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Abstract

This thesis presents an a posteriori estimator for the error in the wave number
in the context of finite element approximations of the Helmholtz equation, both
for standard and stabilized formulations. We also introduce a new goal-oriented
adaptive strategy using post-processing techniques.

The ssimple strategy assessing the error in the wave number is based on the de-
termination of the numerical wave number that better accommodates the numerical
solution. Compared to other goal-oriented error estimation strategies, the approach
proposed in thiswork isinnovative because it adopts a new paradigm.

A digtinctive feature of this method is that the error estimation procedure is
devoted to obtain the numerical wave number, corresponding to the approximate
solution, instead of the exact one, which is known as part of the data of the prob-
lem. Thus, the error in the wave number is consistently defined as the outcome
of a global minimization problem. This problem is computationally unaffordable
and, for practical error estimation purposes, is approximated. An enhanced ap-
proximation is obtained from the finite element solution using a simple local |east-
sguarestechnique. Once the enhanced solution is obtained, the associated numerical
wave number is readily recovered using a simple closed expression. An alternative
improved recovery technique is developed to take advantage of the nature of the
solutions of wave problems. The standard polynomial least-squares technique is
replaced by a new exponential fitting, yielding much sharper results in most cases.

The proposed new goal-oriented adaptive strategy is based on post-processed
solutions and is valid both for linear and non-linear quantities of interest. In the
non-linear case the linear contribution to the quantity of interest is assumed to be
the leading term. Two different representations to recover the error in the quantity
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of interest are studied, both providing similar results in the adaptive procedures. It
has been shown that the accuracy of these representations, which involve the post-
processing of either the primal or adjoint finite element approximations, is related
to the dispersion error of its corresponding problems. Moreover, the adaptive pro-
cedure leads to afaster reduction of the error when compared with auniform refine-
ment. The proposed error estimate properly identifies the areas most contributing to
the error in the quantity of interest and consequently the adaptive procedure yields
adapted meshes that provide accurate results.

Key words: Wave problems, Helmholtz equation, Error estimation of wave
number, A posteriori error estimation, Dispersion/pollution error, Goal-oriented
adaptivity, Local indicators, Finite element method, Stabilized methods.



Chapter 1

Introduction and state-of-the-art

1.1 Motivation and objectives

Computational numerical methods are becoming an increasingly requested tool for
solving different types of problemsin all branches of engineering and applied sci-
ences. However, any numerical method yields an approximated solution to the
problem. The numerical solutions are affected by errors coming from different
sources. The modeling error is accounting for the discrepancy between the math-
ematical model and the physical reality. In this work we concentrate in assessing
the discretization error which is associated with the numerical accuracy obtained
in solving the mathematical problem. The discretization error can be computed
approximately using a posteriori error estimators. Besides providing information
about the global accuracy of a simulation, error estimates describe the spatial dis-
tribution of the error and consequently allow devel oping adaptive schemes.

In this context, it is worth highlighting the particular difficulty in solving wave
propagation problems. The numerical solution of these problems has been an active
area of research since the early sixties. This area is common to various fields of
application: acoustics, geophysics, meteorology, electromagnetics, shallow water,
fluid dynamics, among others. Unfortunately, standard numerical methods can not
cope with wave phenomena characterized by high frequencies (large wave numbers)
without requiring a prohibitive computational effort.

Recently, Bouillard, Almeida, Decouvreur and Mertens (2008) have considered
that the simulation of the wave propagation phenomenon is one of the most chal-
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2 Introduction

lenging amongst computational mechanics. In wave propagation problems, many
guestions are still unsolved, namely: derivation of more accurate numerical meth-
ods in order enlarge the properly simulated frequency range; definition of artifi-
cial boundary conditions to effectively deal with unbounded domains; and finaly,
formulation and implementation of reliable error estimators, preferably in local or
engineering quantities and their application to methods to adaptive methods.

Thereference cited above showsthat the key to face all theseissuesisthe control
of the so-called pollution effect, associated mainly with the dispersive nature of the
numerical waves. To control such errors in an effective way is a magor ongoing
challenge.

Thiswork aims precisely at discussing error estimation and adaptivity for wave
propagation problems, specifically for the Helmholtz model. The origina moti-
vation was to tackle the shallow water problem, and then we started studying the
Helmholtz equation, since it isasimplified version of the former. Thus, we concen-
trated in deriving error estimates for the pollution/dispersion error in the Helmholtz
equation as afirst step (and currently unsolved) to proceed further.

Shallow water problems describe the behavior of water flow in rivers, lakes
and shallow seas in zones with smooth variation of the depth and with waves of
small amplitude. They are also applied to the study of many physical phenomena
of interest, such as, environmental effects, commercial activities on fisheries and
coastal wildlife, remediation of contaminated bays and estuaries for the purposes
of improving water quality. To efficiently perform these simulations, it is needed to
develop systems and programs of high technological level.

A mathematical model for the simulation of shallow water problemsis given by
the mild slope or Berkhoff equation (Berkhoff, Booy and Radderc 1982):

V - (cc,Vu) + k*cequ = 0. (1.1)

This model is based on the theory of simple harmonic linear waves. The equa-
tions of the hydrodynamics (mass balance or continuity equation and momentum
equation) are used to describe the motion in fluid dynamics. The effects of non-
linearity, such as energy dissipation by friction or breaking, are not taken into ac-
count. Equation (1.1) accounts simultaneously the phenomena of refraction and
diffraction. It is an elliptic equation and, for constant depth (constants ¢ and c,,) it
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reduces to the Helmholtz equation:
Au+ k*u=0.

Despite its simplicity, many of the fundamental models for wave propagation in
science and engineering are based on the Helmholtz equation. The active control
of sound is an example of an important practical problem where models based on
this equation play a fundamental role. Besides, to satisfy acoustic requirementsis
nowadays important in many sectors, such as the aerospace, automotive and build-
ing industries, among others.

The attempts of introducing error estimators for assessing the dispersion error
in the Helmholtz problem have not been successful in the past, as explained later.
Most of these estimators are global (energy norm) and they have the tendency to
underestimate the error for high wave numbers, obtaining good estimates only when
the pollution error is negligible. Moreover, error estimatorsin quantities of interest
have not been explored to measure and control the dispersion error and often only
in an one-dimensional setup.

The main goal of this thesis is to assess and control the errors in the context
of finite element approximations of the Helmholtz equation. In this scenario the
following partial goals are considered:

e Obtaining a methodology to assess the dispersion error: the goa is to
develop a simple and inexpensive a posteriori technique to assess the error
in the wave number and generalize the procedures developed for others dis-
cretization methods, aiming at controlling the dispersion error;

e Strategies for obtaining goal-oriented error estimates and h-adaptivity:
the goal isto analyze the error for linear and non-linear outputs and to define
outputs of interest for acoustic problems. Furthermore, to define local indica-
tors and refinement strategies in order to implement an adaptive process.

To reach these goals, we accomplished the following tasks:

e anaysis of the physical phenomena described by shallow water models, de-
duction of Berkhoff model and the simplified model, given by the Helmholtz
equation;
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e study of the dispersion and pollution effects, in order to propose more efficient
procedures related to the convergence rate, estimates and control errors;

e study of other discretization methods for the Helmholtz equation, to improve
the accuracy by reducing the dispersion error;

¢ building an inexpensive approximation through recovery techniques, so that
it can be exploited in a posteriori error assessment;

e anaysisof the behavior of the proposed and applied methodsin order to com-
pare the performance of the results obtained.

Thefirst part of the goalsis mainly related to the assessment of the dispersion
error. Thiswork and its results are detailed in (Steffens and Diez 2009), (Steffens,
Parés and Diez 2010a) and also in chapter 2. The second part is related to goal-
oriented error estimates and h-adaptivity. These partial goals are developed and
presented in (Steffens, Parés and Diez 2010b) and in chapter 3.

1.2 Model problem - The Helmholtz equation

The propagation of acoustic waves through afluid medium is governed by the wave
equation

where ¢ stands for the speed of sound in the medium. This equation describes the
evolution of the acoustic pressure P as a function of the position x and time ¢.
In order to reduce the complexity of the smulations, it is often assumed that the
acoustic waves are harmonic in time. In this case, the acoustic pressure associated
to an angular frequency w is P(x, t) = u(x)e™* where u(x) isthe complex spatial
distribution of the acoustic pressure and i = /—1 is the imaginary unit, and the
wave eguation reduces to the homogeneous Helmholtz equation:

Au+ k*u =0, (1.2)

where k = w/c € R stands for the wave number. It is worth nothing that the wave
number « characterizes the oscillatory behavior of the solution: the larger the value
of k, the stronger the oscillations.
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Wave propagation problems are usually classified asinterior or exterior, depend-
ing on whether oneisinterested in the sound field in bounded or unbounded regions
in space.

The remainder of this section is devoted to provide an overview of interior and
exterior problems for future reference.

1.2.1 Interior problems

Interior problems deal with acoustic phenomena in enclosed regions of space, such
as cavity or room acoustics problems. The unknown u(x) is the physical pressure,
taking valuesfor x € 2 ¢ R? (d being the number of spatial dimensions, d =1, 2 or
3). The boundary of the domain €2 is denoted by 0f).

A complete definition of the problem to be solved, requires adding to equation
(1.2) proper boundary conditions. For interior acoustic problems, three types of
boundary conditions are considered: Dirichlet, Neumann and Robin (or mixed).

Dirichlet boundary conditions prescribe the values of the pressure on a part of
the boundary I', C 0f2. Namely,

U = Up onl'p.

On the Neumann part of the boundary I'y C 052 the normal component of the
velocity is prescribed, namely

Vu-n=g onI'y.

If the Neumann boundary condition is produced by a vibrating rigid wall wich
vibrateswith the normal velocity v,,, producing a sound propagation in the medium,
the Neumann data g isgivenby ¢ = —ipckv,,, where p isthe density of the medium.
It isworth noting that for time-harmonic waves of theform P(x, t) = u(x)e ™" the
Neumman data becomes g = ipckv,, (note the changein sign).

Finally, the most general form of boundary condition is embodied in the Robin
part of the boundary I'r C 0f) as

Vu-n=mu on Iy,
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with m = —ipckA,,, where the coefficient A,, denotes the field admittance in the
normal direction and represents the structural damping. The value of A,, depends
on the nature of the enclosure and is associated with absorbent panels. For A,, = 0
it turns out to be an homogeneous Neumann boundary condition, standing for a
perfectly reflecting panel or rigid wall. In the limit case as A, — oo, thewall is
said to be acoustically soft and one recovers the homogeneous Dirichlet boundary
conditionu = 0. For 0 < A,, < 1, the wall acts as an absorbing surface, and the
Robin condition is usually referred to as an absorbing boundary condition. Finaly,
for A,, = 1/pc the boundary condition describes afully absorbent panel, also called
anechoic situation.

In order to get a well posed problem these three parts of the boundary must
cover the whole boundary, that iso€) = TI'p UT'y U 'y, seefigure 1.1.

vibrating

wall . I'p
': computational .
domain { Ty

Figure 1.1: Acoustic problemsin an interior region (2.

To summarize, the general form of interior acoustic problems consistsin finding
the spatial component of the acoustic pressure field v : 2 — C such that

—Au—r*u=0 inQ,
U= Up onlp,
Vu-n=y on Iy,

Vu-n=mu onlkj.
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1.2.2 Exterior problems

Exterior problems are concerned with the characterization of the acoustic field in
the surrounding space of a given structure. The main difficulty in dealing with this
classof problemsisthat the domain is unbounded in space and, therefore, abounded
computational domain has to be introduced. Examples of exterior problems are
radiation, scattering and transmission problems. Figure 1.2 shows an example of a
scattering problem, where an obstacle D is hit by a plane wave. It also shows the
computational domain §2.

computational

domain
P
D W
' obstacle :

(
Uy

Q=B\D -

Figure 1.2: Scattering problems. a plane wave hits an obstacle D. The computa-
tional domain B\D is obtained by introducing a sufficiently large ball B.

Consider first the radiation problem. Let D ¢ R?, d = 1,2 or 3, be the re-
gion occupied by a body embedded in a homogeneous isotropic medium at rest,
with smooth boundary dD. Suppose that the walls of the body vibrate with normal
velocity v,, and that the radiated waves propagate in space, see figure 1.3. The
physical requirement that all radiated waves can not be reflected at infinity leads to
the Sommerfeld radiation condition (Ihlenburg 1998)

lim 1z (Vu-r—iku) =0,

wherer = |x| and Vu - r denotes the derivativein the radial direction. Imposing the
Sommerfeld radiation condition requires solving the Helmholtz equation in an in-
finite domain and prevents the immediate use of traditional computational methods
designed for bounded domains, such as the finite element method.
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5

/ computational
vibrating dorrr)1ai n
% body

Figure 1.3: Radiation problem: abody D vibrates and the radiated waves propagate
in the space.

To overcome this difficulty, one introduces a sufficiently large circle B ¢ R¢,
containing the obstacle D. Using the Dirichlet-to-Neumann map (DtN) technique,
one can approximate the Sommerfeld condition at infinity by the Robin-type bound-
ary condition on 0B,

Vu-n=mpgu on 0B, (1.4)

where mg isthe linear operator DtN that defines an absorbing boundary condition
on the artificial boundary 0B. Therefore, the computational domain reduces to the
region 2 = B\ D C R, with boundary 92 = 9B U dD. On the artificial bound-
ary, one can prescribe absorbing boundary conditions that incorporate (exactly or
approximately) the far-field behavior into the finite element model. For different
conditions considered see Djellouli, Farhat, Macedo and Tezaur (2000) and Harari
and Djellouli (2004) and references therein.

Then, the radiation problem for a vibrating body consistsin finding the acoustic
pressure u : €2 — C such that:

—Au—r*u=0 in €,
Vu-n=g on 0D,

Vu-n=mgu onoJB.

Recall that if the wall of the body D vibrates with normal velocity v,,, the Neu-
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mann datais g = —ipckv,,. Also, note that Dirichlet or Robin boundary conditions
may also be prescribed on parts of the boundary 0D. Finally, the expressions for
the first and second DtN boundary conditions are
2 0 1 ou

mp = —iku+ gu and mp = —iku+ gu— gg(gcj_m)u_ s (m%> ,
where ( is the curvature of the surface of the scatterer, and s is the curvilinear
abscissa defined on the surface of the scatterer.

Let’s now move to the scattering problem. In this case an incident plane wave
u; () = elrleosartsinay) js geattered by an obstacle D, where o denotes the incident
direction of the plane wave, see figure 1.2. The reflected wave is given by «, and
the total solutionisu = u, + u;. The total solution u, the incident plane wave u;
and the reflected wave u,, al satisfy the Helmholtz equationin R4\ D. Similarly to
the radiation problem, the infinite outer region is restricted to a circle B on which
the reflected wave u, satisfies the absorbing boundary condition (1.4).

A perfectly sound-soft obstacle leads to the Dirichlet condition v = 0, or
u, = —u;. For an acoustically rigid scatterer, acoustic waves satisfy the Neumann
boundary condition Vu - n = 0, or equivalently Vu, - n = —Vu; - n. Finaly,
obstacles characterized by an acoustic admittance A,, will satisfy the Robin bound-
ary condition Vu - n = mu, wherem = —ipckA,,. Naturally, Dirichlet, Neumann
and Robin boundary conditions may also be prescribed on parts of the boundary
0D, where 0D = I'p U T'y U Tg. Hence the general formulation of the scattering
problem consistsin finding the spatial component of the scattered acoustic pressure
u, : 2 — C such that:

—Au, — K2u, =0 in €,
Uy = —Uj; onI'p C D,
Vu,-n=-Vuy;-n onI'y C 0D,
Vu,-n+ Vu; - n =m(u, + ) onI'g C JD,
Vu, - n = mpu, on 0B.

Note that the reflected solution u, also verifies the homogeneous Helmholtz
equation in € since the incident wave satisfied — Aw; — x%u; = 0.
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Finally, the transmission problem, also called elastic scattering problem, differs
from the scattering problem since the incident sound is allowed to penetrate the
obstacle. If the obstacle D is made of another fluid with different sound speed and
density, the transmission problem leads to a coupled problem in which the total
pressure u = u, + u; outside of D and the interior pressure in D both satisfy the
Helmholtz equation and on the boundary 0D the pressure and normal velocities are
assumed to be continuous. We refer to (Ihlenburg 1998) for details of the formula-
tion.

1.3 Numerical schemes

Thefinite element method (FEM) is probably the most well known numerical scheme
to solve Helmholtz equation. Thismethod performs satisfactory for low and medium
frequencies, but one of the major computational challenges nowadays is dealing
with high-frequencies. Recently, considerable efforts have been devoted to obtain
more accurate numerical solutions, by extending the finite element method to a
frequency range able to simulate practical applications. The key is to control the
pollution error, originated mainly from the dispersive nature of the numerical waves.

The development of numerical methods to solve the Helmholtz equation, which
behavesrobustly with respect to the wave number, isatopic of vivid research. Many
enhancements and extensions of the finite element method have been proposed in
the last decade to improve the accuracy of the simulations, but none of them being
totally dispersion-free. Amongst them, one finds the stabilized Galerkin schemes,
high-order approximants, multi-scale variational methods, and other discretization
techniques. The number istoo largeto discussall of them, so, only the most relevant
ones will be briefly revised.

1.3.1 The finite element method

The use of the finite element method for time-harmonic acoustics governed by the
Helmholtz equation has been an active research areafor aimost half acentury. Initial
applicationsfocused on interior problems, but in the recent years, huge progress has
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been also achieved on exterior problemsin unbounded domains. The main difficulty
of applying the standard Galerkin finite e ement method to the Helmholtz equation
is to accurately resolve the oscillating wave solutions for higher wave numbers.
This section summarizes the main properties of the finite element method for the
Helmholtz equation. However, the reader isreferred to Ihlenburg (1998) and Harari
(2006) for a deep insight of the issues, properties, applications and methodol ogies
related to the finite element method for time-harmonic acoustics.

The Helmholtz problem both for interior and exterior problems can be formu-
lated as: find u : 2 — C such that

—Au—Ku=f in £, (2.79)
u=up onlp, (1.7b)
Vu-n=g on 'y, (1.7¢)
Vu-n=mu onlg, (1.7d)

where (2 is the either the true domain or the computational domain for exterior
problems. Note that, in most applications, as the ones show in the previous section,
f = 0. However a non-zero source term may appear in acoustic problems, where
the non-homogeneous Helmholtz equation models time-harmonic wave propaga
tion in free space due to a localized source. For instance,a non-zero source term
may appear in the study of a vibrating string where a force is applied to drive a
wave on this string.

The boundary value problem defined by equations (1.7) is readily expressed in
its weak form using the corresponding natural functional spaces. The space for
the trial functionsisi/ = {u € H'(Q),u|r, = up} while the space for the test
functionsis V = {v € H'(Q),v|r, = 0}, where H'(Q) is the standard Sobolev
space of complex-valued square integrable functions with square integrable first
derivatives.

The weak form of the problem then reads: find v € U/ such that

a(u,v) =L(v) YveV, (1.8)

where the sesquilinear form a(-, -) and the antilinear form /() are defined asfollows
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a(u,v):/Vu-VﬁdQ—//QQU'DdQ—/ muv dl, (1.99)
Q Q I'r
E(v):/fi_)—l—/ gvdl’, (1.9b)
Q I'n

and the symbol - denotes the complex conjugate. Recall that this formulation is
also valid for exterior problems where Robin boundary conditions are applied the
fictitious boundary 0B C I'g.

The classical Galerkin finite element discretization is applied to the variational
formulation of the Helmholtz equation (1.8). For this, let the discrete counterparts
of ¢/ and V be the finite element spaces /y C U and Vy C V associated with a
mesh of characteristic element size H and degree p for the complete interpolation
polynomial base. The discrete finite element solutionisuy € Uy such that

a(ug,v) =L(v) Yv € Vy.

where u; is expressed in terms of the basis-functions {N7},_; e SPANNING Uy,
n,, being the number of nodes of the mesh. Namely,
ug = Y _ Niuj, = Nug, (1.10)

J=1

where v}, is the complex nodal value associated with the mesh node x7, N =
[NY N2 ... N™=]andu); = [ul, u%, ... up®).

The accuracy of the Galerkin finite element approximation is characterized by
the dispersion error. The dispersion error isrelated to the phase difference between
the exact solution and its finite element approximation, that is, the difference be-
tween the wave number ~ associated with the exact solution « and the numerical
wave number associated with numerical solution u 5, namely denoted by « . This
effect has been deeply analyzed in Ihlenburg and Babuska (1995a), Ihlenburg and
Babuska (1995b), Ihlenburg (1998) and Babuska and Sauter (2000).

Sharp error estimates for the dispersion error have been obtained under the as-
sumption that the magnitude ~H is small. In particular, Ihlenburg and Babuska
(1995a) showed that the relative error of the finite element solution in the H!-
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seminorm is controlled by a sum of two contributions depending on the wave num-
ber. Specifically, for linear elements

S OlliH + OQI{?)HQ, (111)

e

stands for the H!-seminorm and C;, C;, are constants independent of ~ and H. This

where

result is fundamental for understanding the nature of the approximation error. The
first term of equation (1.11) represents the interpolation error (difference between
the exact solution and its best approximation in the space/ ;) and the second termis
the pollution or dispersion error (difference between the best approximation in i/ 4
and the finite element approximation). The interpolation error is the classical error
arising in éliptic problems and pertains to the ability of the discretization to prop-
erly approximate the exact solution, whereas the pollution error is the responsible
of the phase lag of the finite element approximation, see figure 1.4.

Note that the interpolation error is bounded if xH is constant, which is the so-
called rule of the thumb and corresponds to taking a certain fix number of elements
per wavelength. However, as can be seenin equation (1.11), thisruleisnot sufficient
to keep the pollution error under control, as it increases with . Thus, to obtain an
accurate approximation, the second term also needs to be controlled. In practice,
standard Galerkin methods are not competitivefor high wave numbers because con-
trolling the pollution term requires using extremely fine meshes. The enhancements
and extensions of the finite element method focus on overcoming this drawback.

1.3.2 Stabilized finite element methods

Stabilized finite element methods were originally developed for fluid problems. The
first upwind-type stabilized methods (Hughes and Brooks 1979) subsequently gave
rise to consistent stabilization techniques - ensuring that the exact solution is also
a solution of the weak stabilized problem. Amongst these techniques, the Galerkin
least-squares method (GL S) has been successfully applied both to fluids (Hughes,
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Figure 1.4: Illustrative example of the errors arising in the finite element approxi-
mation. Exact solution (thicker solid line), best approximation in i/ (solid thinner
line with circles) and the finite element approximation (dashed line). The finite ele-
ment approximation reproduces approximately the shape of the wave with alarger
wavelength.

Franca and Hulbert 1989, Donea and Huerta 2003) and to the Helmholtz equation
(Harari and Hughes 1992, Harari and Nogueira 2002).

Stabilized methods are one of the most popular techniques because they provide
a significant reduction in the dispersion error with an extremely ssimple implemen-
tation. These approaches belong to the first class of methods aiming at reducing
the dispersion for Helmholtz equation. This is achieved by including additional
residua terms in the sesquilinear form a(u, v) of the weak formulation. For in-
stance, the Galerkin least-squares method (Harari and Hughes 1992, Thompson
and Pinsky 1995) includes an additional stabilization term which is a function of
the residual of the Helmholtz equation, namely,

a(u,v) — (Lu — f,7uL0)g = L(v),

whereas the Galerkin gradient least-squares method (Harari 1997) includesthe gra-
dient of thisresidual, namely,

a(u,v) — (V(Lu — f), 7aVLY)g = L(v).

Inthe previous equations Lu = —Au— x?u istheindefinite Helmholtz operator,
Q) is the union of element interiors of the mesh and Ty represents the stabilization
parameter. The selection of an optimal stabilization parameter completely elimi-
nates the dispersion error in the one-dimensional problem. Unfortunately, thisis
not the case for higher-dimensiona problems, where the selection of an optimal
stabilization parameter can only eliminate the dispersion error in certain preferred
directions. In two or three dimensions, the pollution effect is substantially reduced
but can not be completely eliminated.



