXnωR. We can now use the formula for the

compound rotation of three successive rotations derived in Chapter 2. Rewriting equation

(2.10) with θ1 = ΛXnωR, θ2 = ωtn and θ3 = ωXn+1
, we obtain:

ωNA
= z∗

(
ωXn+1

+ ωtn + ΛXnωR +
1
2

(
ω̂Xn+1

ΛXnωR + ω̂Xn+1
ωtn + ω̂tnΛXnωR

)

−1
4

(
(ωtn ·ΛXnωR)ωXn+1

+ (ωXn+1
· ωtn)ΛXnωR − (ωXn+1

·ΛXnωR)ωtn

))
.

(10.7a)

with

z∗ .=
1

1− 1
2

(
ωtn ·ΛXnωR + ωXn+1

·ΛXnωR + ωXn+1
· ωR

)
− 1

4ωXn+1
· ω̂tnΛXnωR

.

(10.7b)

The relationship written in (10.7) can be expressed in the following general form

ωNA
= AωXn+1

+ Bωtn + CωR = AIj
Xn+1

ωj + Bωtn + CωR. (10.8)

However, following the same steps for the SM1 and SM2 algorithms given in appendix

H, it can be verified that the conservation of angular momentum requires A = I. This is

in fact an equivalent requirement to c = 1 found in Section 9.2.3, with c given in equation

155

(9.19). In order to derive such an expression, we set ω21 = ωtn ◦ ΛXnωR and use the

formula of the compound rotation ωNA
= ωXn+1

◦ ω21 to get

ωNA
=

1
1− 1

4ωXn+1
· ω21

(
ωXn+1

+ ω21 +
1
2
ω̂Xn+1

ω21

)

= ωXn+1
+

1
1− 1

4ωXn+1
· ω21

(
1
4
(ωXn+1

· ω21)ωXn+1
+ ω21 +

1
2
ω̂Xn+1

ω21

)

= ωXn+1
+

1
1− 1

4ωXn+1
· ω21

(
1
4
ωXn+1

⊗ ωXn+1
+ I +

1
2
ω̂Xn+1

)
ω21

= ωXn+1
+

1
1− 1

4ωXn+1
· ω21

S(ωXn+1
)−Tω21. (10.9)

Resorting again to the formula for compound rotations in ω21, we can express ωNA
as

follows:

ωNA
= ωXn+1

+ z∗
(

1− 1
4
ωtn ·ΛXnωR

)
S(ωXn+1

)−T

(
ωtn + ΛXnωR +

1
2
ω̂tnΛXnωR

)

= ωXn+1
+ zS(ωXn+1

)−Tωtn + zS(ωXn+1
)−T

(
I +

1
2
ω̂tn

)
ΛXnωR, (10.10)

with

z
.= z∗

(
1− 1

4
ωtn ·ΛXnωR

)
,

for z∗ defined in (10.7b). In order to relate ωtn to the increment ∆X, we multiply the

second term in (10.10) by ∆X
∆X , which leads to

ωNA
= Ij

Xn+1
ωj +

z

∆X
S(ωXn+1

)−T(ωtn ⊗G1)∆rR + zS(ωXn+1
)−T

(
I +

1
2
ω̂tn

)
ΛXnωR,

(10.11)

where we have also used the interpolation of incremental rotations ωXn+1
= Ij

Xn+1
ωj .

In the particular case ∆X = 0, we have ωtn = 0 and thus ω21 = ωtn ◦ ΛXnωR =

ΛXnωR, which inserted in (10.9) leads to

ωNA
= Ij

Xn
ωj +

1
1− 1

4ωXn
·ΛXnωR

S(ωXn
)−TΛXnωR. (10.12)

It is worth noting that there is no need to consider the limit case ∆X → 0, since

the situation ∆X = 0 normally occurs only on the first iteration of the Newton-Raphson

156

process (if the predictor ∆Xk=0 = 0 is used). However, if no limit were considered in

(10.4) (and therefore the identity ∆rNA
= Ij

Xn
∆rj were used when ∆X = 0), it would

turn out that the iterative released translation would always be ∆X = 0. In this case, it

is necessary to use the result in (10.4) to obtain some ∆X 6= 0 while solving the system

of equations.

10.2 Master-slave transformation matrix

Let us define here the vectors of slave incremental displacements ∆pA and master and

released incremental displacements ∆pA
Rm

of an element A as follows:

∆pA .=





∆pA
1

...

∆pA
NA





and ∆pA
Rm

.=





∆p
R

∆pA
1

...

∆pA
NA

∆pI
1

...

∆pI
NB





. (10.13)

Note that, in contrast to the definitions given in Section 9.2.4, we have employed

displacements with tangent-scaled rotations instead. By combining equations (10.3) and

(10.10), we can construct the transformation matrix N∆ such that

∆pA = N∆∆p
Rm

, (10.14)

where

N∆
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
. . .

...
...

...
. . .

...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R∆ 0̄ . . . 0̄ 0̄ Ī1
X . . . ĪNI

X




, (10.15a)

and Īj
X and R∆ are defined as

157

Īj
X

.=

[
Ij
Xγ 0

0 Ij
Xn+1

I

]
,

R∆
.=

[
1

∆X ∆rn(1−γ) ⊗G1 0
z

∆X S(ωXn+1
)−Tωtn ⊗G1 zS(ωXn+1

)−T
(
I + 1

2 ω̂tn

)
ΛXn

]
.

(10.15b)

10.3 Conservation of momenta

Using the same steps as in Chapter 9, it can be verified that the conservation of angular

momentum in the absence of contact point transition requires the following kinematic

condition:

rNA,n+ 1
2

= Ij
XγrB

j,n+ 1
2
. (10.16)

We will derive the expression for γ that makes it possible to satisfy this condition and

the sliding contact condition given by

rNA,n = Ij
Xn

rB
j,n,

rNA,n+1 = Ij
Xn+1

rB
j,n+1.

(10.17)

For each component i = x, y, z of the equation (10.16), we can derive the following

condition for the conservation of angular momentum:

(
Ij
Xn+1

(rB
i,j,n + rB

i,j,n+1)− (ri,NA,n + ri,NA,n+1)
)

= γi

(
Ij
Xn+1

− Ij
Xn

)
(rB

i,j,n + rB
i,j,n+1),

which, after inserting the sliding contact conditions (10.17), gives rise to

γi =
∆ri,tn

∆ri,tn + ∆ri,tn+1

. (10.18)

This expression is indeterminate in the following two cases:

1. ∆ri,tn = ∆ri,tn+1 = 0. It can be verified that, in this case, any value of γi is

a valid candidate for the conservation of angular momentum and the satisfaction

of the sliding contact conditions. In this case, ∆ri,Xn+1 = ∆ri,Xn and therefore

∆ri,NA
= (1− γi)∆ri,Xn + γi∆ri,Xn = ∆ri,Xn .

158

2. ∆ri,tn = −∆ri,tn+1 6= 0. No value of γi can satisfy both (10.16) and (10.17), therefore

we have to choose between the conservation of momenta or the kinematic sliding

conditions (10.17).

The second situation, which is in fact the only critical one, is illustrated in Figure

10.2, where the case ∆ry,tn = −∆ry,tn+1 is depicted. It can be verified that the identity

∆ri,tn = −∆ri,tn+1 is equivalent to

ri,Xn,n+ 1
2

= ri,Xn+1,n+ 1
2
. (10.19)

Furthermore, we can write equation (10.16) for each component i as

ri,NA,n+ 1
2

=
(
γiI

j
Xn

+ (1− γi)I
j
Xn+1

)
rB
i,j,n+ 1

2

= ri,Xn+1,n+ 1
2

+ γi

(
rB
i,Xn,n+ 1

2

− rB
i,Xn+1,n+ 1

2

)
. (10.20)

It follows that the difference between ri,NA,n+ 1
2

and ri,Xn+1,n+ 1
2
, (which in general is

different from zero) is compensated via the parameter γi and the quantity rB
i,Xn,n+ 1

2

−
rB
i,Xn+1,n+ 1

2

. If the latter is zero, as it is in Figure 10.2 for γy (where the points indicated

with crosses have y co-ordinate ry,Xn,n+ 1
2

= ry,Xn+1,n+ 1
2
), it is not possible to satisfy

equation (10.20), or the equivalent equation (10.16). By contrast, in the x direction, by

varying the parameter γx in (γxIj
Xn

+ (1 − γx)Ij
Xn+1

)rx,j,n+ 1
2
, we obtain different points

along the line rx,Xn,n+ 1
2
↔ rx,Xn+1,n+ 1

2
, and therefore the x co-ordinate of point rA.NA

n+ 1
2

(depicted with a bold circle) can be achieved for a certain value of γx.

It follows from (10.16) that when rB
i,Xn,n+ 1

2

= rB
i,Xn+1,n+ 1

2

, the condition for conserva-

tion of angular momentum is given by

ri,NA,n+ 1
2

= (γiI
j
Xn

+ (1− γi)I
j
Xn+1

)rB
i,j,n+ 1

2

= Ij
i,Xn+1

rB
i,j,n+ 1

2

,

which contradicts the kinematic sliding conditions. If we choose to violate the sliding

conditions, the master-slave relationship is no longer exact but approximated: in this case,

we would also fail to conserve the energy. Therefore, it is advised to conserve the energy

and the sliding conditions while adding an increment on the angular momentum. The

effects on the conservation of energy of approximating the sliding conditions are analysed

in Section 10.5.

159

rA,NA

n

y2
n

r
A,NA

n+1

r
A,NA

n+
1

2

rXn,n+
1

2

rXn+1,n+
1

2

rx,Xn,n+
1

2 rx,Xn+1,n+
1

2

r
A,NA

y,n+
1

2

r
A,NA

x,n+
1

2

ry,Xn,n+
1

2

= ry,Xn+1,n+
1

2

tn+
1

2

y2

n+
1

2

y2
n+1

tn

tn+1

y1
n+1

y1
n

y1

n+
1

2

y

x

∆ry,tn+1

∆ry,tn

Figure 10.2: Example of a situation in which the angular momentum and the kinematic

sliding conditions cannot be satisfied simultaneously.

10.4 Contact transition

We have not yet considered the situation where the two contact points Xn+1 and

Xn on two different elements. In this case, while the master-slave relationship for the

incremental rotations in (10.11) is still valid, the identity derived for the translational

displacements in (10.3) is only valid for γ = 0. This is required to preserve the structure

of the transformation matrix N∆, i.e. to couple the incremental displacement with only

one element on the slideline. It follows that if we impose the choice γ = 0, we can only

achieve conservation of angular momentum or preservation of the contact conditions. The

conservation of momenta involves the following contact condition:

rNA,n+ 1
2

= Ij
Xn+1

rB
j,n+ 1

2

,

which violates the kinematic sliding conditions in (10.16). For the same reasons given

earlier, it is then recommended to withdraw the conservation of angular momentum and

preserve the energy and the kinematic sliding conditions.

In parallel with Chapter 9, Table 10.1 summarises the properties of two schemes,

160

denoted by SEM-NT and SEM-T. Algorithm SEM-NT is designed for situations when no

contact transition occurs (NT), whereas SEM-T uses γ = 0 in order to deal with this

situation. The latter satisfies the sliding conditions at the expense of introducing an error

in the conservation of the angular momentum.

∆E ∆Πφ Sliding condition γ

SEM-NT 0 0
√ ∗ γi = ∆ri,tn

∆ri,tn+∆ri,tn+1

SEM-T 0 ∆t(r̂Xn,n − r̂Xn+1,n)gA,NA

f

√
γ = 0

∗ Sliding contact conditions cannot be satisfied if ∆ri,tn = −∆ri,tn+1 .

Table 10.1: Summary of conserving and kinematic properties of the SEM algorithms.

10.5 Conservation of energy and final observations

It has been shown in Section 10.3 that the SEM-NT and SEM-T algorithms conserve

angular momentum when no contact transition occurs, while preserving the kinematic

sliding conditions. Furthermore, the energy is conserved as long as the master-slave

relationship does not introduce any approximation, other than that introduced by the FE

discretisation. In other words, the system of equations is constructed from the identity

∆E = ∆pA · gA
∆

+ ∆pB · gB
∆

= 0,

where the last relation follows if we use the residual g
∆

of the STD algorithm given

in Chapter 6. When incorporating the master-slave relationship (10.14), this equation

becomes

∆pA
Rm

·NT
∆gA

∆
+ ∆pB · gB

∆
= ∆E = 0. (10.21)

We emphasise that the sum on the left is still equal to the increment of the energy

because no approximations have been introduced; therefore, by solving this equation for

any incremental displacements ∆pA
Rm

and ∆pB, we are satisfying the conservation of

energy. This can be verified by expanding the product on the first term of left-hand side

of (10.21):

161

∆pA
Rm

·NT
∆gA

∆
= ∆p

R
·RT

∆gA,NA

∆
+

NA−1∑

i=1

∆pA
i
· gi

∆
+

NB∑

j=1

∆pB
j
· Īj

X

T

gA,NA

∆

=


R∆∆p

R
+

NB∑

j=1

Īj
X∆pB

j


 gA,NA

∆
+

NA−1∑

i=1

∆pA
i
· gi

∆

= ∆pA
i
· gA,i

∆
,

where the last identity holds due to the master-slave relationship ∆pA
NA

= R∆∆p
R

+

Īj
X∆pB

j
.

However, these algorithms inherit the following detrimental properties of the underly-

ing STD energy-momentum algorithm:

1 They are not strain-invariant.

2 They fail to conserve the dynamic invariance. As explained in Section 6.2, this

is due to the non-linear measurement of the angular velocity in the time-stepping

scheme (6.10).

In addition, the simultaneous conservation of angular momentum (kinematic conditions

(10.16)) and energy (which requires satisfaction of the sliding conditions) relies upon the

use of generalised shape functions which have three variable parameters, γx, γy and γz,

and are defined according to equation (10.18) for each component i of vector ∆ri. We

note that the introduction of this relation in turn complicates the linearisation of the

resulting residuals.

We finally remark that since the conservation of energy is already spoilt in the M1 and

M2 algorithms, resorting to three different variable parameters γ in the preceding chapter

would only restore the kinematic sliding conditions, not the conservation of energy. For

this reason, and also due to the complexities associated with the use of a variable matrix

γ, we have not employed this technique in Chapter 9.

162

11. Joints with dependent

released degrees of freedom

In this chapter, the node-to-node (NN) and node-to-element (NE) master-slave formu-

lations will be modified in order to model joints where some components of the vector with

released displacements are dependent on other components of this vector. These joints

are extensively used in industrial applications, and four examples are shown in Figure

11.1: a rigid segment, the screw joint, the rack-and-pinion joint and the cam joint. Other

joints such as worm gears, helical gears or bevel gears [SU95] also fall into this category.

The formulation for a generic joint is introduced in Section 11.1, where a general non-

linear relationship between the released displacements will be assumed first. Further on,

we will give the details for joints with both linear and non-linear relationship between

the released degrees of freedom. Some examples of the former group are the screw joint,

the rack-and-pinion joint or the worm joint, whereas the latter group is represented in

the present work by the cam joint. When applying the master-slave approach to both

groups, we will distinguish between the variational form and the incremental form, which

are described in Sections 11.2 and 11.3, respectively.

The necessary manipulations for the derivation of the modified Jacobian are included

in Appendix G. It is shown in Section G.3 that they involve only minor amendments to

the existing master-slave transformation and Jacobian matrices.

The method described in this chapter can be also found in [MJC03]. A summary of

models for these joints using of Lagrange multipliers is given in [GC01], and an extension

of it in the context of energy conserving algorithms is investigated in [BBN01]. A general

description of the cam joint can be found in [SU95], while a model that includes frictional

contact for this joint is given in [CG93].

163

11.1 Preliminary definitions

Let us consider a joint with released translations rR and released rotations θR. We

remember that the latter is referred to a moving basis Gi, whereas the former contains the

arc-length coordinate XR of the released translation along the slideline on the reference

configuration. In the NN master-slave approach, Gi is the moving basis of the master

node of the joint, whereas in the NE approach it corresponds to the moving basis of the

current contact point of the master element. Throughout this chapter, we will restrict

our attention to joints that satisfy the following assumptions:

1 The vector of released rotations can have only one non-zero component (along axis

Gi), and therefore its magnitude is given by θR = ‖θR‖ = Gi · θR. We will denote

the axis of released rotation Gi as Gθ.

2 The released translation rR can have two components different from zero, but only

one of them can be variable. The vector denoting this direction in the reference

configuration will be denoted by Gr. In the NE approach, this is the unit vector

tangent to the centroid line of the master element (and therefore, in the deformed

configuration, gr is different from the vector of the moving basis g1), whereas in

the NN approach it is colinear with a vector of the moving basis Gi. The other

released translation (if any) takes place along the direction perpendicular to Gθ and

Gr (and it will exist only when Gθ and Gr are not colinear).

3 We will consider the (dependent) released translation as a function of the (indepen-

dent) released rotation according to a function f ∈ C2 : R3 → R3,

rR = f(θR). (11.1)

Let us give a general form for the function f which will be valid for most of the practical

joints. By defining two parameters a(θR) and b = const, we write f as follows

f(θR) = a(θR)Gr + bĜrGθ. (11.2)

Figure 11.1 shows for each joint the direction of vectors Gθ and Gr, where the meaning

of the parameters a and b is also depicted. In Table 11.1, the explicit expression of a(θR)

is indicated for each one of the joints in the figure.

In the subsequent sections we will distinguish between joints where the function f is

linear, like the first three examples in Figure 11.1, or joints that have a non-linear depen-

dence between the released displacements, like the cam joint. They will be both analysed

164

for the variational and incremental master-slave approaches described in Chapters 7, 8

and 9.

b)

d)

a)

c)

b

Gθ

Gr

Gθ

Gr

Gr ≡ GθGr ≡ Gθ

a(θR)

θR

a(θR)

θR

b

a

a(θR)

θR

Figure 11.1: Examples of complex joints with dependent released degrees of freedom: a)

rigid segment, b) screw joint, c) rack-and-pinion joint and d) cam joint.

Rigid segment Screw joint Rack-and-pinion joint Cam joint∗

a(θR) c = const. cθR ·Gθ cθR ·Gθ RcosθR −R− c

(length) (c =pitch) (c =radius) (cam-lobe profile)

b ∈ R ∈ R const. const.

(b = c =radius) (b =offset)
∗The quantities R and r correspond to the two distances indicated in Figure 11.3

when using a circular eccentric lobe profile.

Table 11.1: Values of a(θR) and b, and their physical meaning for the joints in Figure

11.1.

165

11.2 Variational form

11.2.1 General form of the modified residual vector

Let us recall the relation between the slave displacements δp = {δp1 . . . δpNA
} and the

master and release displacements for the NN and NE approaches:

NN: δpi = Nδ,iδpRm,i

NE: δp = Nδδp
A
Rm.

(11.3)

We also remember the expressions of the matrix Nδ in (7.5) and (8.23):

NN:

Nδ,i
.=

[
Rδi Lδi

]
, Rδi

.=

[
Λm,i 0

0 Λm,iTR,i

]
, Lδi

.=

[
I −Λ̂m,irR,i

0 I

]

NE:

Nδ
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
... 0̄

. . .
...

...
...

. . .
...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

RδB 0̄ . . . 0̄ 0̄ I1
B Ī . . . INB

B Ī




, RδB
.=

[
r′B ⊗G1 0

0 ΛBTR

]
,

where Λm = exp(θ̂m) is the rotation of the master node, the matrix TR
.= T(θR) is

defined in (2.18), and r′B and ΛB
.= exp(θ̂B) are the tangent to the centroid line and the

rotation matrix at the contact point on the master element. The elemental transformation

matrix in the NN approach may be obtained by assembling all the nodal matrices Nδ,i as

follows:

Nδ
.=




Nδ,1 . . . 06×12

...
. . .

...

06×12 . . . Nδ,NA


 ,

where NA is the number of nodes of the slave element. The vector δpRm,i in (11.3)

contains the nodal released and master displacements, all belonging to the same element,

whereas δpA
Rm includes released displacements of element A, and master displacements of

a different element, say B, with NB nodes.

From assumption 1 in the previous section, it follows that δθR and θR have the same

direction (the direction of the released component), and therefore, δϑR = T(θR)δθR =

166

δθR (although in general T(θR) 6= I). We can then write the variation of rR in (11.1)

through a matrix Hδ
.= ∂f(θR)

∂θR
as follows:

δrR =
∂f(θR)

∂θR
δθR = HδδθR. (11.4)

It follows that by inserting this equation into (11.3), the master-slave transformation

matrices Nδ turn into

NN:

Ñδ,i
.=

[
R̃δi Lδi

]
, R̃δi

.=

[
0 Λm,iHδ,i

0 Λm,iTR,i

]

NE:

Ñδ
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
... 0̄

. . .
...

...
...

. . .
...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R̃δB 0̄ . . . 0̄ 0̄ I1
B Ī . . . INB

B Ī




, R̃δB
.=

[
0 (r′B ⊗G1)Hδ

0 ΛBTR

]
.

(11.5)

Note that while in the NE approach there exists only one function f per element (since

there is only one slave node per slave element), in the NN approach, we have introduced

different functions f i for each node i, which in turn give rise to different matrices Hδ,i.

The extended residuals gRm are, in consequence, now written with the modified trans-

formation matrices Ñδ as follows:

NN: g̃i
Rm

.=ÑT
δ,ig

i

NE: g̃A
Rm

.=ÑT
δ gA.

(11.6)

The corresponding Jacobian matrix K̃ when using these modified residuals is derived

in Section G.3. It is worth pointing out that the form of K̃ for both approaches, NN and

NE, indicates that no iterative changes of rR are computed during the Newton-Raphson

solution procedure (the components in the rows and columns associated with these degrees

of freedom are all zero). In fact, the released translations are updated using the updated

released rotations θR and the kinematic equation (11.1):

rk+1
R,n+1 = f(θk+1

R,n+1).

167

11.2.2 Joints with linearly dependent degrees of freedom

We will apply the results from the previous sections to the first three examples in

Figure 11.1: the rigid segment (rs), the screw joint (sc) and the rack-and-pinion joint

(rp). For all of them there exists a released displacement with components along the

axis Gr. The screw joint and the rack-and-pinion joint have a released rotation around

axis Gθ, and the latter has in addition an off-set translation (the radius of the pinion)

in the direction ĜrGθ (see Figure 11.2). We can apply the relation between the released

translation (11.2) to these joints. We thus obtain

f sc(θR) = f rp(θR) = bĜrGθ + c(θR ·Gθ)Gr = bĜrGθ + c(Gr ⊗Gθ)θR

f rs = cGr

(11.7)

where b is the radius of the pinion and c has a different meaning for the three joints: in

the rack-and-pinion joint c ≡ b is the radius of the pinion, in the screw joint it corresponds

to the pitch of the thread, and in the rigid segment it is the constant displacement. Note

that since Gr and Gθ have the same direction in the screw joint, the constant term bĜrGθ

in this case vanishes. As indicated in Table 11.1, equation (11.7) is equivalent to setting

in the general equation (11.2):

a(θR)sc = a(θR)rp = c(Gθ · θR) = cθR

a(θR)rs = c

with θR = ‖θR‖.
Master nodes

Slave nodes

rR

θR
rR

θR

GR ≡ Gθ

Gθ

GR

Figure 11.2: Scheme of the screw joint and rack-and-pinion joint.

Differentiating the kinematic relation in (11.7), and making use of the definition of Hδ

in equation (11.4), we obtain the following result

168

Hδ

∣∣
rp

= Hδ

∣∣
sc

= cGr ⊗Gθ

Hδ

∣∣
rs

= 0.
(11.8)

11.2.3 Cam joint

The present theory will be illustrated on a cam joint with a simple eccentric cam-lobe

profile. Setting the upper end of the rotating element A as a slave node NA, and the end

of element B which touches the cam as the master node (see Figure 11.3), the relation

between the released translational displacement rR and the released rotation θR may be

written as

rR = f cam = (R cos θR −R− c)Gr, (11.9)

where c and 2R+ c are the minimum and maximum released translation of the arm B.

Note that while it is sensible to consider screw and rack-and-pinions joints in conjunction

with the NE approach, it is less realistic to model a flexible cam-lobe. We could alterna-

tively swap the definitions of the master and slave element in Figure 11.3, and therefore

consider a slave element B that slides along a master element A. Such a joint would have

a vector rR with two variable components, one independent and the other dependent.

This case contravenes assumption 2, and therefore will not be studied. Nevertheless, we

remark that assumption 2 is needed for a clear exposition of the formulation. Hence,

withdrawing this assumption is perfectly possible within the current method.

B

A

Master nodes
Slave nodes

rR(θR)

Gr

2R − c

θR

rR(θR)

θR

2R
c

Gθ

Figure 11.3: Scheme of the cam joint.

The derivation of the matrix Hδ for the cam joint follows from the differentiation of

the trigonometric functions cos θ and sin θ (see equations (A.12) in Appendix A), and

169

from the expression for f in (11.9):

δf(θR) = −R sin θR

θR
(δθR · θR)Gr = −R sin θR(Gr ⊗Gθ)δθR,

whence

Hδ

∣∣
cam

= −R sin θRGr ⊗Gθ. (11.10)

11.3 Incremental form

11.3.1 Modified residuals

The construction of the modified incremental master-slave relationship can be done

following analogous steps to those given in Section 11.2. We remember the results ob-

tained in Chapters 7 and 9 for the NN and NE approaches respectively. Denoting by

∆p = {∆p
1
. . .∆p

NA
} and ∆p

Rm
= {∆p

Rm,1
. . . ∆p

Rm,NA
} the elemental vectors of in-

cremental slave displacements and incremental released and master displacements, the

master-slave relationships for the NN and NE approaches are written as follows:

NN: ∆p
i
= N∆,i∆p

Rm,i

NE: ∆p = N∆∆pA
Rm

.
(11.11a)

The explicit form of matrix N∆ in both cases is given in equations Section 7.3 and

equation (9.32) by the following expressions:

NN:

N∆,i
.=

[
R∆i L∆i

]
, R∆i

.=

[
Nii

11 0

0 Nii
22

]
, L∆i

.=

[
I Nii

14

0 Nii
24

]

NE: (11.11b)

N∆
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
. . .

...
...

...
. . .

...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R∆ 0̄ . . . 0̄ 0̄ I1
X Ī . . . INI

X Ī




,R∆
.=

[
∆rX⊗G1

∆X 0

0 cS(ωX)−TΛXn

]
.

The block matrices in Nii
11, Nii

22, Nii
14 and Nii

24 are those given in (7.18) with all the

kinematic variables computed at node i. The values of ∆rX and Ij
X in the NE approach

are given in Table 9.3 for the algorithms derived in Chapter 9.

170

Although the incremental form of the general relationship between released displace-

ments in (11.1) will be derived for each joint, we will a priori assume that we can obtain

a matrix H∆ such that

∆rR = f(θR,n+1)− f(θR,n) = H∆ωR. (11.12)

Note that ωR is a tangent-scaled incremental rotation which relates rotations at times

tn and tn+1 as follows

ΛR,n+1 = cay(ωR)ΛR,n.

Inserting equation (11.12) into (11.11), we arrive at the following modified version of

the master-slave transformation matrices:

NN:

Ñ∆,i
.=

[
R̃∆i Li

]
, R̃∆i

.=

[
0 N11H∆

0 N22

]

NE:

Ñ∆
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
... 0̄

. . .
...

...
...

. . .
...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R̃∆ 0̄ . . . 0̄ 0̄ I1
X Ī . . . INI

X Ī




, R̃∆
.=

[
0 1

∆X ∆rX ⊗G1H∆

0 cS(ωX)−TΛXn

]
.

(11.13)

It can be observed that they are analogous to those in (11.11b), except for the matrix

R∆ which is now replaced by the corresponding matrix R̃∆.

The explicit expression of matrix H∆ for the joints with dependent degrees of freedom

is derived in Sections 11.3.2 and 11.3.3, and summarised in Table 11.2.

11.3.2 Joints with linearly dependent degrees of freedom

We will concentrate on the screw-joint and the rack-and-pinion joint. The results for

the rigid segment are trivial (see Table 11.2) and will not be derived.

Let us write the relationship between the tangent-scaled rotation ωR and the unscaled

rotation ωR (which is such that ΛR,n+1 = exp(ω̂R)ΛR,n) as follows:

ωR =
arctan(ωR/2)

ωR/2
ωR, (11.14)

171

where we remark that due to assumption 1 in Section 11.1, we have that ωR = θR,n+1−
θR,n. By using equation (11.14) and from the definition of f(θR)sc = f(θR)rp in (11.7),

the expression ∆rR = rR,n+1 − rR,n is obtained as follows

∆rR = cGr ⊗Gθ (θR,n+1 − θR,n) = cGr ⊗GθωR

=
c arctanωR/2

ωR/2
Gr ⊗GθωR = H∆ωR,

where

H∆ =
c arctan(ωR/2)

ωR/2
Gr ⊗Gθ.

Note that the update of the released translation should be performed either using the

updated incremental rotation ωk+1
R ,

rk+1
R,n+1 = rR,n + c

arctanωk+1
R /2

ωk+1
R /2

Gr ⊗Gθω
k+1
R ,

or the updated total rotation θk+1
R ,

ri+1
R,n+1 = cθk+1

R,n+1.

Resorting to the released iterative rotation is not advised, since the formula

rk+1
R,n+1 = rk

R,n+1 + c∆θR = rk
R,n+1 + c

1
1 + 1

4ω2
R

∆ωR,

would only approximate the master-slave relationship, and in consequence, results in

the violation of the master-slave kinematic relationship in (11.7).

11.3.3 Cam joint

Following a similar procedure as above, the matrix H∆ for the cam-lobe profile defined

by the function in (11.9) can be deduced from the increment of the released translations:

∆rR = R (cos θR,n+1 − cos θR,n)Gr = R
cos θR,n+1 − cos θR,n

Gθ · ωR

(Gr ⊗Gθ) ωR,

which implies that

172

H∆ = R
cos θR,n+1 − cos θR,n

Gθ · ωR

Gr ⊗Gθ.

The expressions of Hδ and H∆ for the joints in Figure 11.1 is given in Table 11.2.

LINEARLY DEPENDENT∗ CAM JOINT

Hδ cGr ⊗Gθ −R sin θRGr ⊗Gθ

H∆
c arctan ωR/2

ωR/2 Gr ⊗Gθ R
cos θR,n+1−cos θR,n

Gθ·ωR
Gr ⊗Gθ

∗For the rigid segment Hδ = H∆ = 0

Table 11.2: Matrices Hδ and H∆ for joints with linearly dependent released displacements

and the cam joint.

173

12. Numerical examples

Some of the algorithms described so far will be here used to analyse five different

example problems. We will focus on those algorithms that are strain- and dynamically-

invariant, i.e. that use interpolation of local rotations and the angular velocity time-

integration scheme with unscaled rotations. All the cases involve sliding joints, and two

examples of joints with dependent released displacements are included in Sections 12.1

and 12.5.

The first two problems analyse the robustness of the algorithms introduced in the NN

and NE approaches. The problems in Sections 12.3, 12.4 and 12.5 compare the results

obtained using the proposed formulation with those present in the literature.

12.1 Free rotating beam attached to a screw joint

A vertical beam AB clamped at the bottom is connected to an horizontal arm BC via a

screw joint. The material and geometrical properties for the two beams are shown in Fig-

ure 12.1. An initial distributed velocity in the X direction and an angular velocity in the

negative Z direction that make the arm turn around and descend along the vertical beam

are applied, as depicted in Figure 12.1. The pitch of the screw is c = 0.02m/rad, which

corresponds to approximately eight revolutions along the vertical beam. Throughout the

analysis, both beams have been discretised using four linear elements each.

The NN approach in this model has been tested in conjunction with the trapezoidal

rule (Newmark algorithm with β = 0.25 and γ = 0.5) and the conserving algorithms β1

and M1 described in Chapter 6. On the other hand, the NE approach has been used not

only with the trapezoidal rule but also with the four time-integration strategies ALG1,

ALG2, ALG3 and ALG4 developed in Chapter 9. Both approaches, NN and NE, have

been run using two time-steps, ∆t = 0.02 and ∆t = 0.05. We will comment first on

the differences between the NN and NE formulations and, after that, we will analyse the

performance of the different algorithms for each case.

Figure 12.2 illustrates the resulting motions using the β1 (NN approach) and the ALG1

174

Slave node

FE MESH

C

B

1.0

X

A

0.5

Y

Z

w

v0

vo = 4.0m/s

w = 8.0rad/s

E = 2G = 104N/m2

A = 1.0m2

Iyy = Izz = Kt = 10−3m4

ρ = 1.0kg/m3

c = 0.02m/rad

Figure 12.1: Description of the free rotating beam attached to a screw joint.

−0.5
0

0.5 −0.5
0

0.50

0.2

0.4

0.6

0.8

1

(a)

t = 6.0

t = 5.0
t = 4.0

t = 3.0

t = 2.0

t = 1.0

t = 0.0

t = 6.98

−0.5
0

0.5 −0.5
0

0.50

0.2

0.4

0.6

0.8

1

(b)

t = 0.0

t = 1.0

t = 2.0

t = 3.0
t = 4.0

t = 5.0

t = 6.0

t = 6.78

Figure 12.2: Motion of the free rotating arm using the NN model with algorithm β1 (a)

and the NE model with algorithm ALG1 (b), ∆t = 0.02.