Introduction 15

1.3.3 Higher-order finite element methods

In order to reduce the effect of numerical dispersion: when approximating the so-
lution using the finite element method, one can consider stabilized formulations
which only involve a simple modification of the code while substantially improving
the accuracy of the resultswith no additional computational cost. However the stan-
dard finite element method also offers another possibility to improve the precision
of simulations: the combination of i and p-refinement in which the mesh size i
and the polynomial degree p are allowed to vary among the elements. The number
of elements per wavelength to obtain a given discretization error strongly depends
on the p, order of the finite element basis functions. Since higher-order elements
generally provide greater computational efficiency, fewer degrees of freedom are
generaly needed to achieve a given discretization error, even for oscillatory wave
solutions.

A dispersion analysis similar to the standard analysis for linear elements can be
carried out for high-order polynomials of order p > 2 and a dispersion relation in
the same form as equation (1.11) isobtained. In particular, Ihlenburg (1998), shows
that, under certain assumptions, the H!-seminorm of the finite element error can be

bounded by
. p 2p
Ju—unl o (ﬁ) Oy (ﬁ) |
|uly 2p 2p

C, and Cy being constants independent of x, H and p, which shows that the pol-
lution effect for p > 2 issignificantly reduced if the mesh is fine enough such that
KH/2p < 1.

Various authors have shown the advantages of using higher-order finite element
method. Thompson and Pinsky (1994) studied the dispersive and attenuation prop-
erties of finite element method for the one-dimensional scalar Helmholtz equation
up to fifth order approximations. Harari and Avraham (1997) applied these meth-
ods to stabilized formulations, in order to develop robust methods in which stabil-
ity properties are enhanced while maintaining higher-order accuracy. Ainsworth
(2004) generalizesthe a priori estimates obtained by | hlenburg and Babuska (1997)
by deriving explicit expressions for the dispersion error of h — p methods.
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1.3.4 Meshless methods

Two of the main advantages of meshless methods are that they do not require to
construct a mesh fitting the computational domain and that it is possible to use
high-order shape functions of arbitrary continuity. These methods have been ex-
tensively investigated by Belytschko, Lu and Gu (1994), Belytschko, Krongauz,
Organ, Fleming and Krydl (1996), and have been applied in various branches of
engineering: fluids, solids, biomechanics, etc.

In acoustics applications, both the possibility of using high-order interpolations
and the case of enriching theinterpolation space with information on the wave char-
acteristics make of the meshless methods a particularly attractive alternative to fi-
nite element. Specifically, the can exploit known analytical solutions such as plane
waves, trigonometric functions, or other analytical solutionsto define or enrich the
approximate solution space.

Bouillard and Suleau (1998) have shown that the meshless methods, in partic-
ular the element-free Galerkin (EFG) method based on the moving least-squares
approximation (MLS), are very general and accurate approaches for interior acous-
tic problems.

Suleau and Bouillard (2000) investigate the problem of the dispersion effect
in one-dimensional setting. Interesting developments of the theory of dispersion
error concerning acoustic problems were presented by the same authors in Suleau,
Deraemaeker and Bouillard (2000) and Bouillard, Lacroix and De Bel (2004). In
particular, Bouillard et al. (2004) focuses on analyzing the dispersion phenomena
and manages to achieve accurate results on academic as well as redl-life three-
dimensional problems within alarge frequency range.

In the case of the Helmholtz equation, it is advantageous that the local ba-
sis functions of the element-free Galerkin method can naturally contain terms of
trigonometric type (Lacroix, Bouillard and Villon 2003). Indeed, since the pressure
isacomplex valued field, it is useful to introduce sine and cosine functions in the
meshless basis, depending on the value of the propagation angle («) or phase of
the pressure field at each point of the domain. It isworth noting that « is unknown
a priori. Thus, first, an approximation of the problem using a standard element-
free Galerkin basis functions is computed which is subsequently enriched with a
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posteriori knowledge of the solution.

It is shown that the use of a-dependant local meshless basis involves a signif-
icant reduction of the dispersion error in comparison with the corresponding finite
element method. In the one-dimensional case, it is possible to construct shape func-
tionsthat are better suited to represent the solution of the wave propagation problem,
especialy for high wave numbers. These shape functions include an oscillatory
behavior, enabling to completely eliminate the dispersion. In the two-dimensiona
case, it is not possible to completely eliminate the dispersion error, but, as what oc-
curs in stabilized finite element methods, it can be minimized in a user-prescribed
direction, o, and substantially reduced for closer values.

1.3.5 Generalized finite element methods

Another class of very popular methods, conceptually very close to meshless ideas,
and which allow the incorporation of local known information of the solution into
the approximation space, are the generalized methods based on the partition of
unity, first proposed by Babuska and Melenk (1997).

This section briefly discusses the two main methods which fall in this category:
the partition of unity method (PUM) and the generalized finite element method
(GFEM). Both methods are based on an enrichment of the standard polynomial fi-
nite element basis with local solutions of the corresponding homogeneous problem.

The main capabilities of these methods are: first, the possibility of using meshes
which are partialy or totally independent of the domain and, second, the potentiality
of enriching the approximation by any special functions of interest. These methods
aim at reducing the dispersion by incorporating a priori knowledge about the global
behavior of the solution in the local approximation field.

Partition of unity method

The partition of unity method can be seen as a generalized finite element method
where the core ideas are the construction of proper interpolation spaces with desir-
able local approximation properties and the conformity of these spaces.
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The interpolation space associated to the partition of unity method is defined
using two sets of functions.

First a decomposition of the domain is used to define a set of functions being a
partition of unity on this decomposition. For simplicity of representation, assume
finite element basis. It is well known that the functions V7 form the partition of
unity on €2, namely

Nnp

Y N(x)=1 ¥xeQ
j=1

and that the shape functions have a local support. Indeed, the support of N7 is
denoted by w; and consists of al elements containing node x7. It is worth noting
that other decompositions of the domain and other partition of unity may be defined.

Once the partition of unity and the associated patches w; are introduced, a suit-
able approximation space W is defined in each patch. Note that the spaces W’
can contain known local information of the solution. Usually, the local spaces W/
are set to be equal in al the patches, unless specific information is known about the
local behavior of the solution at a particular patch.

In Helmholtz context, two sets of spaces are generally used: plane-wave func-
tions and wave-band functions (Strouboulis and Hidajat 2006). Specifically, the
local space of wave-plane functions associated to a parameter m is given by

4 . 2
W(m) — Span {em(ICOSGnersln@n)’gn — ﬂ’n — O’ M= 1} ’

which includes the linear combinations of plane waves traveling in the directions
0, = 2mn/m,n =0,...,m— 1. Itisworth noting that if a priori knowledge of the
solution in a particular patch w; is at hand, the local space W’ can be modified to
better fit the information.

Once the partition of unity {N7}; . and theloca spaces W’ = W(m) are

-----

defined, the partition of unity approximation is defined as

Nnp m
ug = § N E em(accosﬂn—i-ysmﬂn)u%{m :
Jj=1

n=0

where u},m represent the unknowns of the partition if unity method.
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Note that this expression is particular for the specific choice of the partition of
unity and local interpolation spaces that has been considered. However, the general
approximation is obtain in an analogous way.

The locally defined spaces W’ contain a priori knowledge about the local be-
havior of the solution and the partition of unity guarantees the inter-element con-
tinuity. The application of the partition of unity method associated to the set of
plane-wave functions shows an improved computational efficiency compared with
stabilized methods. However, the treatise of essential boundary conditions and the
numerical integration require special attention. Furthermore, the set of algebraic
equations becomes ill-conditioned for a large dimension of the case W7 (m in the
space of the plane-wave functions).

Babuska and Melenk (1997) apply the partition of unity method to the Lapla-
cian, the elasticity, the Helmholtz and a general class of elliptic problems. In this
work, the method is analyzed and a priori and a posteriori estimates are derived.

Strouboulis and Hidajat (2006) presents a numerical study of the method for
the Helmholtz equation. The authors study the effect of the choice of the local
interpolation spaces, the quadrature, and also discuss the a posteriori estimation of
quantities of interest. In the particular, a posteriori error estimates are used to find
out when the pollution becomes negligible. The partition of unity method provides
good accuracies but thereisaneed for devel oping theoretical resultsof the reduction
of the pollution in terms of as the number of plane-waves or wave-bands employed
in the local interpolation spaces W-.

Generalized finite element method

The generalized finite element method for the Helmholtz equation is a direct exten-
sion of the classical finite el ement method which involves an enrichment of the so-
lution using the partition of unity method (Strouboulis, Babuska and Hidajat 2006).

The generalized finite element approximation is obtained by adding to the stan-
dard finite element approximation, the partition of unity method approximation.
Namely, for the particular example of the partition of unity method described above,
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the generalized finite element approximation is

wp = UZE + ipj N ( < piri(a cos 9n+ysin9n)u§[m> :
j=1 n=0
where uE isthe standard finite element approximation.

Note that, although the partition of unity method usually considers N7 to be
the standard linear finite element basis functions, the generalized method alows
combining the partition of unity method with the p-version of the finite element
method (included in «5F). Thus, two different finite element shape functions can be
involved in the generalized method: the linear ones describing the partition of unity
and the shape functions of degree p describing ufE.

The application of thefinite el ement generalized method using plane-wave func-
tions for the two-dimensional Helmholtz equation with cartesian finite element
meshes shows an improved computational efficiency, however, the pollution effect
can not be totally removed. It isincreasing with  and decreasing for larger values
of p. The authors mention some open problems such as: the characterization of the
pollution effect or the extension of the theory for coarse meshes since the existing
theory isonly valid for sufficiently fine meshes.

1.3.6 Discontinuous methods

The discontinuous enrichment method (DEM) is a general approach for problems
with sharp gradients and rapid oscillations. A complete description of the method
and its application to Helmholtz and advection-diffusion problems is presented in
Farhat, Harari and Franca (2001).

Farhat, Harari and Hetmaniuk (2003) present a discontinuous method for the
solution of the Helmholtz equation in the mid-frequency regime. The approach
proposed by the authors is based on the discontinuous enrichment method in which
the standard polynomial field is enriched within each finite element by a non-
conforming field that contains space solutions of the homogeneous partial differen-
tial equation to be solved. Thus, for the Helmholtz equation, the enrichment field is
chosen as the superposition of plane waves. The method enforces aweak continuity
of these plane waves across the element interfaces by suitable Lagrange multipliers.
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The results obtained for two-dimensional problems discretized by uniform meshes
reveal that the proposed discontinuous method enabl es the devel opment of elements
that arefar more competitive than both the standard linear and the standard quadratic
Galerkin elements for the discretization of Helmholtz problems.

Farhat, Wiedemann-Goiran and Tezaur (2004) extend this discontinuous method
to irregular meshes and exterior Helmholtz problems, being able to consider practi-
cal acoustic scattering problems. The results of this approach for two-dimensional
problems highlight the superior performance of the method over the standard finite
element method.

Recently, interesting studies and developments in the context of acoustics gov-
erned by the Helmholtz equation have been developed by Gabard (2006), Tezaur
and Farhat (2006) Grosu and Harari (2008). All the studies conclude that these
methods are competitivein situationswhere the standard finite element method runs
into difficulties.

1.3.7 Multi-scale methods

The multi-scale methods aim at reducing the dispersion by incorporating a priori
knowledge about the dispersive behavior in the local approximation field similar
to generalized methods. However, the multi-scale methods follow an additive ap-
proach rather than multiplicative approach.

Multi-scale methods decompose the solution into the two subproblems: the
coarse-scale problem and the fine-scale problem. Several multi-scale methods have
been proposed (Hughes 1995, Hughes, Feijoo, Mazzei and Quincy 1998).

Numerical experiments for multi-scale methods show that the same level of ac-
curacy than the finite element method is achieved for frequencies which are three
times higher. Oberal and Pinsky (1998) solve the fine-scal e problem approximately
by applying Green’s functions. The derived multi-scale method shows a super con-
vergent behavior in the one-dimensional problem. However, for the two-dimensional
problem where the exact solution is a plane wave, the accuracy depends on the di-
rection of propagation of thewave. Thisdeficiency holdsfor all multi-scale methods
based on a fine-scale solution, which vanishes on the element boundaries,



22 Introduction

1.3.8 Variational theory of complex rays

The variational theory of complex rays (VTCR) proposed by Ladeveze and Ar-
naud (2000), Ladevéze, Arnaud, Rouch and Blanzé (2001) and Riou, Ladeveze
and Rouch (2004), is a numerical method aimed at the prediction of mid-frequency
vibrations. The method is able to yield numerical predictions with the same level
of accuracy in the mid-frequency range as the finite el ement method, however with
substantially less computational effort.

The features which characterize the method are: first, the use of a new varia-
tional formulation of the problem to be solved. The transmission conditions are in-
corporated in the variational formulation. Second, a two-scale approximation with
a strong mechanical meaning is introduced: the solution is assumed to be well-
described locally in the neighborhood of a point as the superposition of an infinite
number of local vibration modes. These basic modes verify the laws of dynamics.
All wave directions are taken into account and the unknowns are discretized ampli-
tudesrelative to particular wavelengths. The authors also suggest that only effective
guantities are retained from the calculated discretized amplitudes, such as: elastic
energy, kinetic energy, dissipation work, effective displacements, among others.

The method has been successfully applied to assemblies of homogeneous or
heterogeneous substructures. Riou et a. (2004) extend the method to shells for
medium-frequency vibrations, where the space of approximation is enriched by lo-
cal solutions of the wave equation.

1.3.9 Trefftz methods

Trefftz methods are a classical approache to incorporate information in the approx-
imation space. These methods can also be classified by the way the boundary con-
ditionsare enforced. There are three well known strategies: a collocation scheme, a
least-squares formul ation or a Galerkin approach. Furthermore, two large classes of
Trefftz-elements exist based on the treatment of the continuity conditions between
elements, namely the hybrid elements and the frameless elements. For instance,
Pluymers, Van Hal, Vandepitte and Desmet (2007) classify the discontinuous en-
richment method as an hybrid Trefftz method and the variational theory of complex
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rays as a frameless Trefftz method.

The key issue in these methods is the definition of the so-called T-complete
function sets. Several T-complete function sets have already been defined for solv-
ing steady-state acoustic problems. Although the theoretical convergence for these
function sets has been proven, their practical convergence is disturbed, or even pre-
vented, dueto theill-conditioning of the involved model matrices. These numerical
problems may be circumvented by subdividing the considered continuum domain
into small elemental subdomains. This has led to the development of the Trefftz-
element approach, which allows the introduction of the Trefftz idea into a standard
finite element scheme. That is, the internal field variables within the T-elements
are approximated in terms of a suitably truncated non-conforming T-complete set
of functions, satisfying the governing equationsa priori, while the boundary condi-
tions and inter-element continuity are enforced in an average integral sense.

Pluymerset al. (2007) present a detailed review on the existing numerical meth-
ods for the analysis of time-harmonic acoustics, with a specific focus on Trefftz-
based methods.

1.4 Error estimation

Computational approximations of a given mathematical model always involve nu-
merical errors. The assessment of such errorsis crucia for the computations to be
reliable, aswell as abasis for adaptive control of the numerical process.

The first use of error estimates for adaptive remeshing strategies, in significant
engineering problems, was in the work of Guerra (1977), but the paper of Babuska
and Rheinboldt (1978) is often cited as the first work aimed at developing rigorous
global error boundsfor finite element approximations. A brief history of the subject
is given in the book by Ainsworth and Oden (2000). Also the books by Verfurth
(1996), Ladeveze and Oden (1998) and Babuska and Strouboulis (2001) provide a
good overview of the techniques developed in the late nineties.

It can be argued that the vast magjority of the published work on a posteriori error
estimation dealswith global estimates of the errors of finite element approximations
of linear éliptic problems, and moreover, most estimates are usually energy-type



24 Introduction

norms. For the Helmholtz equation these estimators have the natural tendency to
underestimate the true error as the wave number increases. In the late 1990's, tech-
niques for computing estimates of the errors committed in the approximation of
some quantities of interest began to appear. Such quantities manifest themselves
as functionals on the solutions of boundary- and initial-value problems. These esti-
mates provide the basis of the so-called goal-oriented adaptivity wherein adaptive
remeshing procedures are devised to control the error in these user-defined quanti-
ties of interest, also named after outputs.

This section isintended to provide a brief overview of the main error estimation
techniques for numerical approximationsof boundary value problems. In particular,
special interest is placed in specific results or techniques concerning time-harmonic
waves in interior regions modeled by the Helmholtz equation and approximated by
the finite element method. The main objective is to describe existing a priori and
a posteriori error estimation techniques which have been developed and applied to
acoustic wave problems in the last years, both for global measures of the error and
for the error assessing in quantities of interest.

1.4.1 A priori error estimation

A priori estimation of the errors arising in numerical simulations has long been
an enterprise for numerical analysts. Such estimates give information on the con-
vergence and stability of the finite element approximations and provide rough in-
formation on the asymptotic behavior of the errors of the calculations if the mesh
parameters are appropriately set.

In the wave propagation problem modeled by Helmholtz equation an important
a priori result refers to the dispersion error committed when using linear finite el-
ement approximations. lhlenburg and BabuSka (1995a) shows that the dispersion
error, defined as the phase difference between the exact and numerical waves, can
be approximated by

K— Ky ~ 21—4/13[{2 + O(K°HY).

Equation (1.11) isanother important result of a priori error estimation for acous-
tic problemsthat provides abound on the H !-seminorm of theerror. Similar a priori
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estimates have been also derived for the i — p version of the finite element method
(I'hlenburg and Babuska 1997, Ihlenburg 1998, Ainsworth 2004).

1.4.2 A posteriori error estimation

A distinctive characteristic of a priori error estimation is that the error is estimated
without employing the discrete solution u . The primary objective of these esti-
matesisto deriverates of convergence with respect to the discretization parameters,
h and p, to evaluate the performance of a given numerical method. It followsthat a
priori error estimates generally involve unknown constants (independent of . and p)
which prevent them from providing useful information about the quantitative error
of aparticular solution u .

In contrast, a posteriori error estimation aims at devel oping quantitative meth-
ods in which the error e = u — uy is estimated using the solution « 5 as data for
the error estimation strategies. A posteriori error estimates are useful in two ways.
first, to assess the accuracy of a given approximation u z, and second, sincethey are
the basis of adaptive strategies.

Initialy, error estimation methods were confined to global estimates, which
measure the error with respect to global norms computed over the whole compu-
tational domain. Although the error is measured using global norms, the resulting
estimates are usually decomposable into local contributions, providing the neces-
sary information for adaptivity. Theses estimates are usually classified into: explicit
residual methods, implicit residual methods and recovery-type methods. Some de-
velopments and features of these techniques in the context of the Helmholtz equa-
tion are presented in the following. First, residual methods are shortly revised and
then a brief overview of recovery-type estimatesis given.

To set the notation, let v denote the solution of the problem (1.8) and u y beits
finite element approximation. The approximation error e € V isthe unique solution
of the equation

ale,v) = €(v) — a(ug,v) = RF(v) Yo eV, (1.12)

where R” (v) is the weak residual associated to uy. Furthermore, since uy is a



26 Introduction

Galerkin approximation, the error satisfies the Galerkin orthogonality property
ale,v) =0 Yo € Vy, (1.13)

which is equivalent to say that the residual is orthogonal to V, namely R”(v) =
0,Yv € Vy.

Residual methods aim at obtaining estimates, either for a global measure of the
error or for a given quantity of interest, by using the information provided by the
residual R”(-). Depending on the treatment of this information, residual meth-
ods are classified into explicit and implicit. Explicit methods are those which do
not require solving any auxiliary problems. They only involve direct computations
using available data, in particular, they usually employ the strong residuals in the
current approximation. In contrast, implicit methods involve the solution of local or
global problems, using the residuals indirectly. They generally involve the solution
of small linear systems of equations where the r.h.s of the problems involve local
restrictions of the weak residual R”().

Explicit residual methods

Irimie and Bouillard (2001) employ an explicit residual method to compute error
estimates in the context of the Helmholtz equation. The conclusions of thisinves-
tigation are that the quality of the error estimator deteriorates as the wave number
increases and that it isincapable of detecting the pollution error.

Stewart and Hughes (1996), Stewart and Hughes (1997) and Stewart and Hughes
(1997) develop explicit residual error estimators for the classical Galerkin and -
Galerkin least-sguares finite element methods, for the Helmholtz equation in ex-
terior domains. The authors focus on the development of an a posteriori error
estimator for the error distribution, and an h-adaptive strategy. The methodol ogy
for computing the error estimatesis to determine the scaling constants appearing in
the error estimator. Several measures are computed to assess the quality of the error
estimator and results indicate that the error distributions are adequately captured.
However, the quality of the global error estimates degrades as the wave number is
increased.
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Implicit residual methods

The main motivation in developing implicit residual methodsis to be able to com-
pute more accurate estimates, or even bounds, of the residual norm by avoiding
introducing the unknown constants that are characteristics of explicit methods. Im-
plicit residual methods require the solution of auxiliary problems, approximating
the residual equation (1.12) satisfied by the error itself. These estimate are classi-
fied into element, subdomain, and global residual methods, depending on whether
the local problems are posed over a single element, a small patch of elements, or in
the whole computational domain.

Babuska, I hlenburg, Strouboulisand Gangaraj (1997) presents aone-dimensional
study of a Dirichlet element error estimator for the Helmholtz problem. That is, the
estimates are computed solving local elementary problemswith Dirichlet boundary
conditions at the edges of the element (or nodes in the one-dimensional case). They
show that, at high wave numbers, the error estimator actually approximates the dif-
ference between the finite element solution and the associated shifted function. That
is, instead of approximating the exact error the estimate approximatesthe difference
between the solution of a modified problem with wave number « 5 (the numerical
wave number) and the finite element approximation.

Bouillard (1999) extends the element residual approach proposed by Ladeveze
in the late 1990's (Ladeveze and Maunder 1996, Ladeveze and Rougeot 1997) to
the Helmholtz problem. These estimates are also referred to error estimation in
the constitutive law or equilibrated flux-splitting approach. These investigations
concern vibro-acoustic problems and are limited to low values of the wave number
where the pollution error is negligible. Various examples demonstrate that, in the
case of linear or bilinear elements, the estimator provides asymptotic upper bounds
on the error with effectivity indices closer to two.

In subdomain residual methods, the global residual problem for the error is de-
composed in local problems posed over small patches of elements. Although some
progress has been achieved since the first pioneer work of Babuska and Rheinoldt
in 1978 (Carstensen and Funken 2000, Machiels, Maday and Patera 2000, Parés,
Diez and Huerta 2006), these kind of estimates have not yet been used to calculate
error estimates for the Helmholtz equation.
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Recovery-type methods

Recovery-based error estimators were first suggested by Zienkiewicz and Zhu
(1987) and improved later by the same authors in 1992. These methods follow
the simple observation that piecewise continuous finite element solutions gener-
aly exhibit discontinuous gradients at the interface of the elements. If the exact
solution to be sought is smooth enough, such jumps in the gradients of the numer-
ical solution indicate that the numerical solution is erroneous. Several approaches
have been proposed in the literature to compute these gradients (Zienkiewicz and
Zhu 1992b, Ainsworth and Oden 2000).

Bouillard and Ihlenburg (1999) performed numerical experiments to test the
quality of recovery or smoothening techniques on acoustic. The results show that
the effectivity index of recovery-type methods converge to one as the discretization
parameter tends to zero, meaning that the recovered smooth function gets closer
and closer to the exact solution as the pollution error diminishes. However, the
effectivity index clearly deteriorates when « becomes large, i.e. when dispersion
becomes too significant. They also show that the estimates are suitable to drive
mesh adaptation for low wave numbers.

1.4.3 Error estimation in quantities of interest

A class of methods based on duality techniques which compute error estimatesin
termsof quantitiesof interest isdescribed by variousauthors (Becker and Rannacher
1996, Paraschivoiu, Peraire and Patera 1997, Becker and Rannacher 2001, Oden and
Prudhomme 2001). These strategies are also called goal -oriented adaptive methods
strategies.

In goal-oriented error estimation, analysts specify the goal of their calculations
by identifying a quantity of interest, where this quantity of interest or output is
represented by a functional defined on the space of admissible solutions. Namely,
the desired output of the simulation is J(u) where J(-) is alinear or non-linear
functional representing the quantity of interest. In this thesis, J(u) will represent
a general non-linear quantity of interest. However, most strategies are developed
with respect to linear outputs. In this case, /€ (u) will be used to denote only linear
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quantity of interest. It is worth noting that in the general case, the functional ¢°(-)
will be obtained from J(-) using alinearization technique.

The standard approach to obtain error estimates in some quantity of interest
defined by a linear functional is to obtain an error representation using an adjoint
problem. The adjoint problem is similar to the direct one but with different loads
(source term and/or boundary conditions). The error representation is an aternative
expression for the error in the quantity of interest as energy products of the errors
of the direct and adjoint problems.

In the following, the basis of a posteriori goal-oriented error estimation strate-
giesis briefly summarized.

Let ¢©(-) bealinear functional representing the quantity of interest. That is, the
goal of the numerical simulation isto evaluate /©(u). The accuracy of the solution
isthen estimated in terms of the exact error /€ (e) = ¢°(u) — (© (uy) or areference
counterpart £ (e) = (©(uy) —(° (uy), where the reference sol ution u,, is associated
with a much finer over kill discretization (for instance with . < H).

An adjoint problem is introduced associated with /©(-) reading: find v € V
such that

a(v,) = £°(v) Yo €V, (1.14)

along with itsfinite element approximation ¢/, and its associated error ¢ = ) — g
Using equation (1.14), the error in the quantity of interest isreadily expressed as an
inner product of the error in the direct problem and the adjoint solution or, using the
Galerkin orthogonality property (1.13), as an inner product of the direct and adjoint
errors. Namely,

60(6) = a(ev w) = a(ev ¢ - 77Z)H) = a(€7 5) (115)

Thus, if one can get approximations to ¢ and ¢ properly behaving in terms of
energy, then the error representation (1.15) allows obtaining a proper approximation
of the error in the quantity of interest, £°(e).

Moreover, using the definition of the primal residual, R%(-), given in equation
(1.12), an alternative representation for the error in the output follows:

(°(e) = ale,e) = R”(¢). (1.16)
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Thus, an approximation to ¢ suffices to obtain estimates for ¢/©(e), if injected into
the residual of the direct problem, as suggested in (Diez and Calderon 2007a).
In the above mentioned reference effort is devoted to obtain a better approxima-
tion to the exact/reference solution (u/uj, or /,) based on the numerical ap-
proximation (uy Or ) via some post-processing techniques (Zienkiewicz and
Zhu 1992a, Zienkiewicz and Zhu 1992b, Zienkiewicz and Zhu 1992c, Wiberg, Zeng
and Li 1992).

Itsisimportant to highlight that most goal-oriented estimates are based on using
similar technique to the ones proposed to obtain global measures of the error. These
techniques provide approximations to e and ¢ that are then injected in one of the
error representations for the quantity of interest.

Few contributions on goal-oriented error estimation for the Helmholtz equation
have been published. Sarrate, Peraire and Patera (1999) extend the implicit error
estimates based on the equilibrated residual method given in (Paraschivoiu et al.
1997) to interior Helmhotz equation problems. Asymptotic bounds for linear and
non-linear quantities of interest are reported. The results confirm that the bounds
are less sharp with increasing wave number. However, they do not mention whether
the pollution error in the solutionsis significant or not.

Walsh and Demkowicz (2003) give another approach to goal -oriented adaptation
techniques for acoustic problems, where a technique for the modeling the external
human auditory system by the boundary element method is presented.

In fact, not many works in goal-oriented error estimation and adaptation tech-
niguesfor the wave propagation problem model ed by Helmholtz equation are present
in the literature. The time-dependent wave equation is studied in (Bangerth and
Rannacher 1999, Becker and Rannacher 2001). One extra difficulty for estimating
the error in quantities of interest for transient wave problemsisthat the adjoint func-
tion is the solution of a reversed time-dependent problem that has to be integrated
backwards in time. In this context Bangerth, Geiger and Rannacher (2010) have
recently presented an overview of goal-oriented adaptivity for acoustic problems,
in particular, for the elastic wave equation.
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1.5 Overview

The thesis is organized in two parts. the exposition and the contributions of the
thesis enclosed in form of published or accepted papers.

The exposition part isdivided in 4 chapters: thisfirst chapter isintended to pro-
vide an overview of numerical methods for the Helmholtz problem, placing special
interest in new methods aiming at reducing the pollution effects, along with a state-
of-art in error estimation. In chapter 2 an a posteriori error estimation technique to
assess the dispersion error of standard and stabilized finite element approximations
for the Helmholtz equation is proposed. Chapter 3 is concerned with goal-oriented
error estimates and h-adaptivity. It presents the study and analysis of linear and
non-linear outputs for the Helmholtz equation. Finally chapter 4 presents the main
conclusions and future devel opments.

The three appended papers at the end of the thesis correspond to the references
Steffens and Diez (2009), Steffens et al. (2010a) and Steffens et al. (2010b), re-
spectively. Throughout the thesis these papers are cited using the corresponding
reference.
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Chapter 2

Assessment of the dispersion error
for the Helmholtz equation

In thischapter an a posteriori estimator for the error in the wave number is presented
in the context of finite element approximations of the Helmholtz equation for both
standard and stabilized formulations. This chapter is a summary of the main ideas
introduced in (Steffens and Diez 2009) and (Steffens et al. 2010a). The reader may
find some discrepancies between the notation used in this chapter and the afore-
mentioned references since a unified framework for ng the dispersion error
joining both works presented.

The chapter is structured as follows: section 2.1 introduces the acoustic model
problem and the finite element method for both standard and Galerkin |east-squares
formulations. In section 2.2 the concepts of dispersion and pollution errors are re-
minded. Section 2.3 is devoted to introduce the a posteriori technique proposed to
assessthe error in the wave number. In section 2.4 the recovery techniquebased in a
standard polynomial |east-squares fitting and a new recovery strategy isintroduced.
The procedure builds up an inexpensive approximation of the exact solution, using
standard post-processing techniques in error estimation analysis, from which the
estimate of the error in the wave number is computed using a simple closed expres-
sion. Finaly, in section 2.5 the estimation procedure is used in several numerical
examples demonstrating the efficiency of the proposed technique both in academic
and practical examples.

33
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2.1 Model problem

Consider the acoustic problem (1.8) given in weak form as: find u € U/ such that
a(k;u,v) =Ll(k;v) Yo e . (21)

Note that the notation adopted in this chapter marks the explicit dependence of
on the sesquilinear form a(x; -, ) and on the antilinear functional ¢(x; -). However
these forms are the same as the ones described in equation (1.9). Although not
standard, thisis useful in the following to assess the error in the wave number.

It isworth noting that the sesquilinear form a(x; -, -) isnot elliptic but it satisfies
the inf-sup condition and the Garding inequality. However, for large wave numbers
r the upper bound for theinf-sup conditionistoo crude (Ihlenburg 1998). Moreover,
the inf-sup property is not carried over from V' to a discrete subspace yielding to a
loss of stability which produces spurious dispersion in the discrete approximations.

2.1.1 Galerkin finite element approximation

As described in section 1.3.1 the Galerkin approximation is obtained from a par-
tition 75 of the domain €2 into nonoverlapping elements and by introducing the
discrete spacesUfy; C U and Vi C V. The discrete finite element solution is then
ug € Uy such that

a(k;um,v) =l(Kk;v) Yv € Vy. (2.2

In practice, low-order Galerkin approximations to the Helmholtz equation in-
volving high wave numbers are corrupted by large dispersion or pollution errors
due to the loss of stability of a(x;-,-). Moreover, it is widely known that the rule
of thumb is not sufficient to obtain reliable results for large . This undermines the
practical utility of the Galerkin finite element method since severe mesh refinement
is needed for large wave numbers.

The performance of finite element computations at high wave numbers can be
improved by using stabilization techniques. These techniques, which are extremely
simple to implement, aleviate the dispersion effect of the finite element solution
without requiring mesh refinement.
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2.1.2 Galerkin least-squares finite element approximation

The idea behind stabilized finite element methods is to modify the variational form
a(k; -, -) and, accordingly, the right hand side, in such away that the new variational
formisunconditionally stable. In particular, the additional stabilization terms of the
Galerkin lest-sguares method method are an element-by-element weighted |east-
squares formulation of the original differential equation.

Recall that, as introduced in section 1.3.2, the weak form of the Galerkin least-
squares method associated with the partition 7 is. find v € U such that

a(k;u,v) + (Lu — f,7pLv)g = l(v) Yv eV, (2.3

where Lu = —Au — K2u, ) = vt €, denotes the union of element interiors
of Ty, ny being the number of elementsin the mesh and (-, -) is the reduced L?
inner product, where integration is carried out only on the element interiors, that
is, the singularities at inter-element boundaries are suppressed in the reduced inner
product. Thus, the Galerkin least-squares formulation depends on the stabilization
parameter 7 which has to be properly defined to make the form on the I.h.s. un-
conditionally stable.

Note that the Galerkin least-squares method is consistent for any choice of 74,
since the exact solution « verifies equation (2.3) for any choice of the stabilization
parameter 75 dueto Lu — f = 0.

The Galerkin least-sguares finite element approximation of v isuy € Uy such
that

acLs(k, T up,v) = bos(k, T v) Vo € Vi, (2.4)

where

acLs(k, T;u,v) = a(k;u,v) + (TLu, L0)g,

and
loLs(k, T;v) = UKy v) + (T f, LD)g.

Note that for the sake of simplicity, the same notation, u g, for the Galerkin
and Galerkin least-squares finite element approximationsis used. A different nota-
tion for the Galerkin least-squares finite element approximation, for instance u >,
would be more precise. However, since the error estimation strategy isvalid for any
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approximation ug € Vy of u, there is no need to distinguish between u and u$->
or any other approximation. Moreover, note that 7, = 0 results in the Galerkin
approximation.

The stabilization parameter 7 is usualy determined by using discrete disper-
sion analysis with the aim of eliminating spurious dispersion of plane waves in a
user-prescribed direction (0). That is, the goal is that the Galerkin least-squares
finite element approximation has no phase lag if the exact solution is a plane wave
in the direction . Different definitions for the parameter 7; depending on the un-
derlying size and topology of the mesh may be found in the literature (Harari and
Magoules 2004, Harari and Nogueira 2002). The reader isalso referred to (Steffens
et a. 2010a) for different choice of the stabilization parameter.

Unfortunately, it is not possible in general to design a stabilization parameter
Ty that confers the ability of fully removing the dispersion error on the Galerkin
least-squares method. The reason is twofold. First, a general signal consists of
plane waves going in an infinite number of directions. Even if there are direction-
aly prevalent components in this decomposition, they are not necessarily known
a priori. Second, the parameter 7 is derived for particular structured topology
meshes. The optimal behavior obtained for some particular structured meshes is
partialy lost when general unstructured meshes are used.

2.1.3 Matrix form

The Galerkin or Galerkin least-squaresfinite el ement approximationu 5 isexpressed
in terms of the finite element basis-functions as uy = Nuy, see equation (1.10),
where uy is the vector containing the complex nodal values of u . In the case of
linear finite elements (p = 1), Luy reducesto Luy = —rug in (), and the matrix
form of (2.4) reads

<KH —Cy - ﬁmgf)uH — £ £, (2.5)

where K, Cy and M} are the so-called stiffness, damping and mass matrices
defined by

Ky = / (VN)'(VN)dQ, Cy= [ mN'NdI,
Q

I'r
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and .
M;,H_Z/ 1 — 7% NTNAQ.

The right-hand side vectors accounting for the source term and the Neumann
boundary conditions are

f}f’_Z/ 1 -y )NTFdQ and Y= [ NTgdl.

I'n

In the particular case where the stabilization parameter 75 is constant in the
elements of the mesh the mass matrix and the source vector can be rewritten as
M}—f = (]_ — THKQ)MH and fI:TH = (]_ — THHQ)fH, where

My = / N'TNdQ and fy = / NTdr,
Q Q

are the standard mass matrix and unit vector force. Besides, recall that 77 = 0
resultsin the matrix form of the Galerkin finite element method (2.2).

2.2 Dispersion and pollution effects

As mentioned in chapter 1, Galerkin approximations of the Helmholtz equation
at high frequencies show dispersion which pollutes the interpolation errors. The
pollution effect, originating mainly from the dispersive behavior of the numerical
wave, is global in nature because the error sources affect the solution in the whole
domain, and not only where the resolution of the mesh is not sufficient to properly
approximate the solution. Thus, opposed to the standard interpolation error, the
pollution error cannot be removed by local refinement.

Recently, many attempts have been made in the mathematical and engineering
literature to overcome this lack of robustness by various modifications of the clas-
sical finite element and the application of news methods. Numerical experiments
show that in some situationsthe pollution effect can be reduced but, in two and more
space dimensions it has been proved that it is impossible to eliminate. Moreover,
guantitative results about the size of the pollution are very vague and a theoretical
foundation is missing. In thisthesis, atool for obtaining quantitative measures of
the dispersion error is given.
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The error introduced in the numerical solution of wave problems has two dif-
ferent components: interpolation error and pollution error. The interpolation error
is the classical error arising in éliptic problems and pertains to the ability of the
discretization to properly approximate the solution. In the present work it is defined
as

Nnp

et — g prOJ Z N (x

where uﬁi}"j is the approximation of « in Uy coinciding with « at the mesh nodes
x’/, 7 =1,2,...,nnp, Ninp beEiNg the number of nodal pointsin the mesh. Thus, the
pollution error is defined as:

Nnp

pol _ prOJ J J
e E N7( — ).

In standard thermal and elasticity problems, the error in the finite element solu-
tion is equivalent to the interpolation error, and converges with the same rate. This
error islocal in nature because it may be reduced in a given zone by reducing the
mesh size locally in this zone.

Thepollution error, however, isespecially relevant in the framework of Helmholtz
problems due to the blowup of the inf-sup and continuity constants of the weak
form when the wave number is large. In transient wave problems, pollution is as-
sociated with the variation of the numerical wave speed with the wavelength. This
phenomenon resultsin the dispersion of the different components of the total wave.

In the steady Helmholtz problem, the word dispersion is also used and corre-
sponds to the error in the numerical wave number « 5, which is therefore identified
with the pollution. In other words, the finite element error (FE error) is decomposed
into two terms

FE error = u—uy = e™+4¢P°! = Interpolation error +Dispersion/pollution error,

which, in the case of wave problems, behave completely differently (seefigure 2.1).
It has been shown that the pollution term converges at a different rate, lower than
the standard interpolation error.

The pollution error eP°! isrelated to the phase difference between the exact and
finite element solutions, that is, difference between the wave number ~ associated
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exact
— % —interp
—6&— FEM

Figure 2.1: Illustration of the errors arising in the approximation of the Helmholtz
eguation. The exact solution (solid line, smooth) and best approximation (dashed
line) coincide at the nodes, the finite element solution reproduces approximately the
shape of the wave with alarger wavelength (xgy < k).

with v and the numerical wave number « y associated with u . Usually, the disper-
sion or pollution error is assessed by obtaining an approximation of the error in the
wave number k — r instead of trying to measure the pollution error e?°' in some
predefined norm.

2.2.1 Anpriori error assessment

A priori error estimates assess the dispersion error by means of providing a closed
formula of the numerical wave number 5. The key idea is to define an auxiliary
solution u%; € U having the same wave number as vy and from which to recover
the value of . Intuitively, u’f; € U isthe best solution of the Helmholtz equation
(2.1) associated with awave number x5 matching vy at the nodes of the mesh, see
figure 2.2.

The a priori error analysis is performed by studying a simple one-dimensional
case. Thisanalysisisrecalled here becauseitsbasic rationaleisuseful in the follow-
ing. Consider the one dimensional Helmholtz equationin ©2 = (0, 1) with boundary

conditions
du

(1) = irku(1).
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exact
— — —mod
—6— FEM

Figure 2.2: lllustration of the exact solution u, the approximate solution « 5 and the
auxiliary solution u; coinciding with u at the nodes and sharing its wave number

K.

This simple problem admits the analytical solution u(x) = e*. Then, given a
uniform finite element mesh and its associated finite element approximation w g,
it turns out that there is a wave number x5 such that the solution of Helmholtz
equation associated to g7, ur = €1, exactly fulfils the equations of the Galerkin
method (2.5) associated to the interior nodes. In other words, consider the patch
of elements surrounding node x/, see figure 2.3. Let N7~!, N7 and N’*! be the
linear shape functions corresponding to the nodes x?~*, x? and x/*!, which are
consecutive in the mesh and are the only ones involved in the equation for node x”.
The discrete equation corresponding to node x’ reads

Nj—l Nj Nj+1

H

Figure 2.3: Nodes surrounding x; in a one-dimensional linear finite element mesh
and their corresponding shape functions.
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Rul; "+ 25w}, + Rult' =0, (2.6)
where the coefficients R and S are

1 1
R=-1- E(HH)z and S=1- §(/§H)2.

Recall that «J, stands for the nodal unknown at node x/. Noting that x7—! =
) — H and x’ ™! = x/ + H and imposing that the modified solution u; = ei~#*
exactly fulfills the discrete equation (2.6) yields the following expression for the
numerical wave number

Ky = %arceos (%) K — 2—14,%3H2 + %/@5H4 + O(k"HY),
see (Ihlenburg and Babuska 1995a).

The verification of the equations (2.6) associated to the interior nodes enforces
that the auxiliary solution u%; shares the same wave number of u, although this
does not guarantee that «; matches exactly u at the nodes of the mesh, due to the
influence of the Robin boundary conditions. However, the difference of u%; and u g
at the nodes of the mesh is nearly negligible. Thus, for this particular problem, a
very good measure of the dispersion error can be computed as

1
E=rK—ryg~ ﬂH?’HQ + O(k°H?) (2.7)

2.3 A posteriori error estimation of the wave number

The standard approach to obtain an error estimate in some quantity of interest de-
fined by a linear functional is to obtain an error representation using an adjoint
problem. In the present case, the quantity of interest is the wave number «, and,
therefore, the goal is to assess the error in the wave number. The error assessment
using an adjoint problem and the corresponding error representation is not appli-
cable to the wave number quantity of interest. Thisis due to two reasons. First,
there is no linear functional extracting the wave number of an arbitrary function w.
Second, in this case, the value for « is known for the exact solution « (it isan input
datal), but not for the numerical solution u:  isknown but g isunknown.
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The strategy of the error estimate is reversed in this case. Instead of devoting
effort to obtain a better approximation, as close as possible to the exact solution
and then, compare it with the numerical result, here the effort has to be oriented to
obtain the wave number of the approximate solution.

A new approach to a posteriori error estimation is introduced here, based on
the ideas of the a priori analysis sketched in section 2.2.1. The first problem to
face isto find a proper definition for the numerical wave number « 5. The concept
of defining xy based on the idea of fitting the numerical solution into a modified
equation, implicitly used in a priori analysis, is extended so that it can be exploited
in a posteriori error assessment setting.

Unfortunately, in general, it is not possible to determine u}; € U verifying
the weak form of problem (2.1) for a suitable wave number ky € R and con-
currently fulfilling the equations of the Galerkin method associated to the interior
nodes. However a slight modification of thisideayields a proper definition for w7;.
Specificaly, u}; € U and ky € R are such that:

e uj; € U coincides with uy at the nodes of the mesh, that is

uf(x?) = ug(x’) for j=1,2,... ng,

e foragiven ky, uf; € U issuch that
a(kg;uly,v) =UKry;v) Yo €V, (2.8)

where
Vo={veVox)=0,7=1,2,...,n,,}
ey and uf; minimize the norm of the residual functional

R(kp,uf;v)
WA s Ve = e, ™ ol

where
R(KJH7 u?[a ) = g(/{Hv ) - a(ﬁH; UE: ')7
H(l] = {’U c Hl(Q),’U‘aQ = 0},

and ||v|| isthe H! norm.
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Note that the values of v%; on the boundary of €2 do not affect the norm of the
residua || - ||.. Thisdefinition is used to minimize the influence of the errors due to
the boundary conditions (which are considered to be a part of the interpolation error
and not of the dispersion error) in the assessment of the dispersion error. It isaso
important to note that the condition enforcing that «’; and u share the same phase
lag, i.e., fulfilling of the equations of the Galerkin method associated to the interior
nodes, is replaced by the more simple and equivalent condition of matching u y at
the nodes of the mesh.

In a compact form, ~y and u}; are the solution of the following constrained
optimization problem

(ka,uf) = argmin [R(x™, u™; ).
K" eR
um el
subjectto  a(k™;u™,v) =LK™ v) Yo €V

u™(x) = up(x?), 7=1,2,...,npp.

The relation between the finite element solution « and the modified solution
u7y alows usto state that the numerical wave number associated with « 7, coincides
with the wave number associated with the solution ;. That is, the finite element
solution uy and u}; share the same phase lag and therefore the dispersion error
associated to uyy IS

EF=Kx—kgy

It isworth noting that this definition of the numerical wave number through the
modified solution «%; is not applicable as a practical error estimation strategy, since
xky and v’} are even more difficult to compute than the exact solution . Neverthe-
less, this rationale is used as a starting point to obtain a fully computable estimate
for the dispersion error, by just introducing two simple modifications.

First, the finite dimensional reference spaces i/, and V,, much finer than /5 and
Vg areintroduced. These spaces yield to the following approximations of x5 and
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Up
(kulh],uglh]) = argmin [[R(K™, u™;")|n
K" eR
u™ e Uy
subjectto  a(k™;u™,v) = L(K™;v) Vv € VNV
u™(x?) =ug(x?), j=1,2,...,0np
(2.9)
and
m R(kp h], ug[h);v)
HR(K'H[h]auH[h]a)H*,h = max H,UHH
v € Vp\{0}
Vg =0

If the finite element mesh V), is sufficiently fine, one expects that u’} ~ ul;[h]
and therefore ky[h| ~ ry. If the finite element mesh V), is not fine enough a cor-
rection factor has to be applied to recover a good approximation of x5 from g [h],
that is, k0] = crri[h], where ¢ is the correction factor based on a Richardson
extrapolation technique, see (Steffens and Diez 2009).

Second, since the computation of «y[h] and u’;]h] is still unaffordable in prac-
tical applications another simplification is introduced. An approximation of «’;[h]
inU,,, denoted by u*, is obtained by post-processing u .

In general, the approximation «* is not obtained solving equation (2.8) for some
r g and thus the computation of « y isindependent. Indeed, v* does not verify

a(kglhl;u*,v) = Ukylhl;v) Yo € VN,

and is therefore no longer linked with the computation of « 5 [h]. Once this approx-
imation »* is computed, the wave number «[h] is approximated by * solution
of

*

k* = argmin || R(k™, u";)|n
kmeR

It is worth noting that the norm of the residual || R(x™, u*; )]« IS afunction
depending only on the scalar variable ™ and may be computed as

IR(™ 5 )l = Vr(sm, w)e(sm, u),
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where

(57, ) = Bo( (Kn— Gy — (+")My,)u’ — §, — £)

_ BO<<Kh - (nmeh) ut - fh>,

isthe residual associated with the interior nodes of the fine h-mesh, the approxima-
tion »* and the wave number ™. The symbol ’ stands for the conjugated transpose,
thatisv’ = o7, and B, isadiagonal matrix on the h-mesh with onesin the positions
associated with the interior nodes and zero elsewhere. That is, the matrix B sets
the values of the residual at the boundary (either Dirichet, Neumann or Robin) to
zero.