(NE approach) algorithms, with the constant time-step ∆t = 0.02. It can be observed

that the rates of descent of the rotating beam are slightly different. The times t = 6.98

and t = 6.78, respectively, are the last computed times, i.e. the times when the slave node

reaches point B on the screw. This different evolution of the contact point can be also

appreciated in Figure 12.3, which shows the history of the released displacement. This

figure also shows the released displacements of the same problem but using a much stiff

material with E = 109, and denoted in the label with ’Rig’. In this case, where the beams

are nearly rigid, we can estimate the descending time as t = L
wc = 1

8·0.02 = 6.25s. It can

be observed that both approaches converge to this value. The exact computed values are

t = 6.35 and t = 6.30 for the NN and NE approaches, respectively. We also mention that

the results of both formulations should converge to the same values as the stiffness of

the beams increase, as it is confirmed in Figure 12.3, where the differences between both

approaches are more noticeable for larger deformations.

175

Figure 12.3: Released displacement of the free rotating beam.

Figure 12.4: Component Y of the slave displacements using β1 algorithm (NN approach)

and ALG1 (NE approach) for the free rotating beam.

The Y component of the slave displacement for the two algorithms β1 and ALG1 is

plotted in Figure 12.4. Since point A at the bottom of the screw is fixed, the amplitude

176

of the oscillations progressively decrease in the NE formulation, as the figure shows. In

contrast, with the NN approach, the slave node is not attached to the vertical beam.

The released displacement is in this case measured along a straight line which passes

through B and is parallel to a vector perpendicular to the cross-section at point B. This

approximation leads to the separation of the contact point from the deformed beam AB,

as the final stages of the motion in Figure 12.2a reveal. This fact is also manifested at

the oscillations with finite amplitudes of the slave node in Figure 12.4.

With regard to the NN approach, Figure 12.5 shows the Y displacement of the slave

node using different algorithms and ∆t = 0.02. The conserving algorithms M1 and β1 give

very similar results whereas the trapezoidal rule fails to converge due to energy blow-up

at time t = 1.8653, after several successive time-step halvings. The analysis runs using

the M1 momentum conserving algorithm without any convergence problems, whereas in

the β1 algorithm some time-step reductions have occasionally been necessary in order

to achieve a converged solution. This fact reveals certain weaknesses in the method,

which although energy and momentum conserving, is still not sufficiently robust. The

momentum conserving algorithm is here capable of handling even larger time-steps. For

this algorithm, however, a possibility of eventual energy blow-up must not be discounted

[CJ00]. In fact, when running both algorithms with the larger time-step ∆t = 0.05, the

M1 algorithm suffers a jump in the energy at time t = 4.14 (see Figure 12.6), whereas the

β1 algorithm fails at t = 3.80 after a series of steps halvings, but always with a constant

energy. Before their failure, both algorithms give very similar responses as can be observed

in Figure 12.7. It can be realised that for the larger time-step, both algorithms follow the

same trend, which has important differences with respect to the response with ∆t = 0.02,

also plotted in 12.7 for the β1 algorithm..

As for the NE algorithms, the Y component of the displacements of the slave node are

plotted in Figures 12.8 and 12.9 for time-steps ∆t = 0.02 and ∆t = 0.05, respectively. The

trapezoidal rule fails to converge at times t = 1.86 and t = 0.4 for the smaller and larger

time-step. Algorithms ALG1 and ALG3 give very similar responses (see Figures 12.8

and 12.9), despite the fact that ALG1 approximates the contact condition of the slave

node. Both algorithms complete the analysis successfully keeping the initial time-step

∆t = 0.02 constant. For ∆t = 0.05, ALG1 does not require any time-step reduction but

ALG3 requires four of them (see Figure 12.10b), which may be attributed to the better

stability furnished by the conservation of angular momentum.

In contrast, ALG4 requires two time-step halvings for the value ∆t = 0.02, which

occurs when the second contact transition is encountered, i.e. at time t = 3.48 (see Figure

12.10a). When using ∆t = 0.05, a series of time-step reductions are necessary and finally

177

Figure 12.5: Component Y of the slave displacements for the NN approach, ∆t = 0.02.

Figure 12.6: Evolution of the total energy in the NN approach.

the run is stopped at time t = 3.251 (see Figure 12.10). We remember that ALG4 always

conserves the angular momentum (in the absence of external loads) but introduces errors

in the kinematics and in the total energy, which is larger when contact point transition

occurs. The failure of ALG4 (we remember that this algorithm is identical to ALG3

when no contact transition occurs) confirms that the conservation of angular momentum

at the expense of a discontinuity in the incremental energy has detrimental effects on the

time-integration of the equations of motion. After the first contact transition (t = 1.76 for

∆ = 0.02 and t = 1.8 for ∆t = 0.05), the algorithm is unable to re-stabilise the response.

For the smaller time-step ∆t = 0.02, the displacement of the slave node is affected by

high frequency oscillations (see Figure 12.8b), and a progressive increase of energy. When

using the higher time-step ∆t = 0.05, this effect is magnified, and leads to the failure of

convergence after successive time-step halvings (Figure 12.10).

178

Figure 12.7: Component Y of the slave displacements for the NN approach and with

∆t = 0.05. Algorithms β1 and M1 follow the same line until t = 3.80, where the former

fails to converge.

Figure 12.8: Component y of the slave displacements for the NE approach, ∆t = 0.02.

It is also worth pointing out the dissipative character of algorithm ALG2, as the

absence of high frequencies in the vibrations of the slave node in Figures 12.8 and 12.9

shows. Moreover, the trend of the curves indicates that as the displacements of the slave

node become smaller, the dissipation rate diminishes. This behaviour may be explained

by noticing that the energy decaying term deduced in equation 6.21 for the M2 algorithm

is proportional to ‖∆v‖2.

In spite of the fact that the results given by the NE algorithms are more stable than

those obtained with the NN approach, no conclusions about their robustness with respect

to the NN approach can be drawn. The two methods model different problems with very

different difficulties. Nevertheless, it can be inferred from this example that the conserving

179

Figure 12.9: Component y of the slave displacements for the NE approach, ∆t = 0.05.

Figure 12.10: Time-step size for the NE approach in the free rotating beam problem.

Figure 12.11: Evolution of the total energy in the NE approach, ∆t = 0.02.

180

Figure 12.12: Evolution of the total energy in the NE approach, ∆t = 0.05.

algorithms proved to be in both situations more robust. In addition, regarding the NE

approach, it can be said that the approximations that ALG1 does in order to conserve the

angular momentum are hardly distinguishable in the results. In Figure 12.13, the lines

corresponding to ALG1 and ALG3 are coincident.

Figure 12.13: Released displacement for algorithms ALG1, ALG2, ALG3 and ALG4.

We have also plot in figures 12.14 and 12.15 the evolution of the residual norm for some

iterations, i.e. ‖∆p‖
‖q‖ , for all the unconstrained degrees of freedom of the model. They

show its quadratic trend, typical of the Newton-Raphson solution process. This figures

intend to provide numerical evidence of the linearisation of the discretised equilibrium

181

equations performed in appendices F and G.

Figure 12.14: Evolution of the displacement residual norm for some iterations during the

Newton-Raphson solution process. NN approach.

Figure 12.15: Evolution of the displacement residual norm for some iterations during the

Newton-Raphson solution process. NE approach.

182

12.2 Free sliding mass

This example models two flexible beams connected through a sliding joint with all the

rotations released (i.e. a spherical joint attached to a sliding joint). The initial configu-

ration of the two beams is shown in Figure 12.16. The co-ordinates of the beam nodes

are also given in this figure, which indicate that the beams have different lengths. All

the other geometrical and material properties, however, are identical for both beams. A

mass of 1 kg is attached to beam BM at point M and subjected to an initial velocity v0.

Since there exists no external applied loads, the problem is genuinely energy and momen-

tum conserving. This problem has no practical relevance, but it tests the conservation

properties of different algorithms.

Z

Y

X

B

M

A v0

A =





0.0

0.0

0.0





; B =





0.0

3.0

1.0





M =





1.0

3.0

1.0





; v0 =





0.0

−10.0

−10.0





EIyy = EIzz = 20.0

ρIyy = ρIzz = 0.016

AE = 100.0 ; ρA = 0.08 ; ν = 0.3

Figure 12.16: Free sliding mass example.

In all the following simulations, the beams AB and BM are discretised with four

and one quadratic elements respectively. The simulations are run until the sliding node

on beam BM reaches point A. We tested the NE approach to model the sliding joint,

together with the the trapezoidal rule and the four strategies ALG1, ALG2, ALG3 and

ALG4 described in Chapter 9. A series of deformed configurations at different times using

ALG2 are depicted in Figure 12.17.

We applied the algorithms mentioned above with two initial time-steps, ∆t = 0.002

and ∆t = 0.004. These time-steps are halved whenever convergence could not be achieved,

and if after five consecutive time-step halvings the analysis did not converge, the run was

finally stopped. Figure 12.18 shows the evolution of the time-step size for the different

analyses. During its course, the trapezoidal rule and algorithm ALG4 required successive

time-steps reductions, and eventually, they failed to complete the simulation for both

time-step sizes. Although ALG4 always conserves the angular momentum, it encounters

during the analysis some convergence difficulties. These are always after the contact

transition, i.e. after times t = 0.088368 and t = 0.159704 for ∆t = 0.002 (the third

183

t=0.0

t=0.052

t=0.104
t=0.156

t=0.208
t=0.26

t=0.312

t=0.364

0
0.2

0.4
0.6

0.8
1
1.2

1.4
−0.5 0 0.5 1 1.5 2 2.5 3 3.5

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Figure 12.17: Motion simulation for the free sliding mass problem using algorithm ALG2

and ∆t = 0.004.

Figure 12.18: Time-steps used in the free sliding mass problem.

element transition could not be reached) and at times t = 0.086736 and t = 0.133857

(the last converged time) for ∆t = 0.004. As explained in the previous example, this fact

184

Figure 12.19: Evolution of the total energy for the free sliding mass problem.

reveals the effect of maintaining the angular momentum at the expense of introducing a

discontinuity in the approximation of the contact kinematics and in the energy.

The history of the energy is plotted in Figure 12.19, which supports this observation.

After the contact transition, a jump in the energy in algorithm ALG4 and the trapezoidal

rule is obvious for both time-steps ∆t = 0.002 and ∆t = 0.004, which strongly affects the

successive evolution of the simulation. The other conserving algorithms maintain a much

more stable evolution of the total energy, although it is still not exactly preserved. The

energy decaying contribution of algorithm ALG2 can be also observed.

Figure 12.20 shows the three components of the angular momentum for time-step

∆t = 0.002 and the five algorithms. It can be clearly observed that the trapezoidal

rule suffers severe oscillations in the components of the angular momentum after time

t = 0.160736, i.e. once the contact point jumped to the third element. Also, it is important

to note that the jumps in the angular momentum when contact transition takes place in

algorithms ALG1, ALG2 and ALG3 are relatively small compared to the oscillations

of the trapezoidal rule. The evolution of the angular momentum for the conserving

schemes suffers a blown-up in Figure 12.21. The properties of theses schemes, discussed

in Chapter 9, are reflected in these plots. Algorithms ALG1 and ALG2 conserve the

angular momentum within each element, whereas ALG4 conserves it always, and ALG3

is not a momentum-conserving algorithm. However, the response of the latter gives very

small oscillations, which remain for this example always bounded.

185

Figure 12.20: Three components of the angular momentum for the trapezoidal rule, and

ALG1-ALG4 algorithms with ∆t = 0.002.

For the larger time-step ∆t = 0.004, similar trends can be observed in the evolution of

the time-step (see Figure 12.18). However, the trapezoidal rule and ALG4 do not reach

the third element on the slideline due to severe instabilities after the first transition of the

contact point. The other conserving schemes can successfully complete the simulation,

although ALG1 and ALG3 required some time-step reductions. In this case, the dissi-

pative behaviour of ALG2 was proved to furnish certain stability to the response. The

three components of the angular momentum for ∆t = 0.002 and ∆t = 0.004 are plotted in

Figures 12.21 and 12.22, respectively. Although they are qualitatively similar, the jumps

given by the analysis with larger time-step are between two and three times larger than

for ∆t = 0.002. It is worth noting that algorithm ALG2 is the only one that does not

require any time-step halving for ∆t = 0.004 (see Figure 12.18).

It can be observed in Figures 12.23 and 12.24 that for the trapezoidal rule and the

ALG4 algorithm some spurious released displacements of the sliding node are obtained

during the time-step reductions. Nevertheless, the results produced by all the schemes are

186

Figure 12.21: Three components of the angular momentum for the algorithms ALG1-

ALG4, ∆t = 0.002.

very similar before the occurrence of the momentum blow-up in the trapezoidal rule, or

the energy blow-up in the case of ALG4. Moreover, despite the fact that in the momen-

tum conserving algorithms ALG1, ALG2 and ALG4 the contact condition is somewhat

relaxed, their history is very similar to algorithm ALG3, which always satisfies the con-

tact conditions. We note that ALG2 takes some more time to slide the contact point

along the slideline, which might be caused by its dissipative character. In this case the

numerical damping introduced by the algorithm appears to affect also the low frequency

oscillations, resulting in a deficient energy dissipation. The different evolution of the con-

serving schemes ALG1, ALG2 and ALG3 with the two time-steps are shown in Figures

12.25 and 12.26. It can be seen that the dissipation of ALG2 is more pronounced for the

larger time-step.

187

Figure 12.22: Three components of the angular momentum for the algorithms ALG1-

ALG4, ∆t = 0.004.

188

Figure 12.23: Released displacements for the free sliding mass problem, ∆t = 0.002.

Figure 12.24: Released displacements for the free sliding mass problem, ∆t = 0.004.

189

Figure 12.25: Evolution of the released displacement from time t = 0.2 for the conserving

algorithms ALG1, ALG2 and ALG3 in the free sliding problem with ∆t = 0.002.

Figure 12.26: Evolution of the released displacement from time t = 0.2 for the conserving

algorithms ALG1, ALG2 and ALG3 in the free sliding problem with ∆t = 0.004.

190

12.3 Aerial runway, Sugiyama et al. [SES03]

This example involves the beam AB and the point mass attached to beam BM depicted

in Figure 12.27. Beam BM is also connected via a sliding joint and a spherical joint, as

in the previous example. The coordinates of the points A, B and M are given in Figure

12.16. In the present case, beam AB is simply supported at both ends via two spherical

joints, and the mass is subjected to the gravitational field, with g = {0 0 − 9.8}. The

geometric and material properties of both beams (identical except for their length) are

given in Figure 12.27. Note that both beams are now much more flexible than in the free

falling mass problem. Also, the analysis is stopped once the sliding point B of beam BM

reaches point A.

Z

Y

X

B

A

M

g

EIyy = EIzz = 1
12 × 10−2

ρIyy = ρIzz = 2
3 × 10−6

AE = 100.0 ; ρA = 0.08 ; ν = 0.3

Figure 12.27: Geometry of the aerial runway problem.

This example was originally run by Sugiyama et al. [SES03] using their absolute nodal

formulation in conjunction with a single finite element per beam. The trajectories of

point M in the XZ and Y Z planes are scanned from [SES03] and shown in Figure 12.28.

The authors did not give details of the time-integration scheme used.

Figure 12.28: Mass trajectory in the XZ and YZ planes for the model given in [SES03].

We have run this problem using the NE formulation presented in Chapters 8 and 9.

Our aim is to analyse the effects of the contact transition with strong discontinuities in

the tangent of the centroid line of the beam. Beam BM was modelled with one quadratic

191

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.5

0
0.5

1
1.5

2
2.5

3
3.5

−2

−1.5

−1

0

0.5

1

t = 1.44

t = 1.26

t = 1.08
t = 0.90

t = 0.72

t = 0.54

t = 0.36

t = 0.18

t = 0.0

Figure 12.29: General view of the mass trajectory when using mesh H2 and algorithm

ALG2 with ∆t = 0.0005.

Figure 12.30: Mass trajectory in the XZ and YZ planes for the present formulation using

mesh H1 and ∆t = 0.001.

Figure 12.31: Mass trajectory in the XZ and YZ planes for the present formulation using

mesh H2 and ∆t = 0.0005.

element, whereas beam AB was modelled first with one quadratic element (mesh H1) and

in a second set of runs with three equal quadratic elements (mesh H2). The trapezoidal

192

rule and the four conserving algorithms ALG1, ALG2, ALG3 and ALG4 have been used

with an initial time-step of magnitude ∆t = 0.001 for mesh H1 and ∆t = 0.0005 for mesh

H2.

The projections of the trajectory of point M onto the co-ordinate planes XZ and Y Z

when using meshes H1 and H2 are given in Figures 12.30 and 12.31. We remark that since

no contact transition exist with mesh H1, algorithms ALG1 and ALG4 return exactly the

same results. Comparing our results for mesh H1 with those obtained in [SES03] and

reproduced in Figure 12.28, shows that while the qualitative behaviour of the structure is

comparable in the two approaches, our results provide considerably larger displacements.

It should be noted that the absolute nodal formulation [SES03] uses a finite element

which involves the derivatives of all the displacements at a node as the additional nodal

variables, which provides a more sophisticated approximation of the axial strain. This in

turn may be beneficial in systems like the present one, in which the axial straining makes

a dominant contribution to the strain energy. The elements we use are, in contrast, based

around the iso-parametric Lagrangian interpolation of displacements and rotations as

separate variables and are not expected to be competitive in problems with such a large

aspect ratio between the axial and the bending strain energy. Nevertheless, this example

has been chosen here in order to demonstrate the capabilites of the present formulation

to deal with large displacements and sliding joints.

Figure 12.32: Evolution of the released dof for the present formulation with meshes H1

(a) and H2 (b).

The evolution of the released displacement is shown in Figure 12.32. It can be observed

that the response obtained when using mesh H1 are very similar for all the algorithms.

However, we note that the trapezoidal rule did not need any time-step reduction, whereas

the conserving schemes required between two (ALG3) and eight (ALG2) time-step re-

ductions (see Figure 12.33). This is in contrast with the results given in the previous

examples, where the conserving schemes proved to be more robust. Some explanation

193

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

T
im

e−
st

ep

Time, ∆t=0.0005, mesh H2

Trap. rule

Trap. rule

ALG1

ALG1

ALG2
ALG3

ALG4

ALG4

Figure 12.33: Time-step size for the aerial runway problem.

can be found in the fact that algorithms ALG1 and ALG4 introduce errors in the kine-

matics of the sliding joint and in the increments of energy, even though they conserve the

angular momentum. As the plots of the energy in Figure 12.34 show (which include the

contribution of the external loads), the satisfaction of the kinematic sliding conditions

results in a more stable response in the energy sense. Algorithms ALG1 and ALG4 suffer

a sharp increase in the energy evolution (see Figures 12.34b and 12.34d), which occurred

at time t = 1.2402 (this instant is also when the time-step length is reduced). On the

other hand, ALG2 followed a general energy decaying trend, with some occasional en-

ergy increases. This fact shows that although the energy decaying contribution normally

predominates, some eventual energy augmentations must not be discounted. Algorithm

ALG3 manifested the most stable response, despite requiring two time-step reductions.

When using mesh H2, only algorithms ALG2 and ALG3 could overcome the contact

transitions. This example involves high deformations, and therefore strong discontinuities

in the centroid line. In the non-conserving algorithms, the equations for the sliding joint

are written as a function of the tangent to the centroid line. Therefore, this formulation

struggles when it encounters the discontinuity associated with the contact point transi-

tion. After successive time-step halvings (see Figure 12.33), the trapezoidal rule fails to

converge. A similar response is observed in algorithm ALG4, which has a discontinuity

in the kinematic approximation of the sliding joint. Algorithm ALG1 succeeds to slide

the contact point to the second element, but after a series of time-steps halving fails to

converge in the second transition.

We remark that the difficulties that in general all the algorithms manifest during the

transition of the contact point, may be attributed to the loss of quadratic convergence

during the Newton-Raphson process, and also to the strong variation of the internal

loads of the elements in the slideline when the contact point jumps. The linearisation

194

Figure 12.34: Total energy for the aerial runway problem with mesh H1, ∆t = 0.001.

is performed according to the current position of the contact point. If the contact point

jumps to another element, the update process builts a completely new configuration which

may differ significantly with respect to the previous one. In other words, the equilibrium

position falls far from the linearised problem if the configurations of the two adjacent

master elements have important differences, and due to the change of the nodal forces.

Indeed, before the failure of algorithms ALG1, ALG4 and the trapezoidal rule, it has

been observed that the contact node kept jumping from one side of the discontinuity to

the other side, without a reduction in the convergence errors.

Figure 12.35 shows the evolution of the total energy when using mesh H2. The two

algorithms that could complete the analysis (ALG2 and ALG3) show very different energy

levels, which is consistent with the different histories of the released displacements in

Figure 12.32 and the trajectory of the mass shown in Figure 12.31. Algorithm ALG2

manifests strong dissipative trend with sharp jumps in the total energy, whereas it is

remarkable the stability of algorithm ALG3 until the last stages of the analysis, despite

the large deformations of the slideline. We remember that the errors in the conservation

of energy are originated by the definition of the unconstrained beam residual and the

approximations performed in the master–slave relationship for the rotations. In this

195

Figure 12.35: Total energy for the aerial runway problem with mesh H2, ∆t = 0.0005.

example, these contributions apparently have a very mild effect.

196

12.4 Flexible cylindrical manipulator,

Krishnamurthy [Kri89]

In this example, a horizontal flexible beam with a tip mass at one of the ends is

linked to a rigid hub through a sliding joint with no released rotations. The hub can

rotate and move along the vertical axis as shown in Figure 12.36, where the material and

geometrical properties of the whole manipulator are also given. The system is subject to

three time-dependent loads: force Fz, which lowers the hub, moment Mz, which rotates

the hub, and follower force Fr, which pulls the flexible beam through the hub. These loads

vary in time in such a manner as to move the manipulator from the position (r, z, θ) =

(0.5588, 0.5334, 0) at t = 0 to the position (r, z, θ) = (0.254, 0.2286, 1.5708) at t=1.5,

where the degrees of freedom r, z and θ are shown in Figure 12.36.

H1:

Z

X

1× 0.5588

22× 0.0254 = 0.5588

1× 0.2540

10× 0.0254 = 0.2540

H2:

Fr

Fz

rR

zMz
m

m = 0.68

Flexible beam:

A = 104; Iyy = Izz = 1.9464

E = 102; ν = 0.0

ρ = 3.735.10−5

Hub:

A = 104; Iyy = Izz = 64.07225

E = 105; ν = 0.0

ρ = 0.081726

Figure 12.36: Scheme and finite-element models of the flexible cylindrical manipulator.

This problem was solved by Krishnamurthy [Kri89] by considering the vibration of a

beam using the engineering beam theory to be superimposed onto the three rigid-body

modes. The resulting set of partial differential equations was reduced to a system of

ordinary non-linear differential equations by assuming the local displacements fields for

the beam to be linear combinations of the modes of vibration for a cantilever beam. No

details were provided for time integration of the resulting system of differential equations.

The results for the time histories of the two components of the local lateral displacement

(with respect to the straight line passing through the hub opening) for both ends of the

beam have been scanned from the original reference and given in Figure 12.37.

In an attempt to reproduce these results using the present formulation, we have read

the load histories employed by the author (Figure 4 in [Kri89]). Our readings of these

time histories are given in Figure 12.38 (see Table 12.1 for the numerical values). In terms

197

w1

v1
v2

w2

Figure 12.37: Tip displacements of the manipulator given by Krishnamurthy [Kri89].

of spatial discretisation, we have modelled the hub by means of a short vertical beam with

equivalent mass properties and used two different finite-element meshes to discretise the

flexible beam. In the coarser mesh (mesh H1), each cantilever end of the beam has been

modelled using a single quadratic finite element whereas in the finer mesh (mesh H2),

the whole beam has been modelled using thirty-two quadratic elements so that, in the

initial configuration, one cantilever end contains twenty-two and the other end contains

ten elements. See Figure 12.36 for meshes H1 and H2.

In both cases the contact between the beam and the hub is initially established at a

nodal point. As the beam is being pulled through the hub, the contact point drifts away

from the initial nodal point, but it always remains in contact with the beam in accordance

with the NE approach. For mesh H1, there is no transition of the contact point between

the elements while, for mesh H2, fifteen of the thirty-two elements make at some point in

time contact with the hub. It is important to understand that in both models the hub is

modelled as a short vertical beam, i.e. the hub is assumed to have no diameter and the

sum of the lengths of the two ends of the beam makes up the total length of the beam.

198

Time Fx Fz Mz

0.0000 -12.3000 -107.0000 15.0000

0.0600 -6.9000 -57.8777 7.0000

0.1200 -4.9000 -15.2518 1.8000

0.1800 -3.0000 5.5216 -1.8187

0.2400 -1.2000 14.8022 -2.4248

0.3000 -0.2000 16.5828 -2.3293

0.3600 0.4000 16.3130 -2.1784

0.4200 0.7000 13.3454 -1.7687

0.4800 0.8000 11.6734 -1.3888

0.5400 0.8000 9.7321 -1.0544

0.6000 0.6000 8.0191 -0.8242

0.6600 0.5000 6.5198 -0.6702

0.7200 0.4000 5.2202 -0.5306

0.7800 0.3000 4.1058 -0.4539

0.8400 0.3100 2.0463 -0.2881

0.9000 0.2500 1.3976 -0.1716

0.9600 0.1900 0.9170 -0.1130

1.0200 0.1300 0.5725 -0.0706

1.0800 0.0900 0.3356 -0.0414

1.1400 0.0600 0.1811 -0.0223

1.2000 0.0400 0.0874 -0.0108

1.2600 0.0200 0.0358 -0.0044

1.3200 0.0100 0.0114 -0.0014

1.3800 0.0100 0.0022 -0.0003

1.4400 0.0000 0.0002 0.0000

1.5000 0.0000 0.0100 0.0000

Table 12.1: Values of the applied loads in the problem of the manipulator.

In reality (and in the model used in [Kri89]), however, the hub has certain diameter, so

that the combined length of the two ends of the beam is equal to the difference between

the total length of the beam and the hub diameter.

The problem modelled using both meshes, H1 and H2, have been run using the trape-

zoidal rule and the four momentum conserving algorithms ALG1, ALG2, ALG3 and

ALG4. For all of them, a time-step ∆t = 0.001 is employed, which is required not as

much for convergence reasons but rather to capture the progressively increasing frequen-

cies of vibration of the flexible arm with the point mass as that arm becomes shorter.

The resulting histories for the displacements r and z and the rotation θ using the two

finite-element meshes are given in Figures 12.39 and 12.40. These results are comparable

199

Figure 12.38: Time history of the input loads Fr, Fz and moment Mz.

to those given in Figure 3 of [Kri89], but they do not correspond exactly to the expected

final configuration with (r, z, θ) = (0.254, 0.2286, 1.5708) at t = 1.5. It should be noted

again that the loading histories in Figure 12.38 where read manually from a graph in

[Kri89].

The relative displacements v1, w1, v2 and w2 of the two ends of the flexible beam for

meshes H1 and H2, and the five algorithms tested are plotted in Figures 12.41- 12.50.

These displacements are measured with respect to a straight line that rotates rigidly with

the hub and are comparable to the original results given in Figure 12.37 [Kri89]. We

first remark the dissipative character of algorithm ALG2 which damps out all the higher

oscillations. It is clear that this algorithm is not useful for the analysis of the vibrations

of the tip point. Also, and for reasons already commented in the previous examples,

ALG4 failed to converge when using the finer mesh H2. Algorithm ALG1 required for

both meshes some time-step reductions, whereas all the other algorithms (except ALG4)

could complete the analysis with the constant time-step ∆t = 0.001.

It is worth noting that the amplitudes of v1 and w1 increase whereas the amplitudes

and the periods of vibration of v2 and w2 decrease, which is what intuitively we would

expect for the given loading history which tends to lengthen the arm with the tip point

1 and shorten the arm with the point mass (tip point 2). While this observation is valid

200

Figure 12.39: Time history of the displacements r, z and rotation θ for mesh H1.

Figure 12.40: Time history of the displacements r, z and rotation θ for mesh H2.

for both meshes, it should be noted, that for the algorithms used, the coarse mesh H1

exhibits only a modest increase in the frequency of vibration of the tip mass in time (see

Figures 12.41-12.45).

201

This frequency increase is more pronounced with the finer mesh H2, and it is expected

that further refinement would lead to even closer agreement with the reference result

Figure 12.37d. It should also be noted that this mesh manages to capture the behaviour

of the vertical vibration of tip point 1 qualitatively, as can be observed by comparing

Figures (c) in 12.46, 12.47, 12.49 and 12.50, and Figure 12.37c. In contrast, the coarse

mesh H1 fails to capture this behaviour in all cases.

The differences in the displacements v1, w1, v2 and w2 between our results and the

reference are in general larger for the coarse mesh H1 than for the fine mesh H2. Clearly,

the more approximate interpolation of the contact point on the flexible arm has detri-

mental effects on the amplitude of vibration, especially in the vertical displacement w1.

In contrast, by modelling the flexible arm more accurately (which implies including the

facility to enable the transition of the contact point between the elements), we have been

able to improve the results. However, even with the finer mesh H2, these amplitudes are

visibly larger than those given in the reference. This difference should be attributed to

the fact that in the present formulation the contact is effected at a single point. This

is in contrast to the model employed in the reference, which accounts for the contact

between the flexible arm and the hub along the whole diameter of the hub. As a conse-

quence, the two ends of the arm are longer in the present model thus producing larger

tip displacements.

It is worth pointing out that when using mesh H2, algorithm ALG1 has perceptible

differences with the trapezoidal rule (see Figures 12.40, 12.46 and 12.49), that in the case

of ALG3, and also while using mesh H1 do not exist. These differences may be attributed

not as much to the approximate sliding condition that ALG1 performs, but to the change

from mid-point approximation to end-point kinematic conditions (and vice-versa).

202

Figure 12.41: Tip displacements of the flexible cylindrical manipulator using mesh H1

and the trapezoidal rule.

Figure 12.42: Tip displacements of the flexible cylindrical manipulator using mesh H1

and ALG1.

203

Figure 12.43: Tip displacements of the flexible cylindrical manipulator using mesh H1

and ALG2.

Figure 12.44: Tip displacements of the flexible cylindrical manipulator using mesh H1

and ALG3.

204

Figure 12.45: Tip displacements of the flexible cylindrical manipulator using mesh H1

and ALG4.

Figure 12.46: Tip displacements of the flexible cylindrical manipulator using mesh H2

and the trapezoidal rule.

205

Figure 12.47: Tip displacements of the flexible cylindrical manipulator using mesh H2

and ALG1.

Figure 12.48: Tip displacements of the flexible cylindrical manipulator using mesh H2

and ALG2.

206

Figure 12.49: Tip displacements of the flexible cylindrical manipulator using mesh H2

and ALG3.

Figure 12.50: Tip displacements of the flexible cylindrical manipulator using mesh H2

and ALG4.

207

12.5 Driven screw joint, Bauchau and Bottasso [BB01]

In this example a vertical driver is attached to a fixed point A through a revolute

joint with its axis of rotation in the direction of Z (see Figure 12.51). The other end B is

connected to a horizontal beam first through an universal joint where the only constrained

rotation is the one in the direction of the horizontal beam, and afterwards through a screw

joint with the released rotation also in the direction of the beam. The pitch of the screw

is c = 2.4
π/3 = 2.2918m/rad which corresponds to a twist of 60◦ from point R to point T .

The beam is also physically twisted at the same ratio of the screw joint in such a way

that at point R the local axes Y and Z of the beam are rotated by 30◦ with respect to the

global axis Y and Z while at point T they are rotated by −30◦ with respect to the same

global axes. At point T a rigid body M is attached to the beam as depicted in Figure

12.51. The beam is attached to a fixed point R by means of a universal joint that has

the X axis constrained. The geometrical and material properties of the beams are given

in Figure 12.51 and Table 12.2.

The translation of the screw joint is prescribed during the analysis according to the

function

rR = 0.6(1− cos 2πt)gr,

where t is the time variable and gr is the body-attached axis perpendicular to the cross

section of the beam at point B for the NN approach, or the tangent to the centroid line

in the NE approach (in both cases, initially in the direction of the global axis X).

Driver Beam

EA[kN] 44000 44000

EIyy[kN m2] 23 300

EIzz[kN m2] 300 23

GJ [kN m2] 28 28

GAy[kN m] 14000 2800

GAz[kN m] 2800 14000

ρIyy[kg m] 0.001 0.001

ρIzz[kg m] 0.011 0.011

Tip mass M

M [kg] 40

ρIyy[kgm2] 0.225

ρIzz[kgm2] 0.225

Table 12.2: Geometrical and material properties of the driven screw joint problem.

The driver and the beam have been discretised using 2 and 12 quadratic elements

respectively and the total response time is 3 seconds. The axial twist of the beam is

208

Cardan joint

Revolute joint

Cardan joint

Driver

Beam

0.6
2.4

1.6

Y

X

Z

A

R

B

T

M

s

Figure 12.51: Geometry and applied released displacement of the driven screw joint

problem.

modelled approximately by axially rotating each of the twelve untwisted elements with

respect to each other in a way consistent with the geometry of the problem. The use

of twelve elements along the screw beam is not required by convergence reasons, but to

model the geometrical properties of the beam more accurately.

We have compared the results when using the NN approach (the trapezoidal rule,

the β1 and the M1 algorithms), and the NE approach (also the trapezoidal rule and the

ALG1-ALG4 algorithms). For all the analysis a time step ∆t = 0.01s is applied. We

remark that Bauchau and Bottasso [BBN01] employed an energy decaying scheme with a

variable time-step that used a maximum size ten times smaller than our time step-step.