Thus, for agiven value of u* = u7}[h], the wave number x* is the parameter of
the modified problem that better accommodates «.*. In practice, «* is determined by
minimizing the squared norm of the residual, namely

k* = argmin || R(K™, u*; -) ||, = arg min vr'r = arg minr'r. (2.10)
kMeR KMER KMER

Note that given «*, the squared residual norm r'r is a fourth degree polynomial
in ™ and thus x* is computed explicitly. Indeed

PR, ") = a9 + 8 (k™) (211)

where
ag = Bo(Khu* — fh) and ay, = —B()Mhu*.

Thus, the squared residual norm r'r isafourth degree polynomial in <™, namely
F(5™) =1'r = cg + co(k™)? + (™), (2.12)
with the coefficients
Co = agay, Cy = agay +asag and cy = aja,.

It isworth noting that despite the vectors a, and a, are complex, the coefficients
Cp, Co and ¢, arereal.



46 Chapter 2. Dispersion error

Thus, for a given value of u*, the wave number «* minimizing the squared
residual is explicitly computed by solving the cubic equation

;;—i = 2¢y(K™) + dey(K™)? = 0.

The previous equation admits the trivial solution x™ = 0 and two solutions
K™ = +1/—ca/(2c,). Sincethewave number is apositive parameter, the numerical
wave number is approximated by x* = +/—ca/(2c4). Sincec, > 0, k* provides
aproper estimate for x aslong asc, < 0. In al the numerical tests that have been
carried out, a negative value for c, has been obtained. However, it is expected that
positive values of ¢, could appear for arbitrary choices of «* not reproducing the
main features of uy. A positive c, parameter would indicate that either «* has not
been properly chosen or that the numerical method has provided areally really poor
approximation w .

In short, the approximation * of the numerical wave number xy is assessed
by first post-processing the finite element solution u 5 to compute «* and then set-

ting k* = /—c2/(2c4). The computable a posteriori error estimate for the wave

number is then

Remark 2.3.1. The expression given in Steffens and Diez (2009) for the squared
residual norm r'r involves extra terms not appearing in equation (2.12). Thisis
due the fact that in (2.12) the coefficients including the Robin boundary conditions
are not presented due to the use of the non-boundary matrix B,. However, both
formulations provide fairly similar results.

2.3.1 Assessment of the wave number for stabilized formula-
tions

The dispersion error associated with a stabilized finite element approximation of
u may be assessed using the same methodology detailed for the standard Galerkin
approximation. Given the Galerkin least-squares finite element approximation v g,
a post-processing technique is used to compute an approximation «* of the solution
u’fy[h] and then the wave number x5 is approximated by «*.
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However, the use of stabilized formulations also for the fine mesh solutions
in (2.9) allows to improve the quality of the estimates. Note that the accuracy of
the estimate «* relies on two facts: first on the quality of the approximation * of
u'fy[h], and second on the quality of the approximation u%;[h| of w};. The quality of
u* depends on the post-processing strategy which will be discussed in the following
section. The qudlity of u%[h], on the other hand, depends on the size h of the
reference mesh V,. In fact, it depends on the ratio of x versus h since for large
values of « the reference mesh should be finer in order to get good approximations
of u%;. Thus, for large wave numbers, the discrete approximation '’} [h] will only
be a good approximation of «%; if the reference mesh is taken remarkably fine.

A simple workaround which avoids dealing with fine reference meshes, is to
stabilize the problem associated with u’;[h]. That is, for a given finite element
approximation, either stabilized or not, the stabilized approximation w%;[h; 7,] IS
the solution of

(kulh; ], wglhsm]) = argmin ||Reis(k™, 7, u™;-)|l«n
k™ e R
u™ € Uy
subject to
&GLs(/im, Th; um, ’U) = fGLs(/im, Th; ’U) Yv € Vh N Vo
u(x?) =up(x?), j=1,2,...,0np
(2.13)

where
Rois(K™, mh,u™;v) = loLs(K™, Th; v) — acLs(K™, Ty u™, v).

This modification yields to the following strategy to assess the error in the nu-
merical wave number:

1. compute u* approximation of u%}[h; 7;,] by post-processing u g
2. compute the approximation x*[7,] solution of

K1) = arg Hﬁ{in | ReLs(K™, Thy "5 ) || s, (2.14)
KM e
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where the residual norm

HRGLS(Kma Th, U )H*h = I‘GLS(/?ma Th U*),PGLS(K'ma Th, U*)

for
I‘GLs(l{m, Th, u*) = B0<<Kh - (/{m)2M;—zh) u* - f;l-h) :

Note that the matrix M, and the vector ;" depend explicitly on the wave num-
ber k™ and also implicitly viathe stabilization parameter 7,. Therefore the depen-
dency of rg sreLs With respect to the wave number ™ isno longer a fourth order
polynomial and the solution of (2.14) may not be computed explicitly in general.

In order to detail the computation of x*[7;,] verifying (2.14) in a simple manner,
the stabilization parameter 7, isassumed constant on the elements of the fine mesh.
In this case, x*[7;,] isthe solution of (2.14) where

roLs(K™, Th,u™) = By <Kh u* — (k")*M, u* + Th(Hm)4Mh u —f, + Th(/im)th>

and 7, depends non-linearly on ™.

For instance, to minimize the dispersion error of a plane wave in the direction
0 for structured regular quadrilateral meshes, Harari and Magoules (2004) propose
the use of

(K™, 0) = 1 6 (1—005(/@ hcosf) 1—cos(k hsm€)>.

(k)2 (k™) h2 \ 2 + cos(k™hcosf) = 2+ cos(k™hsin f)
Thus, the computation of x*[7;,] requires solving a scalar root- finding problem.
Three different options have been considered in the present work to approximate

K* [Th]:

Option 1: the first approach is to compute an approximation of ~*[7,] using an
algorithm to numerically approximate the minimum of

F(k™) =roLs(K™, mh, u*) roLs(K™, Th, u*).

Namely, a root-finding method on the derivative of F'(x™) is used taking as
initial guess k™ = k. Thisapproximation istaken to represent the exact value
k*[1,] since its accuracy can be controlled by the end-user through adjusting
the tolerance of the root-finding method.
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Option 2: the second approach assumes that 7;, does not vary considerably when
varying the parameter ™. In this case, the dependency of the parameter 7,
with respect to ™ is removed by setting the value of

Th(K™) =71,

where 77 = 7,,(k). This approximation of «*[r] is denoted by x*[77]. Note
that 7;* denotes the value of the parameter 7;, associated to the wave number
. Doing this approximation, the residual rg s(x™, 7, u*) is approximated
by afourth order polynomia on ™

roLs(K™, Th, u") & ag + 82(’fm)2 + a4(ﬁm)4a
for

ap = Bo(Khu* — fh), as = Bo(—Mhu* —+ T;ffh) and a; = T}’:B()Mhu*.

Note that the vectors a; and a4, in this case, depend on the stabilization pa-
rameter 7;°. Note also that if the stabilization parameter is set to zero, 77 = 0,
the expression for the residual givenin (2.11) is recovered.

The minimization of the squared residual F'(x™) is then reduced to find the
critical pointsof F'(k™), which isequivalent to find the solutions of

dF
T = 26™ (€ + 2¢4(K™)? + 3cg(K™)* + deg (k™)) = 0, (2.15)

where

/ / /! /! /! /! /! /!
Co = agas +ayag, C4 = ayay + ajas +a,ay, Cg = ayay +a,as, Cg = a,a4.

Although equation (2.15) may have seven real solutions, «*[7/] is defined to
be the solution of (2.15) closer to . Thus, ruling out thetrivial solution k™ =
0, x*[77] is computed by first finding the roots of the bicubic polynomial
appearing in equation (2.15), which is equivalent to find the three solutions
of

Co + 2¢4i + 3ch? + degh® = 0,
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and then set x*[7/°] to be the value of /4 nearer to . Thus, the assumption
(k™) = 7 yieldsasimple and explicit agorithm to approximate the exact
value of x*[77].

As in the case of the non-stabilized approach, a negative result could be en-
countered for very crude approximation v*. However, none of the considered
numerical testsyield negative valuesfor k.

Note also that the coefficients c;, for j = 2, 4,6, 8 associated to the residual
reLs, depend on the stabilization parameter 7;° which in turn depends on a
user prescribed direction & which will be denoted in the following by 6,,. In
the case that uy is computed using the standard Galerkin method, it is not
natural to define a direction 6;,. However, information of the prevalent wave
direction of the exact solution can be used if available. If uy is computed
using the Galerkin least-squares method with wave direction 6, the estimates
may be computed using ¢;,, = 0 or again, if information of the exact solution
is available, this parameter may be set to adjust the prevalent wave direction
of the exact solution. The choice of this parameter will be further discussed
in the numerical examples.

Option 3: finally, thethird approach considersthat the terms added by the Galerkin

least-squares method are constant with respect to ™, that is, not only the
parameter 7, isset to 777 but also the (x™)? associated with the Galerkin least-
squares method is set to 2. In this way, the residual is approximated by the
guadratic function

ros(k™, T, u") =~ By (Kh u— (k™) My, w172 (™) M, u*—fh+7';f/£2fh) ,
that can be rewritten as
reLs(K™, Th, u*) ~ ag + ag(k™)?,
where
ag = Bo(Kpu* + (7% — 1)f,) and ay, = Bo((77'x% — 1)Mpu”).

Therefore, the minimization of the fourth order polynomia F'(x™) which
alows to compute the approximation of ~*[7;,] is done as in equation (2.12)
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with the only difference that here the vectors ay and a, contain an extra con-
tribution coming from the stabilization terms.

2.4 Enhanced solution «* by postprocessing of vy

The methodol ogy introduced in the previous section is only applicable as apractical
error estimation strategy if the cost of computing «* is low. Thus, as mentioned
before, the error estimation procedure can not be based on solving problemsin the
complete finer reference mesh. It has also been noted that once the solution u* is
found, the corresponding wave number x* is fairly computed solving explicitly an
equation as discussed previougly.

The quality of the estimate ~* depends on the quality of the approximation v *
of uy[h] € Uy, or of ufj[h; ], respectively. The idea proposed here is to build up
an inexpensive approximation using a postprocessing technique standard in error
estimation analysis (Wiberg et al. 1992, Diez and Calderon 2007a) and likely to
have all its features. The post-processing technique starts from the finite element
solution uy € Uy and computes an approximation u* of ulj[h] inUj,.

The enhanced solution is produced locally, in patches of elements, centered in
every element of the mesh. For each element of the H-mesh, ), the patch of
elements surrounding 2, is considered and it is denoted by w;. In this patch, the
values of uy at the nodes of the H-mesh are used as input data and a polynomial is
fitted using a constrained least squares technique, as illustrated in figure 2.4.

In particular, in atwo dimensional setting, wherex = (z, y) for agiven polyno-
mial degree ¢, a complex valued polynomial field

p(x)= Y puz"y'
n+i<q

is determined from the following constrained | east squares problem

. )
- j J
min E |uj; — p(x7)]
pnle(C X

xJ Ewy,

restrictedto p(x’) = u}, forx’ € Oy,

where | - | denotes the modulus of acomplex number.
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Figure 2.4: Element (2, of the H-mesh (darkened in plot a) is associated with a
patch (shadowed in plot b). A polynomia is fitted using the values in the nodes
in this patch w, using a least squares criterion (b). This polynomial is evaluated
to obtain the nodal values of the enhanced function «* in the nodes of the refined
h-mesh in the element under consideration (c).

Once the polynomial is obtained in wy, it is evaluated to find the nodal values
of v* in the nodes of the h-mesh lying inside the element 2, of the H-mesh. This
approach allows recovering the curvatures of the solution coinciding with u 5 at the
nodes where it is computed.

This ssimple and straightforward strategy provides fairly good results. However,
this approach does not use specific information about the differential operator or
the exact solution. The use of analytical information on the natural solutions of the
differential operator yields an aternative approach to compute v*.

The approach to compute «* also requires solving a local constrained least
squares problem for each element 2,. However, instead of using a polynomial
representation for u*\w an exponential fitting is used. Thisis anatura choice be-
cause the exact solution of the two-dimensional homogeneous Helmholtz equation
is an infinite sum of plane waves of the form Ae™>, where k = r[cos 6, sin 6].

Thus, in each patch wy, vy 1S approximated by an exponentia field of the form

A(x)eip("),

where A(x) and p(x) are polynomial fields representing the amplitude and wave
direction, respectively. The fields A(x) and p(x) are determined by a constrained
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least squares criterion and hence, they are taken as those minimizing

. 2
uy — A(xj)e”’(xj)

restricted to A(x7)e?™*) =, for x’ € Q.

Using a standard technique to linearize the exponential least squares fitting
transforms the previous problem into an equivalent linear constrained least squares
problem

2

min Z ’ln(ufq) —In <A(xj)eip(xj))

restricted to In (A(xj)eip(xj)> = In(u,) forxi € Q.

Indeed, let u}, € C be represented in its exponential form
(o) = [ e e,
where | - | and arg(-) denote the modulus and argument of a complex number. Then,
the restriction In <A(xﬂ' )ep( >) = In(u?;) becomes
I (A(X)) +ip(xd) = Juy| + i arg(uly).
Thus, splitting the real and imaginary partsyield
I (A()) = |ufl and  p(x’) = arg(uly).

Similarly, the objective function can be rewritten as:

Z ‘ln(ujH) —1In <A(xj)eip(xj)> ‘2

= 57 (ful]) + i arg(u) — I (A(e)) — ip(ad) |

xJ Cwy

= > |n(ju]) — In (AG)) +i (arg(uy) — ()|

xJ Ewy,

= 3 nllu) =0 (A)* + Y (oraluh) — plx)°

xJ Ewy, xJ Ewy,

2
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Thus, splitting the modulus and angle contributions, both in the objective func-
tion and in the constraint, yields a ssimple strategy to compute In(A(x)) and p(x)
independently, namely:

min Y [In(fuly]) — In(AR))[’

xJ Ewy,

restrictedto In(A(x7)) = In(|ud,|) forx’ € Qy,

and
min Z ’arg(u}{) —p(xj)‘2

xJ Ewy,
restrictedto p(x’) = arg(u);) forx’ € O,
where a polynomial fitting of In( A(x)) and p(x) is considered.

The only intricate part of this strategy involves the input data, arg(u7,), of the
least squares problem for p(x). The non-unique arguments associated to the data
ujH have to be carefully selected so that the polynomial fitting yields proper results.

In the following, a brief description of the main difficulties involved in the pre-
processing of the input data, arg(w”,), and the adopted solution is presented.

Consider the smplest case where the finite element approximation is a plane
wave traveling in a predefined direction 6, namely

Uy = Aei(n cos Oz+k sin Oy)

In this case, it is clear that |u},| = A. However, since the argument of a complex
number it is a multi-valued function, the computation of arg(u?,) does not neces-
sarily return (x cos 0z + ksin fy). That is, in genera

arg(ul,) = SM(In(ul,)) # K cos Bz7 + ksin Oy’

but

arg(ul;) = k cos 0! + ksin Oy’ + 2l

for a given number [ € Z. Thus, athough the least-square fitting problem should
return the plane p(x) = k cos 6z + ksin 0y, if the input data is not carefully pre-
processed, the results are not the expected.

For this simple case, a workaround to this problem can be found by adding
multiples of 27 to the input datain the patch wy, arg(ujﬁ), so that its deviation from
aplane is minimum.



Chapter 2. Dispersion error 55

However, the exact solution of the genera homogeneous Helmholtz equation
is not a simple plane wave, but it is general expressed as an infinite sum of plane
waves traveling in different directions.

In the case that the solution is extremely complicated, without a predominant
direction, the exponential fitting may fail to properly approximate the local behav-
ior of the enhanced solution. Actually, the exponential recovery in these zones
introduces unrealistic discontinuities.

Even if the exact solution has no prevalent directions, one can consider an ex-
ponential representation of the solution of the problem

u(x) = v(x)e”™,

where t(x) and (x) are the real-valued functions providing the modulus and angle
of u respectively.

In the cases where the solution does not have a prevalent direction two phenom-
enamay appear: on one hand the angle distribution 6(x) may present discontinuities
coinciding with areas where the modul us vanishes, and, on the other hand, the mod-
ulus distribution v(x) may present a highly non-linear and non-smooth behavior in
Some regions.

To illustrate these phenomena, three different solutions are considered for the
wave propagation probleminaunit square: u;(x) = 2%+, 1y (x) = e T+t
and uz(x) = €% + ¢ + e~*%. The modulus and angle distributions of the three
solutions are shown in figure 2.6.

First, consider the solution u;(x) = 2¢** + ¢*¥. Note that, in this case, the
plane wave traveling in the x-direction, e, prevails over the wave traveling in
the y-direction, e*%¥. As can be seen in figure 2.6, the standard representation of
the angle distribution 0(x) is a discontinuous function, which can be easily post-
processed to recover a continuous angle distribution. Moreover, the modulus does
not present large variations over small regions. In this case, the exponential fitting
provides accurate approximations of w.

The second example uy(x) = e** + ¥, shows that if the solution is obtained
combining two plane waves of the same amplitude, and thus it does not have any
prevalent direction, angle discontinuities appear in some predefined straight lines.
In this case, as can be see in figure 2.6, even if the fictitious discontinuities may
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Figure 2.5: Real part (left) and imaginary part (right) for three solutions in the
unit square. From top to bottom: w; = 2e™% 4 e, 1y = €% + Y and ug =
€T 4 Y o7 for ik = 9.7.
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Figure 2.6: Behavior of the modulus and angle distributions, 6(x) and r(x) re-
spectively, for three simple solutions in the unit square. From top to bottom: w4,
uo and ug. For each solution, the modulus distribution (left) and two views of the
angledistributions (middle left, middleright) are shown. When possible, equivalent
angle distributions only containing non-removable discontinuities — where the dis-
continuities associated to a 27 angle jump have been smoothed — are shown (right).

be removed bye pre-processing the initial data arg(ui,), the real discontinuities are
poorly approximated using a polynomial least-squares technique. Note however,
that after smoothing is applied, the elements surrounding the discontinuity may be
clearly identified.

As the number of plane waves that comprise the solution « increases, see for
instance the third example u3(x) = e + e"¥ + e~*%¥, the modulus and angle
distributions may present areas with a highly non-linear and nonsmooth behavior.
Note that, although the angle distribution only presents point or removabl e disconti-
nuities at nine points of the domain, obtaining a globally smooth angle distribution
from the standard angle representation is not atrivial task.

The exponential fitting technique is aimed at finding a proper local polynomial
representation for the modulus and angle distributions. Thus, in regions where ei-
ther the angle is discontinuous or the modulus presents large oscillations, the expo-
nential representation yields poor results.

In this work, a simple workaround is proposed: first, the smoothing technique
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is applied to remove the fictitious discontinuities. The same smoothing technique
identifies the elements near the angle discontinuities or near the regions where the
modulus has a non-smooth behavior. Finaly, the exponential fitting is applied only
to the non-sel ected elements while a polynomial fitting is applied to the problematic
elements.

2.5 Numerical examples

The presented strategy to assess the error in the wave number isillustrated in three
numerical examples. Additional results and examples can be found in (Steffens and
Diez 2009) and (Steffens et al. 2010a), see the enclosed papers at the end of the
thesis.

First, the influence of the selection of the finite reference mesh and the different
optionsto approximate the wave number are studied for the ssmple one-dimensional
case. For the following examples -the plane wave in a square domain and the noise
transmission inside a car cavity- the performance of the estimates of the disper-
sion error is shown both for Galerkin and Galerkin least-squares approximations.
A study of the influence of the post-processing technique yielding «* in the re-
sulting effectivity is analyzed. Finally an analysis of the impact of the choice of
the prescribed direction ¢ for stabilized formulations in the dispersion error is also
presented.

The finite element approximations are computed using triangular and quadri-
lateral meshes of linear (resp. bilinear) elements, p = 1. Different definitions
of the stabilization parameter 7, are used to compute the Galerkin least-squares
approximations depending on the underlying topology of the mesh. In particu-
lar, for structured and unstructured quadrilateral meshes the following definition
of the parameter, designed to minimize the dispersion error of plane wave in the
direction 6 on cartesian meshes, is used (Harari and Magoules 2004, Harari and
Nogueira 2002):

1 6 (1 —cos(khcosf) 1 — cos(khsin 9))

=2 T \ o cos(kh cos ) * 2 + cos(khsinf)
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For triangular meshes, the definition derived for hexagonal meshes, namely,

18 3 f(xh,0)
=02 T AR 3 f(kh, 0)

where f(kh, 0) = cos(kh cos 0) + 2 cos(rh cos 8/2) cos(v/3kh sin 0/2) is used be-
cause it provides good results also for unstructured meshes.

For non-uniform meshes, the stabilization parameter is not constant over the
whole mesh. In each element €2, adifferent stabilization parameter is used depend-
ing on its characteristic element size h,. This characteristic element size istaken as
the smallest side of the element both for quadrilateral and triangular meshes.

2.5.1 One-dimensional strip

The first example models a plane wave propagating in the z-direction in strip a
rectangular 1 x 1/3/8 domain. The boundary conditions are specified in order to
yield the exact solution u(z,y) = ¢™**: Dirichlet on the left hand side, Robin on
the right hand side and Neumann elsewhere. The performance of the Galerkin finite
element solutionsis studied for x = 8.

If the finite element mesh V), is sufficiently fine, one expects that

uy =~ uf[h; ) &~ uyh]

and, therefore

kg ~ /iH[h;Th] ~ HH[h]

If the finite element mesh V), is not fine enough, one should apply a correction
factor to x4 [h] to account for the finite size h of the reference mesh and recover a
good approximation of . This correction factor is not necessary for the estimate
kylh; ). That iswhen the reference problem is also stabilized.

To analyze the influence of the selection of the finite element reference mesh,
the different a posteriori estimates of the dispersion error are computed using a
series of successively refined nested reference meshes. An initial uniform coarse
mesh of 24 x 2 quadrilateral elementsis used. The refinement is performed only
in the z-direction and thus maintaining two rows of elements on all the reference
meshes, due to the one-dimensional character of the solution.
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The results are shown in the table 2.1. The first columns of the table show the
truth or reference estimates of the dispersion error

Elh] =k — rkylh] and  E[h;7) = k — kulh; ),

where the numerical wave numbers k] and x [h; 7, are computed solving the
non-linear problems (2.9) and (2.13) respectively. The correction factor applied to
ky|h] isdefined as

2

.

Ty
where n, = H/h. Note that these reference estimates are computationally unaf-
fordable in real applications, because they involve many resolutions of the problem

in the reference mesh. They are computed here to see the effectivity of the proposed
practical estimates. Ascan be seen, both the estimatesc; E'[h| and E[h; 73,] assessing
the dispersion error of the Galerkin approximation are in very good agreement with
the a-priori estimate defined by equation (2.7), namely EP". It isworth noting that
the estimate E[h; 7;,] yields very good results even for the case h = H/2 being less
sensitive than ¢; E'[h] to the choice of the reference mesh size.

The last columnsin the table 2.1, correspond to the practical estimates obtained
from the recovered solution «*. In this case u* is computed using the exponential
fitting. Four different estimates are computed. The first oneis the estimate, £* =
k — k*, associated with the assessed wave number obtained from equation (2.10)
and enhanced by its multiplicative factor. The other three options correspond to the
three approximations of «*[7;,| detailed in section 2.3.1. It is worth nothing that all
estimates produce similar and sharp approximations to the dispersion error for all
the values of the reference mesh size h.

As expected, the reference estimates provide almost exact values for the dis-
persion error, fully coinciding with the a priori estimate. There is an equivalence
between the effect of correcting the estimate with factor ¢; or considering a stabi-
lized reference problem.