Figures 12.53 and 12.57 show the out-of-plane displacement uz and the rotation θX of

the tip point T for the time integration schemes β1 and ALG3. They agree very nicely

with the same plots showed in reference [BB01] apart from some small differences during

the last second of the simulation, which we believe is due to the dissipative character of

their time-integration scheme and the different spatial and time-discretisation used. In

fact, the results given by the dissipative algorithm ALG2 are closer to their curves (see

Figures 12.55 and 12.59).

As in the previous examples, ALG4 fails to converge and the Newmark method finds

more difficulties to converge than the conserving algorithms. When using the NN ap-

proach, the trapezoidal rule requires one time-step halving, whereas the β1 and M1 use

the constant time-step ∆t = 0.01. With regard to the NE approach, the trapezoidal

209

Figure 12.52: Out-of-plane displacement uz of the tip of the beam for the driven screw.

joint problem in [BB01], ([50]3(3,4)(18,4)NN approach, [1](3,4)(18,4)NE approach).

Figure 12.53: Out-of-plane displacement uz of the tip of the beam for the β1 (NN

approach) and ALG3 (NE approach) algorithms.

rule, ALG1, ALG2 and ALG3 require three, two, zero and one time-step halvings, respec-

tively. We note that when using an initial time-step ∆t = 0.005, all the algorithms (except

ALG4) complete the analysis successfully without any time-step reduction. It is worth

210

Figure 12.54: Out-of-plane displacement uz of the tip of the beam for the NN approach.

Figure 12.55: Out-of-plane displacement uz of the tip of the beam for the NE approach.

pointing out that the NN and NE formulations lead to two different models with very

different characteristics. Indeed, the sliding joint is computationally a more demanding

problem than the (less realistic) NN approach.

211

Figure 12.56: Rotation θx of the tip of the beam for the driven screw joint problem in

[BB01].

Figure 12.57: Rotation θx of the tip of the beam for algorithm β1 (NN approach) and

algorithm ALG1 (NE approach).

The comparison of the displacements for the different time-integration algorithms in

Figures 12.54, 12.55, 12.58 and 12.59 show that the only remarkable differences are (as

expected) those due to the dissipative character of ALG2. All the other algorithms give

very similar results.

212

Figure 12.58: Rotation θx of the tip of the beam for the NN approach.

Figure 12.59: Rotation θx of the tip of the beam for the NE approach.

213

13. Conclusions

13.1 Achievements of the thesis

The modelling of flexible mechanisms has received much attention during the recent

years. This work has shown that not only it is possible to model these structures with the

master–slave approach, but that important, beneficial outcomes in comparison to existing

methods are obtained.

Multibody systems are normally modelled by establishing the equilibrium differential

equations of the unconstrained system (with independent, separate bodies) and imposing

the kinematic conditions of the joints via algebraic equations. This route has primarily

two shortfalls: the presence of more unknowns than the strictly necessary and the solution

of differential algebraic equations (DAEs). It is a common practice to solve these DAEs

resorting to Lagrange multipliers or a penalty method [Nik88, Sha98, GC01]. As already

pointed out by other researches [JC96, Mit97], and also shown in the present work, the

master-slave approach eliminates these drawbacks by avoiding the use of algebraic equa-

tions. In fact, instead of directly imposing the kinematic conditions of the joints, we

have illustrated how the master-slave approach imposes the condition that the released

degrees of freedom perform no work. This avenue leads to a well-posed system of (only)

differential equations which are all displacement-based.

The main achievement of the thesis is the extension of the master-slave method to more

realistic and general contact conditions, while embedding them in robust time-integration

algorithms. The new theoretical results have been mainly given in Part II: in particular,

in Chapters 8, 9, 10 and 11. They may summarised as follows:

1 Design of invariant energy-momentum conserving algorithms in the node-to-node

approach (β-algorithms in Chapter 7).

2 Reformulation of the master-slave approach for sliding joints, which allows the tran-

sition of the contact point along a slideline formed by a set of elements. The new

formulation has here been called the node-to-element master-slave approach (Chap-

214

ters 8, 9 and 10).

3 Design of invariant momentum-conserving algorithms within the NE approach (SM1

and SM2 families of algorithms in Chapter 9).

4 Formulation of non-invariant energy- and momentum-conserving algorithms in the

NE approach (SME algorithms in Chapter 10).

5 Adaptation of all the algorithms within the master-slave approach (conserving and

non-conserving, in the approaches NN and NE) for joints with dependent released

degrees of freedom like the screw-joint, the rack-and-pinion joint or the cam joint

(Chapter 11).

In addition, the linearisation of the residuals with relevant interesting features has

been derived in Appendix G.

It is worth commenting on the relevance of point 2 mentioned above. The NE approach

allows us to satisfy exactly the sliding conditions within the finite-element setting. It also

retains the essence of the master-slave technique, i.e. the extension of the discretised

equilibrium equations with a (minimum) set of released displacements. Furthermore, the

NE approach presented here for systems with rotational degrees of freedom is a particular

case of the more general bilateral contact in elastodynamics described in [MJ04]. This

paper and the present thesis widen the applicability of the master-slave method to other,

more general contact conditions than those modelled with the NN approach.

The definition of a coupling element provides a suitable framework for the inclusion

of contact transition between the elements of the slideline. No limitation is placed on

the size of the released translation along the slideline, apart of its physical length. In

addition, the method has been embedded in the context of conserving algorithms, and

special care has been exercised in achieving a strain- and dynamic-invariant formulation.

In parallel with the underlying beam formulation, it has been shown that the inter-

polation of rotations plays a crucial role in the resulting conserving algorithms. Two

main groups of algorithms have been described for beams: one that interpolates tangent-

scaled rotations (the STD algorithm), and another that interpolates unscaled rotations

(M1 and M2). While the former allows the conservation of energy and the angular mo-

mentum in a simple manner, it leads to a non-invariant formulation. The latter group of

algorithms conserves the angular momentum and are strain- and dynamically-invariant.

The additional conservation of energy requires some sophisticated alterations (β1 and

β2 algorithms) which have been also adapted to the non-sliding joints (NN master-slave

approach). The conservation of angular momentum (which in contrast to the energy,

215

is a vector quantity) provides better stability than the Newmark and HHT families of

algorithms.

When using the master-slave approach for the modelling of sliding joints, the same con-

clusions have been drawn. We have built a non-invariant energy-momentum conserving

algorithm that interpolates tangent-scaled rotations (the SME algorithm), and an invari-

ant momentum-conserving algorithm (SM1 and SM2 algorithms). We have prioritised the

properties of invariance over that of energy conservation. This is justified by two facts:

(i) the strain- and dynamic-invariance are basic properties that should not be spoilt by

the numerical implementation, and (ii) in the case of unconstrained beams, no substantial

improvement can be detected in the energy-conserving algorithms with respect to those

that are only momentum conserving [JC99b]. Although the latter can suffer an energy

blow-up, both algorithms perform with similar robustness in stiff problems, as some of

the examples in Chapter 12 have shown.

For the SM1 and SM2 algorithms, a choice between the preservation of the contact

conditions and the conservation of constants of motion must be made, which leads to

two set of algorithms (the ’a’ and ’b’ versions). In addition, different approximation of

the contact conditions must be made when contact transition exist, which in turn yields

the T and NT versions of the algorithms. The set of all possible combinations has been

analysed, leading to a range of strategies (ALG1-ALG4) that have been implemented and

tested in the numerical examples. It can be concluded that in general the conserving

algorithms outperform the non-conserving algorithms, not only in the sense that they

conserve some fundamental constants of motion but that they are also able to use larger

time-steps. Also, it has been discovered that the transition of the contact point along

the slideline must be treated carefully, and might disturb the response of the analysis. In

particular, the discontinuities in the approximation of the contact conditions have adverse

effects which advise against using ALG4. On the other hand, although ALG2 is only a

first-order accurate algorithm, its dissipative properties become a stabilisation factor in

the time-integration of the equations. Also, although ALG1 and ALG3 provide very

similar responses, in some exceptionally demanding examples such as the aerial runway

in Section 12.3, the satisfaction of contact conditions supplied by ALG3 has proved more

advantageous than the strict conservation of angular momentum with an approximate

contact condition.

216

13.2 Further work

When applying the β1- and β2-algorithms to the NN approach, we have restored

the conservation of energy to the underlying momentum conserving algorithms M1 and

M2. The application of this technique to the NE approach requires further investigation.

Clearly, the elemental parameter β should have to be redefined for the coupling element,

leading to some complexities in the derivation of the resulting residual and its linearised

form. Successful results in this direction would permit the modelling sliding conditions

with an energy-momentum conserving algorithm that has invariant properties.

In some of the numerical examples, difficulties have been observed during the transition

of the contact point between elements. It is therefore desirable in this circumstance to

investigate alternative solution strategies which should amend the oscillatory behaviour

of the iterative solutions obtained during the Newton-Raphson process. This work should

focus on smoothing the discretised geometry of the slideline and also on avoiding the

potential discontinuities in the internal loads of the master elements when the contact

point jumps to adjacent elements.

The difficulties associated with the conservation of energy and satisfaction of invariance

properties for the algorithms described in this thesis are strongly linked to the rotational

field. We can therefore predict that in elastodynamics, where only translations are present,

the design of energy-momentum conserving and invariant algorithms using the master-

slave approach should be possible using the approach in [MJ04], the techniques introduced

in Chapter 10 for the contact conditions, and similar time-integrations schemes to those

given in [ST92].

We also mention some promising work in [BB98], where a kinematic field with a combi-

nation of rotations and translations is developed. By rewriting the equilibrium equations

with the resulting definitions for this field, an energy-momentum algorithm is obtained

which does not use tangent-scaled rotations. Although no proof of the strain-invariance

of this algorithms has been given, the adaptation of the master-slave approach for this

description of the kinematics might also lead to promising results. Similar considerations

in the context of rigid bodies with revolute joints are discussed in [NLT03].

Only permanent (bilateral) contact conditions have been treated in this thesis. Further

research is necessary to study the applications of the method to intermittent (unilateral)

contact or multibody collisions. Clearly, this procedure would require an algorithm that

detects contact. Further work and numerical tests are necessary to show the (not obvious)

effects of these discontinuities to the master-slave approach.

Also, realistic contact which accounts for friction and physical damping should be also

217

considered if practical industrial applications are modelled. Additional forces should have

to be considered in the initial weak form, which depend on the release variables. The

extension of the method for these cases should not present any fundamental changes in

the existing master-slave approach.

218

A. Derivation of matrices T, S and

some of their differentiations

In this chapter some useful formulae involving relations between spin and additive

rotations are derived. In particular, we will derive the expression for the transformation

matrix that relates them and its required derivatives. We will develop the results for the

unscaled and tangent-scaled rotations in sections A.1 and A.2 respectively.

A.1 Unscaled rotations

A.1.1 Transformation matrix T

The transformation matrices T and T−1 can be derived using various techniques. Some

authors have used direct differentiation [IFK95, CJ99], others have deduced T by manip-

ulating tangent-scaled rotations and the formula for compound rotations [SVQ86, CG88,

Cri97], and still others have used the geometric properties of the tensor T [RC02]. We

will here follow the approach given in [Per79], which requires fewer algebra manipulations,

and at the same time reveals the form of the series expansion of T.

It has been seen in Section 2.1 that the rotation matrix Λ can be written as:

Λ = exp(θ̂) =
∞∑

i=0

θ̂
i

i!
. (A.1)

We also know from equation (2.16) that the infinitesimal variation of Λ along the spin

vector dϑ is given by

dΛ = d̂ϑΛ,

219

from where

d̂ϑ = (dΛ)ΛT. (A.2)

Let us define an infinitesimal rotation Λε as follows

Λε = exp(εθ̂). (A.3)

This definition gives rise to the corresponding expression of the infinitesimal matrix

d̂ϑ(ε):

d̂ϑ(ε) = (dΛε)ΛT
ε , (A.4)

which can be seen as a function of the scalar ε. We note that from (A.3) and (A.4) we

have

Λε=0 = I , Λε=1 = Λ,

d̂ϑ(ε)
∣∣∣
ε=0

= 0 , d̂ϑ(ε)
∣∣∣
ε=1

= d̂ϑ,
(A.5)

where d̂ϑ is the skew-symmetric matrix (independent of ε) given in (A.2). The deriva-

tion of a relation between dϑ and dθ will be obtained by (i) writing the Taylor expansion

of dϑ around ε = 0 as a function of dθ, and (ii) setting ε = 1 in the resulting expression

[Per79].

(i) Let us write the Taylor expansion of d̂ϑ(ε) around ε = 0 in the following general

form:

d̂ϑ(ε) = d̂ϑ0 + εd̂ϑ
′
0 +

ε2

2!
d̂ϑ

′′
0 + . . . +

εn

n!
d̂ϑ

(n)

0 + . . . (A.6)

where d̂ϑ
(n)

0 = dn

dεn d̂ϑ(ε)
∣∣∣
ε=0

. The form of the first and second derivatives, d̂ϑ(ε)
′

and d̂ϑ(ε)
′′
, can be computed by using the definition d̂ϑ(ε) = (dΛε)ΛT

ε , and by

noting that from (A.3) it follows that d
dεΛε = θ̂Λε, which leads to:

d

dε
d̂ϑ(ε) =

d

dε
(dΛεΛT

ε) =
(

d
d

dε
Λε

)
ΛT

ε + dΛε
d

dε
ΛT

ε = d
(
θ̂Λε

)
ΛT

ε − d̂ϑ(ε)θ̂

= d̂θ + θ̂d̂ϑ(ε)− d̂ϑ(ε)θ̂ = d̂θ + [θ̂, d̂ϑ(ε)],
d2

dε2
d̂ϑ(ε) =

d

dε

(
d̂θ + [θ̂, d̂ϑ(ε)]

)
= [θ̂,

d

dε
d̂ϑ(ε)] = [θ̂, d̂θ] + [θ̂, [θ̂, d̂ϑ(ε)]]

220

where we have introduced the Lie product or Lie bracket for matrices defined by

[A,B] = AB − BA for any two matrices A,B (see for instance [Gug77]), and its

distributive property [A,B + C] = [A,B] + [A,C]. It can be verified that the

remaining terms in (A.6) are expressed according to the following formula

dn

dεn
d̂ϑ(ε) = [θ̂, . . . , [θ̂, [︸ ︷︷ ︸

n−1 brackets

θ̂, d̂θ]] . . .] + [θ̂, . . . , [θ̂, [︸ ︷︷ ︸
n brackets

θ̂, d̂ϑ(ε)]] . . .].

From the results in (A.5), it follows that the terms dn

dεn d̂ϑ(ε)
∣∣∣
ε=0

are given by

d̂ϑ
′
0 = d̂θ

d̂ϑ
′′
0 = [θ̂, d̂θ]

dn

dεn
d̂ϑ0 = [θ̂, . . . , [θ̂, [︸ ︷︷ ︸

n−1 brackets

θ̂, d̂θ]] . . .]

which inserted in the Taylor expansion of d̂ϑ(ε) in (A.6) yields

d̂ϑ(ε) = d̂θ +
ε2

2!
[θ̂, d̂θ] +

ε3

3!
[θ̂, [θ̂, d̂θ]] + . . . +

εn

n!
[θ̂, . . . , [θ̂, [︸ ︷︷ ︸
n−1 brackets

θ̂, d̂θ] . . .] + . . . (A.7)

(ii) After remarking that [θ̂, d̂θ] = ̂̂
θdθ, and therefore [θ̂, . . . , [︸ ︷︷ ︸

n brackets

θ̂, d̂θ] . . .] = ̂̂
θ

n
dθ, and

setting ε = 1 (the value of d̂ϑ(ε) that recovers (A.2)), equation (A.7) turns into

d̂ϑ(ε)ε=1 = d̂θ +
1
2!

̂̂
θdθ +

1
3!

̂̂
θ

2
dθ + . . . +

1
n!
̂̂
θ

n
dθ + . . .

which implies

dϑ =

(
n∑

i=1

θ̂
i

(i + 1)!

)
dθ = dexp(θ̂)dθ = T(θ)dθ. (A.8)

The function dexp(•) =
∑n

i=1
(•)i

(i+1)! is sometimes called the co-exponential [Bro55, Pfi98]

or simply the differential of the exponential map [BB98]. By making use of the property

(−1)nθ2nθ̂
i
= θ̂

i+2n
for n > 0; i = 1, 2 , dexp(θ̂) = T(θ) can be expressed as1

1Different notations have been used in the literature for the matrices T and T−1 and their transpose.

The T matrix given here is the same T matrix given in [IFK95, RC02] but corresponds to the matrix T−1

given in [SVQ88, JC96, JC01] and the matrix TT given in [CG88].

221

T(θ) = I +
(

1
2!
− θ2

4!
+

θ4

6!
− . . .

)
θ̂

+
(

1
3!
− θ2

5!
+

θ4

7!
− . . .

)
θ̂

2

= I +
1− cos θ

θ2
θ̂ +

1
θ2

(
1− sin θ

θ

)
θ̂

2

= I +
1− cos θ

θ
ê +

(
1− sin θ

θ

)
ê2. (A.9)

Its inverse can be obtained by noting that2

(
I + αê + βê2

)−1
= I + α1ê + β1ê

2, (A.10)

where

α1 =
−α

α2 + (1− β)2
β1 =

α2 − β(1− β)
α2 + (1− β)2

.

Applying relation (A.10) to the matrix T in (A.9) leads to

T(θ)−1 = I− θ

2
ê +

(
1− θ/2

tan(θ/2)

)
ê2, (A.11)

unless θ is a multiple of 2π.

A.1.2 Matrices dT and T′

Using the definition of the directional derivative in (2.15) and noting that θ = ‖θ‖ =√
θ · θ the following directional derivatives can be deduced:

dθ =
(dθ · θ)

θ
, d cos θ = −sin θ

θ
(dθ · θ),

d

(
1
θ

)
= −(dθ · θ)

θ3
, d sin θ =

cos θ

θ
(dθ · θ),

d(θn) = nθn−2(dθ · θ) , d tan(θ/2) =
dθ · θ

2θ

(
1 + tan2(θ/2)

)
.

(A.12)

2These results can be derived by multiplying a matrix with the form (I+αê+βê2) by (I+α1ê+β1ê
2)

and finding the values of α1 and β1 that give the identity matrix I as a result. See [CG88] for similar

formulae.

222

Besides, in order to alleviate the notation in this section, the following parameters are

introduced:

c0(θ) =
sin θ

θ
, c3(θ) =

θ sin θ − 2(1− cos θ)
θ4

,

c1(θ) =
1− cos θ

θ2
, c4(θ) =

3 sin θ − θ(2 + cos θ)
θ5

,

c2(θ) =
1
θ2

(
1− sin θ

θ

)
, c5(θ) =

θ2 cos θ − 5θ sin θ + 8(1− cos θ)
θ6

,

c6(θ) =
θ2 sin θ + 7θ cos θ + 8θ − 15 sin θ

θ7
.

(A.13)

By applying the results in (A.12), it can be checked that the following relations between

them hold [RC02]:

dc0 = (θ · dθ)(c2 − c1)

dci = (θ · dθ)ci+2 i = 1 . . . 4.
(A.14)

Using the constants in (A.13), the matrices Λ and T may be rewritten as

Λ = I + c0θ̂ + c1θ̂
2

T = I + c1θ̂ + c2θ̂
2
.

(A.15)

Making use of relations (A.14) and applying the directional derivative to the matrix

T in (A.9) one obtains the following result for dT:

dT = (θ · dθ)c3θ̂ + c1d̂θ + c2(θ̂d̂θ + d̂θθ̂) + (θ · dθ)c4θ̂
2
. (A.16)

Differentiation with respect to arc-length parameter s gives the same result, but with

θ′ instead of dθ:

T′ = (θ · θ′)c3θ̂ + c1θ̂
′ + c2(θ̂θ̂

′
+ θ̂

′
θ̂) + (θ · θ′)c4θ̂

2
. (A.17)

Let us define the matrix ΞdT such that

dTa = ΞdT(a)dθ

223

for any a ∈ E3. Using the expression of dT in (A.16), it follows that ΞdT is given by

ΞdT(a) =− c1(â + θ̂â) + c2(âθ̂ + θ̂â) + c3(θ̂
2
â + (a · θ)θ̂) + c4(a · θ)θ̂

2
. (A.18)

We can likewise define ΞdTT(a) such that

dTTa = ΞdTT(a)dθ, (A.19a)

and which has the following explicit expression:

ΞdTT(a) = −c3θ̂a⊗ θ + c1â + c2(âθ̂ − 2θ̂â) + c4θ̂
2
a⊗ θ. (A.19b)

Note that ΞdT(a)T 6= ΞdTT(a). On the other hand, from dϑ = Tdθ and Υ = TTθ′

(see equation (2.31)4), we can deduce the following two identities:

dϑ′ = T′dθ + Tdθ′

dΥ = (dTT)θ′ + TTdθ′.

Inserting both equations into dΥ = ΛTdϑ′ (see equation (2.34)), using the relation

ΛTT = TT, and cancelling equal terms yields

(dTT)θ′ = ΛTT′dθ, (A.20)

which in turn implies that ΞdTT(θ′) = ΛTT′.

In order to deduce other useful formulae, we introduce the symmetric matrix Ξd2Λ(a,b)

such that

b ·D2Λ.[u, v]a = v ·Ξd2T(a,b)u.

which using relations (A.14) and the definition of Λ in (A.15), results in the following

expression [RC02]:

Ξd2Λ(a,b) = c1(a⊗ b + b⊗ a) + c0(a · b)I + (c2 − c1)
(
âb⊗ θ + θ ⊗ âb + (θ̂a · b)I

)

+c3 ((θ · a)(b⊗ θ + θ ⊗ b) + (θ · b)(a⊗ θ + θ ⊗ a) + (θ · a)(θ · b)I)

+
(
(c1 − c2)(a · b) + (c4 − c3)(θ̂a · b) + c5(θ · b)

)
θ ⊗ θ. (A.21)

224

This matrix can alternatively be derived by noting that the differentiation of dΛ =

T̂dθΛ (which will be distinguished with the sign δ) yields

δdΛ = δ̂TdθΛ + T̂δθΛT̂dθ,

and therefore, manipulating the product b · δdΛa, and transposing the result leads to

the following alternative expression of Ξd2Λ(a,b):

Ξd2Λ(a,b) = TTb̂Λ̂aT−ΞdTT(b̂Λa). (A.22)

On the other hand, the directional derivative of T = TTΛ leads to

ΞdT(a) = −TTΛ̂aT + ΞdTT(Λa). (A.23)

A.1.3 Matrix dT′

The expression of dT′T is obtained by differentiating T′ in (A.17). Using formulae

(A.12) and (A.14), after some tedious but straightforward algebra we obtain

dT′ = c3

[(
dθ · θ′ + θ · dθ′

)
θ̂ + (θ · θ′)d̂θ + (dθ · θ)θ̂′

]

+c2

(
d̂θθ̂

′
+ θ̂d̂θ

′
+ d̂θ

′
θ̂ + θ̂

′
d̂θ

)
+ c1d̂θ′

+c5(dθ · θ)(θ · θ′)θ̂
+c4

[
(θ ·dθ)(θ̂θ̂

′
+ θ̂

′
θ̂) + (θ ·θ′)(θ̂d̂θ + d̂θθ̂) + (dθ ·θ′ + θ ·dθ′)θ̂

2
]

+c6(θ · θ′)(dθ · θ)θ̂
2
. (A.24)

It will be convenient in Appendix F to have in hand the product d(T′T)a for a ∈ E3.

Let us introduce the additional symmetric matrix Ξd2T which is defined via the following

relation (see [RC02]):

bTD2T.[u, v]a = vTΞd2T(a,b)u, (A.25)

where u and v are the directions in which the two directional derivatives are applied.

The matrix Ξd2T(a,b) is explicitly given by [RC02]

225

Ξd2T(a,b) =c2(a⊗ b + b⊗ a) + (c2 − c1)(a · b)I + c3

(
âb⊗ θ + θ ⊗ âb + (θ̂a · b)I

)

c4

(
(θ · a)(b⊗ θ + θ ⊗ b) + (θ · b)(a⊗ θ + θ ⊗ a) + (θ · b)(θ · b)I

)

+
(
(c4 − c3)(a · b) + c5(θ̂a · b) + c6(θ · a)(θ · b)

)
θ ⊗ θ.

On the other hand, performing the dot product by a vector b at both sides of (A.20)

yields

b · (dTT)θ′ = b ·ΛTT′dθ ⇒ θ′ · (dT)b = dθ ·T′TΛb,

where the implication holds since (d(TT))T = dT. Applying a second directional

derivative to both sides (indicated here with the sign δ), while keeping a constant gives

rise to

δθ′ · (dT)b + θ′ · (δdT)b = dθ · δT′TΛbδθ − dθ ·T′TΛ̂bTδθ.

This identity may be rewritten by using the matrix Ξd2T in (A.25) instead of δdT,

which leads to

Ξd2T(b, θ′)δθ + ΞdT(b)Tδθ′ = δT′TΛb−T′TΛ̂bTδθ,

where the dot product by dθ has been removed at both sides (since dθ is an arbitrary

vector, the identity still holds). By setting a = Λb, and using the notation dT and dθ

instead of δT and δθ, it finally follows that

d(T′T)a = Ξd2T(ΛTa,θ′)dθ + ΞdT(ΛTa)Tdθ′ + T′TâTdθ. (A.26)

A.2 Tangent-scaled rotations

Let us recall first that unscaled and tangent-scaled rotations are related via the fol-

lowing transformation:

θ = 2 tan(θ/2)e =
tan(θ/2)

θ/2
θ, (A.27)

226

which, after denoting θ = ‖θ‖, implies

θ/2 = arctan(θ/2). (A.28)

It is worth noting that for infinitesimal rotations we have

lim
θ→0

tan(θ/2)
θ/2

≈ 1,

and therefore θ ≈ θ. It follows that in attempting to obtain the directional derivative

of Λ as a function of ’spin tangent-scaled rotations’, we get the following result:

dΛ =
d

dε

∣∣∣
ε=0

cay(εd̂ϑ)Λ = d̂ϑΛ = d̂ϑΛ,

and hence, tangent-scaled and unscaled spin rotations are both equivalent. However,

as it will be shown in the next paragraphs, the same reasoning does not extend to additive

rotations, i.e. dθ 6= dθ.

A.2.1 Transformation matrix S

A transformation similar to dϑ = Tdθ can be derived between spin rotations dϑ and

additive infinitesimal tangent-scaled rotations dθ.

By using some standard trigonometric formulae, we can deduce the following identities:

1− cos θ =
2 tan2(θ/2)

1 + tan2(θ/2)
=

1
2θ2

1 + 1
4θ2 ,

sin θ =
2 tan(θ/2)

1 + tan2(θ/2)
=

θ

1 + 1
4θ2 ,

which, when inserted into the expression for T in (A.9) lead to

T = I + ê2 +
1

1 + 1
4θ2

(
θ

2θ
θ̂ − θ

θ
ê2

)

= e⊗ e +
1

1 + 1
4θ2

(
θ

2θ
θ̂ − θ

θ
ê2

)
. (A.29)

On the other hand, by differentiating both sides of (A.28) and using θ = θ
θθ, we obtain

the following results:

227

dθ =
1

1 + 1
4θ4

(θ · dθ)
θ

,

dθ =

(
1

1 + 1
4θ2 e⊗ e− θ

θ
ê2

)
dθ,

where use of the first identity has been made for deducing the second expression. From

the last equation it can be shown that3

ê2 dθ

θ
= ê2 dθ

θ

e⊗ edθ =
1

1 + 1
4θ2 e⊗ edθ.

(A.30)

Finally, using T in equation (A.29) and inserting the previous identities into dϑ = Tdθ,

gives rise to

dϑ = S(θ)dθ with S(θ) =
1

1 + 1
4θ2

(
I +

1
2
θ̂

)
. (A.31)

The matrix S(θ) relates spin rotations and additive tangent-scaled infinitesimal rota-

tions. Note that dθ can be added even though they are tangent-scaled, as long as they are

added to the corresponding tangent-scaled rotation θ. It is its vector character that makes

them additive, independently of the scaling applied. We note that the previous equation

could also have been obtained by performing the following directional derivatives:

d

dε

∣∣∣
ε=0

cay(εdϑ)cay(θ) =
d

dε

∣∣∣
ε=0

cay(θ + εdθ).

Resorting to equations (A.10), the inverse S−1 can be written as follows,

S(θ)−1 = I− 1
2
θ̂ +

1
4
θ ⊗ θ

(
I +

1
2
θ̂

)

= I− 1
2
θ̂ +

1
4
θ ⊗ θ. (A.32)

A.2.2 Matrix dS

Using the preliminary result:

3It can be checked that replacing dθ by dpθ and θ by p(θ), equation ên dθ
θ

= ên dθ
θ

holds for n ≥ 1 and

any vector-like parametrisation of rotations pθ = p(θ)e.

228

d

(
1

1 + 1
4θ2

)
= − dθ · θ

2
(
1 + 1

4θ2
)2 ,

the differentiation of matrix S(θ) can be directly written from its definition in (A.31):

dS(θ) =
1

2
(
1 + 1

4θ2
)

(
d̂θ − dθ · θ

1 + 1
4θ2

(
I +

1
2
θ̂

))
=

1
2

(
1 + 1

4θ2
)

(
d̂θ − S(θ) (dθ · θ)

)
.

An expression for S(θ)′ is obtained by replacing dθ with θ′ in the previous equation:

S(θ)′ =
1

2
(
1 + 1

4θ2
)

(
θ̂′ − S(θ)

(
θ′ · θ))

. (A.33)

We can define, in parallel with ΞdT, the matrix ΞdS such that

dS(θ)a = ΞdS(a)dθ.

It can be proved that ΞdS(a) has the following closed form:

ΞdS(a) = − 1
2

(
1 + 1

4θ2
) (â + S(θ)a⊗ θ) . (A.34)

A.2.3 Matrix dS−1

The matrix S(θ)−1 has been derived in (A.32). Its directional derivative may be

computed as follows:

dS(θ)−1 = −1
2
d̂θ +

1
4

(dθ ⊗ θ + θ ⊗ dθ) .

The matrix ΞdS−1(a) such that dS(θ)−1a = ΞdS−1(a)dθ , ∀ a ∈ E3 is then written as

follows:

ΞdS−1(a) =
1
2
â +

1
4

((a · θ)I + θ ⊗ a) . (A.35)

In an analogous way, we can derive the matrix ΞdS−T(a), which is given by

ΞdS−T(a) = −1
2
â +

1
4

((a · θ)I + θ ⊗ a) .

229

B. Quaternions

One suitable parametrisation of the rotational matrix from the computational stand-

point is the use of quaternions, which were introduced by Hamilton [Ham99]. They pro-

vide a 1-1 correspondence with the orthogonal matrices while furnishing an elegant way

of computing compound rotations. An overview can be found in [Spr86, GPS02, Col90]

and a short summary will be described next.

B.1 Definitions

A quaternion is defined as a hyper-vector composed of a scalar part and a vector part

which can be expressed in the following four-component form:

q .=

{
q0

qv

}
,

where qv is a real vector with three components. Its conjugate q̄ is defined as

q̄ .=

{
q0

−qv

}
.

The multiplication and addition of two quaternions is defined in the following way:

q1q2 =

{
q01q02 − qv1 · qv2

q01qv2 + q02qv1 + q̂v1qv2

}
, qv1 + qv2 =

{
q01 + q02

qv1 + qv2

}
.

Any vector r ∈ E3 can be seen as a quaternion with a null scalar part. In this light,

the multiplication of a quaternion with the quaternion associated with a vector r can be

computed as

qr =

{
−qv · r

q0r + q̂vr

}
,

230

which gives a quaternion with (in general) four non zero components. By defining the

matrices

E =
[
−qv q0I− q̂v

]
, Ē =

[
−qv q0I + q̂v

]
,

it can be verified that the products qr and rq may be written as

qr = ETr , rq = ĒTr. (B.1)

We also note that if Ē1 is the matrix associated with the quaternion q1, the following

identity holds

Ē1q2 = (q2q̄1)v (B.2)

where (•)v denotes the vector part of a quaternion.

It is worth noting that in general the quaternion product is non-commutative due to

the cross product. The norm of a quaternion is given by

‖q‖ = ‖q̄‖ =
√

q2
0 + qv · qv,

which allows us to define the inverse of a quaternion as

q−1 .=
q̄

‖q‖2
,

so that the quaternion q−1q = qq−1 is a unit quaternion, i.e. ‖q−1q‖ = ‖q−1‖ ‖q‖ = 1.

B.2 Euler parameters and quaternions

At this point, an alternative expression for the rotation matrix can be given as a

function of a normalised quaternion (also called the Euler parameters). Making use of

the trigonometric formulae for half-angles, equation (2.4) can be expressed as

Λ = I + 2 cos(θ/2) sin(θ/2)ê + 2 sin2(θ/2)ê2. (B.3)

Let us define the unit quaternion from the four Euler parameters 1 as q = {q0 qv},
1It is worth noting that the normalisation condition reduces the number of independent parameters to

three.

231

with q0 = cos(θ/2) and qv = {q1 q2 q3} = sin(θ/2)e. By replacing the expression of q0

and qv in equation (B.3), we obtain the following result:

Λ = I + 2q0q̂v + 2q̂2
v = (q2

0 − qv · qv)I + 2qv ⊗ qv + 2q0q̂v = ĒET.

The multiplication of the rotation matrix Λ1 (with an associated quaternion q1) by a

vector r can then be expressed as

Λ1r = Ē1ET
1r = Ē1q1r = (q1rq̄1)v = q1rq̄1, (B.4)

where use of equations (B.1) and (B.2) has been made, and it can be verified that

any quaternion given by the product qrq̄ has a zero scalar component. Applying the

additional rotation Λ2 on vector r1 leads to the following rotated vector r21:

r21 = Λ2r1 = q2r1q̄2 = q2q1rq̄1q̄2.