Following these results, in the remainder of the numerical examples, the param-
eter h issetto h = H/4 and the Option 2 of the stabilized formulation is set to
approximate the wave number x*[h], which provides areally good result. Note that
Option 1y 2 provide practically identical results at a very different cost: Option 1
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Galerkin EP' =1.02211
Option1 Option2 Option 3
h Elh] cEh]  Elh; 1] B E*[] E*[7f]

H/2 | 0.76790 1.02387 1.02211 | 1.01428 | 1.01469 1.01486 1.03682
H/4 | 095869 1.02261 1.02211 | 1.01428 | 1.01469 1.01486 1.03682
H/8 | 1.00627 1.02224 1.02211 | 1.01227 | 1.01232 1.01232 1.01368
H/16 || 1.01815 1.02214 1.02211 || 1.01214 | 1.01215 1.01215 1.01249
H/32 || 1.02112 1.02212 1.02211 || 1.01210 | 1.01210 1.01210 1.01218
H/64 || 1.02186 1.02211 1.02211 || 1.01208 | 1.01208 1.01208 1.01210

Table 2.1: Example 1. Assessment of the dispersion error for a uniform coarse
guadrilateral mesh (24 x 2 elements) an successively refined reference meshes for
the Galerkin approximations of the solution. The reference error estimates (left)
are computed using the fully non-linear solution yielding to E[h] and E|h; 7). The
exponential post-processed solution (right) «* obtained from wy and then differ-
ent options are used to recover the wave number «* associated to «* only for the
Galerkin approximation.

involvesthe solution of aone-dimensional non-linear problem whilethe estimatefor
Option 2 iscomputed from asimple closed-formula. Hence, in thefollowing the no-
tation £* is used to denote the estimate £*[7;] (both for the Galerkin and Galerkin
least-squares methods). Finally, the estimate £ is compared with the reference
estimate E[h; ;] which is considered as the one providing the most accurate-but
not computable approximation of the dispersion error, and it is denoted by F.

2.5.2 Plane wave in a square domain

The second considered example isthe unit square 2 =0, 1[x]0, 1] with inhomoge-
neous Robin boundary conditions specified on al the boundaries of the square so
that the exact solution is u = e (cosartsinay) - That js, a plane wave propagating
in the direction of angle «, asillustrated in figure 2.7. The model parameters are
xk = 8 and o = /8 and the analytical solution associated with these parametersis
depicted in figure 2.7.

The performance of the estimates is studied for three different structured uni-
form quadrilateral meshes (8 x 8, 16 x 16 and 32 x 32 elements). In order to
estimate the dispersion error associated with the Galerkin approximation, the stabi-
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PRV,
v v

Figure 2.7: Example 2: Problem setup (left) and solution for o = 7/8 (right).

lization parameters involved in the computation of £ = E|h; 7] and E* = E*[7]]
are computed using the predefined direction 6, = o = /8.
The results of the dispersion error for Galerkin approximations are shown in

table 2.2, where I, = E3,/F and Ig}, = EZ,,/E is the effectivity index of the

estimates with respect to the reference value £ and £y, and Eg, are the estimates

obtained from u“st using the polynomial or exponential |east-squares recovery re-
spectively. It is clear that the exponential fitting captures more precisely the shape
of the solution and thus provides better estimates to the dispersion error yielding
very good effectivity indexes near to one.

Galerkin

Npp b L ;Ol 2 ;XIO ‘ ] gg Igf(B
81 | 0.24912 0.41670 0.23725 | 1.6727 0.9524

289 || 0.06330 0.09033 0.06328 | 1.4271 0.9998

1089 || 0.01563 0.01943 0.01593 | 1.2434 1.0197

Table 2.2: Example 2: Assessment of the dispersion error of the Galerkin method
for uniformly refined structured quadrilateral meshes.

The same study is done for the Galerkin least-squares approximations of the
problem using the same meshes. Although the exact solution is a plane wave, since
the cartesian meshes are not aligned with the wave direction o = 7/8, none of
the possible choices for stabilization direction ¢ yields a nodally exact solution.
Table 2.3 shows the dispersion error of the Galerkin least-squares method for three
different stabilization parametersd = 0, ¢ = 7/8 and § = w/4. In al the computa-
tions the error estimates are performed using the same value of 6 for the reference



Chapter 2. Dispersion error 63

h—mesh. The error estimates F¢,, are properly approximating the reference error £
in all cases. The Galerkin |east-squares method substantially reduces de dispersion
error even for the non-optimal parameters ¢ = 0 and ¢ = «/4. For § = /8 the
dispersion error is so small that the resulting effectivity is not as sharp as for the
choices producing longer errors.

GLSFE
=0 0=m/8 0=m/4
Mo E Ei E Ei E i

81 | -7.45107% -7.17-107?| 6.82.10~* 3.40-10~*| 7.71-.107% 7.34-1072
289 | -1.99-1072 -1.93.107% | -4.43-10~* 3.80-107° | 1.91-1072 1.95.1072
1089 || -5.02:103 -4.87-1073 | -1.84-10~* 1.68:1075 | 4.66-10~% 4.88:1073

Table 2.3: Example 2: Assessment of the dispersion error of the Galerkin least-
squares method for uniformly refined structured quadrilateral meshes. The Galerkin
|east-squares approximations are computed using different stabilization directions
6.

Figure 2.8 graphically displaysthe information shownin thetablesin tables 2.2
and 2.3. As can be seen, the estimates depicted on the left of the figure are in very
good agreement with the reference mesh computations, depicted on the right of the
figure. As mentioned before, the Galerkin least-squares method always performs
better than the Galerkin method but there is a qualitative leap of accuracy when the
optimal parameter § = /8 is used.

Figure 2.9 shows the influence of the stabilization direction ¢ used to compute
the Galerkin least-squares finite el ement approximation in the dispersion error. The
study isdone varying 6 in therange [0, 7/2]. As expected, the optimal performance
is reached when the wave direction of the Galerkin |east-squares method coincides
with the angle of the exact solution, 8 = o« = 7/8. In any case, if no information
of the exact solution is at hand and thus, an arbitrary choice of 6 is considered, the
Galerkin least-squares method provides an important reduction of the dispersion
error when compared to the Galerkin approximation: the estimated dispersion error
isreduced from Eg, = 0.06328 to Eg;, ~ 0.02 in the worst case.
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Figure 2.8: Example 2: Performance Galerkin w.r.t. Galerkin least-squares of a
plane wave oriented horizontally with « = 7/8 and with different Galerkin least-
squares stabilization parameters for solution in the reference mesh (left) and expo-
nential solution (right).
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E* o w.r.t Galerkin = 0.06328

ex|

1
0 /8
0

Figure 2.9: Example 2: Influence of the selection of the stabilization angle ¢ in the
dispersion error of the Galerkin |east-squares approximation for the mesh with 269
degrees of freedom. The estimates are computed both using 6 = «a.
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2.5.3 Two-dimensional acoustic car cavity

The noise transmission inside the interior of passenger carsis considered as a prac-
tical application. A two-dimensional section of the cabin of a car which is excited
by vibrations of the front panel and damped by Robin boundary conditionsis stud-
ied. Moreover, this example is frequently used as a benchmark problem in error
assessment for interior acoustic problems (Bouillard and Ihlenburg 1999, Suleau
et a. 2000, Harari and Magoulés 2004).

The geometry of the cabin is shown in figure 2.10. The size of the domain is
characterized by the maximum horizontal and vertical lengths, L, = 2.7m and
L, = 1.1m, respectively. Thesourcetermis f = 0, and, as mentioned in chapter 1,
for interior acoustic wave propagation problems, the Neumann and Robin boundary
conditions are of the form g = —ipckv,, and mu = —ipckA,u. In this case the
material parametersare c = 340 m /s standing for the speed of sound of the medium
and p = 1.225 kg/m? standing for the mass density. The vibrating front panel is
excited with a unit normal velocity v,, = 1m/s whereas the roof is considered to
be an absorbent panel with associated admittance A,, = 1/2000 m.(Pa.s)~*. The
rest of the boundary is assumed to be perfectly reflecting and thus v,, = 0m/s.
Finally, a wave number of x =~ 9.7, equivalent to a frequency of 525 H z, has been
considered in the computations.

The dispersion effect along a specific line L is depicted on the right of the fig-
ure 2.10. The two curves correspond to the finite element approximations obtained
using a coarse and finer computational meshes. Note that, compared with the finer
mesh, the dispersion error in the coarse mesh is significant.

In this problem, the exponential fitting yields bad estimates, worse than the
standard polynomial fitting. As mentioned in section (2.4), this is due to the fact
that the solution is extremely complex, without a predominant direction. At many
points of the domain, the solution can be expressed as a different sum of diverse
plane waves. Thus, the exponential fitting fails, in the vicinity of these points, to
properly approximate the local behavior of the enhanced solution.

In the previous examples, the solutions were either a single plane wave travel -
ing in a predefined direction or had a prevalent plane wave direction, athough the
prevalent wave direction may vary from different zones of the domain (see also the
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Figure 2.10: Example 3: Description of the two-dimensional section of the cabin of
acar and its associated boundary conditions (left) and dispersion effect for the real
part of an approximated solution for 525 Hz (right).

scattered solution from submarine obstacle in Steffens et al. (2010a)). The sound
transmission inside a car cabin is a more complex phenomenon and the solution
does not present clear prevalent directions but is a combination of different plane
waves with similar amplitudes, see figure 2.11.

Figure 2.12 showsthe behavior of the modulus and angle distribution associated
to the acoustic pressure inside the car cabin. As can bee seen, itsnot easy to clearly
identify the regions where the angle distribution is discontinuous.

Therefore, in this example we identify the elements near the angle disconti-
nuities or near the regions where the modulus has a non-smooth behavior, and in
these problematic elements a polynomial fitting is applied while the exponential
fitting is applied only to the non-selected elements. The estimates obtained with
this combined approach are denoted in the following by E*exp.

Estimates of the dispersion error for the Galerkin approximations of the solution
are computed for two different triangular meshes of 568 and 2122 nodes respec-
tively. The results are shown in table 2.4. As can be seen, both the polynomial and
the combined estimates provide fairly good approximations to the reference value
E. However, using an exponential representation, where possible, allows obtaining
effectivities closer to one.

Figure 2.13 shows the elements that have been selected in the combined ap-

proach to apply the polynomial smoothing technique instead of the exponential one.
Note that these regions are in good agreement with those highlighted in figure 2.12.
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Figure 2.11: Example 3: Solution of the noise transmission problem inside the
cabin of a car obtained with an overkill mesh of 20160 nodes: real part of « (top)
and imaginary part of « (bottom).
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Figure 2.12: Example 3: Modulus (left) and angle (middie and right) distribution
of the acoustic pressureinside the car cabin. The areas where the modulusis nearly
zero are highlighted in the plot in the middle to see the areas where the angle distri-
bution may present discontinuities.
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Gderkin

Nnp E ;ol E ;)(p Iggl Igf(];J
568 || 0.15001 0.08231 0.12960 | 0.5486 0.8639
1092 || 0.07506 0.06694 0.07389 | 0.8918 0.9845

Table 2.4: Example 3: Assessment of the dispersion error of the Galerkin method
for unstructured triangular meshes.

Figure 2.13: Example 3: Two unstructured triangular mesh where the red elements
corresponding to solution fitting polynomial.

The reduction in the dispersion error obtained by using stabilization techniques
is shown in table 2.5. This table aso shows the influence of the selection of the
stabilization parameter. As can be seen, the results of the Galerkin least-squares
approximations with the three stabilization parameters are nearly identical for the
two meshes, and provide significant improvement over the Galerkin method.

2.6 Summary

An error assessment technique for the numerical wave number «  of the Helmholtz
problem has been proposed, both for standard Galerkin and stabilized formulations.

The proposed strategy requires obtaining an inexpensive approximation of the
modified problem, using post-processing techniques. Thus, the associated numeri-
cal wave number isreadily recovered using a closed expression. The standard poly-
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GLSFE
stabilization direction | ny, E | I I8

=0 568 || 0.03792 | 0.6052 0.9396

1092 || 0.00577 | 1.1304 1.1157

0=m/12 568 || 0.03808 | 0.5990 0.9409

1092 || 0.00583 | 1.1279 1.1155

0 =m/6 568 || 0.03824 | 0.5999 0.9417

1092 || 0.00589 | 1.1255 1.1128

Table 2.5: Example 3. Assessment of the dispersion error of the Galerkin least-
squares method for an unstructured triangular mesh. The Galerkin least-squares
approximations are shown for different stabilization directions 6.

nomial least squares techniquesis replaced by an exponential fitting yielding much
sharper results in most applications. However, both the error estimates computed
using a polynomial and exponential fitting provide reasonable approximations of
the true errors.

Amongst the different possibilities to approximate the wave number, both the
correction factor and the second option - which assumes that the stabilization pa-
rameter does not vary considerably with respect to numerical wave number - yield
fairly good results. The estimates obtained produce similar and sharp approxima-
tions to the dispersion error.

The numerical examples demonstrate that the proposed methodology is able to
assess the dispersion error for both Galerkin and Galerkin least-squares formula-
tions. The estimates clearly detected that the Galerkin least-squares method consid-
erably reduces the dispersion error.

The sensitivity of the selection of the stabilization parameter for the Galerkin
least-squares method has been studied, concluding that the change in the orientation
of the stabilization parameter has a significant effect on academic problems. It has,
however, little effect in non-academic problems or when considering non-structured
meshes.
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Chapter 3

Goal-oriented error estimation and
h-adaptivity

This chapter introduces a new goal-oriented adaptive strategy based on the post-
processing techniques introduced in the previous chapter. A simple but very effec-
tive post-process of the finite element approximations of the direct and the adjoint
problems, see section 1.4.3, allow computing competitive estimates for linear and
non-linear quantities of interest. Thus, the error estimation proposed herein would
fall into the category of recovery-type explicit a posteriori error estimation tech-
nigues.

This chapter isa summary of the ideas introduced in (Steffens et al. 2010b) and
is structured as follows: section 3.1 presents a general framework for assessing the
error in general linear and non-linear quantitiesof interest. Different representations
for the linear contribution to the output are introduced in section 3.2. Section 3.3 is
devoted to obtain error estimates for general outputs using the different error rep-
resentations given in section 3.2. The adaptive strategy is introduced in the section
3.4, where local indicators and several strategies of refinement are defined. Finally,
in section 3.5 the proposed procedure for goal-oriented adaptivity is analyzed in
some numerical examples. The relation between the different error representations
and the dispersion error of the direct and adjoint problemsis also investigated.

71
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3.1 Error assessment for quantities of interest
Consider ageneral acoustic problem given in weak form as. find u € U such that
a(u,v) =L(v) Yve.

and denote by u 4 itsfinite element approximation.

A posteriori error estimation techniques aim at assessing the error committed in
the approximation of u, e = u — uy, where e € V is the solution of the primal
residual problem

ale,v) = £(v) — a(ug,v) = R (v) Yo eV, (3.1

RP(-) standing for the weak residual associated to the finite element approximation
Ug-.

In acoustic problems, since the Helmholtz equation is not eliptic, the form
l|v|]* = a(v,v) does not define a squared norm. Therefore, there is no natural
energy norm to measure the error. Additionally, assessing the error measured in
some functional norm is not sufficient for many applications. In practice, the finite
element user isinterested in specific magnitudes extracted from the global solution
by some post-process. These magnitudes are referred as quantities of interest or
functional outputs. Goal-oriented error assessment strategies am at estimating the
error committed in these quantities and possibly providing boundsfor it.

The quantities of interest considered in this work are non-linear functional out-
puts of the solution, J(u), and the aim is to assess the error committed when ap-
proximating these quantities using the finite element approximation. Specificaly,
the goal isto assess and control the quantity

J(u) — J(ug).

For the purposes of this thesis, it is convenient to make the linear, quadratic
and higher order terms contributions of .J(u) more explicit. To thisend, J(u) is
expanded introducing the Gateaux first and second derivativesof .J(-) at u z, namely

J(ug +v) = J(ug) +° () + Qv,v) + W(v), (3.2
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where (€ (v) = [D,J](ug) - (v) and 2Q(vy, v9) = [D2J](ug) - (v1,v9), See (Sarrate
et al. 1999, Maday, Patera and Peraire 1999). Note that ¢© : H'(Q2) — C and Q :
HY () x HY(Q2) — C arethelinear and bilinear contributionsof .J(-), respectively,
and that the functional WW contains the higher order terms. In the case of alinear
output, noticethat @ = W = 0.

Using this decomposition and taking into account that © = u g + e, the error in
the quantity of interest may be rewritten as

J(u) — J(ug) = J(ug +€) — J(ug) = °(e) + Qe, e) + W(e). (3.3

Thus, it is clear that in order to estimate the error in the quantity of interest, it is
sufficient to estimate the linear, quadratic and higher-order terms separately, (©(e),
Q(e, e) and W(e) respectively.

We assume that Q and W are L?-continuous. Thus, for al v, |Q(v)| < ¢||v||2
and |Q(v)] < cyl|v||3, where || - ||o denotes the L2-norm. Consequently, Q(e, ¢) and
W(e), converge as O(H*) and O(H®) respectively, whereas the linear term (€ (e)
converges quadratically. Therefore, for sufficiently small H thelinear term provides
agood inside to the error in the output since the other terms are negligible.

In thiswork, three different engineering outputs are considered. Thefirst output
istheintegral of the solution over a subdomain Q° c

Ji(u) = /QO u dS.

Since the output depends linearly on u, J;(v) = (¢ (v) and Q;(v,v) = W, (v) = 0
in (3.2). Note that eventually Q© can be 2 to compute an average of the solution
over the whole domain.

The second output is the average of the squared modulus of the solution over a
boundary stripI'® C I'y U Ty

Jo(u) = i/ uadl,
o Jro

where [ro isthe length of the boundary strip. Since this output depends quadrati-
caly onu, Wh(v) = 0 and the linear and quadratic contributions are

(S (v) = 1 /O(uH'D + ayv)dl, Qs(v,v) = Jo(v). (3.9

N lFO



74 Chapter 3. Adaptivity

Indeed, appealing to (3.2)
1 S
JQ(UH+U) = — (UH—|—U>(UH+’())dF
lFO To
1

e (ugtp + ug® + vay + vv) dI
r T

1
= Jo(up) + —/ (ug® + ugv) dl' + Jo(v).
lFO To

Thethird output isthe normalized squared L2-norm of the solution over aregion
QO

1
J3(u) = Ao /QO uw dS2,

where Age stands for the area of the subdomain Q€. Again, since the output is
quadratic, W5(v) = 0 and
1
"~ Ago
The derivation is analogous to the one provided for .J () except for the integrals
being placed over a subdomain of 2 instead of its boundary.
Note that, the second and third outputs .J,(u) and J3(u) are real quantities since
they only involve the squared modulus of the solution. In particular, al the involved

(5 (v)

/ (B + g0) A Os(v,v) = Jo(v). (35)
0o

functionals, are real functions of a single complex variable, that is, for instance
9 :C—R.

The following sections are devoted to describe the error assessment techniques
to estimate the linear and higher order contributionsof .J(u) — J(u g ) and to provide
local error estimators able to effectively drive the adaptive procedures.

3.2 Error representation of a linearized output

This section presents alternative representations for the linear contribution to the
error in the output £©(e). This alternative representations do not directly yield com-
putable expressionsfor the estimates of the output because they depend on the exact
errors on the primal and adjoint problems. However, estimates may be easily recov-
ered using existing strategies providing approximations for the errors, as described
in section 3.3.
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The quantities of interest considered here are such that their linear part is ex-
pressed as

°(v) = /Q fPvdQ+ /F ¢%vdr, (3.6)

where f© and ¢© are given functions characterizing the linearized quantity of in-
terest. Note that /©(v) has the same structure as /(v), see equation (1.9), excepting
the conjugate in its argument. Thus, /€ isalinear functional while ¢ isan antilinear
functional.

Most existing techniques to estimate the error in a quantity of interest introduce
an aternative representation for ¢©(e). In practice, different error representations
are used to properly estimate ¢©(e). These error representations require introducing
an auxiliary problem, denoted as adjoint or dual problem which reads: find ¢ € V
such that

a(v, ) = °v) Vv eV, (3.7)
which is equivalent to determine the adjoint solution ¢ verifying the Helmholtz
problem

—AY — k%) = f© ing, (3.8a)
=0 onIlp, (3.8b)

Vi -n=g° onI'y, (3.80)

Vi -n=my onlg. (3.8d)

In order to assess the error in the quantity of interest the adjoint solution ¢ is
approximated numericaly by 1y € Vy such that

a(v,vg) = (°(v) Vv € Vg,
introducing the adjoint error ¢ = 1) — ¢ solution of the adjoint residual problem
a(v,e) = °(v) —a(v,vy) = R°(v) Vv € Vg, (3.9

where RP(-) isthe weak adjoint residual associated with v y.
The adjoint problem is introduced such that the following error representation
holds:
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where the Galerkin orthogonality of the adjoint approximation ¢ isused in the last
equality. Inturn, this error representation allows assessing the error in terms of the
residuals of the direct and adjoint problems, namely

(°(e) = a(e,e) = R () = RP(e). (3.10)

These representations are obtained substituting v = ¢ in(3.1) and v = e in(3.9)
respectively.

It is worth noting that for general non-linear quantity of interest .J(u), its first
Gateux derivative which providesthe functional ¢© (v) isnot necessarily of the form
of (3.6). Indeed, aclose ook on the linear contributionsto the quantities J»(v) and
J3(v) given in the previous section, equations (3.4) and (3.5), reveals that even for
simple outputs ¢ (v) can not be written asin (3.6).

The proposed strategy is valid for general functionals ¢©(v). However, if the
functional ¢©(v) is not in the form of (3.6), the adjoint problem is no longer the
solution of the strong Helmholtz problem given in (3.8). Depending on the form of
(°(v), r.h.s. of equation (3.7), the adjoint problem might have no physical meaning.
In many practical applications a simple workaround to overcome this limitation
cause adopted.

To be specific, consider the quantity of interest .J5(«) with the associated linear
contribution

©w) = - /F (T w) L, Qa0 v) = (o).

N ZFO

Note that, £ (v) isareal number coinciding with

(S (v) = 2Re (L/ Ugv dF) .
lF(’) To

The adjoint problem is then defined with respect to the auxiliary linear func-
tional ., wyvdl'/lro wWhich correspondsto f© = 0 and zero elsewhereand ¢© =
Uy /lro onT9 N Ty and zero elsewhere in equation (3.6). The original linear func-
tional and al the required estimates are recovered from this auxiliary functional
taking the real part and multiplying by afactor two.

The same approach is used for /§ (v). Recall that

1

S (v) = Ao /QO(UHT) +agv)d,  Qz(v,v) = J3(v).
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Then, the adjoint problem is defined with respect to the modified functional
Joo trv dQ/Aqo, for which the data entering in (3.6) are ¢© = 0 and f© =
g /Ago iINQ° and f© = 0 elsewhere.

3.3 Error estimates for linear and non-linear outputs

A posteriori assessment of quantities of interest relies on obtaining a good approx-
imation of J(u) — J(ug). Thistrandates in finding a new enhanced solution u*,
based on the information at hand, that is uy, and such that «* approximates the
actual solution v much better than 5. Thus, acomputable error estimateis readily
obtained

e~e =u" —uy

yielding a so the corresponding estimate for the quantity of interest
J(u) — J(ug) =~ €°(e*) + Qle*, e*) + W(e*). (3.12)

This approximation of the error in the quantity of interest is obtained from equation
(3.3) substituting the actual error e by its approximation e*.

The key issue in any error estimation technique is to produce a properly en-
hanced solution «*, or in some cases obtaining an enhanced approximation of the
gradient of the solution ¢* ~ Vu suffices. The strategies producing the enhanced
solution u*, or ¢* respectively, are classified into two categories. recovery type
estimators and implicit residual type estimators. Recovery techniques, based on the
ideas of Zienkiewicz and Zhu (Zienkiewicz and Zhu 1987, Zienkiewicz and Zhu
1992a, Diez, Rodenas and Zienkiewicz 2007), are often preferred by practitioners
because they are robust and simple to use. On the other hand, a posteriori implicit
residual-type estimators have a sounder mathematical basis and produce estimates
that are upper or lower bounds of the error (Ainsworth and Oden 2000, Ladeveze
and Leguillon 1983, Diez, Parés and Huerta 2003, Parés et al. 2006).

At first glance on could think that, once the enhanced solutions «.* are obtained
either using recovery or residual-type error estimators, estimates for the error in the
guantity of interest may be directly obtained using equation (3.11). However, as
mentioned in section 3.2, this representation does not provide sound results. This
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is because inserting the enhanced error e* in the functionals ¢°(-), Q(-, -) and W(-)
may not yield accurate results even when the enhanced approximation «* provides
a reasonable approximation of « in terms of energy. In practice, since the most-
contributing term to the error in the quantity of interest isthe linear term, alternative
representations are used for this term, as the ones described in section 3.2, whereas
no additional effort is done in the higher-order terms.

Thelinear term ¢© (e) may be assessed by any of the following strategies:

1. Computethe primal enhanced solution «* to obtain e* = u* —uy and evaluate
% (e*) (not used in practice).

2. Compute the primal enhanced solution «* to obtain e* and evaluate RP(e*).

3. Compute the adjoint enhanced solution * to obtain e* = ¢* — ¢y and eval-
uate R” (e*).

4. Compute both the primal and enhanced errorse* and ¢* and evaluate a(e*, *).

Here, the postprocessing strategies presented in section 2.4 are used to recover
the enhanced solutions »* and v* from uy and ¢y respectively. Thus, u* € U, and
»v* € Vy, wherel,, and V), are the discrete functional spaces associated to the finer
referencemesh, Uy C Uy, CUaNdVy C V), C V.

As mentioned before, for sufficiently refined meshes, the error in the quantity of
interest is controlled by the linear term, since the quadratic and higher-order contri-
butions converge faster to zero. For this, the proposed approach isto make use of the
available estimate e* to obtain a simple and inexpensive estimate of the non-linear
contributions. Namely, the quadratic and higher-order contributions to the error in
the output, Q(e, ) and W(e) respectively, are assessed using the reconstruction of
the primal error e* used to assess the linear part of the error, namely

Qle,e) = Q(e*,e*) and W(e) = W(e").

3.4 Local indicators and adaptivity criteria

Adaptive mesh refinement is nowadays an essential tool to obtain high-fidelity ssim-
ulations at the lesser cost. The main ingredients of the proposed adaptive procedure
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are: the h-refinement, that is, the new meshes are obtained by subdividing the ele-
ments of the mesh; optimal indicators, the refinement is organized with the aim of
achieving equal error in each element of new mesh; iterative process, the target in
each step of refinement is to reduce the global error until the calculated error drops
below the tolerance specified by the user. Figure 3.1 displays the flow diagram of

an adaptive procedure.
Initial mesh
Adaptive refinement Solve with given mesh
A

Assess the error

desired
NO accuracy
reached ?

YES

Output results

Figure 3.1: Flow diagram of an adaptive algorithm

The adaptive procedure requires obtaining local error indicators allowing to de-
cide the elements to be marked for refinement — those with larger contribution to
the total error. In order to determine the contribution of every element to the total
error spatial error distributions of the estimates are derived decomposing the global
estimates into a sum of local contributionsin each element of the mesh induced by
Uy .

The estimates for the error in the quantity of interest are of the form

J(u) = J(ug) = £2(e7) + Q(e”, €%) + W(e),

where the linear term (©(e*) is replaced by either a(e*,e*), RF(¢*) or RP(e*),
depending on the selected representation of the linear term. Since the linear term
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is the driving term of the error in the quantity of interest, in this work, the adaptive
procedure is chosen to be driven by ¢©(e*). That is, the globa estimate for the
linear term (€ () is decomposed into a sum of local contributionsin each element.
These local quantities are used to design the adaptive procedure.

The natural restriction to every element €2, of theintegral formsa(-, -), ¢(-) and
(9(-) yield the elementary contributions denoted by ay(-,-), ¢x(-) and ¢9(-) such
that

Ne] Ne] Ne]

a(u,v) =Y ap(u,v), L) =Y G(v), @)= ).

Similarly, the primal and adjoint residuals are decomposed as

Te] Nel

R°(wv)=> R{(v), R"(v)=> RP(v),
k=1 k=1

where R{'() = () — ax(ug, -) and RY () = €7 () — aw(-, ¥m).

Hence, the error representations for the linear contribution of the error in the
quantity of interest given in equation (3.10) are associated to the elementary error
distributions

Ne] Ne

Oe) =Y () =Y arle,e) =Y Ri(e) =D RP(e).
k=1

k=1 k=1 k=

=1
e
j=1
o

—_

It is worth mentioning that, while the global error quantities are equal in all
the representations, the local quantities ¢9(e), ax(e, €), RE () and RE (e) represent
different elementary contributionsto the error and, besides, they are not necessarily
positive nor even real numbers.

From the four possible representations of the linear contribution of the error
(°(e), in thiswork only the two expressions involving the primal and adjoint resid-
uals are used, thus yielding the global estimates

775 — RP(&“*) and 776 — RD(e*),

and its associated local error indicatorsn; = Ry (e*) and n§ = RP(e*), such that

Nel Nel

=Y _mp and n°=>
k=1 k=1
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It isworth noting that the local elemental contributions ;. and ;. are the natural
decomposition of the estimatesr© and n° to the elements. However, the computation
of thelocal contributionsy; and 7y, requires the computation of local integral forms.
This can be done either by storing the elemental contributionsto the system matrices
and vectors or by recomputing these contributionsin an elementary loop. A cheaper
and more natural to implement alternative is to decompose the estimates n° and n°
into nodal contributions. This is because it uses the finite element nature of the
estimates n° and n°.

In practice, the estimates e* and £* are computed in afiner reference mesh asso-
ciated with the space V;,, namely e* = 3 es N7 and e* = 37 5 N"/, where N7
are the shape functions associated with the nodes of the reference mesh, x7. Thus,
a natural decomposition of the estimates n< and »° into nodal contributions on the
reference mesh holds

775 _ ZE;RP(Nh’j) — Znihyj and 776 _ Ze;RD(NhJ) — Zﬁim-
J J J J

Note that 7Z,, ; and 7, ; are readily computed multiplying the j-th components
of the finite element vectors associated to £* and R”(-) and e* and RP(-) respec-
tively. Then, the local elemental contributions associated to the element 2, of the
coarse mesh are computed from aweighted average of the local nodal contributions
non,; @nd g, ; associated to the nodes x"7 belonging to €2;,. To be specific

Ne] Tle]

=Y 0 =Y Y oM, = i (3.12)
j k=1

k=1 xh,jer
and
Ne] Ne]
= = > oM, = i, (3.13)
J k=1 xh.iecQ, k=1

where o7 is the inverse of the number of elements in the coarse mesh to which
a particular node x7 belongs. For a detailed description, see (Diez and Calderon
2007D).

A simple adaptive strategy is employed, using thelocal indicatorsn; or 7y, (or 75,
and 7);; respectively) produced during the calculation of the estimate for the output,
to drive the non-linear output to a prescribed precision. That is, the algorithm ends
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Te]

277]? + Q(e*a €*> + W(e*) < Atola
k=1

where n¥ stands for any of the following local contributions s, g, 75 or 7§, Ay, iS
a user-prescribed desired final accuracy. At each level of refinement, the elements
marked for refinement are those with larger values of the local linear contribution
-

In acoustic problems, the local contributions are not necessarily positive and in
fact, in contrast to what occurs in thermal or elasticity problems, they can be com-
plex numbers. To select the elements with larger local contributions, the modulus
of the values n? is considered, and the elements selected to be refined are the ones
verifying

Ne]
®
n
. 2l
7| = : (3.14)

el

Note that this marking algorithm aims at obtaining elements with equal local er-

ror contribution. However, thisis not equivalent to obtaining a uniform spatial error
distribution, since the elements with larger area are penalized. In order to obtain a
uniform spatial error distribution, the local contributions are weighted by the ele-
ment area yielding the following marking criterion: the elements to be subdivided
are the ones verifying

Ne]
a1, B
> .

where A, isthe area of the element (2, and A, is the area of the whole domain (2.
Note that expressions (3.14) and (3.15) are equivalent in uniform meshes where all
the elements have the same area sincein thiscase A, = Ag/n, is constant.

Other aternative of remeshing criterions can be implemented to refine the ele-
ments at each step of the adaptive refinement algorithm. In (Steffens et al. 2010b),
the two previous strategies are compared with the following alternatives:

e a each step, a fix percentage of the elements are refined, those with larger
contributions |12 or to |n®|/ Ax.

e the smallest number of elements such that the sum of the contributions |7
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Tle]

toward the global error Y~ || from these elements exceeds afix percent-

age of the value.

e al elements on which thelocal error estimate || exceeds afixed percentage
of the largest local error estimate are refined at each step.

3.5 Numerical examples

The performance of the goal -oriented estimates and error indicators described above
isillustrated in two numerical examples. Additional results can be found in Steffens
et al. (2010b) the following acoustic problems: noise transmission in an expansion
chamber and in a cabin car cavity.

In the examples, when reporting the numerical results, 175, = R” (e50), Maqp =
R”(e4p), 5o = RP(epq) and ng,, = RP(eg,,) denote the estimates of the linear
contribution to the error in the quantity of interest n = ¢©(e) obtained by using the
post-processing strategy described in section. Recall that the subindeces exp and
pol indicate the polynomial and exponential fitting, respectively.

In order to see how well the estimators perform, the value of the true error
J(u) — J(ug) or ¢°(e) are required, but the analytical solutions of the considered
problems are not available. An accurate value for the true error is obtained by mak-
ing use of a sufficiently accurate approximation u;, of « in afiner reference mesh,
that is, the estimates are compared with the reference values J(u,) — J(uy) and
nn, = £°(e,) respectively. Note that this reference value can also be recovered from
afaithful representation of the adjoint problem ), since n, = (©(e,) = RY () =
RP(3).

In the examples, the approximations «* and ¢/* used to recover the estimates of
theerrorse* = u* — uy and e* = ¢* — ¢y and its corresponding estimates for the
output n° = RP(e*) and n° = R (e*), are also computed using the same reference
mesh. Noting that n;, = R”(e,) = R” (e;,) reveasthat the quality of the estimates
depends on the quality of the approximationse* ~ ¢;, and c* ~ ¢,.

The accuracy of the approximationsis closely related to the pollution or disper-
sion error. Since the approximations «* and ¢)* are constructed using a constrained
|east-squares technique, the estimates for the error e¢* and * vanish at the nodes of
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the coarse mesh, yielding crude approximations if the solutions presents large dis-
persion errors. Theinfluence of the dispersion error in the estimates for the quantity
of interest is analyzed using the estimates for the dispersion error introduced in
chapter 2. These estimates are denoted by E¢ and E< for the prima and adjoint
problems respectively.

3.5.1 Scattering from a obstacle in a square domain

The first example is the scattering of a plane wave by arigid obstacle introduced in
(Sarrate et al. 1999). The incident wave travels in the negative y-direction inside a
sguare domain which contains arigid body, see figure 3.2.

U;
122
0.5 0.3 0.2
_ i =
0.4
I'r
0.2 1 n
0.4
Q
0.4 0.1 0.4
0.05 0.05

Figure 3.2: Example 1. Description of the geometry and boundary conditions for
the plane wave scattering by arigid body.

Recall that the solution of the scattering problem is composed of a prescribed
incident wave and a reflected wave, namely v = u, + w;. The incident wave is
characterized by its wave number x = 7 and the angle of incidence o = 7 /2. To
reproduce the scattering nature of the problem, no essential boundary conditionsare
imposed and it is assumed that there are no sources in the domain and that the rigid
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obstacle is perfectly reflecting, that is, Vu, - n = —Vu; - n on ['y. On the exterior
boundary, Robin absorbing boundary conditions are applied. Thus, the reflected
wave u, isthe solution of the Helmholtz equation for f = 0 and where the data are
g=—Vu;-nandm = —ix.

For this problem, the quantity of interest is the average of the reflected solution
over the whole domain, that is J; (u,) for Q° = Q, whichisalinear quantity of in-
terest. The behavior of the estimates for this quantity isfirst analyzed for auniform
mesh refinement in a series of unstructured triangular meshes. Three triangular
meshes are considered, starting from an initial mesh of 636 nodes and obtaining the
subsequent meshes by refining each triangle into four new ones.

The finite element approximations for both the primal and adjoint solutions,
computed at the final mesh of the uniform refinement procedure of 9825 nodes, are

1
0%
04

ot

™
| ﬂl |
F ‘l r‘l

Figure 3.3: Example 1. Real part, imaginary part and modulus of the primal solu-

tion (top) and of the adjoint solution (bottom) associated to the quantity of interest
Ji(u,), for k = m computed using the Galerkin method and a mesh of 9852 nodes.

shown in figure 3.3.

Figure 3.4 shows the local elementary contributions to the error in the quantity
of interest for the initial mesh of 636 nodes. Both the local contributions of the
reference values »; and 7; and its estimates computed using the representations
given by equations (3.12) and (3.13) are shown. The estimates are obtained using
the polynomial and the exponential fitting. Note that even though the global error



86 Chapter 3. Adaptivity

quantities n;, and n;, are equal, they represent different elementary contributionsto
the error. The spatia distribution of the estimates is in good agreement with the
reference ones. they properly detect the elements with larger contributions to the
error even though the obtained elemental contributions underestimate its reference
value.

Figure 3.4: Example 1: Local maps of the error in the linear quantity of interest
J1(u,). The distributions on the top are obtained using the representation ¢, that is,
ny;, (Ieft), n5e (Middle) and n%,, (right) are shown. The distributions on the bottom
correspond to n°, that is, n;, (I€ft), n% (Middle) and 1%, (right) are shown.

The convergence of the estimatesis shown in figure 3.5. Two refinement strate-
giesareimplemented: first, the meshes are uniformly refined whereby each triangle
is subdivided into four subtriangles at each step and second, the meshes are adap-
tively refined using the criterion given in equation (3.15).

The singular nature of the solution yields an order of convergence for the uni-
form mesh refinement of O(H*/3) for the quantity of interest, which is equivalent
to O((nnp)%?) where n,,, denotes the number of nodes of the mesh, instead of the
standard convergence rate of O(H*) obtained for regular solutions. As expected,
the use of an adaptive refinement strategy leads to a faster reduction of the error in
the quantity of interest than if a uniform refinement is used.

It can be seen that, in this example, all the estimates provide similar results
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Figure 3.5: Example 1. Performance of the estimatorsfor the error in the quantity of
interest .J; (u,) with auniform and an adaptive refinement strategies. The estimates
are compared with the reference values.

providing an underestimation of the reference values. For comparison, the adaptive
algorithm guided by the reference errors n; and n; are also run. Comparing the
convergence curves obtained for these two local indicators and the ones produced
by the estimates, it can be seen that the estimates perform optimally since they lead
to even dlightly better convergence ratios than the reference errors.

The first and final adapted meshes produced by the local indicator associated
10 N = R? (%) Subdividing at each remeshing step the elements satisfying the
criterion given by equation (3.15) are shownin figure 3.6, along with aintermediate
mesh of the adaptive procedure. The meshes obtained using the other local error
indicators are virtually identical and are therefore not shown.

Sincethe quantity of interest isthe non-weighted average of the solution over the
whole domain, the meshes are refined in the areas where the primal solution presents
larger errors, that is, at the neighborhood of the obstacle where the singularities
occur.

Additional results for this example can be found in Steffens et al. (2010b) in-
cluding the influence of the dispersion error in the estimates for the quantities of
interest and the behavior of the estimates for the non-linear quantity of interest
Jo(u,), that is, the average of the squared modulus of the reflected solution over the
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Figure 3.6: Example 1: First, intermediate and final adapted meshes obtained using
the local error indicators provided by the estimate n%,, with 857, 3229 and 13852
nodes respectively, for the quantity of interest .J; (u,).

boundary strip I'® depicted in figure 3.2.

3.5.2 Radar wave problem

This example involves the scattering from an acoustically hard obstacle. In this
case the obstacle is composed of three ellipses, see figure 3.7. Two different com-
putational domain containing the ellipses are considered: rectangular domain of
dimensions 30 x 20 and acircular domain with radiusr = 25.

This problem was developed as a benchmark problem for the Industrial and
Academic Database Workshop held in Finland in March 2010. In particular, the
rectangular geometry was develop to study the inverse problem of recovering a
target pressure on the surface of the two small ellipses. The objective of the inverse
problems was to recover the position of the small ellipses. Although the original
goal was to study the full inverse problem, the performance of different methods
was also studied for smaller involved subproblems. In particular, interest was placed
in studying the behavior of adaptive algorithmsfor the computation of the acoustic
field either in global norms or in specific quantities of interest.

Here, this benchmark test is used to analyze the proposed adaptive refinement
strategy. Although the most relevant quantity of interest for this problem is the
scattering cross section, here an initial not-so-ambitious goal has been considered:
obtai ning the average of squared modulus of the scattered solution on I'® and Q° re-
spectively. For aproper definition of the problem see: http://jucri.jyu.fi/?q=testcase/5.

Consider the scattering problem of computing the reflected wave u, solution of
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Figure 3.7: Example 2. Description of the geometry and boundary conditions for
the plane wave scattering by tree rigid ellipses where the exterior boundary is de-
scribed by arectangular form (left) and a circular one (right).

the Helmholtz equation with f = 0. Neumman boundary conditions are applied
on the boundary of the obstacle, Vu, - n = —Vu; - n, and first order Bayliss-
Gunzberger-Turkel (BGT) non-reflecting boundary conditions are applied to the
fictitious boundary

Vu, - n = mu, = —iku, + gur, (3.16)

where ( isthe curvature of the surface of the scatterer. For the case of arectangular
exterior boundary ¢ = 0, and equation (3.16) reducesto a standard Robin condition,
which is equivaent to a zero-order BGT-0 condition. It is known that a BGT-0
boundary is not very accurate in practical implementations (Ihlenburg 1998). For
the circular exterior boundary of radiusr, the curvatureisgiven by ¢ = 1/r. Thus,
the circular domain approximation is expected to yield smaller errors due to the
approximation of the boundary conditions.

As mentioned before, the ssmplified problem of predicting the noise (an even-
tually reducing it) in a specific area of the domain is considered. For this, the aim
is placed in measuring the modulus of the reflected solution. Specifically, for the
example with the rectangular boundary, the output of interest is the average of the
squared modulus of the solution over the boundary strip I'® shown on the left of
the figure 3.7, namely J,(u,). For the example with circular boundary, the quantity
of interest is the normalized L?-norm of the squared modulus of the solution over
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the subdomain Q© shown on the right of the figure 3.7, namely J;(u,). Note that,
for simplicity of computation in the circular region, instead of considering a strip
inside the domain, a subdomain Q2 isused. In this case, Q° is obtained from I'°
by expanding the strip to awidth of 1m.

Figures 3.8 and 3.9 show the Galerkin approximations of the primal and adjoint
problems both for the rectangular and circular geometries for two wave numbers
k = m/4 and k = 7, respectively. As expected, both approximations provide
similar results for the acoustic field surrounding the obstacles.

N o
C o © -

002 0 o002 oos 3 002 -001 005 006 004 002 0 002 004 0.8 004 002 0 002 004 006 008

Figure 3.8: Example 2: Galerkin finite element approximation of the primal prob-
lem (top) and of the adjoint solution (bottom) for the waver number x = 7/4 and
for the meshes of 16212 and 26584 nodes, corresponding to the problems with rect-
angular (a) and circular (b) exterior boundaries, respectively.

First, the error in the linear contribution ¢$ (u,) is analyzed for a uniform mesh
refinement in a series of unstructured meshes for both wave numbers. Table 3.1
shows the values of the reference relative errors, p, = (§(ep,)/lS (ugy), and its
corresponding estimates p5,,, = 115,/ 05 (wr) and pS, = 15,/ (S (uy) dongwiththe
estimates for the relative dispersion error pS, = E5, /s and p&, = E§,/k. Note
that while the errors are larger for k = 7 the estimates behave similarly providing
similar relative errors. Since the dispersion error is an important source of error
for this problem, the dispersion error is closely associated to the behavior of the
representations »° and n°. Indeed, representation using the recovered adjoint error
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Figure 3.9: Example 2: Galerkin finite element approximation of the primal prob-
lem (top) and of the adjoint solution (bottom) for the waver number ~ = 7= and for
the meshes of 16212 and 26584 nodes, correspondent to the problems with rectan-
gular (a) and circular (b) exterior boundaries, respectively.

e* isdlightly better than the representation using the recovered primal error e*. Thus,
the dispersion error can be used to choose the error representation from which to
obtain the approximation for the output.

Note also that increasing the value of x does not involve a deterioration of the
estimates. In fact, in this example, the effectivity indices improve. Indeed, looking
at the representation ,°, the effectivity index pg,,/ s is decreasing from 0.58 to 0.40
in the in the first mesh, and from 0.89 to 0.81 in the final mesh.

It is worth noting that a similar behavior is obtained for the problem with rect-
angular boundary and the quantity of interest Jo(u,).

Table 3.2 shows the estimates obtained for the quantity of interest .J5(u,) for
the parameter x = 7/4 using three uniformly refined meshes for the rectangular
geometry. In order to illustrate the influence of the different terms contributing to
the error in the quantity of interest, the linear and quadratic contributions are shown
separately. As can be seen, the linear term provides a very good inside to the total
error since the quadratic term converges rapidly to zero. In this example, for al
the meshes, the dispersion error is smaller for the adjoint problem which causes the
representation ° to be more accurate than 7°.
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k=m/4
oy | oon | Pee | Pae | PEe | Pae
1711 | 0.1006 || 0.0590 | 0.0472 || 0.0429 | 0.0468
6713 || 0.0690 | 0.0353 | 0.0305 | 0.0124 | 0.0131
26584 | 0.0279 || 0.0248 | 0.0233 || 0.0030 | 0.0031
R=T
oy | oon | Pee | Pae | PEe | Phe
1711 | 0.8873 || 0.3563 | 0.3430 || 0.1101 | 0.1906
6713 | 0.7341 | 0.2753 | 0.2699 | 0.0994 | 0.1002
26584 | 0.1313 || 0.1067 | 0.0780 || 0.0431 | 0.0504

Table 3.1: Example 2: Estimates for the error in the linear term ¢S (e;,) relative
to ¢ (uy) and relative dispersion error for the primal and adjoint problem for a
uniformly refined set of meshes.

The convergence of the estimatesfor a uniform and an adaptive procedure using
the strategy given in equation (3.15) are shown in figure 3.10. Note that the adaptive
refinement leads to a faster reduction of the error and it can be seen that the local
indicators associated to the estimates behave properly since the convergence curves
of the estimates are in good agreement with the reference ones. For k = /4,
the curve associated to the reference estimate 7, and a uniform refinement has a
convergence of O(n,,)**. However, for the estimates 75,, and 75, thereis a short
range where the solution isin a preasymptotic stage (Ihlenburg 1998). Note that as
the wave number  grows, for instance x = , the preasymptotic range isincreased
due to dispersion errors.

Figure 3.11 shows the local elementary contributions of 7g, to the error in the
guantity of interest in the initial mesh of the problem for both wave numbers and
the rectangular geometry. Also, the intermediate and the final meshes produced by
the adaptive procedure associated to this estimate are shown in figure 3.12. Note
that the adaptive procedure refines the neighborhood of the obstacle but also refines
around the boundary strip, where the solution is evaluated to compute the quantity
of interest.