After noting q̄1q̄2 = q2q1 (which can be checked via direct computation), this expres-

sion gives the relevant following formula for the quaternion of the compound rotation:

q2 ◦ q1 = q21 = q2q1.

This is an alternative formula to the compound rotations in (2.9) which is computa-

tionally simpler. At the same time, the quaternions require the storage of only four scalars

instead of the nine components of a rotation matrix, which make them computationally

more attractive. A useful method for obtaining the quaternion from a general rotation

matrix Λ is described in [Spu78].

232

C. Derivation of beam equilibrium

equations

In order to derive the beam equilibrium equations, the balance equations in 3D continu-

um mechanics will be established and constrained to the beam equations by introducing

the beam kinematics given in Section 3.1 of Chapter 3.

C.1 Cauchy’s equation of motion

Setting bs as the volume force in a body that occupies the volume v with density ρ

and x as the position vector, it is possible to obtain, from the balance of translational

momentum, Cauchy’s first law of motion [MH94]

divσ + bs = ρẍ, (C.1)

where σ is the Cauchy stress tensor with components σij in the basis ei, i.e.

σ = σijei ⊗ ej ,

and divσ is a vector whose ith component is (divσ)i = ∂σij

∂xj
(summation over j is

understood).

Expression (C.1) corresponds to the spatial form of the equilibrium equations. How-

ever, since the constitutive law relating the strains and the stresses is generally described

according to the local orientation of the material, it is desirable to obtain also an equation

equivalent to (C.1), but written in the material form. With this in mind, we introduce the

deformation gradient tensor F that transforms the differential of the position vectors in

the reference configuration (dX) into the differential of the position vectors in the current

configuration (dx), and which can be written in the following ways:

233

dx = FdX ⇔ F =
∂x

∂X
=

∂xi

∂Xj
ei ⊗Ej = GRADx,

where upper case has been used for the gradient GRAD denoting differentiation with

respect to the coordinates in the reference configuration. Let us define the differentials

of volume and oriented area in both the reference and spatial configurations, denoted by

dV and dv, and dA = NsdA and da = nsda respectively. The vectors Ns and ns are

unit outward normals to the surfaces of v and V , denoted by ∂V and ∂v. Comparing

the deformation of dV and dv, it can be proved that dA and da are related via Nanson’s

formula [Ogd84]:

nsda = JF−TNsdA,

where J = detF. Integrating Cauchy’s law of motion over the domain v and using the

divergence theorem leads to

∫

∂v
σnsda +

∫

v
bsdv =

∫

v
ρẍdv. (C.2)

The first integral can be modified using Nanson’s formula and again the divergence

theorem:

∫

∂v
σnsda =

∫

∂V
σJF−TNsdA =

∫

∂V
PNsdA =

∫

V
DIVPdV, (C.3)

where ∂V is the external surface of the reference volume V and P = JσF−T is the

non-symmetric first Piola-Kirchhoff stress tensor, which in indicial notation is written as

P = Pijei ⊗Ej , (C.4)

and DIVP is a vector whose ith component is computed as
∑

j
∂Pij

∂Xj
.

The last integral in (C.2) can be transformed in1
∫
V ρ0ẍ(s, X2, X3)dV where ρ0 = J−1ρ

is the density of the body in the reference configuration. Inserting this expression and

equation (C.3) into (C.2), and setting Bs as the load per undeformed volume, equation

(C.1) can be rewritten in its material from as (see [MH94])

DIVP + Bs = ρ0ẍ. (C.5)
1The vector x maps material points from the reference to the current configuration, and can be then

considered as a time depending function x : R3 × R+ → R3. Therefore, when ẍ is integrated in
∫

V
it is

integrated in its domain, whereas in
∫

v
is integrated over the image. Both integrals are equal, however.

234

Also, from the balance of angular momentum, one gets the symmetry condition for σ,

i.e. σT = σ (see [Ogd84]), which noting that σ = JPFT, can be written as PFT = FPT.

C.2 Introducing the beam kinematics

At this point we can introduce the kinematic constraints of the beam in order to

obtain the beam equations of motion. Note first that from the expression of P in (C.4),

the component PE1 = P1 corresponds to the spatial stress vector acting on the cross-

section of the reference configuration, whereas P23 = [PE2 PE3] = [P2 P3] are the

spatial stress vectors on the lateral areas of the reference beam. Thus, writing P as

P = [P1 P2 P3] = [P1 P23] , (C.6)

and using (C.5) yields

DIVP =
∂P1

∂s
+

∂P2

∂X2
+

∂P3

∂X3
= P′1 + DIV2P23 = −Bs + ρ0ẍ, (C.7)

where DIV2 indicates the material divergence DIV but only with respect to X2 and X3.

Let us set n as the spatial stress resultant per unit of reference length on the cross-section,

i.e.

n =
∫

A
P1dA, (C.8)

and n̄s as the external load acting on the surface of the beam per unit length:

n̄s =
∫

∂A
tsdl =

∫

∂A
[P2 P3]Nldl,

where ts is the stress on the lateral surface ∂A of the beam, dl is the differential of the

curve that encloses the cross-section A and Nl = Nl1E2 + Nl2E3 is the outward normal

to this curve. With this definitions in mind, one has the following result:

∫

A
DIVP =

∫

A
P′1dA +

∫

A
DIV2P23dA = n′ +

∫

∂A
[P2 P3]Nldl = n′ + n̄s, (C.9)

where use of the divergence theorem over the area A has been made. On the other

hand, we can recast the kinematic assumption in (3.1), x = r + y, with y = ΛY and Y

a constant material vector. In order to derive an expression for ẍ = r̈ + ÿ in (C.7), we

235

recall the results in Section 2.3.4, i.e. Λ̇ = ŵΛ and Λ̈ = (̂̇w + ŵ2)Λ where w and ẇ are

the angular velocity and angular acceleration. We can then express ÿ = Λ̈Y as follows:

ÿ =
(
ŵ2 + ̂̇w

)
y. (C.10)

Assuming that the material under consideration has a constant density in the reference

configuration, and remembering that r points to the line of centroids of the beam, the

integral over the area A of ρ0ẍ yields

∫

A
ρ0

[
r̈ +

(
ŵ2 + ̂̇w

)
y
]
dA = ρ0r̈

∫

A
dA + ρ0

(
ŵ2 + ̂̇w

)∫

A
ydA = Aρr̈, (C.11)

where Aρ = Aρ0.

Using equation (C.9) and (C.11), and defining the vector of total external forces per

unit length n̄ as

n̄ = n̄s +
∫

A
BsdA,

the integral of (C.5) over A turns into the translational beam equilibrium equation

n′ + n̄ = Aρr̈. (C.12)

In order to obtain the equilibrium equation for the rotational degrees of freedom, we

remark first that the condition PFT − FPT = 0 leads to 2

3∑

i=1

∂Xix× Pi =
(
r̂′ + ŷ′

)
P1 + ∂X2y × P2 + ∂X3y × P3 = 0. (C.13)

Similarly to the force stress resultant, the moment resultant m and external torque

per unit of reference length m̄ are computed as

m =
∫

A
ŷP1dA m̄ =

∫

∂A
ŷtsdl +

∫

A
ŷBsdA. (C.14)

2Noting that Pij = (Pj)i where (Pj)i is the ith component of the stress vector Pj , the ij component of

the resultant matrix PFT − FPT has the following expression Pil
∂xj

∂Xl
− ∂xi

∂Xl
Pjl =

∂xj

∂Xl
(Pl)i − ∂xi

∂Xl
(Pl)j =

−
(

∂x
∂Xl

× Pl

)
k
, i.e. the kth component of the vector ∂x

∂X1
× P1 + ∂x

∂X2
× P2 + ∂x

∂X3
× P3, where i,j and k

permute cyclically.

236

The first integral of m̄ can be modified remembering the expression of the stress vector

at the external surface, i.e. ts = P23Nl, and applying the divergence theorem over the

cross-section:

∫

∂A
ŷP23Nldl =

∫

A
DIV2(ŷP23)dA =

∫

A

[(
D̂IV∗2y

)
P23 + ŷDIV2P23

]
dA,

where DIV∗2y = ∂X2y + ∂X3y. Replacing the previous expression in the first integral

of (C.14)2, and using equations (C.7) and (C.13), m̄ may be rewritten as follows:

m̄ =
∫

A

[
∂y

∂X2
× P2 +

∂y

∂X3
× P3

]
dA +

∫

A
[ŷDIV2P23 + ŷBs]dA

= −
∫

A

[
r̂′ + ŷ′

]
P1dA +

∫

A
ŷ[ρ0ẍ− P′1]dA.

Reordering terms and introducing the expression of m and n in (C.14)1 and (C.8),

respectively, leads to

m̄ = −
∫

A

[
ŷ′P1 + ŷP′1

]
dA− r̂′

∫

A
P1dA +

∫

A
ρ0ŷẍdA

= −m′ − r̂′n + ρ0

∫

A
ŷẍdA. (C.15)

The last term can be modified recalling that ẍ = r̈ + (ẇ + ŵ2)y and noting that

ŷŵ2y = −ŵŷ2w, giving

ρ0

∫

A
ŷ

[
r̈ +

(
ŵ2 + ̂̇w

)
y
]
dA = −ρ0

∫

A
ŷ2dAẇ − ρ0ŵ

(∫

A
ŷ2dA

)
w + ρ0

(∫

A
ŷdA

)
r̈.

Since y emanates from the centroid of the section, the integral of the tensor ŷ over the

cross-section is zero and thus equation (C.15) reduces to

m′ + m̄ + r̂′n = −ρ0

∫

A
ŷ2dAẇ − ρ0ŵ

∫

A
ŷ2dAw.

Using the definition of the spatial inertial tensor jρ = −ρ0

∫
A ŷ2dA, the last expression

yields the rotational beam equilibrium equation

m′ + m̄ + r̂′n = jρẇ + ŵjρw. (C.16)

237

D. Brief overview of numerical

time-integration

The time-integration of non-linear equations is a huge topic in its own right. This

chapter will only explain the necessary concepts that have been used within this thesis.

We will give some useful definitions and some well known results, without going into

the details. The reader is referred to the books [Gea71, HW91, Lam91, Woo90, AP98b],

which give deeper insight into these issues.

D.1 The initial value problem

We are interested in numerically solving an ordinary differential equation (ODE) of

the form

ẏ(t) = f(t,y(t)), (D.1a)

subjected to the following initial conditions

y(0) = y0, (D.1b)

where y ∈ [ymin, ymax] ⊂ Rm and t ∈ [0, T] ⊂ R is an independent variable. We will

henceforth assume that f satisfies the necessary conditions for the existence of a unique

238

solution 1.

We note that the differential equation of the beam in (3.5) (and also the spatially

discretised weak forms (3.40) and (3.42)) do not have exactly the general form (D.1).

They differ basically in two aspects:

1. From the definition of the vector of momenta l in (3.4), it follows that the

beam equations contain the spin vectors w and ẇ. These are not the time-

differentiation of the rotation θ, i.e. the additive rotation vector θ̇. This fact

will require adapting each scheme to the rotational field. This is performed

in Chapters 4 and 6; thus, throughout this appendix we will just ignore this

issue.

2. In contrast to (D.1), our equations have implicit second derivatives in time.

The transformation of second-order ODEs to first-order can be performed as

follows. Given a non-linear differential equation of the form

ÿ + A(ẏ) = fm(t,y), (D.2)

where y, f ∈ Rm, we can construct an equivalent ODE with the general form

(D.1) by setting z ∈ R2m and rewriting (D.2) as

ż(t) = f2m(t,z),

where the following definitions have been made:

z =

{
z1

z2

}
.=

{
y

ẏ

}
and f2m(t,z) .=

{
z2

fm(t, z1)−A(z2)

}
.

Therefore, we will henceforth use only first-order differential equations of the

form (D.1), knowing that the results can be applied to equations of the form

(D.2).
1 The uniqueness of the solution is assured if f satisfies the following conditions (see for instance

[Gea71, Lam91]):

a) f is bounded on the domain D = [0, t]× [ymin, ymax],

b) f is continuous with respect to t, and

c) f is Lipschitz continuous with respect to y, i.e. there exist a constant L such that

‖f(t, y)− f(t, y∗)‖ ≤ L‖y − y∗‖,

for all t ∈ [0, T], y, y∗ ∈ D.

239

D.2 General classification of numerical methods

In order to solve numerically the ODE (D.1), let us consider a subdivision of [0, tN]

given by a set of uniformly spaced points tn ∈ [0, tN], n = 0, . . . , N such that

t0 = 0 , tn+1 = tn + ∆t (D.3)

where ∆t = tn+1 − tn is the so-called time-step that will be assumed as constant.

Henceforth, we will denote by yn the approximated values of y(tn) according to the

time-integration algorithm.

Given a set k values yn, . . . ,yn+k−1, a time-integration algorithm applied to equation

(D.1) computes an estimation of yn+k, with the general formula

k∑

j=0

αjyn+j = ∆tF (yn+k, . . . , yn, tn,∆t). (D.4)

The method will require of k starting values y0, . . .yk−1 in order to provide a first

approximation yk+1.

We will classify the time-integration algorithms according to the following two criteria:

1. Single-/multi-step algorithms [AP98b, Woo90, Lam91]. Algorithms where k = 1

are single-step, and those where k > 1 are multi-step algorithms. The latter usually have

simpler expressions. However, they require more initial values and cannot handle changes

of the step size easily.

2. Explicit/implicit algorithms[Lam91]. The algorithms in which yn+k can be ex-

pressed as a function of the values yn, . . . , yn+k−1 are explicit. Otherwise they are im-

plicit. The former require less operations in general, but can only be conditionally stable,

and therefore require smaller time-steps. (The concept of stability will be formally defined

below.)

D.3 Properties of the time-integration algorithms

Throughout the thesis we often refer to the following important concepts:

D.3.1 Convergence

A time-step algorithm is said to be convergent if, for all problems of the form (D.1)

the following condition is satisfied:

240

max
0≤n≤N

‖y(tn)− yn‖ → 0 as ∆t → 0.

Therefore, a convergent method will tend towards the exact solution y(t) as we reduce

the step-size. The difference en = y(tn) − yn is called the global error. We will be

interested in providing an upper bound of the error, or moreover to see how the error is

reduced as we decrease ∆t.

D.3.2 Accuracy

We define the local truncation error dn as the error when the numerical method (D.4)

is applied to the exact solution:

dn =
k∑

j=0

αjy(tn+j)−∆tF (y(tn+k), . . . , y(tn), tn, ∆t).

We will say that the method is accurate or consistent with order p if dn has the form
2 dn = O(∆tp).

Consistency measures the capacity of the algorithm to faithfully reproduce the solu-

tions of the original differential equation. The order of accuracy or consistency measures

the rate at which the real solution y is approached by reducing the time-step ∆t.

It can be proved that any convergent method is consistent, and also that an algorithm

is consistent if it satisfies the following two conditions [Lam91]:

∑k
j=1 αj = 0(∑k

j=1 jαj

)
f(tn, y(tn)) = F (yn+k, . . . , yn, tn, 0).

Another important measure of the accuracy is the local error ln, which is the difference

between the exact solution and the numerical solution at each time-step. Given y′(t) =

f(t, y) and y(tn) = yn, the local error is given by [AP98b]

ln+1 = y(tn+1)− yn+1,

which can be shown [AP98b] to be closely related to ∆tdn. (Note that this ’exact’

solution is different from y in (D.1) because different ’initial’ values are imposed.)
2The notation O(∆tp) indicates a function such that there exist two constants C and p which for all

∆t satisfy the following condition: |O(∆tp)| ≤ C∆tp.

241

D.3.3 Stability

A method is said to be stable if there exists a value ∆t0 for each differential equation

(D.1) such that a fixed change in the starting values produces a bounded change in the

numerical solution for all 0 < ∆t < ∆t0. This is a property of the method, independent

of the stability of the exact solution of the initial value problem. There exist different

measures of stability in the literature. Furthermore, the stability properties of a method

when dealing with a linear problem can be spoilt when the method is applied to a non-

linear problem. For non-linear problems, conservation of the physical constants of the

underlying continuous problem is a good indication of the stability of the method, and

will be discussed in Section D.3.5. For linear problems, some common definitions of

stability are:

• 0-Stability [Lam91]. This stability measures the effect of small perturbations in the

data. Let us consider a numerical solution z of (D.4) which is perturbed by a small

amount δ as follows:

k∑

j=0

αjzn+j = ∆tF (zn+k, . . . , zn, tn,∆t) + δn+k.

with the initial condition z(0) = y0 + δ

A method is said to be 0-stable if, for given two perturbed solutions z and z̄ (per-

turbed with different parameters δi and δ̄i) there exist positive constants ∆t0 and

K such that for all ∆t ≤ ∆t0, we have

|δi − δ̄i| ≤ ε ⇒ |zti − z̄ti | ≤ Kε

for all 0 ≤ ti ≤ tN . It can be proved [AP98b] that if a method is 0-stable and is

consistent with order p, the method is also convergent with order p (i.e. the global

error en is of order p).

• Absolute stability [Lam91, AP98b]. This measure reflects the behaviour of the

method when it integrates the differential equation y′ = λy, with Re(λ) < 0 and

y ∈ C. The numerical solution should satisfy the requirement

|yn| ≤ |yn−1| (D.5)

so it parallels the non increasing response of the exact solution. The region of

absolute stability is defined as the points of the complex y−plane such that applying

242

the method to the test equation y′ = λy, with y = ∆tλ, it satisfies the requirement

(D.5). In addition, a method is said A-stable [Lam91] if the region of absolute

stability covers the entire area Re(∆tλ) < 0.

D.3.4 Stiff problems

This concept is in fact related to the original (non-discretised) differential equations

(D.1). Different definitions of a stiff problem exist in the literature. In a qualitative

manner, we say that a problem is stiff if it contains multiple time-scales [AP98b], i.e. the

phenomena represented by the differential equations has some variables that change more

rapidly than the others. This is the case for instance for the beam models in this thesis,

where the axial deformation have very different (material) stiffness than the bending

deformations. Such problems present additional stability difficulties, since the response

might change abruptly during the analysis.

D.3.5 Conserving properties

One important factor in the design of the time-integration algorithms is their ability to

transport the conserving (or geometric) properties of the continuous problem to the (spa-

tially and temporally) discretised model. The preservation of these features, also called

geometric integration [HLW02], ensures the stability of the method even in the non-linear

regime. In this sense, the conservation of energy or angular momentum enhances the sta-

bility of the method while retaining important features of the original problem. Likewise,

energy-decaying algorithms may improve the robustness of the analysis, although in this

case the response is numerically damped.

Another important property is the symplectic structure of the underlying problem,

which is inherent to Hamiltonian dynamical systems [GPS02]. Algorithms that conserve

the Hamiltonian flow are so-called symplectic integrators [STW92]. The reader is referred

to [STD95, ST94] for the design of energy-momentum algorithms, and to [ST92, GS96]

where a discussion of symplectic integrators can be found.

243

E. Update of incremental and

iterative curvatures

E.1 Unscaled rotations

From the definition of the material curvature in (3.12), the following identities at

time-steps n and n + 1 (or load increments, in statics) may be written

Υ̂n = ΛT
nΛ

′
n,

Υ̂n+1 = ΛT
n+1Λ

′
n+1.

(E.1)

On the other hand, the relation between the rotation matrices Λn and Λn+1 is given

by

Λn+1 = exp(ω̂)Λn,

where ω is the spatial incremental rotation vector. Replacing Λn+1 in (E.1)2 with this

expression, and differentiating with respect to the length parameter s, one gets

Υ̂n+1 = ΛT
n+1 exp(ω̂)′Λn + ΛT

n+1 exp(ω̂)Λ′
n.

Inserting (E.1)1 and the differentiation of an exponential matrix, exp(ω̂)′ = T̂(ω)ω′ exp(ω̂),

we can now express Υ̂n+1 as

Υ̂n+1 = ΛT
n+1T̂(ω)ω′Λn+1 + Υ̂n. (E.2)

Recalling the identity ΛTâΛ = Λ̂a for any vector a ∈ E3 and orthogonal matrix

Λ ∈ SO(3), the incremental curvature is given by [CG88]:

244

Υn+1 −Υn = ΛT
n+1T(ω)ω′

= ΛT
nT(ω)Tω′.

(E.3)

Similarly, by writing the curvature at iterations k and k + 1 as follows

Υ̂
k

= ΛkT
Λk ′,

Υ̂
k+1

= Λk+1T
Λk+1′,

and the relation between the rotations at the two iterations as

Λk+1 = exp(∆̂ϑ)Λk, (E.4)

an equivalent equation for the variation of the curvature between iterations can be

deduced:

Υk+1 −Υk = Λk+1T
T(∆ϑ)∆ϑ′

= ΛkT
T(∆ϑ)T∆ϑ′.

(E.5)

It is also possible to deduce the corresponding equations for the spatial curvature k.

Although they are not used in the present work, they will be shown for completeness.

Following similar reasoning, the following identities can be demonstrated to hold:

kn+1 − kn = Λn+1T(Ω)TΩ′ = ΛnT(Ω)Ω′, (E.6)

kk+1 − kk = Λk+1T(∆ϕ)T∆ϕ′ = ΛkT(∆ϕ)∆ϕ′, (E.7)

where Ω and ∆ϕ are the material incremental rotation and the material iterative

rotation such that

Λn+1 = Λn exp(Ω̂) , ω = ΛnΩ = Λn+1Ω,

Λk+1 = Λk exp(∆̂ϕ) , ∆ϑ = Λk∆ϕ = Λk+1∆ϕ.

We note that Υk+1 − Υk and kk+1 − kk given in (E.5) and (E.7) differ only for a

non-equilibrium state. We also point out that in (E.3) and (E.5)-(E.7) we have given

245

the variations of material curvatures as a function of spatial rotations, or conversely,

the variations of spatial curvatures as a function of material rotations. The (implicit)

expression of the increments of spatial (material) curvatures as a function of the also

spatial (material) incremental rotations can be derived as follows:

k̂n+1 = Λ′
n+1Λ

T
n+1 = (exp(ω̂)Λn)′ (exp(ω̂)Λn)T

= T̂(ω)ω′ + exp(ω)k̂n exp(ω̂)T,

Υ̂n+1 = ΛT
n+1Λ

′
n+1 =

(
exp(Ω̂)Λn

)T (
exp(Ω̂)Λn

)′

= ̂T(Ω)TΩ′ + exp(Ω)TΥ̂n exp(Ω̂),

whence

kn+1 − exp(ω̂)kn = T(ω)ω′,

Υn+1 − exp(Ω̂)TΥn = T(Ω)TΩ′.
(E.8a)

With similar manipulations, the following implicit relations can be obtained:

kk+1 − exp(∆̂ϑ)kk = T(∆ϑ)∆ϑ′

Υk+1 − exp(∆̂ϕ)TΥk = T(∆ϕ)T∆ϕ′.
(E.8b)

E.2 Tangent-scaled rotations

Let us first verify that the matrices T and S, and the unscaled and tangent-scaled

rotations θ and θ satisfy the relation T(θ)θ′ = S(θ)θ′. This can be deduced by identifying

the following two differentiations of Λ = exp(θ̂) = cay(θ):

Λ′ = T̂(θ)θ′Λ

Λ′ = Ŝ(θ)θ′Λ

}
⇒ T(θ)θ′ = S(θ)θ′,

where use of the equivalence between tangent-scaled spin rotations and unscaled spin

rotations have been made (this is due to its infinitesimal character, as it has been shown

in Appendix A). By introducing the tangent-scaled spatial incremental and material

incremental rotations ω and Ω respectively, we can likewise differentiate exp(ω̂) = cay(ω)

or exp(Ω̂) = cay(Ω) and derive the following similar relations:

246

T(ω)ω′ = S(ω)ω′,

T(Ω)Ω′ = S(Ω)Ω′.

From this equations, and by making use of the properties (2.25) of the S matrix, the

equivalent versions of equations (E.3) and (E.6) using ω and Ω can be deduced:

Υn+1 −Υn = ΛT
n+1S(ω)ω′ = ΛT

nS(ω)Tω′,

kn+1 − kn = Λn+1S(Ω)TΩ′ = ΛnS(Ω)Ω′.
(E.9)

On the other hand, spin tangent-scaled rotations reduce to unscaled rotations if they

are infinitesimal quantities. Iterative rotations are not infinitesimal vectors, however,

but increments between iterations. It is then sensible to distinguish them (although the

Taylor expansion of the tan() function shows that they differ only in the second-order

terms), and instead of (E.4), map the tangent-scaled iterative rotations via the Cayley

transformation, i.e.

Λk+1 = cay(∆̂ϑ)Λk,

With an analogous reasoning to that given for unscaled rotations while deducing (E.5)

and (E.7), we can derive the following formulae:

Υk+1 −Υk = Λk+1T
S(∆ϑ)∆ϑ′ = ΛkT

S(∆ϑ)T∆ϑ′,

kk+1 − kk = Λk+1S(∆ϕ)T∆ϕ′ = ΛkS(∆ϕ)∆ϕ′.

Also, the equivalent equations to (E.8) are now written as

kn+1 − cay(ω)kn = S(ω)ω′,

kk+1 − cay(∆ϑ)kk = S(∆ϑ)∆ϑ′,

Υn+1 − cay(Ω)TΥn = S(Ω)TΩ′,

Υk+1 − cay(∆ϕ)TΥk = S(∆ϕ)T∆ϕ′.

(E.10)

247

F. Linearisation of beam residuals

We will deduce the explicit form of the Jacobian matrix for some relevant discretised

residuals. In view of the different beam-equations, time-integration schemes and inter-

polations seen in Chapters 3, 4, 5 and 6, many choices are possible, and each one leads

to a different Jacobian matrix. We will just give the expressions for the choices used

in the numerical examples or for those cases showing interesting features. The tangent

operator for other combinations can be derived using similar algebraic manipulations to

those given here.

The form of the Jacobian matrix will have in all the choices the following general form

Kij = Kij
elas + Kij

mass + Kij
ext

where Kij
elas = Kij

mat +Kij
gem is the stiffness matrix (split in the material and geometric

part), Kij
mass is the mass matrix (or inertial part) and Kij

ext is the contribution of the

external loads to the Jacobian, in case they are not constant. They stem from the lin-

earisation of the elastic, inertial and external force vectors respectively. In all of them,

the superscript ij denotes that the matrix shown here is the block matrix corresponding

to the contribution of nodes i and j.

We remark that Kij
ext depends on the type of applied loads considered. We will illustrate

its expression for the case of follower loads in Section F.1.

F.1 Non-conserving schemes

We have introduced in Chapter 4, equation (4.15), the time-discretisation of the beam

residual by using three forms of the HHT algorithm. The resulting equations are given

in (4.15) as

gi
n+1+α

.= gi
d,n+1 + gi

v,n+1+α − gi
e,n+1+α = 0,

gi
a,n+1+α

.= gi
ad,n+1 + gi

av,n+1+α − gi
ae,n+1+α = 0

(F.1)

248

We will derive in this section two Jacobian matrices corresponding to residuals gi
n+1+α

and gi
a,n+1+α, in conjunction with the interpolation of spin iterative rotations and ad-

ditive iterative rotations respectively. The first leads to the simplest consistent tangent

operator, and the second to a symmetric stiffness matrix (the mass matrix is in general

non-symmetric for both residuals).

The linearisation will be performed for α = 0, which corresponds to the Newmark algo-

rithm introduced in Chapter 4. The linearisation for other values of α is straightforward,

and in fact, for the algorithms HHT1 and HHT2, it is sufficient to multiply the Jacobian

matrix by (1 + α).

In Section F.1.3, we will finally give the results when for the case of interpolation of

local rotations.

F.1.1 Residual gn+1 and interpolation of spin iterative rotations

Although the interpolation ∆ϑ = Ij∆ϑj is not used in the results of Chapter 12, it

furnishes the computationally less expensive Jacobian matrix. In addition, many of the

algebraic manipulations used in this section will be recalled in subsequent derivations.

Elastic force vector

By introducing the matrix

Bi .=




Ii′I 0

0 Ii′I

0 IiI


 , (F.2)

the elastic force vector gi
v given in equation (3.40c) may be rewritten as follows

gi
v =

∫

L

(
Ii′f − Ii

{
0

r̂′n

})
ds =

∫

L

[
Ii′I 0 0

0 Ii′I IiI

]{
f

−r̂′n

}
ds

=
∫

L
BiT

{
f

−r̂′n

}
ds. =

∫

L
BiT





n

m

−r̂′n





ds. (F.3)

Its linearisation is then given by

249

∆gi
v =

∫

L
BiT

{
∆f

n̂∆r′ − r̂′∆n

}
ds. (F.4)

In order to provide an expression for ∆f , let us linearise first the strain measure Σ

defined in (3.12). By recalling the results in equations (2.16) and (2.34), it follows that

∆Λ = ∆̂ϑΛ and ∆Υ = ΛT∆ϑ′. We can then compute ∆Σ as follows

∆Σ =

{
(∆ΛT)r′ + ΛT∆r′

∆Υ

}
=

{
ΛT(r̂′∆ϑ + ∆r′)

ΛT∆ϑ′

}
= ΛT

6

{
r̂′∆ϑ + ∆r′

∆ϑ′

}

= ΛT
6

[
I 0 r̂′

0 I 0

]




∆r′

∆ϑ′

∆ϑ





= ΛT
6 Ir





∆r′

∆ϑ′

∆ϑ





,

where Λ6
.=

[
Λ 0

0 Λ

]
and

Ir
.=

[
I 0 r̂′

0 I 0

]
. (F.5)

By recalling the constitutive matrix C given in (3.15), and the six-dimensional vector

of material stress resultants F = {N M}, the linearisation of f = Λ6F = Λ6CΣ follows

as

∆f = (∆Λ6)F + Λ6∆F =

([
0 0 −n̂

0 0 −m̂

]
+ Λ6CΛT

6 Ir

)




∆r′

∆ϑ′

∆ϑ





. (F.6)

Note that the translational part of the previous result implies

∆n = ∆̂ϑn +
[

I 0
]
Λ6CΛT

6 Ir





∆r′

∆ϑ′

∆ϑ





.

Therefore, making use equation (F.6), the vector ∆gi
v in (F.4) can be expressed as

250

∆gi
v =

∫

L
BiT∆

{
f

−r̂′n

}
ds

=
∫

L
BiT


IT

r Λ6CΛT
6 Ir +




0 0 −n̂

0 0 −m̂

n̂ 0 r̂′n̂











∆r′

∆ϑ′

∆ϑ





ds. (F.7)

By introducing the interpolation of iterative rotations, i.e.

∆ϑ = Ii∆ϑi, (F.8)

the last vector in equation (F.7) may be written as





∆r′

∆ϑ′

∆ϑ





= Bj∆pj ,

where ∆pj = {∆rj ∆ϑj} is the vector of nodal iterative displacements, and summa-

tion over j is understood. Inserting this relation in (F.7) yields

∆gi
v =

(
Kij

mat + Kij
geom

)
∆pj = Kij

elas∆pj ,

where the explicit expression of Kij
mat and Kij

geom is given by

Kij
mat =

∫

L
BiTIT

r Λ6CΛT
6 IrBjds,

Kij
geom =

∫

L
BiT




0 0 −n̂

0 0 −m̂

n̂ 0 r̂′n̂


Bjds.

(F.9)

Note that Kij
mat is symmetric whereas Kij

geom is non-symmetric. The non-symmetry of

Kij
elas is a consequence of the fact that the rotations (θ or Λ) are in a different space of

the considered variations of rotations (∆ϑ and δϑ). It is demonstrated in [SVQ86] that

the symmetry of Kgeom is recovered at an equilibrium state for a non-discretised case.

In [Cri97] it was shown that this conclusion does not extend to the spatially discretised

space.

251

Mass matrix

It has been shown in Chapter 4, equation (4.14), that the time-discretisation of the

equilibrium equations leads to the following inertial force vector

gi
d,n+1 =

∫

L
Iil̇n+1ds,

where l is the vector of specific local momenta defined in equation (3.4) as

l =

{
lf

lφ

}
.=

{
Aρṙ

ΛJρW

}
. (F.10)

The linearisation of gi
d,n+1 is then given by

∆gi
d,n+1 =

∫

L
Ii∆l̇n+1ds, (F.11)

where ∆̇l can be computed as

∆l̇ = ∆





Aρa

Λ
(
ŴJρW + JρA

)


 =





Aρ∆a

∆̂ϑl̇φ + Λ
(
(ŴJρ − ĴρW)∆W + Jρ∆A

)


 .

(F.12)

According to the Newmark scheme given in equations (4.2) and (4.5), the accelerations

and velocities at time-step n + 1 satisfy the following equations

an+1 =
1

β∆t2
(rn+1 − rn) + ãn+1,

Wn+1 =
γ

β∆t
Ωn+1 + W̃n+1,

An+1 =
1

β∆t2
Ωn+1 + Ãn+1,

(F.13)

where ãn+1, W̃n+1 and Ãn+1 depend only on quantities at time-step tn and are given

in (4.2b) and (4.5b). Besides, from the relation

∆Λn+1 = Λn∆ exp(Ω̂n+1) = Λn ̂T(Ωn+1)∆Ω exp(Ω̂n+1),

252

and ∆Λn+1 = ∆̂ϑΛn+1 = Λn exp(Ω̂n+1) it follows that

∆Ω = T(Ωn+1)−1ΛT
n∆ϑ = ΛT

nT(ωn+1)−1∆ϑ, (F.14)

where the matrix T−1 is given in (2.20), and ωn+1 = ΛnΩn+1 = Λn+1Ωn+1 is the

spatial incremental rotation. Making use of this equation and relations (F.13), the lin-

earisation of an+1, Wn+1 and An+1 may be expressed as

∆an+1 =
1

β∆t2
∆r,

∆Wn+1 =
γ

β∆t
∆Ωn+1 =

γ

β∆t
ΛT

nT(ωn+1)−1∆ϑ,

∆An+1 =
1

β∆t2
∆Ωn+1 =

1
β∆t2

ΛT
nT(ωn+1)−1∆ϑ.