Finally, figure 3.13 shows the elements marked to be refined for the problem
with circular boundary in the first step, in on intermediate mesh and the final mesh
produced by the adaptive procedure associated to the estimate 7y, for the wave
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number of nodes
1065 | 4123 | 16212
J(up) 3.3862e-2 | 4.2634e-2 | 4.7342e-2
J(ug) 2.4265e-2 | 3.7859e-2 | 4.5476e-2
J(ug) +n°+ Q(e*,e*) || 2.6712e-2 | 3.993%-2 | 4.6638e-2
J(ug) +n°+ Qe e*) || 2.6622e-2 | 3.9867e-2 | 4.6588e-2
n° 2.4350e-3 | 2.0785e-3 | 1.1621e-3
ne 2.3456e-3 | 2.0068e-3 | 1.1117e-3
Q(e*, e*) 1.2002e-5 | 1.2984e-6 | 1.0155e-7
E* 5.9456e-3 | 1.4779e-3 | 3.5560e-4
E* 8.7771e-3 | 3.9217e-3 | 1.5675e-3

Table 3.2: Example 2: Estimates for the non-linear quantity of interest J(u,) for
k = m/4 and for theits error, including the linear and and quadratic contributionsto
the quantity of interest and the dispersion errorsfor the primal and adjoint problems.

number x = /4.

It can be seen that the regions refined in the both geometries are very similar.
However, since the circular domain is slightly bigger, in this case the adaptive pro-
cedure hasto refine areas not included in the rectangular domain.

3.6 Summary

In this chapter a simple strategy for guiding goal-oriented adaptive procedures has
been presented, based on the post-processing techniques introduced in chapter 2.
Two different representations for the error in the quantities of interest have been
studied which provide similar results. It has been shown that the accuracy of these
representations, which involve the post-processing of either the primal or adjoint
finite element approximations, is related to the dispersion error of its corresponding
problems.

The adaptive procedure is valid both for linear and non-linear quantities of in-
terest. However it has been shown that the linear part of the quantity of interest is
the leading term, since the higher order contributions converge faster to zero.

The performance of the adaptive procedure istested in comparison with uniform
refinements of the computational mesh. As expected, the adaptive refinement leads
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estimates for (© (e)

210°
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number of nodes

210° 510°
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Figure 3.10: Example 2: Convergence of the relative error for the quantity of in-
terest Jo(u,) for k = w/4 (left) and k = 7 (right), respectively for uniform and
adaptive processes in the reference solution compared with the enhanced solutions.

Figure 3.11: Example 2: Loca maps of the error in the linear term contribution to
the quantity of interest J»(u,) using the representation 7, for x = /4 (left) and

k = 7 (right).

to afaster reduction of the error.
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Figure 3.12: Example 2: Intermediate and final adapted meshes for the rectangular
exterior boundary. For x = 7/4 (top) with 3050 and 17916 nodes and for k = 7
(bottom) with 3842 and 23635 nodes.
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Figure 3.13: Example 2. Elements to be refined in the first step highlighted for
the strategy proposed (left) and the intermediate (middie) and final (right) adapted
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Chapter 4

Conclusions

This chapter summarizes the main achievements and conclusions and also provides
some ideas for future research.

The main contributions of thiswork are summarized in threeitems, al addressed
to obtaining error estimates for outputs of interest for wave propagation problems
described by the Helmholtz equation.

Thefirst contribution is a simple strategy to assessthe error in the wave number
of the Helmholtz problem, both for standard Galerkin and stabilized formulations.
Theintroduced strategy isbased on the determination of the numerical wave number
that better accommodates the numerical solution. Compared to other goal-oriented
error estimation strategies, the approach proposed in this work is innovative be-
cause it adopts a new paradigm. A distinctive feature of this method is that the
error estimation procedure is devoted to obtain the numerical wave number of the
approximate solution instead of the exact one, which is data for the problem. An
enhanced approximation is obtained from the finite el ement solution using asimple
local least-squares technique. Once the enhanced solution is obtained, the associ-
ated numerical wave number is readily recovered using a simple closed expression.

It is worth highlight that the behavior of the estimates obtained for the dis-
persion error reaffirm that using stabilized approximations substantially improves
the performance of finite element computations of time-harmonic acoustics at high
wave numbers. Unfortunately, the dispersion error for the Helmholtz equation can
not be totally avoided by using stabilized formulations, as confirmed by the new
a posteriori error technique. Moreover, the error estimates provide reasonable ap-
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proximations of the reference errors, in agreement also with the measured val ues of
the dispersion error in the ssmple cases where they can be evaluated. In practical ap-
plication the results match the expected distributions and converge at the predicted
rates.

Second, a new improved recovery technique is developed to take advantage
of the nature of the solutions of wave problems. The strategy proposed to assess
the dispersion error requires obtaining an inexpensive approximation of a modified
problem, using post-processing techniques. The standard polynomial |east-squares
technique is replaced by an new exponential fitting, yielding much sharper results
in most applications. However, both the error estimates computed using the poly-
nomia and the exponential fitting provide reasonable approximations of the true
errors. Besides, a simple combination of both, polynomial and exponentia fitting,
is proposed for the cases where the solution is extremely complicated and the expo-
nential fitting failsto recover aproper approximation in someregions of the domain.

Finally, anew goal-oriented adaptive strategy is proposed. Thisstrategy isbased
on the post-processing techniques discussed above. The proposed procedureisvalid
both for linear and non-linear quantities of interest. However it has been shown that
the linear contribution to the quantity of interest is the leading term. Two differ-
ent representations to recover the error in the quantity of interest are studied, both
providing similar results. It has been shown that the accuracy of these representa-
tions, which involvethe post-processing of either the primal or adjoint finite element
approximations, is related to the dispersion error of its corresponding problems.
Moreover, the performance of the adaptive procedure compared with an uniform
refinement leads to a faster reduction of the error. The proposed error estimation
procedure properly identifies the areas most contributing to the error in the quantity
of interest and consequently the adaptive procedure yields adapted meshes which
provide accurate results.

4.1 Future developments

The work carried out in this thesis leaves some open research lines that will be
studied in the near future. We suggest the following lines:
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e First, some applications have been considered in goal-oriented error estima-
tion and adaptive techniques for the wave propagation problem modeled by
Helmholtz equation. However, it would be interesting to analyze the behavior
of the estimates for more types of quantities of interest in order to confirm its
accuracy and also to reaffirm whether the method is sensitive to the disper-
sion error for high wave numbers. It would be also interesting to study the
described goal-oriented mesh adaptivity technique in real-life problems.

e Second, agoal-oriented mesh adaptive procedure has been derived in the con-
text of the standard Galerkin method. This technique could be extended to
able to assess stabilized formulations.

e Third, as discussed in this thesis, the lack of precision in most simulations
of the Helmholtz equation is mainly due to the dispersion error. In thiswork
a precise analysis of the dispersion error arising in standard and stabilized
finite element methodsis given. However, as described in the chapter 1, there
are many aternativesto alleviate the dispersion appearing in the simulations.
An extension of the a posteriori error estimate for the dispersion error pro-
posed in this thesis to these methods would provide a general framework for
comparing the performance of the different methods.

e Fourth, it would be interesting to extend the error estimation and adaptivity
procedures developed in this thesis to the Berkhoff equation, since a goal-
oriented adaptive strategy based on post-processing techniques can be easily
applied tothisproblem. It isworth noting that in this case the error assessment
in the wave number becomes more complex because the wave number is not
constant over the whole domain since it depends on the depth. Thus, it is not
possibleto obtain aglobal estimate for the error in the wave number but it has
to be estimated locally and maps of the dispersion error have to be build.

e Finally, since the Berkhoff equation can be seen as a Helmholtz equation with
non-constant coefficients. Thus more general problem could also be studied.
It would be interesting to propose alternative methods aiming at reducing the
dispersion error in this context. Some very preliminary results have been
obtained in this respect.
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1. Introduction

The numerical simulation of acoustic problems requires an
accurate answer to properly predict their performance. In the
low frequency range domain the finite element method (FEM) is
a standard tool for solving the acoustic equations. In the medium
and high frequency ranges the end-user should be concerned by
the errors associated with the numerical discretization. In practice,
two components of the error are clearly identified in this frame-
work: interpolation error and pollution error. The classical interpo-
lation error decays with the mesh size as predicted by standard a
priori error estimates. The behavior of the pollution error is more
complex: the convergence rate predicted by the a priori estimates
depends on the range where the mesh size lies (relative to the
wavelength) [1].

In practice, the end-user of a finite element acoustic computa-
tion is concerned with the accuracy of the solution in terms of
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the dispersion, the error committed in the evaluation of the wave
number, k. Paradoxically, this is not because the value of x is a
quantity of interest that has to be evaluated accurately. In fact,
the exact value of x is known a priori as part of the problem data.
The overall quality of the numerical solution is however associated
with the error in the approximation of x.

The standard approach for goal oriented error estimation and
adaptivity is based on the representation of the error in a quantity
of interest obtained using an adjoint problem [14,17]. The solution
of the adjoint problem is also denoted extractor and the corre-
sponding error representation combines the extractor and the
original solution. Thus, the error assessment for the quantity of
interest is reduced to assess the error in energy norm of this auxil-
iary problem. This strategy cannot be used when the quantity to be
assessed is the wave number. This is because there is not a proper
extractor associated with this quantity, k. Moreover, as already
noted, the exact value of « is a priori known. This reverts the final
goal of the error assessment technique. The target of the error esti-
mation strategies is in standard cases to find a better approximation
than the one provided by the numerical solution, uy, and then com-
pare them. In the present situation, this is somehow reverted to find
the actual approximation of the quantity of interest provided by uy,
say Ky, and to compare it with the exact value k. Summarizing,
assessing the error in x requires a complete different paradigm.
The quality of the solution is assessed via the approximation of a
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quantity which is exactly known. The numerical wave number xy, is
unknown and has to be evaluated.

The first problem to face is to find a proper definition for xy.
Heuristically, the wavelength of the approximate solution is the
distance of two consecutive local maxima (or minima). Although
this represents a precise definition for 1D waves, it cannot be easily
generalized to higher dimensions. Moreover, it cannot be con-
verted into an explicit functional output of the numerical solution.
One definition for xy is implicitly used in a priori analysis, based on
the idea of fitting the numerical solution into a modified equation.
Here, this concept is extended such that it can be exploited in a
posteriori error assessment setting.

Namely, this paper introduces a technique to assess the value of
Ky based on finding the wave number of a modified problem which
better accommodates the numerical solution uy. This approach is
inspired by the a priori estimates developed in [12].

The idea is also extended to find a local indicator of the error in
the wavelength. This local quantity is assumed to measure the abil-
ity of the local discretization (in a given portion of the domain) to
properly capture the wavelength. The possible use of this informa-
tion to adapt the mesh and reduce the overall error is beyond the
scope of this paper but is part of the work in progress.

The remainder of the paper is structured as follows. Section 2
introduces the notation presenting the problem to be solved, the
finite element formulation and the concepts of dispersion and pol-
lution effect in this type of problem. The basic lines of the a priori
analysis performed in [12] are briefly sketched in Section 3. Then,
Section 4 is devoted to introduce the a posteriori technique pro-
posed to assess the error in the wave number. A local version of
the estimate providing a spatial error distribution for adaptive pur-
poses is introduced in Section 5. Finally, Section 6 contains numer-
ical examples showing the good behavior of the proposed
technique both in academic and practical examples.

2. Problem statement
2.1. Acoustic modeling: the Helmholtz equation

The presentation and notation introduced by Ihlenburg [11] is
followed in the remainder of this section.

The transient acoustic problem consists in obtaining the un-
known pressure field P(x,t), taking values for x € Q c R? (d being
the dimension in space, d = 1, 2 or 3). The field P(x,t) is the solution
of the following partial differential equation:

1P

AP=_—-"_
c2 at?’

M
where c is the speed of sound in the medium.

The pressure time dependency is eliminated assuming a har-
monic behavior and selecting an angular frequency o, namely

7 )

where u(x) is the complex spatial distribution of the acoustic pres-
sure and i the imaginary unit. Substituting (2) into (1), the wave
equation reduces to the Helmholtz equation:

Au+K*u=0, 3)

where k := w/c stands for the wave number.
The physical pressure is the real part of the complex unknown
u. The velocity v is proportional to the gradient of pressure:

P(x,t) = u(x) exp(iwt)

Vu = —ipcicv, (4)

where p is the density of the fluid.
A complete definition of the Boundary Value Problem to be
solved requires adding to Eq. (3) a proper set of boundary condi-

tions. For interior acoustic problems, three types of boundary con-
ditions are considered: Dirichlet, Neumann and Robin (or mixed).

The Dirichlet boundary conditions prescribe values of the pres-
sure on part of the boundary, say I'p C 92, where u is prescribed to
be equal to a given value u, that is

u=u on/lp. (5)

On the Neumann part of the boundary I'y ¢ 9Q the normal compo-
nent of the velocity v is prescribed to be equal to 7,, namely
u _ ipcK,
on PRI
The prescribed value 2, corresponds to the normal velocity of a
vibrating wall producing the sound that propagates within the
medium.

Finally, on the Robin part of the boundary I'y C 92 the velocity
is imposed to be proportional to the pressure, that is

on I'y. (6)

Z—:i = —ipckAsu on Iy, (7)
where the coefficient A, is the admittance and represents the struc-
tural damping. This type of boundary conditions is associated with
absorbing walls. For A, = 0 it coincides with the homogeneous Neu-
mann boundary condition, standing for a perfectly reflecting panel.
For particular case of plane waves, the value A, = 1/pc describes a
fully absorbent panel.

In order to get a well posed Boundary Value Problem, the three
parts of the boundary must cover the whole boundary, that is
0Q=TpUTIyUTk%.

The weak form of the Boundary Value Problem defined by Eqgs.
(3), (5)-(7) is readily expressed in its weak form using the corre-
sponding natural functional spaces. The space for the trial func-
tions is U= {u e H'(Q), uly, =u} while the space for the test
functions is V = {v € H'(Q), v|;,, = 0}, H'(Q) being the standard
Hilbert space of square integrable functions with square integrable
first derivatives.

Thus, the weak form of the problem reads: find u € U such that

YveV, (8)

where the bilinear and linear forms are defined as follows:

a(u,v) =1(v)

a(u,v) ::/Vu-VﬂdQ— Kzui/dQJr/ ipckAupdl and
Q

Q Iy

I(v) := —/ ipckvyvdl

I'n
and the symbol - denotes the complex conjugate.
2.2. Finite element approximation

The discrete counterparts of U and V are the finite element
spaces Uy c U and Vi C V associated with a mesh of characteristic
element size H. Thus, the discrete finite element solution is the
function uy € Uy such that

a(uy, vy) = l(vy) Yoy € Vy. 9)

The finite element solution uy is expressed in terms of the basis-
functions N; spanning Upy:

n
uH:ZNjuj:NuH, (10)
=
where u;, for j=1,2,...,n, are the complex nodal values,
N = [Ny,No,...,Ny] and uf} = [uy, Uy, ..., Uy).

The matrix form of (9) reads

(Ky + ipckA,Cy — K*My)uy = —ipcrcfy, (11)
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where Ky, Cy and My are the so-called stiffness, damping and mass
matrices defined by

N'NdI' and

I'y

Ky ;:/(VN)T(VN)dQ, Cy =
Q

My = / N'NdQ.
Q

Note that the damping matrix Cy accounts for the Robin boundary
conditions while the right-hand side term vector fy given by

fy:= [ N'v,dl

I'n
includes the effect of Neumann boundary conditions.

2.3. Dispersion and pollution effects

The error introduced in the numerical solution of wave prob-
lems has two different components: interpolation error and pollu-
tion error. The interpolation error is the classical error arising in
elliptic problems and pertains to the ability of the discretization
to properly approximate the solution. The interpolation error is ob-
tained by simply using the exact values of u at the mesh nodes x;,
j=1,2,...,n:

n
Interpolation error = u(x) — zNj(x)u(xj).
j=1

In standard thermal and elasticity problems (i.e. problems for
which the bilinear form a(u, ») in (8) is symmetric as positive-defi-
nite, that is, induces an inner product), the error in the finite ele-
ment solution is equivalent to the interpolation error, and
converges with the same rate. This error is local in nature because
it may be reduced in a given zone by reducing the mesh size locally
in this zone.

In wave problems, in particular in the solution of the Helmholtz
equation, a new error component has to be considered which is re-
ferred to as pollution error. This error component is especially rel-
evant in the framework of Helmholtz problems due to the blowup
of the inf-sup and continuity constants of the weak form when the
wave number is large (i.e. the inf-sup constant tends to zero and
the continuity constant tends to co as x tends to co). In transient
wave problems, pollution is associated with the variation of the
numerical wave speed with the wavelength. This phenomenon re-
sults in the dispersion of the different components of the total
wave. In the steady Helmholtz problem, the word dispersion is also
used and corresponds to the error in the numerical wave number,
Ky, and it is therefore identified with the pollution. In other words,
the FE error is decomposed into two terms which, in the case of
wave problems, behave completely differently:

n
FE error = u(x) — > N;(X)y;
=

= Interpolation error + Z}lle(x)(u(xj) —u).
S —
dispersion/pollution

This is illustrated in Fig. 1. The second term in this estimate charac-
terizes the pollution error and is denoted by ey. This error compo-
nent is related to the phase difference between the exact and FE
solutions, that is the dispersion.

Much attention has been paid to the a priori analysis of the pol-
lution/dispersion error, see for instance [4,12,13]. As shown in Sec-
tion 3, the pollution term converges at a different rate, lower than
the standard interpolation error. The pollution effect may be sup-
pressed only in 1D problems, as noted in [2,3]. In higher dimen-

1
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0.6 \ I
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Fig. 1. lllustration of the errors arising in the approximation of the Helmholtz
equation. The exact solution (solid line, smooth) and interpolant (dashed line)
coincide at the nodes, the FEM solution reproduces approximately the shape of the
wave with a larger wavelength (ky < k).

sions, pollution affects every numerical scheme and cannot be
avoided [4].

3. A priori error assessment

The a priori error analysis is performed studying a simple 1D
case [12]. This analysis is recalled here because its basic rationale
is useful in the following. The analysis is based on considering a
modified problem and identifying the parameter of the modified
problem that better accommodates the FE solution.

3.1. Modified problem

A modified Helmholtz equation is introduced as

Aty + KX Uy = 0. (12)
Note that in the 1D case, this reduces to

d*u

dxz'” + K2 Uy = 0. (13)

Therefore, in 1D case, supposing that Q = (0,1), the solution e~ is
obtained from the characteristic solutions by selecting the following
boundary conditions: u,(0) = 1 and uj,(1) = ixu(1).

The a priori analysis aims at determining the value of x,, that
better accommodates the numerical solution of the Helmholtz
equation. This value x,, is identified with the discrete wave num-
ber and it is denoted by KZ” (the superscript pri stands for a priori)
(see Fig. 2).

To this end, the patch of elements surrounding node x; in a 1D
mesh is considered, see Fig. 3. Let N;_;, N; and Nj,; be the linear
shape functions corresponding to the nodes x;_;, X; and X;.1, which
are consecutive in the mesh and are the only ones involved in the
equation for node x;. The discrete equation corresponding to node
X; reads

Ru;_y + ZSUj +Ruj = 0, (14)
the coefficients R and S being defined as
R:=-1 —%(KH)Z and $:=1 —%(KH)Z

and u; the nodal unknown at node x;. Noting that X; ; = x; — H and
Xj11 = X; + H, using un,(X) = e * and replacing x,, by «}" in the dis-
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Fig. 2. Illustration for the 1D case of the exact solution u (solid thinner line), the
approximate solution uy (dashed line) and the solution of the modified problem u,,
(thicker solid line) for k,, = x}", coinciding with uy at the nodes.

N1 N; Nit1
Xj-1 Xj Xj+1
—
H

Fig. 3. Nodes surrounding x; in a 1D linear FEM mesh and their corresponding
shape functions.

crete equation (14) yields the following expression (see [12] for
details):
; 1

i H ~ KcH — 5 (kH)? + O((kH)*). (15)
Consequently, the following a priori estimate for the dispersion er-
ror is defines as
13H?

24
Next section introduces an a posteriori error estimation technique
that is inspired by the derivation of the above a priori estimate.

B - i (16)

4. A posteriori error estimation of the wave number

The standard approach to obtain an error estimate in some
Quantity of Interest (Qol) defined by a linear functional is to ob-
tain an error representation using an adjoint problem. The ad-
joint problem for linear problems is similar to the direct one
but with different loads (source term and/or boundary condi-
tions). The error representation is an expression of the error in
the Qol as an energy product of the errors of the direct and ad-
joint problems [1].

Recall however that the aim is here to assess the error in the
wave number x, which is the current Qol. The error assessment
using an adjoint problem and the corresponding error representa-
tion is not applicable for the wave number Qol. This is due to two
reasons. First, there is no linear functional extracting the wave
number (or the wavelength) of an arbitrary function u. Second, in
this case the value for x is known for the exact solution u (it is an
input data!) but not for the numerical solution uy : x is known
but xy is unknown. The strategy of the error estimate is reversed
in this case. Instead of devoting effort to obtain a better approxima-
tion, as close as possible to the exact solution and then, compare it
with the numerical result, here the effort has to be oriented to ob-
tain the wave number of the approximate solution.

A new approach to a posteriori error estimation is introduced
here, based on the ideas of the a priori analysis sketched in Section 3.

4.1. Direct and inverse solution of a computable modified equation

Recall that, in the a priori analysis, a modified problem is intro-
duced into which the numerical solution can be somehow injected.
The same idea is used here in an a posteriori setup. To do that, a
computable modified problem has to be defined on a computable
basis as it is standard in error estimation procedures [9,15]. To this
effect, the exact modified problem is replaced by a reference one,
associated with a finer mesh of characteristic element size h < H.
Thus, the solution of the modified problem is a nodal value vector
u,, (in the finer h-mesh) such that

Ky + ipCAnKkinCh — K2 MUy = —ipcKnfh. 17)

Note that this can also be solved as an inverse problem by consid-
ering the solution u,, as input. Then, for the given u,, the inverse
problem is finding x,, such that u,, is the solution of (17). This is
performed minimizing the residual norm.

For a given u,,, the residual is defined as a function of the wave
number K, that is

E(Km; Un) = Ky + ipCAnKmCh — K2 Myt + ipckmfy

= ag + a1 Ky + a2, (18)
where
and a, = -M,u,,.

ap = Kyu,, a; =ipc(ACruy, + f)

Note that given u,,, the squared residual norm r'r (the symbol ’
stands for the conjugated transpose, that is #’ = #") is a fourth de-
gree polynomial in x,,, namely

F(Km3 ) = 'Y = Co + C1Km + CoK% + C3K3, + Cakpy, (19)
where
Co = apag, €1 =aya; +ajap, C;=aya; +aya+aja,

3 =aja, +aja; and ¢4 = aja,.

Thus, for a given value of u,,, the wave number «,, minimizing the
squared residual F(kp;uy,) is explicitly found by solving the cubic
equation

AF
dK,

Note that despite the fact that vectors a;, for i =0,1,2 are complex,
coefficients c;, fori=0,1,2,3,4, are real and there is at least one real
root of (20). In the case the three roots are real, two of the roots are
associated with local minima because F is a nonnegative function.
The root selected is the one providing the absolute minimum pro-
vided it is not negative: in all the examples it coincides with the
root closer to the exact value «.

In the next section, this idea is used to assess the numerical
wave number xy associated with the numerical solution uy. This
is performed selecting u,, properly representing the solution uy.

= €1 +2CKm + 36312, + 4caicd, = 0. (20)

4.2. A new paradigm in a posteriori error assessment: best fitting of the
modified equation

As previously announced, the goal of this section is to select
U, ~ uy, and then define xy as the parameter of the modified prob-
lem that better accommodates u,,,, namely
Ky = arg min F(Kp; Up). (21)

Km
Note that the function u,, is in fact described by the vector of nodal
values u,, representing it in the reference h-mesh.

Thus, an a posteriori error estimate for the wave number can be
readily computed
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E=K-Ky. (22)

The question is now how to select a proper u,, approximating uy.

The idea is to imitate the derivation of the a priori estimate de-
scribed in Section 3. Recall that x was selected as the value of i,
such that u,, was coinciding with uy at the nodes P;,j = 1,2,...,ny,
of the H-mesh. In the 1D model problem selected in Section 3, the
solution u,, is explicitly found as a function of x,, and therefore ky
(in its a priori version, k") is readily obtained.