(F.15)

Inserting these results in (F.12) yields

∆l̇n+1 =




1
β∆t2

AρI 0

0 −̂̇
lφ,n+1 + 1

β∆t2
Λn+1J̄ρ,n+1ΛT

nT(ωn+1)−1


∆p. (F.16)

where J̄ρ,n+1 = γ∆t(Ŵn+1Jρ− ĴρWn+1)+Jρ. Inserting this expression into ∆gi
d,n+1

in equation (F.11), and using the interpolation of iterative rotations in (F.8), we arrive

at the following result

∆gi
d,n+1 = Kij

mass∆pj ,

where Kij
mass is the mass matrix corresponding to the contribution of nodes i and j,

and given by

Kij
mass =

∫

L
Ii




1
β∆t2

AρI 0

0 −̂̇
lφ,n+1 + 1

β∆t2
Λn+1J̄ρ,n+1ΛT

nT(ωn+1)−1


 Ijds. (F.17)

External force vector

We will show the linearised expression of the external force vector gi
e for a follower

load f̄ = {n̄ m̄} = Λ6f̄c, where f̄c = {n̄c m̄c} is a constant vector. In such case, gi
e is

given in equation (3.40d) as

253

gi
e =

∫

L
IiΛ6f̄cds + δ1

i Λ6f̄c(0) + δN
i Λ6f̄c(L).

Its linearisation follows directly from the relation Λ = ∆̂ϑΛ, leading to

∆gi
e = Kij

ext∆pj ,

with Kij
ext given by

Kij
ext = −

∫

L
Ii

[
0 ̂̄n
0 ̂̄m

]
Ijds−

[
0 δ1

i δ
1
j

̂̄n(0) + δN
i δN

j
̂̄n(L)

0 δ1
i δ

1
j
̂̄m(0) + δN

i δN
j
̂̄m(L)

]
. (F.18)

F.1.2 Residual ga,n+1 and interpolation of additive iterative rotations

The linearisation of the residual gi
a

.= gi
ad +gi

av +gi
ae will be performed in this section.

We will now interpolate additive iterative rotations, i.e. ∆θ = Ii∆θi, which using the

vector ∆q = {∆r ∆θ} introduced in Chapter 5, leads to the following interpolation of

the kinematics:

∆q = Ii∆qi.

As remarked in Chapter 5, Section 5.2.2, this interpolation may be used in conjunction

with the interpolation of total rotations ∆θ = Ii∆θi (nodal update), or just as the only

interpolated variables for rotations (update at the interpolated points). Nevertheless,

since both formulations are equivalent, no distinction will be made hereafter.

In order to recall the results already derived, it will be useful to have in hand the

following relationship





∆r′

∆ϑ′

∆ϑ





=





∆r′

T(θ)′∆θ + T(θ)∆θ′

T(θ)∆θ





= Bj
T ∆qj , (F.19a)

where the matrix Bj
T is given by

Bj
T

.=




Ij ′I 0

0 Ij ′T(θ) + IjT(θ)′

0 IjT(θ)


 . (F.19b)

254

Elastic force vector

The residual vector gi
v, given in equation (3.42c), will be rewritten by resorting to

matrices Bi or Bi
T as follows

gi
av =

∫

L
BiT

{
TT

6 f

T′Tm−TTr̂′n

}
ds =

∫

L
Bi

T
T

{
f

−r̂′n

}
ds, (F.20)

where T6
.=

[
I 0

0 T

]
. We will split the linear form of gi

av into the following two

integrals

∆gi
av =

∫

L
Bi

T
T
∆

{
f

−r̂′n

}
ds +

∫

L

{
0

Ii′(∆TT)m + Ii(∆TT′)m− Ii(∆TT)r̂′n

}
ds

= ∆gi
av1 + ∆gi

av2. (F.21)

The results required for the derivation of ∆gi
av1 have been already given in the pre-

vious section. Using these results and making use of matrix Bj
T in (F.19), it is clear

that the material and a first part of the geometric stiffness matrices, stemming from the

linearisation of f and r̂′n, will be now given by,

Kij
mat =

∫

L
Bi

T
T
IT
r Λ6CΛT

6 IrB
j
T ds,

Kij
geom1 =

∫

L
Bi

T
T




0 0 −n̂

0 0 −m̂

n̂ 0 r̂′n̂


Bj

T ds, (F.22)

=
∫

L
BiT




0 0 −n̂T

0 0 −TTm̂T

TTn̂ 0 TTr̂′n̂T−T′Tm̂T


Bjds,

which correspond to Kij
mat and Kij

geom in (F.9), but with Bi and Bj replaced by Bi
T

and Bj
T .

The term ∆gi
av2 in (F.21) entails the linearisation of T(θ) and T(θ)′. By recalling the

matrix ΞdTT given in (A.19), the terms (∆TT)m and ∆(TT)r̂′n can be written as

(∆TT)m = ΞdTT(m)∆θ,

(∆TT)r̂′n = ΞdTT(r̂′n)∆θ.
(F.23)

255

Also, using the expression for d(T′T)a given in (A.26) with a = m, the term ∆T′Tm

can be expressed as

∆T′Tm = Ξd2T(M, θ′)∆θ + ΞdT(M)T∆θ′ + T′Tm̂T∆θ.

Inserting this equation and (F.23) in (F.21), it follows then that ∆gi
av2 in (F.21) is

given by

∆gi
av2 = Kij

geom2∆qj ,

where Kij
geom2 turns out to be

Kij
geom2 =

∫

L
BiT




0 0 0

0 0 ΞdTT(m)

0 ΞdT(M)T Ξd2T(M,θ′) + T′Tm̂T−ΞdTT(r̂′n)


Bjds.

While it is clear that the material stiffness matrix in (F.22) is symmetric, the symmetry

of the geometric part is much less obvious. Ritto-Corrêa and Camotim [RC02] gave an

elegant way to prove it. We will achieve the same result by first writing the total geometric

stiffness matrix as the sum of Kij
geom1 and Kij

geom2:

Kij
geom =

∫

L
BiT




0 0 −n̂T

0 0 ΞdTT(m)−TTm̂T

TTn̂ ΞdT(M)T Ξd2T(M,θ′)−ΞdTT(r̂′n) + TTr̂′n̂T


Bjds.

Introducing the identity (A.22) with a = N and b = r′, and relation (A.23) with

a = M, it follows that

Ξd2Λ(N, r′) = TTr̂′n̂T−ΞdTT(r̂′n)

ΞdT(M) = −TTm̂T + ΞdTT(m),

which inserted in Kij
geom yields

Kij
geom =

∫

L
BiT




0 0 −n̂T

0 0 ΞdT(M)

TTn̂ ΞdT(M)T Ξd2T(M, θ′) + Ξd2Λ(N, r′)


Bjds.

256

The symmetry of Kgeom can now be clearly observed by remembering that both Ξd2Λ

and Ξd2T are symmetric. For the present formulation, θ and the variations of the rotations

(∆θ and δθ) belong to the same vector space E3, which explains the symmetry of Kij =

Kij
mat + Kij

geom.

Mass matrix

The elastic force vector is given in (4.14) as

gi
ad,n+1 =

∫

L
IiTT

6 l̇ds.

Its linearisation can be expressed as

∆gi
ad,n+1 =

∫

L
IiTT

6∆l̇n+1ds +
∫

L

{
0

(∆TT)l̇φ,n+1

}
ds. (F.24)

The first integral can be derived using the manipulations from in Section F.1.1. The

term within the second integral follows from the definition of the matrix ΞdTT in (A.19):

(∆TT)l̇φ,n+1 = ΞdTT(l̇φ,n+1)∆θ

Inserting this equation in (F.24), making use of the mass matrix in Section F.1.1, and

remembering ∆p = T6∆q, the following result is obtained

Kij
mass =

∫

L
IiTT

6




1
β∆t2

AρI 0

0 −̂̇
lφ,n+1 + 1

β∆t2
Λn+1J̄ρ,n+1ΛT

nT(ωn+1)−1


T6I

jds

+
∫

L
Ii

[
0 0

0 ΞdTT(l̇φ,n+1)

]
Ijds. (F.25)

Note that the mass matrix is always non-symmetric in the presence of large 3D rota-

tions.

External force vector

The external force vector is given in (3.42d) as

257

gi
ae =

∫

L
IiTT

6 f̄ds + δ1
i T

T
6 (0)f̄(0) + δN

i TT
6 (L)f̄(L).

We will also show here the linearised expression of the external force vector gi
ae for

a follower load f̄ = {n̄ m̄} = Λ6f̄c, with f̄c = {n̄c m̄c} a constant vector. Reasoning

analogously as in Section F.1.1, the linearisation of gi
ae leads to the following expression

for Kij
ext:

Kij
ext = −

∫

L
IiTT

6

[
0 ̂̄n
0 ̂̄m

]
T6I

jds

−
[

0 δ1
i δ

1
j

̂̄n(0) + δN
i δN

j
̂̄n(L)

0 δ1
i δ

1
j T

T(0)̂̄m(0)T(0) + δN
i δN

j TT(L)̂̄m(L)T(L)

]
.

(F.26)

F.1.3 Residuals gn+1 and ga,n+1 with interpolation of local rotations

We will use the strain-invariant interpolation of local rotations Θ = IiΘi and also the

compatible interpolation of its iterative counterparts ∆Θ = Ii∆Θi. It has been shown

in Chapter 5 that this interpolation is equivalent to using the generalised shape functions

Ii
g such that 1 ∆ϑ = Ii

g∆ϑ.

Thus, in order to implement this interpolation in conjunction with the residual gi we

will replace the shape functions Ij and Ij ′ in the matrices Kij
mat, Kij

geom, Kij
mass, and

Kij
ext in equations (F.9), (F.17) and (F.18) with the generalised shape functions Ij

g and Ij
g
′

(including also the matrices Bj). After these modifications, the following matrices can be
1 We note that with the current residual vectors gn+1 and ga,n+1, the test functions correspond to the

spin and additive global virtual rotations, whereas the trial functions are local rotations. We could as well

construct a weak form with virtual local rotations. However, this would lead to a more complex residuals

and Jacobian matrices, without any additional advantage.

258

derived

Kij
mat =

∫

L
BiTIT

r Λ6CΛT
6 IrBj

gds

Kij
geom =

∫

L
BiT




0 0 −n̂

0 0 −m̂

n̂ 0 r̂′n̂


Bj

gds

Kij
mass =

∫

L
Ii




1
β∆t2

IjAρI 0

0 −̂̇
lφ,n+1 + 1

β∆t2
Λn+1J̄ρ,n+1ΛT

nT(ωn+1)−1Ij
g


 ds

Kij
ext = −

∫

L
Ii

[
0 ̂̄nIj

g

0 ̂̄mIj
g

]
ds−

[
0 δ1

i δ
1
j

̂̄n(0) + δN
i δN

j
̂̄n(L)

0 δ1
i δ

1
j
̂̄m(0) + δN

i δN
j
̂̄m(L)

]
,

(F.27a)

where Bj
g is the same matrix Bj indicated in (F.2) but with the generalised shape

functions instead of Ij and Ij ′, i.e.

Bi
g

.=




Ii
g
′ 0

0 Ii
g
′

0 Ii
g


 . (F.27b)

Including the interpolation of local rotations in the Jacobian matrix of gi
a requires

some further manipulations. The generalised shape functions have been written in such

a way that they interpolate iterative spin rotations (i.e. ∆ϑ = Ii
g∆ϑi), which are the

iterative quantities that we will use in the resulting expressions. In the formulation given

in the previous section we have transformed the spin rotations into additive iterative

rotations ∆θ by using the matrix Bj
T in (F.19). It is therefore convenient to remove

this transformation and use the generalised shape functions instead. This is equivalent

to using the matrix Bj
g instead of Bj

T in the material stiffness matrix Kij
mat in (F.22),

and also to remove the matrices T and T6 (but not TT and TT
6) and replace Ij with[

IjI 0

0 Ij
g

]
in the first integral of Kij

mass and in Kij
ext, in equations (F.25) and (F.26)

respectively. On the other hand, the terms in the geometric part must be transformed

according to

∆θ = T−1∆ϑ ⇒ ∆θ′ = T−1′∆ϑ + T−1∆ϑ′,

since the interpolation ∆θ = Ij∆θj does not apply here. Note that it follows then

that the term ΞdT(M)T∆θ′ becomes now

259

ΞdT(M)TT−1′∆ϑ + ΞdT(M)TT−1∆ϑ′.

Inserting the modifications mentioned above, the elemental tangent operator is given

by

Kij = Kij
mat + Kij

geom + Kij
mass + Kij

ext (F.28a)

with

Kij
mat =

∫

L
Bi

T
T
IT
r Λ6CΛT

6 IrBj
gds, (F.28b)

Kij
geom =

∫

L
BiT




0 0 −n̂

0 0 ΞdT(M)T−1

TTn̂ ΞdT(M)T ΞdT(M)TT−1′ +
(
Ξd2T(M, θ′) + Ξd2Λ(N, r′)

)
T−1


Bj

gds,

Kij
mass =

∫

L
IiTT

6




1
β∆t2

IjAρI 0

0 −̂̇
lφ,n+1 + 1

β∆t2
Λn+1J̄ρ,n+1ΛT

nT(Ωn+1)−1Ij
g


 ds,

+
∫

L
Ii

[
0 0

0 ΞdTT(l̇φ,n+1)T−1Ij
g

]
ds,

Kij
ext = −

∫

L
IiTT

6

[
0 ̂̄nIj

g

0 ̂̄mIj
g

]
ds−

[
0 δ1

i δ
1
j

̂̄n(0) + δN
i δN

j
̂̄n(L)

0 δ1
i δ

1
j T

T(0)̂̄m(0) + δN
i δN

j TT(L)̂̄m(L)

]
.

Obviously, this interpolation spoils the symmetry of the stiffness matrix Kij
mat+Kij

geom.

F.2 Conserving schemes

F.2.1 β1-algorithm in Section 6.3.2

As in the previous case, we will use the strain-invariant interpolation of local rotations,

or the equivalent interpolation of spin rotations with the generalised shape functions Ij
g,

∆ϑ = Ij
g∆ϑj . Reminding that ∆ denotes ∆(•) = (•)n+1 − (•)n (to be distinguished

from the boldface symbol ∆ used for iterative variations), the residual vector for this

algorithm, denoted here by gi
β1, is given by

gi
β1

.= gi
∆ + β1g

i
∆,v(∆N,0), (F.29)

260

with

gi
∆

.= gi
∆,d + gi

∆,v(Nn+ 1
2
,Mn+ 1

2
)− gi

∆,e (F.30a)

and

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds,

gi
∆,v(Nn+ 1

2
,Mn+ 1

2
) .=

∫

L


 Ii′Λn+ 1

2
0

−Iir̂′n+ 1
2
Λn+ 1

2
Ii′T(ωn+1)Λn


Fn+ 1

2
ds,

gi
∆,e

.=
∫

L

{
Iin̄

0

}
ds.

(F.30b)

The parameter β1 is such that the condition En+1 − En = ∆E = ∆pi · gi
β1 = 0 is

satisfied, which yields

β1 =
∆E −∆pi · gi

∆

∆pi · gi
∆,v(∆N,0)

, (F.31)

with ∆pi = {∆ri ωi}. Since only constant applied loads are considered here, they do

not contribute to the Jacobian. Thus, with the definitions (F.30) at hand, the linearisation

of gi
β1 in (F.29) follows as

∆gi
β1

.= ∆gi
∆,d +∆gi

∆,v(Nn+ 1
2
,Mn+ 1

2
)+β1∆gi

∆,v(∆N,0)+(∆β1)gi
∆,v(∆N,0). (F.32)

The first term gives rise to the mass matrix. From the time integration scheme in

(6.10) we can derive the following expressions:

∆vn+1 =
2

∆t
∆r,

∆Wn+1 =
2

∆t
∆Ω =

2
∆t

ΛT
nT(ωn+1)−1∆ϑ =

2
∆t

ΛT
n+1T(ωn+1)−T∆ϑ,

(F.33)

where use of the relation ∆Ω = ΛT
nT(ωn+1)−1∆ϑ derived in (F.14), and equation

T(ω)−1 = exp(ω̂)TT(ω)−T given in (2.25b) has been made in the last identity. Therefore,

from the definition of l = {lf lφ} in (F.10), and equation (F.33), it follows that

261

∆(∆l) = ∆ln+1 =

{
Aρ∆vn+1

∆̂ϑlφ,n+1 + Λn+1Jρ∆Wn+1

}
=

{
2

∆tAρ∆r

−l̂φ∆ϑ + 2
∆tΛn+1Jρ∆Ω

}

=





2
∆tAρ∆r(

−l̂φ + 2
∆tΛn+1JρΛT

nT(ωn+1)−1
)

∆ϑ



 .

Inserting this result in the linearisation of the inertial force vector gi
∆,d in (F.30b), we

obtain

∆gi
∆,d = Kij

mass∆pj , (F.34a)

where the inertial part of the Jacobian Kij
mass is given by

Kij
mass =

1
∆t

∫

L
Ii




2
∆tI

jAρI 0

0
(
−l̂φ + 2

∆tΛn+1JρΛT
nT(ωn+1)−1

)
Ij
g


 ds. (F.34b)

For the development of the second and third terms in (F.32), we derive the following

relationships:

∆Fn+ 1
2

=
1
2
∆Fn+1 =

1
2
C∆Σn+1 =

1
2
CΛT

6 IrBj
g∆pj ,

∆Λn+ 1
2

=
1
2
Îj
g∆ϑjΛn+1,

∆r′
n+ 1

2

=
1
2
Ij ′∆rj ,

(∆T(ωn+1))ΛnMn+ 1
2

= ΞdT(ΛnMn+ 1
2
)∆ω = ΞdT(ΛnMn+ 1

2
)T(ωn+1)−1Ij

g∆ϑj ,

where the matrices Ir, B
j
g and ΞdT are defined in (F.5), (F.27b) and (A.18) respectively,

and the result ∆ω = T(ω)−1∆ϑ has been used in the last equation. Inserting these

relations into ∆gi
∆,v gives rise to the following equations

∆gi
∆,v(Nn+ 1

2
,Mn+ 1

2
) = Kij

v1∆pj ,

∆gi
∆,v(∆N,0) = Kij

v2∆pj

(F.35a)

where the stiffness matrices Kij
v1 and Kij

v2 are given by

262

Kij
v1 =

1
2

∫

L


 Ii′Λn+ 1

2
0

−Iir̂′n+ 1
2
Λn+ 1

2
Ii′T(ωn+1)Λn


CΛT

6 IrBj
gds (F.35b)

+
1
2

∫

L


 0 −Ii′Λ̂n+1Nn+ 1

2
Ij
g

IiΛ̂n+ 1
2
N

n+ 1
2

Ij ′
(
Iir̂′n+ 1

2
Λ̂n+1Nn+ 1

2
+ 2Ii′ΞdT(ΛnMn+ 1

2
)T(ωn+1)−1

)
Ij
g


 ds,

Kij
v2 =

∫

L


 Ii′Λn+ 1

2
0

0 0


CΛT

6 IrBj
gds +

1
2

∫

L

[
0 −Ii′ ̂Λn+1∆NIj

g

0 0

]
ds.

On the other hand, the linearisation of β1 follows from its definition in (F.31). We will

require the linearisation of the total energy, which can be derived from the definitions

of the kinetic energy T = 1
2

∫
L ṗ · lds and the internal energy Vint = 1

2

∫
L Σ · CΣ with

ṗ = {ṙ ω} (see their definitions in (3.20) and (3.16)1). By resorting to equations (F.33)

and the relation ωn+1 = ΛnΩn+1, it follows that

∆(∆E) = ∆En+1 = ∆T + ∆Vint = gi
E ·∆pi, (F.36)

with gi
E written as

gi
E =

2
∆t

∫

L

[
IiI 0

0 Ii
g
TT(ωn+1)−1

]
ln+1ds +

∫

L

[
Ii′I 0

Ii
g
T
r̂n+1 Ii

g
′T

]
fn+1ds.

By setting d = ∆pj · gj
∆,v(∆N,0) and using (F.36) , we can then express the lineari-

sation of β1 as

∆β1 =
∆En+1 −∆pj ·∆gj

∆ −∆pj · gj
∆

d

−β1

d

(
∆pj ·∆gj

∆,v(∆N,0) + ∆pj · gj
∆,v(∆N,0)

)

=
1
d

[
∆pj ·

(
gj

E − gj
∆ − β1g

j
∆,v(∆N,0)

)
−∆pj ·

(
∆gj

∆ + β1∆gj
∆,v(∆N,0)

)]

=
1
d

[
∆pj ·

(
gj

E − gj
β1

)
−∆pj ·

(
∆gj

∆ + β1∆gj
∆,v(∆N,0)

)]
, (F.37)

where use of the definition of the residual gi
β1 in (F.29) has been made in the last

identity. Inserting the results in equations (F.34) and (F.35) into the terms in the second

parenthesis in (F.37) leads to

263

(∆β1)gi
∆,v(∆N,0)

=
1
d
gi

∆,v(∆N,0)
[(

gj
E − gj

β1

)
·∆pj −∆pk ·

(
Kkj

mass + Kkj
v1 + β1K

kj
v2

)
∆pj

]

= Kij
β ∆pj , (F.38a)

with

Kij
β =

1
d
gi

∆,v(∆N,0)⊗
{

gj
E − gj

β1 −
∑

k

(
Kkj

mass + Kkj
v1 + βKkj

v2

)T

∆pk

}

=
1
d
gi

∆,v(∆N,0)⊗
(
gj

E − gj
β1

)

−1
d

∑

k

(
gi

∆,v(∆N,0)⊗∆pk

) (
Kkj

mass + Kkj
v1 + β1K

kj
v2

)
. (F.38b)

By gathering this equation, (F.34) and (F.35), the linear form of gi
β1 in (F.32) can be

now fully completed and computed as follows

Kij = Kij
mass + Kij

v1 + β1K
ij
v2 + Kij

β ,

or more explicitly,

Kij =
1
d
gi

∆,v(∆N,0)⊗
(
gj

E − gj
β1

)

+
∑

k

(
δj
kI6 − 1

d
gi

∆,v(∆N,0)⊗∆pk

) (
Kkj

mass + Kkj
v1 + β1K

kj
v2

)
.

(F.39)

F.2.2 STD-algorithm

Although this choice will not be used in the results, it is a relevant algorithm as it was

the first algorithm that provided energy-momentum conservation for 3D geometrically

exact beams [STD95]. It has been shown in Section 6.2 that this formulation leads to the

following force vectors:

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds,

gi
∆,v

.=
∫

L


 Ii′Λn+ 1

2
0

−Iir̂′n+ 1
2
Λn+ 1

2
Ii′S(ω)Λn


Fn+ 1

2
ds,

gi
∆,e

.=
∫

L

{
Iin̄

0

}
ds,

(F.40)

264

where the matrix S(ω) is the transformation matrix given in (2.23), and is such that

∆ϑ = S(ω)∆ω.

In contrast to the previous section, the interpolation of incremental tangent-scaled

rotations ω will be employed here, i.e. ω = Iiωi and ∆ω = Ii∆ωi (but not ∆ϑ = Ij∆ϑj

or ∆ϑ = Ij
g∆ϑj as it has been used in the previous sections). As explained in Chapter

6, this is required for the exact conservation of energy.

Mass matrix

Let us first note that from relation (F.14), we can state the analogous expression

∆Ω = ΛT
nS(ω)−1∆ϑ.

Replacing ∆ϑ in this equation by S(ω)∆ω, it follows that

∆Ω = ΛT
n∆ω.

Keeping this relation in mind, and from the time-stepping scheme in (6.10), the fol-

lowing expressions can be derived:

∆vn+1 =
2

∆t
∆r,

∆Wn+1 =
2

∆t
∆Ω =

2
∆t

ΛT
n∆ω.

By denoting

∆q
j

.=

{
∆rj

∆ωj

}
,

it can be deduced then that the linearisation of gi
∆,d

reads

∆gi
∆,d

= Kij
mass∆q

j
, (F.41a)

where the mass matrix Kij
mass is given by

Kij
mass =

1
∆t

∫

L
IiIj

[
2

∆tAρ 0

0 −l̂φS(ω) + 2
∆tΛn+1JρΛT

n

]
ds. (F.41b)

265

Elastic force vector

In order to perform the linearisation of gi
∆,v

in (F.40), we note first that with the

current interpolation we have





∆r′

∆ϑ′

∆ϑ





=





∆r′

S(ωn+1)′∆ω + S(ωn+1)∆ω′

S(ωn+1)∆ω





= Bj
S∆q

j
(F.42)

where the matrix Bj
S has the following expression

Bj
S =




Ij ′I 0

0 Ij ′S(ωn+1) + IjS(ωn+1)′

0 IjS(ωn+1)


 ,

with S(ω)′ given in (A.33). Comparing equation (F.6) and (F.42), an expression for

∆Fn+ 1
2

can be directly derived as follows

∆Fn+ 1
2

=
1
2
∆Fn+1 =

1
2
C∆Σn+1 =

1
2
CΛT

6 IrB
j
S∆q

j
. (F.43)

Additionally, the following equations can be verified

∆Λn+ 1
2

=
1
2
̂S(ω)∆ωΛn+1,

(∆S(ωn+1))ΛnMn+ 1
2

= ΞdS(ΛnMn+1)∆ω,

where the matrix ΞdS is given in (A.34). By making use of these equations and (F.43),

the linearisation of the elastic force vector gi
∆,v

may be written as

∆gi
∆,v

= Kij
elas∆q

j
,

where the stiffness matrix Kij
elas is given by

Kij
elas =

1
2

∫

L


 Ii′Λn+ 1

2
0

−Iir̂′n+ 1
2
Λn+ 1

2
Ii′S(ω)Λn


CΛT

6 IrB
j
Sds (F.44)

+
∫

L


 0 −Ii′Ij 1

2Λ̂n+1Nn+ 1
2
S(ω)

1
2IiIj ′Λ̂n+ 1

2
N

n+ 1
2

S(ωn+1) 1
2IiIj r̂′n+ 1

2
Λ̂n+1Nn+ 1

2
+ Ii′IjΞdS(ΛnMn+ 1

2
)


 ds.

266

Since we are considering only constant applied loads, we have that ∆gi
∆,e

= 0, and

therefore the elemental Jacobian matrix reads

Kij = Kij
mass + Kij

elas, (F.45)

with Kij
mass and Kij

elas given in equations (F.41) and (F.44). We note that we have

used the iterative vector ∆q
j

with iterative nodal additive tangent-scaled rotations ∆ωj .

If instead ∆pj = {∆rj ∆ϑj} is wanted as a result of the solution process, the post-

multiplication of Kij in (F.45) by the matrix S−1
6,j

.=

[
I 0

0 S(ωn+1,j)−1

]
must be per-

formed, i.e.

∆q
j

= S−T

6,j ∆pj (F.46)

We point out that strictly speaking, iterative rotations δϑ are not infinitesimal, and

therefore, iterative spin tangent-scaled rotations and iterative spin unscaled rotations

should be distinguished. However, observing their relationship,

∆ϑ =
tan∆ϑ/2

∆ϑ/2
∆ϑ

it is clear they differ only in the second-order or higher terms, and in consequence,

for practical reasons (they will not change the second-order rate of convergence of the

Newton-Raphson solution process), no difference between ∆p and ∆p in (F.46) is being

made.

F.2.3 Algorithm M1

Let us give the load vectors used by this algorithm, which can be found in (6.14b),

(6.16) and (6.14d):

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds,

gi
∆,v

.=
∫

L


 Ii′Λn+ 1

2
0

−Iir̂′n+ 1
2
Λn+ 1

2
Ii′T(ω)Λn


Fn+ 1

2
ds,

gi
∆,e

.=
∫

L

{
Iin̄

0

}
ds.

267

Since g∆,d is identical to the inertial force vector in (F.30b)1, the mass matrix Kmass

will be the same given in (F.34b), except the matrix S(ωn+1), which due to the different

time-stepping must be now replaced by T(ωn+1). Also, since the external force vector is

constant, its corresponding tangent operator is zero.

Regarding the elastic force vector, it only differs with gi
∆,v in (F.30b)2 in the matrix

S(ω), which is replaced in the present case by T(ω). It follows that we can just perform

the necessary modifications in matrix Kij
v1 of equation (F.35b): replace S(ω) and S(ω)−1

by T(ω) and T(ω)−1, respectively, and ΞdS by ΞdT. The resulting Jacobian is then given

by:

Kij = Kij
mass + Kij

elas,

with Kij
mass and Kij

elas expressed as

Kij
mass =

1
∆t

∫

L
Ii




2
∆tI

jAρI 0

0
(
−l̂φ + 2

∆tΛn+1JρΛT
nT(ωn+1)−1

)
Ij
g


 ds,

Kij
elas =

1
2

∫

L


 Ii′Λn+ 1

2
0

−Iir̂′n+ 1
2
Λn+ 1

2
Ii′T(ωn+1)Λn


CΛT

6 IrBj
gds

+
1
2

∫

L


 0 −Ii′Λ̂n+1Nn+ 1

2
Ij
g

IiΛ̂n+ 1
2
N

n+ 1
2

Ij ′
(
IiΛ̂n+1Nn+ 1

2
+ 2Ii′ΞdT(ΛnMn+ 1

2
)T(ωn+1)−1

)
Ij
g


 ds.

F.2.4 Algorithm M2

The force vectors of the M2 algorithm are give in (6.14b), (6.20) and (6.14d):

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds,

gi
∆,v

.=
∫

L


 Ii′Λn+ 1

2
0

−Iir̂′nΛn+ 1
2

Ii′T(ω)Λn


Fn+ 1

2
ds,

gi
∆,e

.=
∫

L

{
Iin̄

0

}
ds.

Since the only change with respect to the previous algorithm is the subscript of r′n
in gi

∆,v, and also the different time-stepping for the translations, the tangent operators

follow immediately as:

268

Kij
mass =

1
∆t

∫

L
Ii




1
∆tI

jAρI 0

0
(
−l̂φ + 2

∆tΛn+1JρΛT
nT(ωn+1)−1

)
Ij
g


 ds,

Kij
elas =

1
2

∫

L


 Ii′Λn+ 1

2
0

−Iir̂′nΛn+ 1
2

Ii′T(ωn+1)Λn


CΛT

6 IrBj
gds

+
1
2

∫

L


 0 −Ii′Λ̂n+1Nn+ 1

2
Ij
g

2IiΛ̂n+ 1
2
N

n+ 1
2

Ij ′
(
IiΛ̂n+1Nn+ 1

2
+ 2Ii′ΞdT(ΛnMn+ 1

2
)T(ωn+1)−1

)
Ij
g


 ds.

269

G. Linearisation of master-slave

residuals

G.1 Node-to-node master-slave residuals

G.1.1 Variational form

It is shown in Section 7.2 that the master-slave relationship transforms the nodal

residual vector gi into an extended residual gi
Rm via a nodal transformation matrix Nδ,i

as follows:

gi
Rm

.= NT
δ,ig

i.

The vector gi can represent any of the residuals derived in Chapter 4, and the matrix

Nδ,i is given in (7.5) as

Nδ,i
.=

[
Rδi Lδi

]
, (G.1a)

with

Rδi
.=

[
Λm,i 0

0 Λm,iTR,i

]
, Lδi

.=

[
I −Λ̂m,irR,i

0 I

]
. (G.1b)

The linearisation of gi
Rm may be split into two parts:

∆gi
Rm = NT

δ,i∆gi + (∆NT
δ,i)g

i. (G.2)

The first term can be rewritten by resorting to the elemental Jacobian matrix Kij
A

∆gi = Kij
A∆pj = Kij

ANδ,j∆pRm,j

270

where ∆pj is the nodal vector of iterative slave displacements and ∆pRm,j = {∆pR,j ∆pm,j}
is the vector of iterative released and master displacements of node j. It then follows that

the term NT
δ,i∆gi may be computed as

NT
δ,i∆gi = NT

δ,iK
ij
ANδ,j∆pRm,j =

[
RT

δiK
ij
ARδj RT

δiK
ij
ALδj

LT
δiK

ij
ARδj LT

δiK
ij
ALδj

]
∆pRm,j . (G.3)

The second term in (G.2) can be computed as follows:

(∆NT
δ,i)g

i =





(∆ΛT
m,i)g

i
f

(∆TT
R,i)Λ

T
m,ig

i
φ + TT

R,i(∆ΛT
m,i)g

i
φ

0

−ĝi
f (∆Λm,i)rR,i − ĝi

fΛm,i∆rR,i





where we have split the residual vector into the translational and rotational part with

the usual notation gi = {gi
f gi

φ}. By remembering the following expressions:

∆Λ = ∆̂ϑΛ,

dTTa = ΞdTT(a)dθ,

where the matrix ΞdTT is defined in (A.19b), the vector (∆NT
δ,i)g

i gives rise to the

following expression:

(∆NT
δ,i)g

i =





ΛT
m,iĝ

i
f∆ϑm,i

ΞdTT
R,i

(ΛT
m,ig

i
φ)∆θR,i + TT

R,iΛ
T
m,iĝ

i
φ∆ϑm,i

0

ĝi
f Λ̂m,irR,i∆ϑm,i − ĝi

fΛm,i∆rR,i





= Kii
Nδ∆pRm,i,

with

Kii
Nδ =




0 0 0 ΛT
m,iĝ

i
f

0 ΞdTT
R,i

(ΛT
m,ig

i
φ) 0 TT

R,iΛ
T
m,iĝ

i
φ

0 0 0 0

0 0 −ĝi
fΛm,i ĝi

f Λ̂m,irR,i




. (G.4)

271

Note that ΞdTT
R,i

has the same expression as ΞdTT but replacing θ by θR,i. By gath-

ering this result and equation (G.3), the block ij of the Jacobian matrix coupling the

contributions of nodes i and j can be expressed as follows (no summation over i or j)

Kij = NT
δ,iK

ij
ANδ,j + δj

i K
ii
Nδ,

or alternatively

Kij =

[
Kij

RR Kij
Rm

Kij
mR Kij

mm

]
(G.5a)

where Kij
RR, Kij

Rm, Kij
mR and Kij

mm are given by

Kij
RR = RT

δiK
ij
ARδj + δj

i


 0 0

0 ΞdTT
R,i

(ΛT
m,ig

i
φ)


 ,

Kij
Rm = RT

δiK
ij
ALδj + δj

i

[
0 ΛT

m,iĝ
i
f

0 TT
R,iΛ

T
m,iĝ

i
φ

]

Kij
mR = RT

δiK
ij
ARδj

Kij
mm = LT

δiK
ij
ALδj + δj

i

[
0 0

−ĝi
fΛm,i ĝi

f Λ̂m,irR,i

]
.

(G.5b)

G.1.2 Incremental form

By denoting as ∆p
i
as the vector of incremental slave displacements and ∆p

Rm,i
as the

incremental master and released displacements of a node i, their relationship is written

in equation (7.13) as

∆p
i
= N∆,i∆p

Rm,i
, (G.6)

where the general form of the matrix N∆,i reads

N∆,i
.=

[
R∆i L∆i

]
,

with R∆i and L∆i now given in equation (7.14) as

R∆i
.=

[
N11,i 0

0 N22,i

]
, L∆i

.=

[
I N14,i

0 N24,i

]
.

272

Note that both vectors ∆p
i

and ∆p
Rm,i

use tangent-scaled incremental rotations.

Three conserving algorithms are described in conjunction with the node-to-node master-

slave approach in Section 7.3: the STD-, the β1- and β2- algorithms. For all of them, the

particular form of N∆ is given in (7.18) as follows

N11,i =
(
I− 1

4
ω̂2

m,i

)
Λm,i,n+ 1

2
,

N14,i = −1
2

(
Λ̂m,i,nrR,i,n + ̂Λm,i,n+1rR,i,n+1

)
,

N22,i =
1

1− 1
4ωm,i ·Λm,i,nωR,i

S(ωm,i)−TΛm,i,n,

N24,i = I.

The linearisation of the extended residual gi
Rm

.= N∆,ig
i can be done according to the

same arguments given in the previous section, i.e. splitting ∆gi
Rm into the following two

parts

∆gi
Rm = NT

∆,i∆gi + (∆NT
∆,i)g

i. (G.7)

The first part is derived by resorting to the elemental Jacobian matrix Kij
A ,

∆gi = Kij
A∆pj . (G.8)

As explained in Section 7.3, the vector gi is the residual derived in the conserving

STD-, β1- or β2- algorithms of Chapter 6, denoted there by gi
∆

, gi
β1

and gi
β2

, respectively,

and here denoted for short as gi. The elemental Jacobian matrix Kij
A for the first and

third algorithms can be found in Sections F.2.2 and F.2.1. The iterative displacements

∆pj in (G.8) can be in turn transformed into the vector ∆pRm,j via the matrix Nδ,j

already defined in (G.1) as follows:

∆pj = Nδ,j∆pRm,j . (G.9)

Note that these relationships are different to the incremental master-slave transforma-

tion in (G.6).

On the other hand, the linearisation of NT
∆,i in (G.7) leads to the matrix KN∆, which

is such that

(∆NT
∆,i)g

i = Kii
N∆∆p

i
.

273

The explicit form of KN∆ can be found in [JC01], which we will just recast here:

Kii
N∆ =




0 0 0 Kii
14

0 Kii
22 0 Kii

24

0 0 0 0

Kii
41 0 0 Kii

44




, (G.10)

where the 3× 3 block matrices are derived as follows

Kii
14 =

1
2
ΛT

m,i,n+1

(
ĝi

f −
1
4

̂̂ω2
m,ig

i
f

)
+

1
4
ΛT

m,i,n+ 1
2

(
ω̂m,iĝ

i
f + ̂̂ωm,ig

i

f

)
S(ωm,i),

Kii
22 =

AT
i (gi

φ ⊗ ωm,i)Λm,i

4− ωm,iΛm,iωR,i

,

Kii
24 =

ΛT
m,i,n

(
2ĝi

φ + (ωm,i · gi
φ)I + ωm,i ⊗ gi

φ

)
+ AT

i (gi
φ ⊗ ωm,i)Λm,i

4− ωm,iΛm,iωR,i

S(ωm,i),

Kii
41 = −1

2
ĝi

fΛm,i,n+1,

Kii
44 =

1
2
ĝi

f Λ̂m,i,n+1rR,i,n+1,

with Ai = 1
1− 1

4
ωm,i·Λm,i,nωR,i

S(ωm,i)−TΛm,i,n. We can therefore write the ij contribu-

tion of the Jacobian matrix as follows

Kij = NT
∆,iK

ij
AN∆,j + δj

i K
ii
N∆. (G.11)

As in the preceeding section, we can also write Kij in the following form

Kij =

[
Kij

RR Kij
Rm

Kij
mR Kij

mm

]
(G.12a)

with Kij
RR, Kij

Rm, Kij
mR and Kij

mm given by

274

Kij
RR = RT

∆iK
ij
AR∗

∆j + δj
i

[
0 0

0 Kii
22

]
,

Kij
Rm = RT

∆iK
ij
AL∗∆j + δj

i

[
0 Kii

14

0 Kii
24

]
,

Kij
mR = RT

∆iK
ij
AR∗

∆j + δj
i

[
0 0

Kii
41 0

]
,

Kij
mm = LT

∆iK
ij
AL∗∆j + δj

i

[
0 0

0 Kii
44

]
.

(G.12b)

G.2 Node-to-element master-slave residuals

G.2.1 Variational form

As before, the linearisation of the elemental residual gA
Rm = NT

δ gA is split in the

following two terms,

∆(NT
δ gA) = NT

δ ∆gA + (∆NT
δ)gA, (G.13)

where the matrix Nδ is given in (8.23), and we will rewrite here as follows:

Nδ
.=




0̄ Ī . . . 0̄ 0̄ 06×6NB

...
...

. . .
...

...
...

0̄ 0̄ . . . Ī 0̄ 06×6NB

RδB 0̄ . . . 0̄ 0̄ Lδ




,

with matrices RδB and Lδ given by

RδB
.=

[
r′B ⊗G1 0

0 ΛBTR

]
; Lδ

.=
[

I1
B Ī . . . INB

B Ī
]
.

and NB the number of nodes of the current master element.

The first term in (G.13) be expressed by using the elemental Jacobian matrix of the

sliding element A, denoted by KA:

∆gA = KA∆pA.

The vector ∆pA can be related to the vector of iterative changes of released and master

variables ∆pRm by using equation (8.18):

275

∆pA = N∗
δ∆pA

Rm.

It can be observed in the definition of matrix N∗
δ in (8.18) that iterative rotations are

interpolated using the standard Lagrangian functions , i.e. ∆ϑ = Ij∆ϑj . However, if a

strain-objective formulation is desired, we must employ the generalised shape functions

Ij
gB given in Section 5.3 for the interpolation of the iterative rotations ∆ϑB, i.e. ∆ϑB =

Ij
gB∆ϑj . Replacing the functions Ij

B in matrix N∗
δ by the generalised shape functions

Ij
gB, we obtain the transformation matrix N∗

δg relating the vectors ∆pA and ∆pA
Rm:

∆pA = N∗
δg∆pA

Rm

with

N∗
δg

.=




0̄ Ī . . . 0̄ 0̄ 06×6NB

...
...

. . .
...

...
...

0̄ 0̄ . . . Ī 0̄ 06×6NB

R∗
δB 0̄ . . . 0̄ 0̄ Lδg




, (G.14a)

and R∗
δB and Lδg given by

R∗
δB

.=

[
r′B ⊗G1 0

kB ⊗G1 ΛBTR

]
, Lδg

.=

[
I1
BI 0 . . . INB

B I 0

0 I1
gB . . . 0 INB

gB

]
. (G.14b)

Thus, making use of the elemental Jacobian matrix KA and matrix N∗
δg, the term

NT
δ ∆gA in (G.13) reads

NT
δ ∆gA = NT

δ KA∆p = NT
δ KAN∗

δg∆pRm,

In order to obtain an explicit form of the second term in (G.13) with the matrix Nδ

given in (8.23), we first develop the product (∆NT
δ)gA as follows

(∆NT
δ)gA =





G1 ⊗∆r′BgNA
f

(∆TT
R)ΛT

BgNA
φ + TT

R(∆ΛT
B)gNA

φ

06NA

∆(I1
B)gNA

...

∆(INB
B)gNA





.

276

Therefore, by deriving the following results

∆r′B = ∆(I ′jBrj) = I ′jB∆rj + I ′′jBrj∆XC = I ′jB∆rj + r′′B ⊗G1∆rR,

∆ΛB = ∆̂ϑΛB + ∆XBk̂BΛB =
(
∆̂ϑ + (∆rR ·G1)k̂B

)
ΛB,

∆(TT
R)a = ΞTT

R
(a)∆θR,

the computation of (∆NT
δ)gA turns into

(∆NT
δ)gA =





G1 ⊗ gNA
f

(
Ij
B
′∆rj + (r′′B ⊗G1)∆rR

)

ΞTT
R
(ΛT

BgNA
φ)∆θR −TT

RΛT
Bk̂B(gNA

φ ⊗G1)∆rR + TT
RΛT

B ĝNA
φ ∆ϑB

06NA

I1
B
′(gNA ⊗G1)∆rR

...

INA
B

′(gNA ⊗G1)∆rR





=




KRR 06×6NA
KRm

06NA×6 06NA×6NA
06NA×6NB

KmR 06NB×6NA
06NB×6NB


∆pRm, (G.15a)

where NA is the number of nodes of the slave element, and the following definitions

have been implicitly made:

KRR =

[
(r′′B · gNA

f)G1 ⊗G1 0

TT
RΛT

B ĝNA
φ (kB ⊗G1) ΞTT

R
(ΛT

BgNA
φ)

]
,

KRm =

[
G1 ⊗ gNA

f 0

0 TT
RΛT

B ĝNA
φ

][
I1
B
′I 0 . . . INB

B
′I 0

0 I1
gB . . . 0 INB

gB

]
, (G.15b)

KmR =




I1
B
′Ī

...

INA
B

′Ī


 gNA ⊗ Ḡ1.

where Ḡ1 in KmR is the sixth-dimensional unit vector defined as Ḡ1 = {G1 0 0 0}.
Eventually, the total Jacobian matrix of the coupling element Kcp can thus be written as

Kcp = NT
δ KAN∗

δg +




KRR 06×6NA
KRm

06NA×6 06NA×6NA
06NA×6NB

KmR 06NB×6NA
06NB×6NB


 . (G.16)

277

G.2.2 Incremental form

Preliminary results

A general form of the transformation matrix N∆ for sliding joints, relating incremental

slave displacements ∆pA and incremental master and slave displacements ∆pA
Rm can be

found in (9.32), which will be written as:

N∆
.=




0̄ Ī . . . 0̄ 0̄ 06×6NI

...
...

. . .
...

...
...

0̄ 0̄ . . . Ī 0̄ 06×6NI

R∆ 0̄ . . . 0̄ 0̄ L∆




,

with R∆ and L∆ given by

R∆
.=

[
1

∆X ∆rX ⊗G1 0

0 cS(ωX)−TΛXn

]
, L∆

.=
[

I1
X Ī . . . INI

X Ī
]
.

and NI the number of nodes of the current master element. The matrix S−1 is defined

in (2.24) and scalar c is given by

c =
1

1− 1
4ωX ·ΛXnωR

.

The specific values of ∆rX and Ij
X for each of the algorithms derived in Chapter 9

are listed in Table 9.3. We give in Table G.1 those values concerning the algorithms that

are used in the four strategies ALG1, ALG2, ALG3 and ALG4 described in Section 9.5.2.

We remember that Xn and Xn+1 are the arc-length coordinates of the contact point at

times tn and tn+1.

SM1-NTa SM1-NTb SM1-Ta SM1-Tb SM2-NT SM2-Tb

Ij
X Ij

X 1
2

Ij

X 1
2

Ij
Xn+1

Ij
Xn+1

Ij
Xn

Ij
Xn+1

∆rX ∆Ijrj,n+ 1
2

∆Ijrj,n+ 1
2

∆rBC,n ∆rBC,n ∆rBC,n ∆rBC,n

Table G.1: Expressions of Ij
X and ∆rX in matrix N∆ for algorithms contained in ALG1,

ALG2, ALG3 and ALG4.

We will compute next the linearisation of the general form, and then particularise the

result for the algorithms that the four strategies listed in Table 9.5 use, i.e. algorithms:

SM1-NTa, SM1-NTb, SM1-Tb, SM2-NT and SM2-Tb.

278

Following similar reasoning as in the variational form, the Jacobian matrix will be

formed by two parts, one from the linearisation of the elemental residual gA, and a

second one stemming from the linearisation of N∆. The resulting Jacobian matrix is then

expressed resorting to the usual structure:

Kcp = NT
∆KAN∗

δg + KN∆. (G.17)

Matrix KA is the elemental Jacobian matrix of the residual gA, which in our case is the

residual of algorithm M1 or algorithm M2 in Chapter 6. Their corresponding Jacobian

matrices are derived in Sections F.2.3 and F.2.4. The matrix N∗
δg is similar to the the

one given for the variational form in (G.14):

N∗
δg

.=




0̄ Ī . . . 0̄ 0̄ 06×6NI

...
...

. . .
...

...
...

0̄ 0̄ . . . Ī 0̄ 06×6NI

R∗
δB 0̄ . . . 0̄ 0̄ Lδg




. (G.18)

However, the expression of R∗
δB and Lδg will differ from (G.14b) for the algorithms

that do not satisfy the kinematic sliding conditions. As it has been explained in Chapter

9, the ’a’ versions of the algorithms conserve the angular momentum, but at the expense

of satisfying only approximated kinematic conditions. In this case, the matrix N∗
δg must

be modified according to the new kinematic condition. Its explicit form will be derived

for each algorithm.

We will next give the guidelines for deriving matrix KN∆, which is generated by the

linearisation of N∆, i.e.:

(∆NT
∆)gA = KN∆∆pA

Rm. (G.19)

By expanding the product NT
∆gA and linearising the terms of matrix N∆, we obtain

(∆NT
∆)gA =





(∆RT)gA,NA

06×NA

(∆I1
X)gA,NA

...

(∆INI
X)gA,NA





279

=





1
∆X G1 ⊗ gA,NA

f ∆(∆rX) + (G1 ⊗ gA,NA

f)∆rX∆(1
∆X)

ΛT
Xn

(
ΞdS−1(gA,NA

φ)∆ωX + S(ωX)−1gA,NA

φ ∆c
)

06×NA

I1
X
′(gA,NA ⊗G1)∆rR

...

INI
X

′(gA,NA∆G1)∆rR





, (G.20)

where gA,NA

f and gA,NA

φ are the translational and rotational part of the slave residual

gA,NA . The matrix ΞdS−1(a) is written in (A.35) as

ΞdS−1(a) =
1
2
â +

1
4
((a · θ)I + θ ⊗ a).

We will as yet anticipate the general structure of KN∆ as follows

KN∆ =




KRR 06×6NA
KRm

06NA×6 06NA×6NA
06NA×6NI

KmR 06NB×6NA
06NB×6NI


 , (G.21)

where the particular form of KRm, KRR and KmR will be derived for each one the

algorithms. Nevertheless, it will become useful to have at hand the linear parts of the

terms appearing in Table G.1. These can be obtained as follows:

∆Ij

X 1
2

=
1
2
Ij
Xn+1

=
1
2
Ij

Xn+1
′(G1 ·∆rR),

∆Ij
Xn+1

= Ij
Xn+1

′G1 ·∆rR,

∆Ij
Xn

= 0,

∆(∆Ijrj,n) = Ij
Xn+1

′rj,n(G1 ·∆rR),

∆(∆Ijrj,n+ 1
2
) = Ij

Xn+1

′rj,n+ 1
2
(G1 ·∆rR) +

1
2
∆Ij∆rj ,

∆(∆rBC,n) = ∆
(
rXn+1,n − rXn,n

)
= Ij

Xn+1

′rj,n(G1 ·∆rR).

(G.22)

It will become also useful to linearise 1
∆X , c and ωX , all of them contained in the first

two rows of (G.20). The first two are developed as follows

∆

(
1

∆X

)
= − 1

∆X2
(G1 ·∆rR), (G.23)

∆c =
c2

4
(∆ωX ·ΛXnωR + ωX ·ΛXn∆ωR) .

280

The relation between ∆ωR and ∆ωR can be derived by recalling the relationship

between tangent-scaled and unscaled rotations:

∆ωR = ∆

(
tanωR/2

ωR/2
ωR

)

=
[
1− tan2(ωR/2)

ω2
R

ωR ⊗ ωR +
tan(ωR/2)

ωR/2

(
I− ωR ⊗ ωR

ω2
R

)]
∆ωR

=
[
1− (ωR/2)2

ω2
R

ωR ⊗ ωR +
ωR/2

arctan(ωR/2)

(
I− ωR ⊗ ωR

ω2
R

)]
∆ωR

= U(ωR)∆ωR, (G.24)

with

U(ω) =
1− (ω/2)2

ω2
ω ⊗ ω +

ωR/2
arctan(ω/2)

(
I− ω ⊗ ω

ω2

)
,

which inserted into the expression of ∆c yields

∆c =
c2

4
((ΛXnωR) ·∆ωX + ωX ·ΛXnU(ωR)∆ωR) . (G.25a)

On the other hand, the linear part of ωX can be derived by introducing the following

result:

∆cay(ωX) = ∆̂ϑXcay(ωX) = cay(ωX)′∆X + ∆̂ϑXn+1cay(ωX),

which after noting that cay(ωX)′ = ̂S(ωX)ω′Xcay(ωX), implies that

∆ϑX = S(ωX)ω′X∆X + ∆ϑXn+1 .

The vector ∆ϑX is the spin variation due to the change of arc-length coordinate ∆X

and the variation of the rotation at point Xn+1, ∆ϑXn+1 . Since ∆ϑX = S(ωX)∆ωX , it

follows that

∆ωX = ω′X(G1 ·∆rR) + S(ωX)−1Ij
gXn+1

∆ϑj , (G.25b)

where use has been made of the strain-invariant interpolation ∆ϑ = Ij
g∆ϑj . Note

that the computation of ωX and ω′X must be done also respecting the interpolation of

local rotations, i.e.

281

ΘL
Xn

= Ij
Xn

ΘL
j,n → ΛXn+1 = Λrig,n+1 exp(Θ̂L

Xn+1
),

ΘL
Xn+1

= Ij
Xn+1

ΘL
j,n+1 → ΛXn = Λrig,n exp(Θ̂L

Xn
),

cay(ωX) = ΛXn+1Λ
T
Xn

,

kXn = ΛXnT(ΘXn)TΘL
Xn

′
,

kXn+1 = ΛXn+1T(ΘXn+1)
TΘL

Xn+1

′
,

ω′X = S(ωX)−1(kXn+1 − cay(ωX)kXn).

where the expression of the curvatures kXn = k(Xn, tn) and kXn+1 = k(Xn+1, tn+1)

follow from (5.15), and the last equation is given in (E.10)1.

By introducing the following definitions:

ag =
c2

4
S(ωX)−1gA,NA

φ ,

Ag = cΞdS−1(gA,NA

φ) + (ag ⊗ ωR)ΛT
Xn

,

(G.26a)

we can express the product (∆N∆)gA in (G.20) as

(∆NT
∆)gA

=





1
∆X (G1 ⊗ gA,NA

f)
(
∆(∆rX)− 1

∆X (∆rX ⊗G1)∆rR

)

ΛT
Xn

(AgωX + ag ⊗ ωXΛXn∆ωR)

06×NA

I1
X
′(gA,NA ⊗G1)∆rR

...

INI
X

′(gA,NA∆G1)∆rR





,

=





1
∆X (G1 ⊗ gA,NA

f)
(
∆(∆rX)− 1

∆X (∆rX ⊗G1)∆rR

)

ΛT
Xn

[
Ag

(
(ω′X ⊗G1)∆rR + S(ωX)−1Ij

gXn+1
∆ϑj

)
+ ag ⊗ ωXΛXnU(ωR)∆ωR

]

06×NA

I1
X
′(gA,NA ⊗G1)∆rR

...

INI
X

′(gA,NA∆G1)∆rR





,

(G.26b)

SM1-NTa algorithm

It is shown in Section 9.3.1 that the slave node NA satisfies the kinematic condition

given in (9.26),

282

rNA,n+ 1
2

=
NB∑

j

Ij

X 1
2

rj,n+ 1
2
.

The linearisation of rNA
must be then performed according to this equation, which

leads to (see also Table 9.2),

∆rNA
= Ij

Xn+1

′rj,n+ 1
2
(G1 ·∆rR) + Ij

X 1
2

∆rj,n+1. (G.27)

Therefore, the matrix N∗
δg such that

∆pA = N∗
δg∆pA

Rm,

is given by N∗
δg =

[
R∗

δ Lδg

]
in (G.18) but with the following definitions of R∗

δ and

Lδg:

R∗
δ =


 Ij

Xn+1

′rj,n+ 1
2
⊗G1 0

kXn+1 ⊗G1 ΛXn+1TR


 , Lδg =


 I1

X 1
2

I 0 . . . INB

X 1
2

I 0

0 I1
gXn+1

. . . 0 INB
gXn+1


 .

(G.28)

From the general form of (∆NT
∆)gA in equation (G.26), using the values indicated

in Table G.1 for the current algorithm, and resorting to the results in (G.22)1, (G.22)5,

(G.23) and (G.25), the expressions of the block matrices in KN∆ can be obtained as

KRR =




gA,NA

f ·
(

Ij
Xn+1

′
r

j,n+1
2

∆X −
∆Ijr

j,n+1
2

∆X2

)
(G1 ⊗G1) 0

ΛT
Xn

Ag(ω′X ⊗G1) ΛT
Xn

(ag ⊗ ωX)ΛXnU(ωR)


 ,

KRm =

[
1

2∆X G1 ⊗ gA,NA

f 0

0 ΛT
Xn

AgS(ωX)−1

] [
K1

Rm . . . KNB
Rm

]
,

Kj
Rm =

[
∆IjI 0

0 Ij
g

]
, (G.29)

KmR =
1
2




I1
Xn+1

′Ī
...

INB
Xn+1

′Ī


 gA,NA ⊗ Ḡ1.

283

SM1-NTb algorithm

The kinematic sliding conditions are now satisfied, which implies that instead of equa-

tion (G.27), ∆rNA
is given by

∆rNA
= Ij

Xn+1

′rj,n+1(G1 ·∆rR) + Ij
Xn+1

∆rj,n+1.

Hence, instead of matrices R∗
δ and Lδg in (G.28), the following expressions must be

used:

R∗
δ =


 Ij

Xn+1

′rj,n+ 1
2
⊗G1 0

kXn ⊗G1 ΛXn+1TR


 ,Lδg =

[
I1
Xn+1

I 0 . . . INB
Xn+1

I 0

0 I1
gXn+1

. . . 0 INB
gXn+1

]
.

(G.30)

This algorithm uses the same definitions in Table G.1 of Ij
X and r′X as in the previous

algorithm, and thus, the block matrices KRR, KRm and KmR are those written in (G.29).

SM1-Ta algorithm

This algorithm neither satisfies the kinematic conditions, but the following equation,

rNA,n+ 1
2

= Ij
Xn+1

rj,n+ 1
2
,

which is required for the conservation of angular momentum. It then follows than the

linear part of rA,NA is given by

∆rA,NA
= 2Ij

Xn+1

′(rj,n+ 1
2
⊗G1)∆rR + Ij

Xn+1
∆rj ,

which leads to the following matrices R∗
δ and Lδg,

R∗
δ =


 2Ij

Xn+1

′rj,n+ 1
2
⊗G1 0

kXn ⊗G1 ΛXn+1TR


 ,Lδg =

[
I1
Xn+1

I 0 . . . INB
Xn+1

I 0

0 I1
gXn+1

. . . 0 INB
gXn+1

]
.

(G.31)

On the other hand, according to equation (G.26), Table G.1 and equations (G.22)2,

(G.22)6,(G.23) and (G.25), it can be verified that matrix KN∆ is given by the the following

block matrices:

284

KRR =




gA,NA

f ·
(

Ij
Xn+1

′
rj,n

∆X − ∆rBC,n

∆X2

)
(G1 ⊗G1) 0

ΛT
Xn

Ag(ω′X ⊗G1) ΛT
Xn

(ag ⊗ ωX)ΛXnU(ωR)


 ,

KRm =

[
0 0

0 ΛT
Xn

S(ωX)−1

] [
K1

Rm . . . KNB
Rm

]
,

Kj
Rm =

[
0 0

0 Ij
g

]
, (G.32)

KmR =




I1
Xn+1

′Ī
...

INB
Xn+1

′Ī


 gA,NA ⊗ Ḡ1,

with ∆rBC,n = Ij
Xn+1

rC
j,n − Ij

Xn
rB

j,n.

SM1-Tb algorithm

Since this algorithm satisfies the kinematic conditions, the corresponding matrices R∗
δ

and Lδg are those in (G.30). Also, this algorithm uses the same definitions of ∆rX and

Ij
X in Table G.1 as algorithm SM1-Ta, and therefore, the matrices KRR, KRm and KmR

are those given in (G.32).

SM2-NT algorithm

This algorithm satisfies the sliding kinematic conditions, and thus, matrices R∗
δ and

Lδg in N∗
δg are also those in (G.30). In addition, using the values of algorithm SM2-NT in

Table G.1 and equations (G.22)3, (G.22)4, (G.23) and (G.25), we arrive at the following

definitions:

KRR =




gA,NA

f ·
(

Ij
Xn+1

′
rj,n+1

∆X − ∆Ijrj,n+1

∆X2

)
(G1 ⊗G1) 0

ΛT
Xn

Ag(ω′X ⊗G1) ΛT
Xn

(ag ⊗ ωX)ΛXnU(ωR)


 ,

KRm =

[
1

∆X G1 ⊗ gA,NA

f 0

0 ΛT
Xn

S(ωX)−1

] [
K1

Rm . . . KNB
Rm

]
,

Kj
Rm =

[
∆IjI 0

0 Ij
g

]
, (G.33)

KmR = 0.

285

SM2-Tb algorithm

This algorithm uses the same expressions of Ij
X and r′X in Table G.1 as algorithm

SM1-Tb. Moreover, it also satisfies the kinematic sliding conditions. It then follows that

matrices R∗
δ , Lδg and the block matrices KRR, KRm and KmR are identical to algorithm

SM1-Tb. However, note that due to the different expressions of the residual vectors gA for

the M1 and M2 algorithms, the elemental matrices KA are different and, in consequence,

also the expression of K in (G.17):

Kcp = NT
∆KAN∗

δg + KN∆.

G.3 Joints with dependent degrees of freedom

Let us recast the expressions of the transformations matrices Hδ and H∆ for joints

with a linear relationship between the released displacements and for the cam joint in the

following table:

LINEARLY DEPENDENT∗ CAM JOINT

Hδ cGr ⊗Gθ −R sin θRGr ⊗Gθ

H∆
c arctan ωR/2

ωR/2 Gr ⊗Gθ R
cos θR,n+1−cos θR,n

Gθ·ωR
Gr ⊗Gθ

∗For the rigid segment Hδ = H∆ = 0

Table G.2: Values of Hδ and H∆ for joints with linearly dependent released displacements

and the cam joint.

We remember that they are such that

δrR = HδδθR,

∆rR = H∆ωR,

where due to assumption 1 in Section 11.1, ωR = θR,n+1 − θR,n.

286

G.3.1 Variational form

General modifications

As it has been explained in Chapters 7 and 8, the master-slave relationships lead to

an extended residual which is given by:

NN: gi
Rm

.= NT
δig

i,

NE: gA
Rm

.= NT
δ gA.

(G.34)

The elemental residual in the NN approach is formed by all the nodal residual vectors

gi, i.e. g
.= {g1 . . . gNA}. It has been shown in Sections G.1 and G.2 that the linearisation

of the extended residuals in (G.34) leads to the Jacobian matrices K such that:

NN : ∆(NT
δ,ig

i) = Kij∆pRm,j with Kij = NT
δ,iK

ij
ANδ,j + δj

i K
ii
Nδ,

NE : ∆(NT
δ gA) = K∆pA

Rm with Kcp = NT
δ KAN∗

δg + KNδ,
(G.35)

where the explicit expression of matrix N∗
δg, which uses the generalised shape functions

Ij
g, is given in (G.14), whereas the matrices KA are the elemental Jacobian matrices of

the corresponding residual vectors. The matrices KNδ, which arise after linearising the

transformation matrices Nδ, can be found in equations (G.4) and (G.15). However, if the

modified transformation matrices in (11.5) are linearised instead, different expressions of

Kii
Nδ and KNδ in (G.35) are obtained. If, in addition, we use the relationship ∆rR =

Hδ∆θR, which follows from equation (11.4), it can be verified that the new Jacobian is

given by

NN : K̃ij =ÑT
δ,iK

ij
AÑδ,j + δj

i K̃
ii
Nδ,

NE : K̃cp =ÑT
δ KAÑ∗

δg + K̃Nδ,
(G.36)

where the matrices K̃ii
Nδ and K̃Nδ are expressed as follows

K̃ii
Nδ =




0 0 0 0

0 ΞTT
R,i

(ΛT
m,igφ) + KHδ(ΛT

mgi
f) 0 TTΛT

m,iĝ
i
φ + HT

δ,iΛ
T
m,iĝ

i
f

0 0 0 0

0 −ĝi
fΛm,i 0 ĝi

f Λ̂m,irR,i




, (G.37)

287

K̃RR =

[
0 0

0 A

]
,

K̃Rm =

[
0 0

HT
δ (G1 ⊗ gNA

f) TT
RΛT

B ĝNA
φ

][
I1
B
′I 0 . . . INB

B
′I 0

0 I1
gB . . . 0 INB

gB

]
,(G.38)

K̃mR =




I1
B
′Ī

...

INA
B

′Ī


 (gNA ⊗ Ḡθ)H̄δ,

with

A = ΞTT
R
(ΛT

BgNA
φ) + TT

RΛT
B ĝNA

φ (kB ⊗G1)Hδ

+ (r′′B · gNA
f)HT

δ (G1 ⊗G1)Hδ + (r′B · gf)KHδ(G1),

H̄δ =

[
0 0

0 Hδ

]
,

Ḡθ =

{
03×1

Gθ

}
.

The matrix KHδ(a) stems from the linearisation of HT
δ as follows:

(∆HT
δ) a = KHδ(a)∆θR ∀ a ∈ R3, (G.39)

and will be explicitly given for each kind of joint in the following sections. The matrix

Ñ∗
δg in (G.36) is similar to N∗

δg, but with R∗
δB replaced by R̃∗

δB:

Ñ∗
δ

.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
... 0̄

. . .
...

...
...

. . .
...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R̃∗
δB 0̄ . . . 0̄ 0̄ Ī1

gB . . . ĪNB
gB




,

R̃∗
δB

.=

[
0 (r′B ⊗G1)Hδ

0 ΛBTR + (kB ⊗G1)Hδ

]
,

Īj
gB

.=

[
Ij
BI 0

0 Ij
gB

] .

Note that the new modified matrices in (G.37) and (G.38) are constructed by ex-

clusively changing the position of the terms in the rows and columns of the dependent

released displacement rR, and adding the matrices Hδ and KHδ where necessary.

Joints with linearly dependent degrees of freedom

Since the matrix Hδ for these joints (see Table G.2) is constant, it follows that the

tangent operator KHδ defined by (G.39) is zero, i.e.

288

KHδ(a)
∣∣
rs

= KHδ(a)
∣∣
rp

= KHδ(a)
∣∣
sc

= 0. (G.40)

Cam joint

The expression for KHδ arises automatically from its definition in equation (G.39) and

the expression of Hδ for the cam joint in Table G.2 as follows:

(∆HT
δ) a =

R

[
−cos θR

θ2
R

(θR ·∆θR)θR ⊗Gr +
sin θR

θ3
R

(∆θR · θR)θR ⊗Gr − sin θR

θR
∆θR ⊗Gr

]
a

= R(Gr · a)
[
− cos θRGθ ⊗Gθ +

sin θR

θR
(Gθ ⊗Gθ − I)

]
∆θR

= −R cos θR(Gr · a)Gθ ⊗Gθ∆θR,

where, the last simplification follows from assumption 1, i.e. ∆θR has maximum one

component different from zero, which is in the direction Gθ. We arrive then at the

following expression of KHδ(a):

KHδ(a)
∣∣
cam

= −R(Gr · a) cos θRGθ ⊗Gθ.

G.3.2 Incremental form

General modifications

The linearised forms of the residuals for the NN and NE approaches are given in

Sections G.1.2 and G.2.2. They can be written as follows

NN : Kij = NT
∆,iK

ij
ANδ,j + δj

i K
ii
N∆,

NE : Kcp = NT
∆KAN∗

δg + KN∆.

The expressions of matrix KN∆ for both approaches are given by (see equations (G.10)

and (G.21)):

289

NN: Kii
N∆ =




0 0 0 Kii
14

0 Kii
22 0 Kii

24

0 0 0 0

Kii
41 0 0 Kii

44




,

NE: KN∆ =




KRR 06×6NA
KRm

06NA×6 06NA×6NA
06NA×6NB

KmR 06NB×6NA
06NB×6NB


 .

(G.41)

The particular form of the block matrices is also derived in Sections G.1.2 and G.2.2.

The form of matrix Kii
N∆ in the NN approach is sufficient to show the required modifica-

tions that we will describe in the subsequent chapters, and therefore will not be detailed

further. Regarding the block matrices in KN∆, their explicit forms for the different time-

integration schemes in Chapter 9 are given in Appendix G. Although we will not recast

them, it will be convenient to write matrices KRR , KRm and KmR with the following

more detailed (albeit still general) expressions:

KRR =

[
kRR11G1 ⊗G1 0

kRR21 ⊗G1 KRR22

]
,

KRm =
[
K1

Rm . . . KNB
Rm

]
,

Kj
Rm =

[
Ij
RmG1 ⊗ gNA

f 0

0 Kj
Rm22

]
,

KmR =




I1
mRĪ
...

INB
mRĪ


 gNA ⊗ Ḡ1,

which are still applicable for both families of algorithms, SM1 and SM2. The meaning

of the terms kRR11, kRR21, Ij
Rm, Kj

Rm22 and Ij
mR follows for each of the algorithms from

the expressions of the matrices in Section G.2.2, and will not be given here. The objective

of the present section is to show the necessary manipulations affecting these terms .

In parallel with the variational form, we define the the matrix KH∆ which satisfies the

following identity:

(∆HT
∆)a = KH∆(a)∆θR ∀ a ∈ R3. (G.42)

290

By using the modified matrices Ñ∆ in (11.13) instead of N∆, it can be verified that

the linearisation of ÑTg leads to the following tangent operators:

NN:

K̃ii
N∆ =




0 0 0 0

0 Kii
22 + KH∆(Nii

11
T
gi

f) 0 Kii
24 + HT

∆,iK
ii
14

0 0 0 0

0 Kii
41H

∗
δ,i 0 Kii

44




,
(G.43a)

NE:

K̃N∆ =




K̃RR 06×6NA
K̃Rm

06NA×6 06NA×6NA
06NA×6NB

K̃mR 06NB×6NA
06NB×6NB


 ,

K̃RR =
[

0 0

0 (kRR21 ⊗G1)Hδ + HT
∆(kRR11G1 ⊗G1)Hδ + KH∆((∆rX

∆X · gA,NA

f)G1) + KRR22

]

K̃Rm =
[
K̃1

Rm . . . K̃NB
Rm

]
,

K̃j
Rm =

[
0 0

Ij
RmHT

∆(G1 ⊗ gNA
f) Kj

Rm22

]
,

K̃mR =




I1
mRĪ
...

INB
mRĪ


 , gNA ⊗ ḠθH̄δ,

which should replace the original matrices KN∆ in (G.41). Here, we have defined the

matrix H̄δ as follows:

H̄δ =

[
0 0

0 Hδ

]
,

with Hδ such that

∆rR = Hδ∆ωR.

While matrix Hδ gives the result as a function of iterative unscaled additive rotations,

i.e. ∆rR = Hδ∆θR = Hδ∆ωR, matrix Hδ relates ∆rR with the the iterative tangent-

scaled additive rotations ∆ωR, necessitated by the use of also tangent-scaled incremental

291

rotations in the conserving scheme STD. For the β1 and β2 algorithms, this matrix should

be replaced by Hδ.

The relation between Hδ and Hδ can be derived by noting first that from assumption

1, if follows that ω̂R∆ωR = 0 and ωR ⊗ ωR∆ωR = ω2
R∆ωR. Therefore, the following

simplified version of equation (G.24) is obtained

∆ωR =
(

1 +
1
4
ω2

R

)
∆ωR,

It follows from this equation that Hδ and Hδ are related via

Hδ =
(

1 +
1
4
ωR

)
Hδ.

Joints with linearly dependent degrees of freedom

For the computation of matrix KH∆(a), we deduce first the following preliminary

results:

∆ arctan(ωR/2) =
ωR ·∆ωR

2ωR

(
1 + 1

4ω2
R

) =
Gθ ·∆ωR

2
(
1 + 1

4ω2
R

) ,

∆

(
1

ωR

)
= −ωR ·∆ωR

ω3
R

= −Gr ·∆ωR

ω2
R

.

Making use of the these equations, the linearisation of HT
∆a is obtained as follows

(∆HT
∆)a = cGθ ⊗Gr

(
1

ωR/2
∆ arctan(ωR/2) + arctan(ωR/2)∆

(
1

ωR/2

))
a

which yields

KH∆(a) =
c

ωR

[
1

1 + 1
4ω2

R

− arctan(ωR/2)
ωR/2

]
(Gr · a)Gθ ⊗Gθ.

It is important to note that when ωR → 0 the following results are obtained,

lim
ωR→0

H∆ = cGr ⊗Gθ

lim
ωR→0

KH∆ = 0.

292

Cam joint

By remembering ∆ωR = 1
1+ 1

4
ω2

R

∆ωR and remarking the relationship

∆

(
1

Gθ · ωR

)
= −Gθ ·∆ωR

ω2
R

,

we can deduce the following expression of KH∆ :

KH∆(a) = −R (Gr · a)

[
sin θR,n+1(

1 + 1
4ω2

R

)
(Gθ · ωR)

Gθ ⊗Gθ +
cos θR,n+1 − cos θR,n

ω2
R

Gθ ⊗Gθ

]
.

Using the relations

cos θR,n+1 = cos θR,n cosωR − sin θR,n sinωR,

lim
ωR→0

ωR = lim
ωR→0

ωR

the following values are obtained at the limit ωR → 0:

lim
ωR→0

R
cos θR,n+1 − cos θR,n

ωR

= −R sin θR,n

lim
ωR→0

− R

ωR

[
sin θR,n+1 +

cos θR,n+1 − cos θR,n

ωR

]
= −R

2
cos θR,n.

Finally, let us summarise in tables G.3 and G.4 the results for joints in Figure 11.1

LINEARLY DEPENDENT (not the rigid segment∗)

KHδ(a) 0

KH∆(a) c
ωR

[
1

1+ 1
4
ω2

R

− arctan(ωR/2)
ωR/2

]
(Gr · a)Gθ ⊗Gθ

∗For the rigid segment KH∆ = 0

Table G.3: Matrices KHδ and KH∆ for joints with linearly dependent released displace-

ments.

293

CAM JOINT

KHδ(a) −R(Gr · a) cos θRGθ ⊗Gθ

KH∆(a) −R (Gr · a)
[

sin θR,n+1

(1+ 1
4
ω2

R)(Gθ·ωR)
Gθ ⊗Gθ + cos θR,n+1−cos θR,n

ω2
R

Gθ ⊗Gθ

]

Table G.4: Matrices KHδ and KH∆ for the cam joint.

294

H. Demonstration of the

conservation properties

H.1 Conservation of momenta of the STD algorithm. (Sec-

tion 6.2)

The residual vector of the STD algorithm is given by

gi
∆

.= gi
∆,d

+ gi
∆,v

− gi
∆,e

, i = 1, . . . , N

where the inertial, elastic and external force vectors are expressed in (6.12) as

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds

gi
∆,v

.=
∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

S(ω)ΛnMn+ 1
2



 ds

gi
∆,e

.=
∫

L

{
Iin̄

0

}
ds,

(H.1)

and the vector of local specific momenta l is given by

l =

{
lf

lφ

}
.=

{
Aρv

ΛJρW

}
. (H.2)

We note first that the translational part of each of the N equations gi
∆

= 0 yields

∫

L

(
Aρ

∆t
Ii∆v + Ii′Λn+ 1

2
Nn+ 1

2
− Iin̄

)
ds = 0. (H.3)

295

In addition, by recalling the completeness properties of the interpolating functions,

N∑

i=1

Ii = 1 ;
N∑

i=1

Ii′ = 0, (H.4)

it can be checked that the addition of the N equations gi
∆

= 0 leads to following result:

1
∆t

∫

L

{
∆lf

∆lφ

}
ds =

∫

L





n̄

r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2



 ds. (H.5)

On the other hand, the increment of momenta over a time-step reads

∆Π =
∫

L

{
∆lf

∆lφ + Aρ∆(r̂v)

}
ds =

∫

L





∆lf

∆lφ + Aρ(r̂n+ 1
2
∆v + ∆̂rvn+ 1

2
)



 ds. (H.6)

Clearly, the translational part of (H.5) implies the conservation of the translational

momentum if no applied loads exist. Moreover, the last term in the rotational part of

∆Π vanishes due to the time-stepping scheme in (6.10), which states that vn+ 1
2

= 1
∆t∆r.

Recalling the rotational part of relation (H.5), we can express the increment of of Πφ as

∆Πφ =
∫

L

(
Aρr̂n+ 1

2
∆v + ∆tr̂′n+ 1

2
Λn+ 1

2
Nn+ 1

2

)
ds

=
∫

L

(
AρI

ir̂i,n+ 1
2
∆v + ∆tr̂′n+ 1

2
Λn+ 1

2
Nn+ 1

2

)
ds.

By inserting equation (H.3) into this expression, it follows that

∆Πφ = ∆t

∫

L
r̂n+ 1

2
n̄ds,

which vanishes if no external loads exist.

H.2 Increment of angular momentum by using residuals gi
∆

in (6.14)

This formulation uses the residual vector gi
∆

.= gi
∆,d + gi

∆,v − gi
∆,e, together with the

following definitions (see equations (6.14)):

296

gi
∆,d

.=
1

∆t

∫

L
Ii∆lds,

gi
∆,v

.=
∫

L


 Ii′I 0

−Ii tan(ω/2)
ω/2 r̂′n+ 1

2
Ii′I








Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds,

gi
∆,e

.=
∫

L

{
Iin̄

0

}
ds,

with l given in (H.2). Again, from the completeness properties of the interpolating

functions Ii, the sum of the N equations gi
∆ = 0 gives rise to

1
∆t

∫

L

{
∆lf

∆lφ

}
ds =

∫

L





n̄
tan(ω/2)

ω/2 r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2



 . (H.7)

Since we are using the time-integration rule (6.13)1, (∆̂r)vn+ 1
2

also vanishes in the

present case. Therefore, the increment of momenta is the same as in (H.6):

∆Π =
∫

L





∆lf

∆lφ + Aρr̂n+ 1
2
∆v



 ds. (H.8)

The first equation in (H.7) leads to the conservation of the translational momentum.

By recalling the rotational part of relation (H.7), we can express the increment of the

rotational part of Π as

∆Πφ = r̂i,n+ 1
2

∫

L
AρI

i∆vds +
∫

L
∆t

tan(ω/2)
ω/2

r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2
ds.

But from each of the N equations gi
∆ = 0, it follows that we can replace AρI

i∆v with

∆t(Iin̄ − Ii′Λn+ 1
2
Nn+ 1

2
), and by considering a system with no external loads, we arrive

at the following result:

∆Πφ = ∆t

∫

L

(
1− tan(ω/2)

ω/2

)
r̂′n+ 1

2
Λn+ 1

2
Nn+ 1

2
ds.

H.3 Conservation properties of algorithm M2

(Section 6.3.1)

We will rewrite first each one of the nodal equilibrium equations for this algorithm:

297

gi
∆

.= gi
∆,d + gi

∆,k − gi
∆,e = 0, i = 1, . . . , N.

By inserting in this expression the elastic force vector gi
∆,v given in (6.20), and the

dynamic and external parts gi
∆,d and gi

∆,e defined in (6.14b) and (6.14d), we obtain the

following equation:

∫

L

1
∆t

Ii∆lds =
∫

L





−Ii′Λn+ 1
2
Nn+ 1

2
+ Iin̄

Iir̂nΛn+ 1
2
Nn+ 1

2
− Ii′T(ω)ΛnMn+ 1

2



 ds. (H.9)

H.3.1 Conservation of momenta

The demonstration of the conservation of translational momentum is identical to the

steps given in the previous section. With regard to the rotational part, we note that now

the increment ∆(r̂v) can be written as

∆(r̂v) = r̂n+1vn+1 − r̂nvn = r̂n∆v + (∆̂r)vn+1 = r̂n∆v

where ∆̂rvn+1 is zero due to the time-integration scheme (6.19)1. The increment

momenta Π is then expressed as follows,

∆Π =
∫

L

{
∆lf

∆lφ + Aρr̂n∆v

}
ds.

From the rotational part of the sum of the residuals
∑

gi
∆ = 0, it follows that we can

replace
∫
L ∆lφds by ∆t

∫
L r̂′nΛn+ 1

2
Nn+ 1

2
ds, and therefore

∆Πφ =
∫

L

(
Aρr̂n∆v + ∆tr̂′nΛn+ 1

2
Nn+ 1

2

)
ds = r̂i,n

∫

L
AρI

i∆vds+
∫

L
∆tr̂′nΛn+ 1

2
Nn+ 1

2
ds.

After using the translational part of the equilibrium equations gi
∆ = 0 in (H.9), this

result turns into

∆Πφ = ∆tr̂i,n

(∫

L
Iin̄ds−

∫

L
Ii′Λn+ 1

2
Nn+ 1

2
ds

)
+

∫

L
∆tr̂′nΛn+ 1

2
Nn+ 1

2
ds

= ∆t

∫

L
r̂nn̄ds,

and hence, ∆Πφ vanishes if we set n̄ = 0.

298

H.3.2 Energy increment

In order to make use of the time-integration scheme (6.19), the increment of the kinetic

energy will be computed as follows:

∆T =
1
2

∫

L
(vn+1 · vn+1 − vn · vn)Aρds +

1
2

∫

L
(wn+1 · lφ,n+1 −wn ·∆lφ,n)ds

=
∫

L
vn+1 ·∆vAρds +

1
2

∫

L
(vn − vn+1) ·∆vAρds +

∫

L
Wn+ 1

2
· J∆Wds

=
∆ri

∆t
·
∫

L
Ii∆vAρds− 1

2

∫

L
‖∆v‖2Aρds +

ωi

∆t
·
∫

L
Ii∆lφds.

By virtue of equations gi
∆ = 0, we can replace the terms

∫
L Ii∆vAρ and

∫
L Ii∆lφ with

the right hand side of (H.9), which yields

∆T = ∆ri ·
∫

L
Iin̄ds−∆ri ·

∫

L
Ii′Λn+ 1

2
Nn+ 1

2
ds− 1

2

∫

L
‖∆v‖2Aρds

+ωi ·
∫

L
Iir̂′nΛn+ 1

2
Nn+ 1

2
ds− ωi ·

∫

L
Ii′T(ω)ΛnMn+ 1

2
ds.

On the other hand, the increment of elastic energy has already been deduced in Section

6.1.1, equation (6.8), as

∆Vint =
∫

L

(
∆r′ ·Λn+ 1

2
Nn+ 1

2
− ω · tan(ω/2)

ω/2
r̂′n+ 1

2
Λn+ 1

2
Nn+ 1

2
+ ω′ ·T(ω)ΛnMn+ 1

2

)
ds.

By adding ∆T , ∆Vint and ∆Vext = − ∫
L ∆r · n̄ds, and after cancelling the equal terms,

the increment of energy is obtained as follows:

∆E = ωi ·
∫

L
Ii

(
r̂′n −

tan(ω/2)
ω/2

r̂′n+ 1
2

)
Λn+ 1

2
Nn+ 1

2
ds− 1

2

∫

L
‖∆v‖2Aρds.

H.4 Conservation of momenta for algorithms β1 and β2.

(Section 6.3.2)

We will demonstrate the conservation of momenta for algorithm β1. The demonstration

for algorithm β2 follows analogous steps with the same conclusions, and therefore will not

be given.

299

The system of equations solved in the β1-algorithm can be found in (6.25), which may

be written as

gi
∆ + β1g

i
∆,v(∆N,0) = 0, i = 1, . . . , N, (H.10)

with gi
∆ = g∆,d + gi

∆,v(Nn+ 1
2
,Mn+ 1

2
)− gi

∆,e, and the force vectors defined as follows:

gi
∆d

.=
1

∆t

∫

L
Ii∆lds,

gi
∆,v(Nn+ 1

2
,Mn+ 1

2
) .=

∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds,

gi
∆e =

∫

L

{
Iin̄

0

}
ds.

(H.11)

The translational part of equations in (H.10) for each node i may be rewritten as

∫

L
Ii

(
1

∆t
∆lf − n̄

)
ds +

∫

L
Ii′Λn+ 1

2

(
Nn+ 1

2
+ β1∆N

)
ds = 0. (H.12)

On the other hand, by adding the N equations in (H.10), and remembering
∑

N Ii = 1

and
∑

N Ii′ = 0, we arrive at the following result:

1
∆t

∫

L
∆lds =

∫

L





n̄

r̂′n+ 1
2
Λn+ 1

2
(Nn+ 1

2
+ β1∆N)



 ds. (H.13)

The conservation of translational momenta follows directly from the first three compo-

nents of these equations. For the proof of the conservation of the total angular momenta

Πφ, we will make use of the rotational part of (H.13) in the expression of ∆Πφ, which is

given by:

∆Πφ =
∫

L
∆lφds + ∆(r̂lf)ds

= ∆t

∫

L
r̂′n+ 1

2
Λn+ 1

2
(Nn+ 1

2
+ β1∆N)ds +

∫

L
r̂n+ 1

2
∆lfds

= ∆tr̂i,n+ 1
2

∫

L
Ii′Λn+ 1

2
(Nn+ 1

2
+ β1∆N)ds + r̂i,n+ 1

2

∫

L
Ii∆lfds, (H.14)

where ∆̂rlf,n+ 1
2

= Aρ∆̂rvn+ 1
2

vanishes due to the time-stepping scheme in (6.13)1.

The expression ∆Πφ can be simplified by using equation (H.12) in the second integral of

(H.14), which gives rise to

300

∆Πφ = ∆t

∫

L
r̂n+ 1

2
n̄ds.

and we conclude that ∆Πφ = 0 if no external loads exist.

H.5 Sliding joints: conservation of angular momenta of SM1

and SM2 algorithms

The aim of this section is to derive the kinematic conditions that the conservation of

angular momentum requires for the different algorithms described in sections 9.3 and 9.4.

Let us first write the master-slave transformation matrix N∆ as follows

N∆
.=




0̄ Ī . . . 0̄ 0̄ 0̄ . . . 0̄
...

...
. . .

...
...

...
. . .

...

0̄ 0̄ . . . Ī 0̄ 0̄ . . . 0̄

R∆ 0̄ . . . 0̄ 0̄ Ī1
X . . . ĪNI

X




(H.15a)

with the matrix R∆ defined as

R∆
.=

[
1

∆x∆rX ⊗G1 0

0 cS(ωX)−TΛXn

]
, (H.15b)

and where Īj
X

.= Ij
X

[
I 0

0 c I

]
, c = 1

1− 1
4
ωX ·ΛXnωR

and NI is the number of nodes

in the master element, that will be specified in each case. The particular expressions of

∆rX and Ij
X will be used for each algorithm separately according to Table 9.3. Note that

although the matrix N∆ given in (9.25) uses a relation with the form

ωNA
= ωX + BωR,

we will use first the following general expression

ωNA
= AωX + BωR, (H.16)

which corresponds to replacing cI by A in Īj
X . We will demonstrate in Section H.5.1

that the condition A = I (which implies c = 1) is required for the conservation of

the angular momentum in the SM1-NT algorithm . Since in the remaining cases the

demonstration follows the same procedure, the choice A = I will be assumed thereafter

in order to simplify the manipulations.

301

H.5.1 Conservation of momenta of SM1 algorithms

This master-slave formulation is based on the M1 momentum conserving algorithm. It

uses the nodal force vectors defined in (9.3), which for a node i of an element I are given

by

gI,i
∆,d

.=
1

∆t

∫

L
Ii∆lds,

gI,i
∆,v

.=
∫

L


 Ii′I 0

−Iir̂′n+ 1
2

Ii′I








Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds.

(H.17)

No applied loads will be considered, and therefore, the vector gi
∆,e will be omitted in

the subsequent derivations.

No contact transition, SM1-NT algorithms

According to Table 9.3, this algorithm uses the matrix N∆ with the following defini-

tions:

Ij
X = Ij

X 1
2

.=
1
2
(Ij

Xn
+ Ij

Xn+1
)

∆rX = ∆Ijrj,n+ 1
2
,

(H.18)

where Ij
Xn

.= Ij(Xn), Ij
Xn+1

.= Ij(Xn+1), ∆Ij .= Ij
Xn+1

− Ij
Xn

, and Xn and Xn+1

are the arc-length coordinates of the previous and current contact points. Note that

the Lagrangian polynomials Ij

X 1
2

satisfy the completeness conditions
∑NB

j Ij

X 1
2

= 1 and
∑NB

j Ij

X 1
2

′
= 0.

Since these algorithms are designed for situations where no contact transition exists,

we will work with a reduced model shown in Figure 9.1. From the weak form G given in

Section 9.2.4, it follows that the system of equations to be solved may be written as

gA
Rm

.= NT
∆gA = 0,

gB = 0,
(H.19)

where gA .= {gA,1, . . . , gA,NA} and gB .= {gB,1, . . . , gB,NB} are the elemental residuals

of elements A and B, and the nodal residuals gI,i are defined by (H.17). From the

expression of N∆ in (H.15) and the choices in (H.18), the system of equations in (H.19)

302

turns into the following form (we have removed the subscript ∆ in order to alleviate the

notation in the forthcoming expressions)

RT
∆gA,NA = 0, (H.20a)

gA,i = 0 , i = 1, . . . , NA − 1, (H.20b)

gB,j + Īj

X 1
2

gA,NA = 0 , j = 1, . . . , NB. (H.20c)

where according to the general relation (H.16), Īj
X

n+1
2

= Ij

X 1
2

[
I 0

0 A

]
.

Let us first derive a useful preliminary result. By adding all the nodal residual vectors

for both elements, using equations (H.20b) and (H.20c), and splitting the residual vectors

into the translational and rotational part, i.e. gI,i = {gI,i
f gI,i

φ }, we get

NA∑

i=1

gA,i
f +

NB∑

j=1

gB,j
f = gA,NA

f −



NB∑

j=1

Ij

X 1
2




︸ ︷︷ ︸
=1

gA,NA

f = 0, (H.21a)

N∑

i=1

gA,i
φ +

M∑

j=1

gB,j
φ = (I−A)gA,NA

φ , (H.21b)

where use of the completeness conditions of the Lagrangian polynomials Ij

X 1
2

has been

made. The conservation of the total translational momentum Πf =
∫
L lfds can be

deduced by using (H.21a), and by noting that from the definitions of residuals in (H.17)

it follows that

∆Πf =
∫

LA+LB

∆lfds =
NA∑

i=1

gA,i
f +

NB∑

j=1

gB,j
f = 0.

The conservation of angular momentum can be demonstrated by first remarking that

also from the definitions of the residuals (H.17) and equation (H.21b) we have

1
∆t

∫

LA+LB

∆lφds−
∫

LA+LB

r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2
ds = (I−A)gA,NA

φ . (H.22)

Hence, the increment of the the angular momentum ∆Πφ over a time-step is given by,

303

∆Πφ =
∫

LA+LB

(∆lφ + r̂n+1lf,n+1 − r̂nlf,n) ds

=
∫

LA+LB

∆lφds +
∫

LA+LB

(
r̂n+ 1

2
∆lf + (∆̂r)lf,n+ 1

2

)
ds

=
∫

LA+LB

∆lφds +
∫

LA+LB

r̂n+ 1
2
∆lfds. (H.23)

where the definition of the specific translational momentum lf = Aρv and the time-

integration mid-point rule (9.5a) have been used in the last result, i.e. ∆̂rlf,n+ 1
2

= 0. In

addition, inserting equation (H.22) into (H.23) yields

∆Πφ = ∆t

∫

LA+LB

r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2
ds +

∫

LA+LB

r̂n+ 1
2
∆lfds + ∆t(I−A)gA,NA

φ

= ∆t

NA∑

i

r̂i,n+ 1
2

∫

LA

Ii′Λn+ 1
2
Nn+ 1

2
ds + ∆t

NB∑

j

r̂j,n+ 1
2

∫

LB

Ij ′Λn+ 1
2
Nn+ 1

2
ds

+
∫

LA+LB

r̂n+ 1
2
∆lfds + ∆t(I−A)gA,NA

φ , (H.24)

where the interpolation r′
n+ 1

2

= Ii′ri
n+ 1

2

has been used in the last step. Note that

we have as yet not used any kinematic assumption. The two beams have been treated

independently during the present demonstration, and only equations (H.20) have been

used up to this point. By recalling the definitions of the translational part of gi =

gi
∆,d + gi

∆,v in (H.17), the first two terms in the last result of (H.24) are expressible as

∆t

NA∑

i

r̂i,n+ 1
2

(
gA,i

f − 1
∆t

∫

LA

Ii∆lfds

)
+ ∆t

NB∑

j

r̂j,n+ 1
2

(
gB,j

f − 1
∆t

∫

LB

Ij∆lfds

)

= ∆tr̂NA,n+ 1
2
gA,NA

f −∆t

NB∑

j

Ij

X 1
2

r̂j,n+ 1
2
gA,NA

f −
∫

LA+LB

r̂n+ 1
2
∆lfds,

where the translational part of the equilibrium equations (H.20b) and (H.20c) have

been used in the last identity. Hence, inserting this result into (H.24) yields

∆Πφ = ∆t


r̂NA,n+ 1

2
−

NB∑

j

Ij

X 1
2

r̂j,n+ 1
2


 gA,NA

f + ∆t(I−A)gA,NA

φ . (H.25)

It is clear that A = I, together with the kinematic condition

rNA,n+ 1
2

=
NB∑

j

Ij

X 1
2

rj,n+ 1
2

(H.26)

304

make the algorithm angular momentum conserving. We note that if instead of Ij

X 1
2

we use a more general expression Ij
Xγ = γIj

Xn
+ (1 − γ)Ij

Xn+1
(which also satisfy the

completeness conditions), a similar kinematic condition for the conservation of the angular

momentum is obtained:

rNA,n+ 1
2

=
NB∑

j

Ij
Xγrj,n+ 1

2
.

However, after remembering the sliding conditions in (9.6a):

rNA,n = Ij
Xn

rj,n,

rNA,n+1 = Ij
Xn+1

rj,n+1,

it follows that the value γ = 1
2 furnishes a good approximation of rNA,n+ 1

2
, which is

given by

rNA,n+ 1
2

=
1
2

(
rXn + rXn+1

)
=

1
2

(
Ij
Xn

rj,n + Ij
Xn+1

rj,n+1

)
. (H.27)

We observe that in the general multidimensional case, a choice must be made between

the kinematic conditions (H.26) and (H.27), which correspond to algorithms SM1-NTa

and SM1-NTb, respectively. If the latter holds, and also if A = I in (H.25), it turns out

that the increment of the angular momentum is expressed as

∆Πφ = ∆t


1

2
(r̂NA,n + r̂NA,n+1)− 1

4

NB∑

j

(
Ij
Xn

+ Ij
Xn+1

)
(r̂j,n + r̂j,n+1)


 gA,NA

f

=
∆t

4
∆Ij

X∆̂rjg
A,NA

f .

Contact transition, SM1-T algorithm

We will use the the matrix N∆ given in (H.15), in conjunction with the following

definitions (see Table 9.3):

Ij
X

.= Ij
Xn+1

∆rX
.= ∆rBC,n = Ij

Xn+1
rC

j,n − Ij
Xn

rB
j,n.

305

Also, we will assume that c = 1 (the need for this can be proved with an analogous

reasoning to the one used in the previous section).

The matrix N∆ is such that ∆pA = N∆∆pA
Rm, where the vectors ∆pA and ∆pA

Rm

are given in (9.23), and the master element is now element C. Hence, for the reduced

model in Figure 9.2, which contains elements A, B and C, and after performing the nodal

assembly, the original system of equations

gA,i = 0 i = 1, . . . , NA,

gB,j = 0 j = 1, . . . , NB − 1,

gC,j = 0 j = 2, . . . , NC ,

gB,NB + gC,1 = 0,

turns into

RT
∆gA,NA = 0,

gA,i = 0 , i = 1, . . . , NA − 1,

gB,j = 0 , j = 1, . . . , NB − 1,

gC,j + Ij
Xn+1

gA,NA = 0 , j = 2, . . . , NC ,

gC,1 + I1
Xn+1

gA,NA + gB,NB = 0.

(H.28)

An equivalent version of equations (H.21) may be written by adding all the nodal

contributions of the residuals and using equations (H.28),

NA∑

i=1

gA,i
f +

NB∑

j=1

gB,j
f +

NC∑

j=1

gC,j
f = gA,NA

f + gB,NB

f −



NC∑

j=1

Ij
Xn+1




︸ ︷︷ ︸
=1

gA,NA

f − gB,NB

f = 0

N∑

i=1

gA,i
φ +

NB∑

j=1

gB,j
φ +

NC∑

j=1

gC,j
φ = 0.

(H.29)

The increment of angular momentum has the same expression as in (H.23),

∆Πφ =
∫

LA+LB+LC

∆lφds +
∫

LA+LB+LC

r̂n+ 1
2
∆lfds, (H.30)

where ∆̂rlf,n+ 1
2

= 0, due to the time-integration scheme in (9.5a). On the other hand,

from the definition of residuals gi
φ in (H.17), and equation (H.29)2, it follows that

306

1
∆t

∫

LA+LB+LC

∆lφds =
∫

LA+LB+LC

r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2
ds.

Inserting this equation into (H.30), the increment of the angular momentum becomes

∆Πφ = ∆t

∫

LA+LB+LC

r̂′n+ 1
2
Λn+ 1

2
Nn+ 1

2
ds +

∫

LA+LB+LC

r̂n+ 1
2
∆lfds

= ∆t

NA∑

i

r̂i,n+ 1
2

∫

LA

Ii′Λn+ 1
2
Nn+ 1

2
ds +

NB∑

j

r̂j,n+ 1
2

∫

LB

Ij ′Λn+ 1
2
Nn+ 1

2
ds

+
NC∑

j

r̂j,n+ 1
2

∫

LC

Ij ′Λn+ 1
2
Nn+ 1

2
ds +

∫

LA+LB+LC

r̂n+ 1
2
∆lfds. (H.31)

Besides, from the definitions of the residual vectors gA,i
f , gB,j

f and gC,j
f , and from the

equilibrium equations (H.28)1- (H.28)4, we can derive the following relationships:

∆t

∫

LA

Ii′Λn+ 1
2
Nn+ 1

2
ds = −

∫

LA

Ii∆lfds i = 1, . . . , NA − 1,

∆t

∫

LB

Ij ′Λn+ 1
2
Nn+ 1

2
ds = −

∫

LB

Ij∆lfds j = 1, . . . , NB − 1,

∆t

∫

LC

Ij ′Λn+ 1
2
Nn+ 1

2
ds = −

∫

LC

Ij∆lfds− Ij
Xn+1

gA,NA

f j = 2, . . . , NC ,

∆t

∫

LC

I1′Λn+ 1
2
Nn+ 1

2
ds = −

∫

LC

I1∆lfds− gB,NB

f − I1
Xn+1

gA,NA

f ,

(H.32)

which inserted into (H.31), and after cancelling the equal terms, gives rise to

∆Πφ

∆t
= r̂NA,n+ 1

2
gA,NA

f + r̂B
NB ,n+ 1

2
gB,NB

f −
NC∑

j=1

r̂C
j,n+ 1

2
Ij
Xn+1

gA,NA

f − r̂C
1,n+ 1

2
gB,NB

f

=


r̂NA,n+ 1

2
−

NC∑

j=1

Ij
Xn+1

r̂C
j,n+ 1

2


 gA,NA

f ,

where use of the fact that rB
NB ,n+ 1

2

= rC
1,n+ 1

2

(this is the common node to elements B

and C) has been made in the last identity. It then follows that the angular momentum is

conserved if the following kinematic condition is satisfied (leading to algorithm SM1-Ta):

rNA,n+ 1
2

=
NC∑

j=1

Ij
Xn+1

rC
j,n+ 1

2
,

307

together with the condition c = 1, which has been set at the beginning of the section.

In case that the sliding conditions (9.6a) are imposed, it can be verified that the increment

of angular momentum is equal to

∆Πφ = ∆t
(
r̂Xn,n − r̂Xn+1,n

)
gA,NA

f , (H.33)

where rXn+1,n is the position vector of the point at the coordinate of the current contact

point Xn+1, at the previous time-step tn. This choice pertains to algorithm SM1-Tb

H.5.2 Conservation of momenta of SM2 algorithms

These algorithms stem from the momentum conserving algorithm M2. We will con-

centrate on a system with no external loads, and therefore gi
∆,e = 0. The inertial and

internal force vectors are given in (9.3) as follows

gi
∆,d =

1
∆t

∫

L
Ii∆lds

gi
∆,v =

∫

L

[
Ii′I 0

−Iir̂′n Ii′I

]



Λn+ 1
2
Nn+ 1

2

T(ω)ΛnMn+ 1
2



 ds

(H.34)

The time-stepping scheme can be found in (9.5b) as:

vn+1 =
∆r

∆t
; Wn+ 1

2
=

Wn+1 + Wn

2
=

Ω
∆t

. (H.35)

We note that due to the first equation and the definition of the translational local

specific momentum lf = Aρv, we have that the increment of angular momentum may be

now written as

∆Πφ =
∫

L
(∆lφ + r̂n+1lf,n+1 − r̂nlf,n) ds

=
∫

L
∆lφds +

∫

L
r̂n∆lfds. (H.36)

No contact transition: SM2-NT algorithms

The derivations needed here follow the same steps of those given with the SM1-NT

algorithm. We will use now the following definitions:

308

Ij
X

.= Ij
Xγ = γIj

Xn
+ (1− γ)Ij

Xn+1

∆rX
.= ∆Ijrj,n(1−γ),

with rj,n(1−γ)
.= (1 − γ)rj,n + γrj,n+1. Note that the values indicated in Table 9.3

correspond to γ = 1. However, we will use this general expression in order to demonstrate

that the choice γ = 1 is the one that leads to a momentum conserving algorithm that

satisfies also the sliding conditions in (9.6a).

The equilibrium equations are the same given in (H.20), but with c = 1, i.e.

RT
∆gA,NA = 0, (H.37a)

gA,i = 0 , i = 1, . . . , NA − 1, (H.37b)

gB,j + Ij
Xγg1,NA = 0 , j = 1, . . . , NB. (H.37c)

However, due to the different expression of the internal force vector gi
∆,v, the sum of

all the nodal vectors gi
φ leads now to (this is an equivalent equation to the one previously

derived in (H.22))

1
∆t

∫

LA+LB

∆lφds−
∫

LA+LB

r̂′nΛn+ 1
2
Nn+ 1

2
ds = 0.

By inserting this equation in the expression of the incremental angular momentum in

(H.36) yields

∆Πφ = ∆t

∫

LA+LB

r̂′nΛn+ 1
2
Nn+ 1

2
ds +

∫

LA+LB

r̂n∆lfds

= ∆t

NA∑

i

r̂i,n

∫

LA

Ii′Λn+ 1
2
Nn+ 1

2
ds + ∆t

NB∑

j

r̂j,n

∫

LB

Ij ′Λn+ 1
2
Nn+ 1

2
ds

+
∫

LA+LB

r̂n∆lfds, (H.38)

which from the definitions of the translational part of the residual, and the equilibrium

equations (H.37b) and (H.37c) reduces to

∆Πφ = ∆t


r̂NA,n −

NB∑

j

Ij
Xγ r̂j,n


 gA,NA

f .

It is now clear that for the choice γ = 1, this algorithm satisfies both, the kinematic

condition for the conservation of momenta, and the sliding contact condition (9.6a).

309

Contact transition: SM2-T algorithm

In the same line with the SM1-T algorithm, the system of equations to be solved, after

applying the master-slave transformation, is in the present case given by

RT
∆gA,NA = 0,

gA,i = 0 , i = 1, . . . , NA − 1,

gB,j = 0 , j = 1, . . . , NB − 1,

gC,j + Ij
Xn+1

gA,NA = 0 , j = 2, . . . , NC ,

gC,1 + I1
Xn+1

gA,NA + gB,NB = 0.

(H.39)

where we have also assumed the condition c = 1. Similarly to equation (H.21), it can

be verified that the following identity holds:

NA∑

i=1

gA,i +
NB∑

j=1

gB,j +
NC∑

j=1

gC,j = 0. (H.40)

We take the expression of the increment of the angular momentum in (H.38), where

now the integrals are performed along the three elements A, B and C:

∆Πφ = ∆t

NA∑

i

r̂i,n

∫

LA

Ii′Λn+ 1
2
Nn+ 1

2
ds + ∆t

NB∑

j

r̂j,n

∫

LB

Ij ′Λn+ 1
2
Nn+ 1

2
ds

+∆t

NC∑

j

r̂j,n

∫

LC

Ij ′Λn+ 1
2
Nn+ 1

2
ds +

∫

LA+LB+LC

r̂n∆lfds. (H.41)

We note that the relationships given in (H.32) are also valid in the present case.

Inserting them into (H.41) gives rise to

∆Πφ

∆t
= r̂NA,ngA,NA

f + r̂B
NB ,ngB,NB

f −
NC∑

j=1

r̂C
j,nIj

Xn+1
gA,NA

f − r̂C
1,ngB,NB

f

=


r̂NA,n −

NC∑

j=1

r̂C
j,nIj

Xn+1


 gA,NA

f ,

where again, use of the fact that rB
NB ,n = rC

1,n has been made. From the last equation

it follows that the angular momentum is conserved if the following kinematic condition is

satisfied:

310

rNA,n =
NC∑

j=1

rC
j,nIj

Xn+1
.

which gives rise to algorithm SM2-Ta. This is clearly not in agreement with the sliding

contact conditions. From the relationships given in (9.6b), the increment ∆Πφ can be

computed as

∆Πφ = ∆t
(
r̂Xn,n − r̂Xn+1,n

)
gA,NA

f ,

where as before, rXn+1,n is the position vector of the point at the coordinate of the

current contact point Xn+1, at the previous time-step tn. This choice pertains to algorithm

SM2-Tb. Note that this is the same increment as the one computed for the algorithm

SM1-T in (H.33).

311

List of Symbols

(•̂) Skew symmetric matrix form of a vector such that •̂a = • × a

(•) Tangent-scaled vector of (•), i.e. (a) = tan ‖a/2‖
‖a/2‖ a

(•̇), (•̈) First and second time differentiation

(•)′, (•)′′ First and second differentiation with respect to the arc-length

parameter s

d, δ,∆ Directional derivative, virtual variation and iterative variation

∆ Incremental variation, i.e. ∆(•) = (•)n+1 − (•)n

0̄ Sixth-dimensional zero matrix

A Material angular acceleration

A, A Cross section of the beam, area per unit length of the beam

Aρ Product Aρ0

E3 Three-dimensional vector space

E Total energy

Ei, ei Inertial basis and basis of the reference configuration

e Unit vector in the direction of the rotation θ, i.e. e = θ
‖θ‖

f = {n m} Sixth-dimensional vector of stress resultant vector

f̄ = {n̄ m̄} Sixth-dimensional vector of external loads per unit of beam length

F Deformation gradient

G, Gd, Gk, Ge Weak form and the dynamic, elastic and external parts

gi,gi
d,g

i
v,g

i
e Residual vector and dynamic, internal and external force vectors

gi Moving basis rigidly attached to the cross section of the beam

Gi Moving basis in the reference configuration

I Interpolation operation

Ii, Ii
g Shape function and generalised shape function of node i

Ī Sixth-dimensional unit matrix

J Mass tensor of second moments of inertia of the cross section

of the beam, J = diag[I2 + I3 I2 I3]

Jρ Product Jρ0

k Spatial curvature

K,Kelas,Kmass Jacobian matrix, stiffness matrix and mass matrix

K̃ Jacobian matrix modified by the dependence of the released dof

L Length of the beam

L Block matrix of the master-slave transformation matrix N

l = {lf lφ} Sixth-dimensional vector of local specific momenta

312

n Spatial vector of force stress resultants

N Material vector of force stress resultants

Nδ,N∆ Master-slave transformation matrix in the variational and

incremental forms

Ñδ, Ñ∆ Master-slave transformation matrices modified by the

dependence on the released dof

m Spatial vector of moment stress resultants

M Material vector of moment stress resultants

δp = {δr δϑ} Sixth-dimensional vector of virtual displacements with spin

variations of rotations

ṗ = {ṙ w} Sixth-dimensional vector of translational velocities and spin

angular velocities

p′ = {r′ k} Sixth-dimensional vector of the differentiation of displacements

with respect to s

P First Piola-Kirchhoff stress tensor

q = {r θ} Kinematic variables: position vector and rotation vector

δq = {δr δθ} Sixth-dimensional vector of virtual displacements with additive

variations of rotations

q, q0,qv quaternion, scalar and vector part of the quaternion

r Position vector of the centroid line of the beam

R Block matrix of the master-slave transformation matrix N

s Arc-length parameter of the curve defining the centroid line

of the beam

s̄0, s̄L Sixth-dimensional vector of external applied loads at the beam ends

S Transformation matrix from spin rotations to

tangent-scaled additive rotations, i.e. δϑ = S(θ)δθ

T Total kinetic energy

T Transformation matrix from spin rotations to

unscaled additive rotations, i.e. δϑ = T(θ)δθ

u Translational displacements, i.e. u = rt − r0

Ua,Us Additive and spin update operations

V, Vext Total potential and potential due to external loads

Vint, V̇int Total elastic potential, internal power

W Stored specific strain energy

W Material angular velocity

w Spatial angular velocity

Σ = {Γ Υ} Sixth-dimensional vector of material strain measure

ε = {ΛΓ k} Sixth-dimensional of spatial strain measure

313

Γ,Υ Material strain measure vectors (translational and curvature)

Λ Rotation matrix

ν Poisson ratio of the beam

ω,Ω Spatial and material incremental rotations

Π = {Πf Πφ} Vector of translational momentum and angular momentum

∆Ψ, δΨ Material infinitesimal spin rotation and variation

ρ Density of the beam

θ, θ Rotational vector and its module

dθ, δθ, ∆θ Spatial additive rotations. Infinitesimal, virtual and iterative

variations

dΘ, δΘ, ∆Θ Material additive rotations. Infinitesimal, virtual and iterative

variations

Υ Material curvature

dϑ, δϑ,∆ϑ Spatial spin rotations. Infinitesimal, virtual and

iterative variations

dϕ, δϕ, ∆ϕ Material spin rotations. Infinitesimal, virtual and

iterative variations

Rules for subscripts and superscripts

Ij
X Interpolation function of node j computed at point X

θA
j,n, rA

j,n Nodal kinematic variable of node j,

belonging to element A, computed at time tn

gA,j Nodal residual vector (or force vector) of node j belonging to element A

gj Nodal residual vector (or force vector) of node j

gA Elemental residual vector (or force vector) of element A

(•)R Released translation or rotation

(•)m Master translation or rotation

(•)Rm Vector with master and released displacements

(•)T Transpose

(•)δ Quantity generated in the variational formulation

(•)∆ Quantity generated in the incremental formulation

(•)γ Quantity weighted with a parameter γ as follows:

(•)γ = γ(•)n + (1− γ)(•)n+1

(•)6 6× 6 matrix constructed from matrix 3× 3 matrix (•) as follows:

(•)6 =

[
I 0

0 (•)

]

314

Bibliography

[ABD+79] JH Argyris, H Balmer, St Doltsinis, PC Dunne, M Haase, M Kleiber,

GA Malejannakis, HP, Mlejenek, M Müller, and DW Scharpf. Finite ele-

ment method — The natural approach. Comp. Meth. Appl. Mech. Engng.,

17-18:1–106, 1979.

[AdJ91] A Avello and J Garćıa de Jalón. Dynamics of flexible multibody systems

using cartesian co-ordinates and large displacement theory. Int. J. Num.

Meth. Engng., 32:1543–1563, 1991.

[Alt86] S L Altmann. Rotations, quaternions and double groups. Oxford sciences

publications, 1986.

[Ang82] J Angeles. Spatial Kinematic Chains. Springer Verlag, 1982.

[Ant74] S Antman. Kirchhoff’s Problem for nonlinearly elastic rods. Quart. Appl.

Math., 3:221–240, 1974.

[AP98a] F Armero and E Petőcz. Formulation and analysis of conserving algorithms

for frictionless dynamic contact/impact problems. Comp. Meth. Appl. Mech.

Engng., 158:269–300, 1998.

[AP98b] UM Ascher and L R Petzold. Computer methods for ordinary differential

equations and differential-algebraic equations. SIAM, 2 edition, 1998.

[AR01] F Armero and I Romero. On the formulation of high-frequency dissipative

time-stepping algorithms for nonlinear dynamics. Part I: Low order methods

for two model problems and nonlinear elastodynamics. Comp. Meth. Appl.

Mech. Engng., 190:2603–2649, 2001.

[Arg82] JH Argyris. An excursion into large rotations. Comp. Meth. Appl. Mech.

Engng., 32:81–155, 1982.

[AS79] J F Abel and M S Shephard. An algorithm for multipoint constraints in finite

element analysis. Int. J. Num. Meth. Engng., 14:464–467, 1979.

315

[Bau72] J Baumgarte. Stabilization of constraints and integrals of motion in dynam-

ical systems. Comp. Meth. Appl. Mech. Engng., 1:1–16, 1972.

[Bau00] O Bauchau. On the modeling of prismatic joints in flexible multy-body sys-

tems. Comp. Meth. Appl. Mech. Engng., 181:87–105, 2000.

[BB94a] M Borri and C Bottasso. An intrinsic beam model based on a helicoidal

approximation–Part I: formulation. Int. J. Num. Meth. Engng., 37:2267–

2289, 1994.

[BB94b] M Borri and C Bottasso. An intrinsic beam model based on a helicoidal

approximation–Part II: linearisation and finite element implementation. Int.

J. Num. Meth. Engng., 37:2291–2309, 1994.

[BB98] C Bottasso and M Borri. Integrating finite rotations. Comp. Meth. Appl.

Mech. Engng., 164:307–331, 1998.

[BB01] O Bauchau and CL Bottasso. Contact Conditions for Cylindrical, Prismatic,

and Screw Joints in Flexible Multibody Systems. Multibody System Dyn.,

5:251–278, 2001.

[BBN01] O Bauchau, CL Bottasso, and YG Nikishkov. Modeling rotorcraft dynamics

with finite element multibody procedures. Math. Comp. Modelling, 33(10-

11):1113–1137, 2001.

[BCP89] KE Brenan, SL Campbell, and LR Petzold. Numerical solution of initial-

value problems in differential-algebraic equations. New York: North Holland,

1989.

[BDT95] O Bauchau, G Damilano, and N Theron. Numerical integration of nonlinear

elastic multibody systems. Int. J. Num. Meth. Engng., 38:2727–2751, 1995.

[BI75] A Bayliss and E Isaacson. How to make your algorithm conservative. Notes

of the Am. Math. Soc., pages A594–A595, 1975.

[BI99] C J Budd and A Iserles. Geometric integration: Numerical solution of dif-

ferential equations on manifolds. Phil. Trans. Royal Soc. London. Series A.,

357:945–956, 1999.

[BR79] O Bottema and B Roth. Theoretical Kinematics. North Holland, 1979.

[Bro55] T.J.I’A. Bromwich. An introduction to the theory of infinite series. Macmil-

lan, London, 2nd edition, 1955.

316

[BS02a] P Betsch and P Steinmann. Conservation properties of a time FE method–

part III: Mechanical systems with holonomic constraints. Int. J. Num. Meth.

Engng., 53:2271–2304, 2002.

[BS02b] P Betsch and P Steinmann. Frame-indifferent beam finite elements based

upon the geometrically exact beam theory. Int. J. Num. Meth. Engng.,

54(12):1775–1788, 2002.

[BT96] O Bauchau and N J Theron. Energy decaying scheme for nonlinear elastic

multi-body systems. Comput. Struct., 59:317–331, 1996.

[BT98a] K Behdinan and B Tabarrok. A finite element formulation for sliding beams,

Part I. Int. J. Num. Meth. Engng., 43:1309–1333, 1998.

[BT98b] K Behdinan and B Tabarrok. Sliding beams, Part II: Time integration. Int.

J. Num. Meth. Engng., 43:1335–1363, 1998.

[BT03] O Bauchau and L Trainelli. The vectorial parametrization of rotation. Multi-

body System Dyn., 32:71–92, 2003.

[BW97] J Bonet and RD Wood. Non-linear continuum mechanics for finite element

analysis. Cambridge University Press, 1997.

[CG88] A Cardona and MA Géradin. A beam finite element non-linear theory with

finite rotations. Int. J. Num. Meth. Engng., 26:2403–2438, 1988.

[CG89] A Cardona and MA Géradin. Time integration of the equations of motion in

mechanism analysis. Comput. Struct., 33(3):801–820, 1989.

[CG93] A Cardona and MA Géradin. Kinematic and dynamic analysis of mechanisms

with cams. Comp. Meth. Appl. Mech. Engng., 103:115–134, 1993.

[CH93] J Chung and G M Hulbert. A time integration algorithm for structural

dynamics with improved numerical dissipation: the generalised-α method. J.

Appl. Mech., 60:371–375, 1993.

[CHMM78] A J Chorin, T J R Hughes, M F McCracken, and J E Marsden. Product

formulas and numerical algorithms. Commmun. in Pure and Appl. Math.,

31:205–255, 1978.

[CHT00] S Chen, J M Hansen, and D A Tortirelli. Unconditionally energy stable im-

plicit time integration: application to multibody system analysis and design.

Int. J. Num. Meth. Engng., 48:791–822, 2000.

317

[CJ99] MA Crisfield and G Jelenić. Objectivity of strain measures in the geometri-

cally exact three-dimensional beam theory and its finite-element implemen-

tation. Proc. Royal Soc. London, 455:1125–1147, 1999.

[CJ00] MA Crisfield and G Jelenić. Energy/momentum conserving time integration

procedures with finite elements and large rotations. In JAC Ambrósio and

M Kleiber, editors, Computational Aspects of Nonlinear Structural Systems

with Large Rigid Body Motion, pages 121–140, Pultusk, Poland, 2-7 July

2000. IOS Press.

[Col90] G Cole. Consistent co-rotational formulations for geometrically nonlinear

beam elements with special reference to large rotations. PhD thesis, Kingston

Polytechnic, 1990.

[Cri86] MA Crisfield. Finite elements and solution procedures for structural analysis,

volume 1: Linear analysis. Pineridge Press Ltd, 1986.

[Cri90] MA Crisfield. A consistent co-rotational formulation for non-linear, three-

dimensional, beam-elements. Comp. Meth. Appl. Mech. Engng., 81:131–150,

1990.

[Cri97] MA Crisfield. Non-linear finite element analysis of solids and structures,

Volume 2: Advanced topics. John Wiley & Sons, Chichester, 1997.

[CV78] J I Curiskis and S Valliappan. A solution algorithm for linear constraint

equations in finite element analysis. Comput. Struct., 8:117–124, 1978.

[Fea87] R Featherstone. Robot Dynamics Algorithms. Kluwer Academic Publishers,

1987.

[Fin72] B A Finlayson. The method of weighted residuals and variational principles.

Academic Press, 1972.

[GC01] MA Géradin and A Cardona. Flexible Multibody Dynamics. A Finite Element

Approach. John Wiley & Sons, 2001.

[GdB94] J Garćıa de Jalón and E. Bayo. Kinematic and dynamic simulation of multi-

body systems – the real-time challenge. Springler-Verlag, New York, 1994.

[Gea71] C W Gear. Numerical initial value problems in ordinary differential equations.

Prentice-Hall, Inc, 1971.

[Gib28] J W Gibbs. The collected works of J Willard Gibbs, volume II. Longmans,

1928.

318

[Gil74] R Gilmore. Lie groups, Lie algebras, and some of their applications. Wiley-

Interscience, 1974.

[GPS02] H Goldstein, C Poole, and J Safko. Classical Mechanics. Addison-Wesley

Publish. Co., 3rd edition, 2002.

[GR94] MA Géradin and D Rixen. Mechanical Vibrations. John Wiley & Sons, 1994.

[GS96] O Gonzalez and JC Simo. On the stability of symplectic and energy-

momentum algorithms for non-linear hamiltonian systems with symmetry.

Comp. Meth. Appl. Mech. Engng., 134:197–222, 1996.

[Gug77] HW Guggenheimer. Differential geometry. Dover publications, 1977.

[Ham99] WR Hamilton. Elements of Quaternions. Cambridge University Press, 1899.

[HCL78] T J R Hughes, T K Caughey, and W K Liu. Finite-element methods for

nonlinear elastodynamics which conserve energy. J. Appl. Mech., 45:366–

370, 1978.

[HHT77] HM Hilber, TJR Hughes, and RL Taylor. Improved numerical dissipation for

time integration algorithms in structural dynamics. Earthquake Engineering

and Structural Dynamics, 5:283–292, 1977.

[HLR89] E Hairer, C Lubich, and M Roche. The numerical solution of differential-

algebraic systems by Runge-Kutta methods. Springer-Verlag, 1989.

[HLW02] E Hairer, C Lubich, and G Wanner. Geometric numerical integration:

structure-preserving algorithms for ordinary differential equations. Springer-

Verlag, 2002.

[Hug76] T J R Hughes. Stability, convergence and growth and decay of energy of

the average acceleration method in nonlinear structural dynamics. Comput.

Struct., 6:313–324, 1976.

[Hug83] T J R Hughes. Analysis of ttransient algorithms with particular reference to

stability behavior. In T Belytschko and TJR Hughes, editors, Computational

Methods for Transient Analysis, pages 67–155. Amsterdam: North-Holland,

1983.

[Hug87] T J R Hughes. The finite element method. Linear static and dynamic finite

element analysis. Prentice-Hall International Editions, 1987.

319

[Hul00] G M Hulbert. Efficient and robust computational algorithms for the solution

of nonlinear flexible multibody systems. In JAC Ambrósio and M Kleiber,

editors, Computational Aspects of Nonlinear Structural Systems with Large

Rigid Body Motion, pages 141–152, Pultusk, Poland, 2-7 July 2000. IOS

Press.

[HW91] E Hairer and G Wanner. Solving ordinary differential equations II. Stiff and

differential-algebraic problems. Springer-Verlag, 1991.

[Ibr95] A Ibrahimbegović. On finite element implementation of geometrically non-

linear Reissner’s beam theory: three-dimensional curved beams elements.

Comp. Meth. Appl. Mech. Engng., 122:11–26, 1995.

[IFK95] A Ibrahimbegović, F Frey, and I Kožar. Computational aspects of vector-

like parametrisation of three-dimensional finite rotations. Int. J. Num. Meth.

Engng., 38:3653–3673, 1995.

[IK66] E Isaacson and H B Keller. Analysis of numerical methods. Dover publica-

tions, Inc, 1966.

[IM00a] A Ibrahimbegović and S Mamouri. Dynamics of complex flexible multibody

systems undergoing large overall motions. In JAC Ambrósio and M Kleiber,

editors, Computational Aspects of Nonlinear Structural Systems with Large

Rigid Body Motion, pages 85–103, Pultusk, Poland, 2-7 July 2000. IOS Press.

[IM00b] A Ibrahimbegović and S Mamouri. On rigid components and joint constraints

in nonlinear dynamics of flexible multibody systems employing 3D geomet-

rically exact beam model. Comp. Meth. Appl. Mech. Engng., 188:805–831,

2000.

[JC96] G Jelenić and MA Crisfield. Non-linear master-slave relationships for joints in

3D beams with large rotations. Comp. Meth. Appl. Mech. Engng., 135:211–

228, 1996.

[JC98] G Jelenić and MA Crisfield. Interpolation of rotational variables in nonlinear

dynamics of 3D beams. Int. J. Num. Meth. Engng., 43:1193–1222, 1998.

[JC99a] G Jelenić and MA Crisfield. Geometrically exact 3D beam theory: implemen-

tation of a strain-invariant finite element for statics and dynamics. Comp.

Meth. Appl. Mech. Engng., 171:141–171, 1999.

320

[JC99b] G Jelenić and MA Crisfield. Stability and convergence characteristics of

conserving algorithms for dynamics of 3D rods. Technical report, Department

of Aeronatics, Imperial College, London, 1999.

[JC01] G Jelenić and MA Crisfield. Dynamic analysis of 3D beams with joints in

presence of large rotations. Comp. Meth. Appl. Mech. Engng., 32-33:4195–

4230, 2001.

[JC02a] G Jelenić and M Crisfield. Frictionless bilateral contact using minimum set

method: application in beams with sliding joints. In Proceedings, pages 115–

118, Swansea, April 2002. ACME-UK, ed. by J Bonet et al.

[JC02b] G Jelenić and MA Crisfield. Problems associated with the use of Cayley

transform and tangent scaling for conserving energy and momenta in the

Reissner-Simo beam theory. Comm. Num. Meth. Engng., 18:711–720, 2002.

[Jer78] W Jerkovsky. The structure of multibody dynamics equations. J. Guidance

and Control, 1(3):173–182, 1978.

[KC99] D Kuhl and MA Crisfield. Energy-conserving and decaying algorithms in non-

linear structural dynamics. Int. J. Num. Meth. Engng., 45:569–599, 1999.

[KR96] D Kuhl and E Ramm. Constraint energy momentum algorithm and its ap-

plication to non-linear dynamics of shells. Comp. Meth. Appl. Mech. Engng.,

136:293–315, 1996.

[Kri89] K. Krishnamurthy. Dynamic modelling of a flexible cylindrical manipulator.

J. Sound Vib., 132(1):143–154, 1989.

[KV86] S S Kim and M J Vanderploeg. A general and efficient method for dy-

namic analysis of mechanical systems usign velocity transformations. J. Mech.

Transmiss. Autom. in Design, 108:176–182, 1986.

[Lam91] J D Lambert. Numerical methods for ordinary differential systems. The initial

value problem. John Wiley and Sons, 1991.

[Lan70] C Lanczos. The Variational Principles of Mechanics. Dover, New York, 1970.

[LC97] T A Laursen and V Chawla. Desing of energy conserving algorithms for

frictionless dynamic contact problems. Int. J. Num. Meth. Engng., 40:863–

886, 1997.

[LCG04] E V Lens, A Cardona, and M Géradin. Energy preserving time integration

for constrained multibody systems. Multibody System Dyn., 11:41–61, 2004.

321

[LG76] RA LaBudde and D Greenspan. Energy and momentum conserving methods

of arbitrary order for the numerical integration of equations of motion I.

Motion of a single particle. Numer. Math., 25:323–346, 1976.

[MH94] JE Marsden and TJR Hughes. Mathematical foundations of elasticity. Dover

Publications, 1994.

[Mil82] V Milenkovic. Coordinates suitable for angular motion synthesis in robots.

In Proceedings of ROBOT 6 conference, 1982.

[Mit97] J Mitsugi. Direct strain measure for large displacement analyses on hinge

connected beam structures. Comput. Struct., 64:509–517, 1997.

[MJ] J Muñoz and G Jelenić. Conserving time-integration schemes for flexible

mechanisms with sliding joints. In preparation.

[MJ04] J Muñoz and G Jelenić. Sliding contact conditions using the master–slave

approach with application on the geometracally non-linear beams. IJSS, 2004.

In print.

[MJC02a] J Muñoz, G Jelenić, and M Crisfield. Master-slave approach for the modelling

of joints with dependent degrees of freedom in flexible mechanisms. Technical

report, Department of Aeronautics, Imperial College, London, August 2002.

[MJC02b] J Muñoz, G Jelenić, and M Crisfield. Master-slave approach for the design

of flexible mechanisms with dependent constraints. ACME-UK Proceedings,

Swansea, pages 115–118, April 2002.

[MJC03] J Muñoz, G Jelenić, and M Crisfield. Master-slave approach for the modelling

of joints with dependent degrees of freedom in flexible mechanisms. Comm.

Num. Meth. Engng., 19:689–702, 2003.

[ML99] FA McRobie and J Lasenby. Simo-Vu Quoc rods using Clifford algebra. Int.

J. Num. Meth. Engng., pages 377–398, 1999.

[MM03] H Marjamäki and J Mäkinen. Modelling telescopic boom – The plane case:

part I. Comput. Struct., 81:1597–1609, 2003.

[New59] NM Newmark. A method of computation for structural dynamics. J. Engin.

Mech. Div., 85(EM3):67–94, 1959.

[Nik88] P E Nikravesh. Computer-aided analysis of mechanical systems. Prentice-

Hall, 1988.

322

[NLT03] J Naudet, D Lefeber, and Z Terze. Forward dynamics of open-loop multi-

body mechanisms using an efficient recursive algorithm based on canonical

momenta, 2003.

[Ogd84] RW Ogden. Non-linear elastic deformations, volume 26. Dover Publications,

1984.

[Per79] A Peres. Finite rotations and angular velocity. Amer. J. Phys., 48(1):70–71,

1979.

[Pfi98] F Pfister. Bernoulli numbers and rational kinematics. J. Appl. Mech., 65:758–

763, 1998.

[PP91] M S Pereira and P L Proença. Dynamic analysis of spatial flexible multibody

systems using joint co-ordinates. Int. J. Num. Meth. Engng., 32:1799–1812,

1991.

[Pus02] M A Puso. An energy and momentum conserving method for rigid–flexible

body dynamics. Int. J. Num. Meth. Engng., 53:1393–1414, 2002.

[RA02] I Romero and F Armero. An objective finite element approximation of the

kinematics of geometrically exact rods and its use in the formulation of an

energy–momentum conserving scheme in dynamics. Int. J. Num. Meth. En-

gng., 54:1683–1716, 2002.

[RA03] I Romero and J J Arribas. Comparison of rotation interpolations used in

finite elements models of nonlinear rods. In Multibody Dynamics, pages 87–

96, Lisbon, 1-4 July 2003. ECCOMAS, J A C Ambrósio.

[RC02] M Ritto-Corrêa and D Camotim. On the differentiation of Rodrigues formula

and its significance for the vector-like parametrization of Reissner–Simo beam

theory. Int. J. Num. Meth. Engng., 55(9):1005–1032, 2002.

[RC03] M Ritto-Corrêa and D Camotim. Work-conjugacy between rotation-

dependent moments and finite rotations. Int. J. Solids Struct., 40:2851–2873,

2003.

[Rei72] E Reissner. On one-dimensional finite-strain beam theory: the plane problem.

J. Appl. Math. Phys. (ZAMP), 23:795–804, 1972.

[Rei73] E Reissner. On one-dimensional large-displacement finite-strain beam theory.

Studies in Applied Mathem., 52:87–95, 1973.

323

[Rei81] E Reissner. On finite deformations of space-curved beams. J. Appl. Math.

Phys. (ZAMP), 32:734–744, 1981.

[RL98] J Rhim and S W Lee. A vectorial approach to computational modelling of

beams undergoing finite rotations. Int. J. Num. Meth. Engng., 41(3):527–540,

1998.

[Rod40] O Rodrigues. Des lois géometriques qui régissent les déplacements d’un

système solide dans l’espace, et de la variation des coordonnés provenant

de ses déplacements considérés indeépendamment des causes qui peuvent les

produire. J. de Mathématiques Pures et Appliquées., 5:380–440, 1840.

[Ros77] R M Rosenberg. Analytical dynamics of discrete systems. Plenum Press,

1977.

[Sas76] Y K Sasaki. Variational design of finite difference schemes for initial value

problems with an integral invariant. J. Comp. Phys., 21:270–278, 1976.

[Sel92] J M Selig. Introductory robotics. Prentice Hall, 1992.

[SES03] H Sugiyama, JL Escalona, and AA Shabana. Formulation of Three-

Dimenional Joint Constraints Using the Absolute Nodal Coordinates. Nonlin.

Dyn., 31:167–195, 2003.

[Sha98] AA Shabana. Dynamics of Multibody Systems. Cambridge University Press,

1998.

[Sim85] JC Simo. A finite strain beam formulation. The three dimensional dynamic

problem. Part I. Comp. Meth. Appl. Mech. Engng., 49:55–70, 1985.

[Spr86] KW Spring. Euler parameters and the use of the quaternion algebra in the

manipulation of finite rotations: a review. Mechanism and Machine Th.,

21(5):365–373, 1986.

[Spu78] RA Spurrier. Comment on ’ Singularity–free extraction of a quaternion from

a direction-cosine matrix ’ . J. Spacecraft, 15:255–256, 1978.

[ST92] JC Simo and N Tarnow. The discrete energy-momentum method. Conserving

algorithms for nonlinear elastodynamics. J. Appl. Math. Phys. (ZAMP),

43:757–792, 1992.

[ST94] JC Simo and N Tarnow. A new energy and momentum conserving algorithm

for the non-linear dynamics of shells. Int. J. Num. Meth. Engng., 37:2527–

2549, 1994.

324

[STD95] JC Simo, N Tarnow, and M Doblare. Non-linear dynamics of three-

dimensional rods: exact energy and momentum conserving algorithms. Int.

J. Num. Meth. Engng., 38:1431–1473, 1995.

[Stu64] J Stuelpnagel. On the parametrisation of the three–dimensional rotation

group. SIAM Review, 6(4):422–430, 1964.

[STW92] JC Simo, N Tarnow, and KK Wong. Exact energy-momentum conserving

algorithms and symplectic schemes for nonlinear dynamics. Comp. Meth.

Appl. Mech. Engng., 100:63–116, 1992.

[SU95] JE Shigley and JJ Uicker. Theory of machines and mechanisms. McGraw-

Hill, New York, London, 2nd edition, 1995.

[SVQ86] JC Simo and L Vu-Quoc. A three-dimensional finite-strain rod model. Part II:

computational aspects. Comp. Meth. Appl. Mech. Engng., 58:79–116, 1986.

[SVQ88] JC Simo and L Vu-Quoc. On the dynamics in space of rods undergoing large

motions—a geometrically exact approach. Comp. Meth. Appl. Mech. Engng.,

53:125–161, 1988.

[SW91] JC Simo and K Wong. Unconditionally stable algorithms for rigid body

dynamics that exactly preserve energy and momentum. Int. J. Num. Meth.

Engng., 31(19-52), 1991.

[TR03] A Tasora and P Righettini. Sliding contact between freedom surfaces. Multi-

body System Dyn., 10:239–262, 2003.

[Tsi97] P Tsiotras. High order Cayley transforms with applications to attitude rep-

resentations. J. Guidance, Control and Dynamics, 20(3):528–536, 1997.

[VQL95] L Vu-Quoc and S Li. Dynamics of sliding geometrically-exact beams: large

angle maneuver and parametric resonance. Comp. Meth. Appl. Mech. Engng.,

120:65–118, 1995.

[Woo90] W L Wood. Practical time-stepping schemes. Clarendon Press. Oxford., 1990.

325