A similar procedure is proposed here in the context of the dis-
crete modified problem (17) defined in the h-mesh. Now, for a gi-
ven value of K, the solution u, of the modified problem is
subjected to an additional constraint imposing that u,, coincides
with uy at the nodes of the coarse H-mesh, that is at Pj
j: ],2,...,1’1}-’.

That is, for a given value of x, the constrained modified prob-
lem reads

Ky + ipcAnkmCh — K2 Mp]uy,
= —ipcknfrenforcing the additional constraint um\,,J = uH|Pj.
(23)

The additional constraints are simply enforced using the Lagrange
multipliers technique. The resulting solution u, is expressed in
the h-mesh. The residual r associated with the solution uy, is defined
as in (18) and it depends explicitly on u,, through the coefficients c;,
j=0,...,4, and the vectors a;, j=0,1,2. Note that r is not null be-
cause the additional constraints induce unbalanced reaction terms.

Thus, function F is defined and computed exactly as in (19). The
only difference is that now u,, is not given a priori but is a function
of K, obtained by solving (23). Thus, F depends only on x,, but in a
more complex way and, consequently, F is not anymore a polyno-
mial in k,,. The numerical wave number xy is defined to be the va-
lue of Kk, minimizing F. This value results from solving an
optimization problem and the minimum is attained for the value
Ky corresponding to the solution of (23) denoted as u?. Once Ky
is available, the corresponding estimate is readily computed:
E =K - Ky.

Note that for a given ug?, ignoring the value of k,, one could
compute the corresponding vectors and coefficients and derive
the value of x,, solving the cubic equation (20). The result of this
procedure is denoted as k" and the corresponding error estimate
is E™ — j¢ — geimin,

The computation of u™ and kj is computationally unaffordable
in a practical application. The optimization problem requires solv-
ing many times problem (23), which in every occasion results in a
large system of equations in the reference mesh. Consequently, this
can only be performed for academic examples. On the other hand,
once uy is obtained, the computation of k™" is explicit and does
not require solving any system of equations.

It is observed in all the test cases that the values of ky and Kﬁi“
are practically identical. That is, once the function u” is found, the
corresponding wave number is exactly computed solving explicitly
the cubic equation (20).

In any case, both ky and k" behave well in the sense that they
match the a priori estimates described in Section 3 and the mea-
sured values of ky in the cases where such a measure is feasible.

Following this idea, the dispersion error is isolated of interpola-
tion error because the shape of the modified solution in the interior
of the elements of the coarse H-mesh is recovered as the solution of
the constrained modified equation (23).

Remark 1. In order to obtain a computable estimate, the definition
of ky introduced above depends on the selected reference mesh of
characteristic size h. For the sake if simplicity, the dependence of
Ky with h is omitted in the notation. A notation explicitly stating
the dependence of h, for instance xy.,, would be more accurate. The

definition is however consistent in the sense that for h tending to
zero, the limit value k., is actually the solution of a continuous
problem that can be stated as follows.

The continuous counterpart of (23), that is the constrained
modified equation, reads: find u, € #! (Q) such that up = uy at
the nodes of the H-mesh (that is um\P, = UH|p, forj=1,2,...,ny)
and fulfilling

am(KmI, Un, 7/) = Im<Km§ 7/)

for all v € #'(Q) such that vlp, =0 forj=1,2,...,ny, where
U (K3 U, ©) ::/Vu-VZ/dQ—/Kfnui/dQ+/ ipckmAqudll
Q Q I'r
and  ln(Kp; v) := —/ ipcicmvpvdrl.
I'y

Thus, xy is selected as the value of x,, minimizing the residual of
the non-constrained problem. Let us introduce the residual as

R(Km; Um; ©) == by (Km; ©) — Qm (K3 U, V)

for any v in ' (Q). Note that the value of R(K; un; v) is only equal
to zero if v|, = 0 forj=1,2,...,ny. For v functions taking non-zero
values at nodes, the residual is not null. The scalar measure of the
residual R(-) is introduced as

F(inthy) i=  max_ XUmitin: 2)

verr@yoy  [|7]

Thus, the value of ky is retrieved as the value of k,, minimizing F, as
indicated in Eq. (21) (the expression is valid both for the reference
h-solution and the continuous case).

Note that in the case that it exists a value of kp such that the
solution of the non-constrained problem coincides with uy at the
nodes Pj, this value of xy, is precisely xy because for this value and
the corresponding uy,, F vanishes.

The definition of a practical error estimate following this ratio-
nale requires introducing a proper approximation to uy’, resulting
from a computationally affordable procedure.

4.3. Interpolation of uy in the h-mesh

The first and obvious choice is to set u,, as the interpolant of uy
in the h-mesh, [uy],. Since in practice the finer h-mesh is nested in
the coarser H-mesh, [uy], is an exact representation of uy.

For this choice the vector of nodal values u,, is readily obtained:
at the nodes of the coarse mesh P;, for i =1,2,...,ny, U, and uy
coincide. At the rest of the nodes of the h-mesh, the nodal value
is obtained by simple interpolation in the element of the coarse
H-mesh where the node is located.

Once u,, is computed the corresponding value of kit is calcu-
lated analytically solving the cubic equation (20). Recall that the
coefficients cy, 3, c3 and ¢4 depend on the choice for u,,. As previ-
ously said, in the case the three roots are real the one selected is
the absolute minimum of F which in all the test cases coincides
with the closest root to x. Once the value of the numerical wave
number kift is assessed, the corresponding error estimate follows:

E™ = 1 — kit (24)

As it is shown in the examples presented in Section 6, the approx-
imations to x provided with this methodology are not as good as
expected when compared with the measured numerical wave num-
ber (this measurement can be performed in very simple test exam-
ples) or with the a priori estimates. The estimates obtained using
this strategy are not as sharp as desired, with effectivity indices be-
tween 70% and 90% in the simpler example. However, with the
methods proposed below, the effectivity index from 86% to 100%.
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This behavior is explained using the following rationale: the
interpolated function [uy], is not a natural solution of a modified
equation (17). The function [uy], is piecewise linear in the elements
of the coarse H-mesh and no solution of (17) would fulfill this type
of constraint. A typical solution of (17) is smoother, without the
slope discontinuities concentrated in the nodes P; for
i=1,2,...,ny, of the coarse H-mesh. In other words, we cannot ex-
pect to find a value of x, properly accommodating [uy], in (17).

Moreover, in the a priori analysis sketched in Section 3 only the
nodal values of the numerical solution are used to recover the
numerical wave number xy. No information about the value of
uy inside the elements enters the analysis. This makes complete
sense because only the dispersion/pollution part of the error is to
be assessed. Including the information inside the elements would
result in assessing also the interpolation error.

Consequently, in the value of i}t assessed with the a posteriori
strategy described here (using u,, = [uy],), the effects of both the
dispersion error (error in x) and the interpolation error are taken
into account together. Next section is devoted to introducing a
new strategy allowing to assess the dispersion error separately.

4.4. Enhanced solution u* by postprocessing of uy

The methodology introduced in Section 4.2 is not applicable as a
practical error estimation strategy. The error estimation procedure
cannot be based on solving problems in the complete finer refer-
ence mesh. It has been noted also that once the function u®" is
found, the corresponding wave number is fairly computed solving
explicitly the cubic equation (20). The idea proposed here is to
build up an inexpensive approximation of u$’" using a postprocess-
ing technique standard in error estimation analysis [19,8] and
likely having all its features. This approximation is expressed as a
nodal vector in the finer h-mesh and it is denoted by u*. Once
u* is obtained from uy, the corresponding wave number Kj is
readily computed solving the cubic equation (20) and hence
E* = Kk — K.

The enhanced solution is produced locally, in patches of ele-
ments, centered in every element of the mesh. The values of
uy at the nodes of the H-mesh are used as the input data and
a polynomial is fitted using a least squares technique. The de-
gree of the polynomial fitted is larger than the degree of the fi-
nite elements used to compute uy. For every element €,
n=1,...,ng, of the H-mesh, the patch of elements surrounding
Q, is considered. The polynomial fitting the values of uy in the
nodes of the patch is computed. Once the polynomial is obtained
it is evaluated to find the nodal values of u* in the nodes of the
h-mesh lying in element Q, of the H-mesh. This is illustrated in
Fig. 4. This approach allows to recover the natural curvatures of
the solution coinciding with uy at the nodes where it is com-
puted. Calderén and Diez [6] describes the details of the least
squares fitting strategy.

As it is shown in the numerical tests, this strategy provides a
fair and inexpensive approximation u* of the optimal solution
ud™ of the constrained modified problem (23), which is computa-
tionally unaffordable. The corresponding numerical wave number
assessment and error estimate, x and E*, perform well, similarly
as the computationally unaffordable estimates xy and ",

The reference mesh in which u* is supported is described above
as generated by h-refinement. Obviously, the p-refined analogous
strategy is readily defined by just using a higher order H-mesh
and by using the locally fitted polynomial to compute the nodal
values of u* in the p-refined discretization. As it is shown in the
examples, the results produced by the p-refined solution are not
as good. This is probably due to the loss of accuracy observed in
parts of the frequency spectrum when using standard p-refine-
ment, as suggested by Hughes and co-workers [7,10].

4.5. Correction factor introduced to account for the finite size h of the
reference mesh

The estimates introduced in the previous section rely on a ref-
erence discretization of mesh size h which supposedly provides a
more accurate solution than the computed H-approximation. In
practice, h is far from being infinitesimal and it is taken as a subdi-
vision of H, namely h = H/n, with relatively small values of n, (in
the examples n, = 2) in order to lower the computational cost of
the estimate.

Thus, in practice, the values of the assessed error are with re-
spect to the numerical wave number corresponding to the h-mesh,
K. The different values of E obtained in the previous sections are
approximations to x; —ky and not to kK — Ky as it could be
expected.

Here, a correction factor is introduced to account for this fact,
based on a Richardson-like extrapolation strategy [16].

The a priori estimate (16), described in Section 3, is assumed to
hold for both the H-mesh and the h-mesh, that is

13h? 13 H?
K—Kp~—— and K-—Ky~

24 24

It follows that
Kn — Ky =§(H2 -
and using h = H/n, yields
K;,—KH=ﬁ<] —l>

24 n?
That is

n2
K — Ky = (ngiil)(’ch - Kn). (25)

Thus, the factor n?/(n? — 1) (4/3 for n. = 2) is used to correct the
estimates which are, in principle, assessing the error with respect
to K. Using above correction, we are now able to estimate the error
with respect to k.

5. Local version

As previously said, once the recovered function u* is obtained,
the estimate E* is easily computed. Moreover, a local version of the
estimator giving local values of the wave number and, hence, of the
error is also straightforward. The goal is to approximate the value
of the numerical wave number associated with the element Q,,
n=1,...,nq, of the H-mesh. Let us denote this value by «};. The
idea is simply to minimize the local version of the squared residual
(19) corresponding to a patch of elements around Q,. This ap-
proach is simple to implement and computationally inexpensive.

In order to obtain enough information and to properly recover
K}, the patch of elements around Q, must be of size larger than
a wavelength. This often requires using patches of more than one
layer of elements around ,. Fig. 5 illustrates both, the simplest
case of a patch including just the first layer of elements around
Q, and a second patch including two layers of elements, corre-
sponding to a larger wave number.

Thus, the local version of the residual corresponding to patch n
is
r(k") = al + k" + all(k")?, (26)

where r" is a function of k" and af, a] and a} are defined as in Sec-
tion 4, using u* as the modified function.

Then, the approximation for the local wave number ¥, is deter-
mined minimizing the squared local residual:
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Fig. 4. Every element of the H-mesh (darkened in plot a) is associated with a patch (shadowed in plot b). A polynomial is fitted to the values in the nodes in this patch using a
least squares criterion (b). This polynomial is evaluated to obtain the nodal values of the enhanced function u* in the nodes of the refined h-mesh in the element under

consideration (c).

Kl = arg min(r" r"). (27)
en

Recall that solving this minimization problem is a purely explicit
calculation because it only requires finding the roots of (20).

6. Numerical examples

The strategy to assess the error in the wave number presented
in the previous sections is validated in three numerical examples.

6.1. Example 1: 1D strip

The first example is a 1D problem solved in a rectangular do-
main as illustrated in Fig. 6. This simple case allows testing the per-

AL &>
4'&.»%“ Vav,y.
SN S

Fig. 5. Every element of the mesh (darkened) generates a patch of all the elements
in contact with it (shadowed in gray). Two different patches are shown corre-
sponding to required sizes associated with different wavelengths.

formance of the estimates provided by comparing them with the
actual values that, in this case, can be easily measured.

Eq. (3) is solved in the rectangular domain shown in Fig. 6, with
pc=1, A, =-1 and k = 8n (such that the wavelength is 1/4 and
therefore the solution has four complete waves in the domain of
length L=1).

Dirichlet boundary condition is imposed on the left side of the
boundary, Eq. (5) with & = 1, while Robin boundary condition (de-
noted also as ficticious boundary condition) is enforced on the
right lateral side. The boundary condition on the upper and lower
horizontal boundaries are assumed to be Neumann homogeneous
to keep the 1D character of the solution.

The solution u(x,y) of the problem is independent of y and its
analytical expression is

u(x,y) = cos(kx) + isin(kx).

This solution obviously fulfills (3), with Dirichlet boundary condi-
tions (5) and Robin boundary conditions (7), respectively

u(0,y)=1 atx=0,
ou .
—(1,y) = ixu(1
o (129) = iku(1)
Having at hand the analytical expression for u(x,y) allows comput-
ing a direct measure of the error in the wave number or, conversely,
in the wavelength. Let u}, be the average value of the real part of the
numerical solution at x = L (for uniform quadrilateral meshes all the

atx=1.

purely reflecting

prescribed

pressure absorbant

L=1

Fig. 6. Example 1. 1D strip: problem setup.
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nodal values are equal on this line). Then the error in wavelength is
denoted by A and satisfies

u(x=L-Ax =1} (28)
taking the real part of above equation, we obtain

L
Cos(K(L — A%)) = Re(ul) = A — — TCOSWUR) ;. (29)

The wavelength error A/ is equally distributed among the n periods
present in the domain, where n=L// and /= 27/x. Thus the mea-
sure of numerical wavelength is iy = 2+ AZ/n and, consequently

2n
K =—=—. (30)
AH
Thus, the resulting a posteriori measure of the dispersion is
2n
E™® =K — ==, 31)
(/\, + T/)

where A/ is given by (29).

The problem is numerically approximated using quadrilateral
meshes (4-noded bilinear elements), starting from a coarse mesh
of 24 x 2 elements (in the x-direction H=1/24, i.e. 6 elements
per wavelength. The corresponding approximation is depicted in
Fig. 7).

The error estimates described in the previous sections are com-
puted using a refinement factor n, = 2 in order to reduce the com-
putational cost.

The numerical results are summarized in Tables 1-3. Each row
in the tables corresponds to a different mesh. Due to the 1D char-
acter of the problem the meshes are only refined in the x-direction.
The consecutive meshes have two rows of elements. The size of the
element in the x-direction is therefore H = 2/n,. The different va-
lue for xy are displayed in Table 1, that is xP", scmeas jeint  je*

Appl. Mech. Engrg. 198 (2009) 1389-1400

corresponding to the notation introduced above. Table 2 shows
the corresponding error estimates and the effectivity indices with
respect to the measured value, namely
|

0~ = % (32)
Table 3 is analogous to Table 2 but for a p-refined reference discret-
ization, where the correction factor introduced in Section 4.5 cannot
be applied.

The analysis of the results of Tables 1-3 reveals that the esti-
mate E and E™" are yielding very good approximations of the ac-
tual error E™*, Recall however that these two quantities are not
computationally affordable in a practical context and have been
produced only as an academic illustration of the presented para-
digm. The two practical estimates E™ and E* are also showing a
good behavior, especially if the reference mesh is build up using
h-refinement (Table 2). When using p-refinement (Table 3), the
effectivity is degraded probably due to the effect suggested at
the end of Section 4.4. It is worth noting that the estimate E* is,
as expected, sharper than E™,

The convergence of the dispersion error when reducing H is
shown in Fig. 8. Note that the horizontal axis in these plots corre-
sponds to log dof which is equal to —logH up to an additive con-
stant. The plot on the top describes the convergence behavior for
the estimates taking as a reference solution an h-refined one. The
second plot is the analogous with a p-refined reference solution.
The results demonstrate that all the proposed estimates converge
at the due rate, compared with the a priori and the measured dis-
persion errors. Moreover, the h-refined reference mesh estimates
yields sharper results than the p-refined ones in all the tests.

Finally, the spatial error distribution corresponding to the local
(elementary) contributions to the dispersion error as described in
Section 5 is displayed in Fig. 9. The second plot corresponds to a
variant of the problem where the Dirichlet boundary conditions

Pressure
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Fig. 7. Distribution pressure (a) and dispersion effect (b) for wave number «k = 87 in a structured quadrilateral mesh.
Table 1
Example 1: Degrees of freedom dof; number elements n,; interval of mesh H and wave numbers .
dof Nel H K Kpeas Kint Ky Kpin KE
75 48 1/24 23.9844 24.1126 24.4287 24.3595 24.3622 24.3643
99 64 1/32 24.4868 24.5196 24.6672 24.6795 24.6788 24.6989
123 80 1/40 24.7193 247315 24.7980 24.8295 24.8346 24.8610
147 96 1/48 24.8456 24.8513 24.8773 24.9195 24.9233 24.9497
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Table 2

Example 1: Values of the relative dispersion error (%) a priori, measured and for the case h-refined solution with the respective effectivity indices.

dof Epri Emeas Ein[ Hint 0 Emin gmin E* 9*,,
75 4.569 4.059 3.734 0.92 4.102 1.01 4.089 1.00 4.077 1.00
99 2.570 2.439 2.469 1.01 2.405 0.98 2.408 0.98 2.301 0.94
123 1.644 1.596 1.774 1.11 1.609 1.08 1.582 0.99 1.442 0.90
147 1.142 1.119 1.354 1.21 1.131 1.01 1.111 0.99 0.971 0.87
Table 3

Example 1: Values of wave numbers and relative dispersion error (%) correspondent to solution p-refined and the respective effectivity indices.

dof Kn E 0 e Emin gmin Kk E* 0*
75 24.0995 4.111 1.01 24.1088 4.074 1.00 23.4682 6.623 1.63
99 24.5295 2.400 0.98 245311 2.394 0.98 24.1255 4.007 1.64
123 24.7295 1.605 1.00 247324 1.593 0.99 24.4709 2.633 1.65
147 24.8495 1.127 1.00 24.8514 1.119 0.99 24.6703 1.839 1.64

at the left side are replaced by Neumann type boundary condition.
It is worth noting that the local contributions to the dispersion er-
ror are, as expected, sensitive to the selected boundary conditions.

6.2. Example 2: 2D acoustic problem in L-shaped domain

The second example has a full 2D character. The L-shaped do-
main shown in Fig. 10 is considered. The size of the domain is

-1.3 T
Epri
44l ® — — —gmeas ]|
x gt
15+ o g*
« \v4 Emln
16 F * E |
m
o -1.7 1
o
-1.8 1 1
-1.9 1 1
2t 1
21 . . . . . . .
1.85 1.9 1.95 2 2.05 241 2.15 22 2.25
log (dof)
-1.1 T
pri
% E
42+ — — —gmeas 4
o) Eopt
13 v gmin
* E
1.4 -
W sf 1
[
o
- 16 b
A7 F 1
18 F 1
49 F 1
2 . . . . . . .
1.85 1.9 1.95 2 2.05 21 215 22 2.25

log (dof)

Fig. 8. Example 1: Convergence of the error for the h-refined reference mesh (top)
and the p-refined reference mesh (bottom).

set by the values L, =0.8 m and L, =0.2 m. Most of the domain
boundary is of Neumann type, homogeneous everywhere on the
boundary except on the top left edge where the velocity is pre-
scribed to be 7, =1 m/s (this corresponds to a vibrating panel,
see Fig. 10). Moreover, the bottom side is an absorbent material,
corresponding to a Robin boundary condition (7) with A, = 1/pc
m/Pas.

The wave number is x =87, as in the previous example. The
solution computed with a coarse mesh is displayed in Fig. 11.

The estimates E, E™" and E* are computed for three series of re-
fined meshes; structured quadrilaterals, structured triangles and
unstructured triangles. The results are displayed in Tables 4-6,
respectively. The practical error estimate E* produces values that
are reasonable approximations of the more accurate but computa-
tionally unaffordable estimates E and E™".

The convergence of the different series of refined meshes is
shown in Fig. 12. Note that in this 2D case the relation between
the number of degrees of freedom (dof) and H is different, dof is
proportional to 1/H?, i.e. log dof is equal to —2 log H up to an addi-
tive constant.

One can observe in the plots of Fig. 12 that the estimate E* is
behaving similarly to the reference estimates E and E™",

The slope of the curves given by E and E™" is (approximately)
equal to 1 as predicted by the a priori estimate and the slopes asso-
ciated with E* are 0.96, 0.71 (discrepancy due to a bad result in the
first coarse approximation in the series of structured triangular

r 10.028

r 10.026

10.024

0.022

0.02

0.018

Fig. 9. Example 1: Spatial error distribution of the error for the problem for stated
in Fig. 6 (top) and for a variant with Neumann boundary condition of the left side
(bottom).
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Table 4 meshes) and 0.98 for the different mesh typologies. Fig. 13 shows
Example 2: Results corresponding to structured quadrilateral meshes. the Spatia] error distribution for the second mesh of each of the
dof  ng Kn E et Emin o E*

57 36 22.9895 8.528 21.8287 13.146 22.7910 9.317

185 144 24.0795 4.191 24.1039 4.093 24.1424 3.940
657 576 24.8395 1.167 24.8507 1.122 24.9077 0.895

-0.8 T T T T T T
v (o] Eopl
v Em\n
Table 5 A * « el
Example 2: Results corresponding to structured triangular meshes. o
dof  ng Ky E e EZi K E* 12 F 1
57 72 22.6195 10.000 22.5721 10.189 23.9924 4.537
185 288 24.1895 3.753 24.2237 3.617 24.3199 3.234 o4t =4 4
657 1152 24.8495 1.127 24.8734 1.032 24.9306 0.804 ~
8
-16 B
Table 6
Example 2: Results corresponding to unstructured triangular meshes. -1.8 | 1
dof Nel Ky E g Emin KE E* 1 h o
81 120 226195 10000 227151 9619 236310 5975 2T 1 * ]
281 480 24.3095 3.276 24.3470 3.126 24.5641 2.262
1041 1920 24.9095 0.889 249193 0.849 25.0092 0.492 22 . . . . . .
1.6 1.8 2 2.2 2.4 2.6 2.8 3
log (dof)
vibrating panel .0.8 . . . . . .
o Eopt
min
Bl o} v ET
* E
-1.2 1 q
- *
& @ 14t o ]
o *
o
-1.6 B
18 4
5
1 o
2t v ]
1 *
absorbant panel
20 . . . . . .
Fig. 10. Example 2: 2D L-shaped domain and boundary conditions. 1.6 1.8 2 22 24 26 28 3
log (dof)
-1 o ‘ ‘ ‘ : :
o Eopl
\v4 min
* E.
* E
15+ % 4
@ *
o
o
2+ 4
9
1
*
1
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1.8 2 2.2 2.4 2.6 2.8 3 3.2
log (dof)

y 0o 0 X

Fig. 12. Example 2: Convergence of the error in the structured quadrilateral (top),
Fig. 11. Example 2: Real part of the acoustic pressure computed with an structured triangular (center) and unstructured triangular (bottom) series of
unstructured triangular mesh of 281 dof and 480 elements. meshes.
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Fig. 13. Example 2: Spatial error distribution for the problem defined in Fig. 10 in
structured quadrilateral and triangular and unstructured triangular meshes.

absorbant panel

vibrating

W

Fig. 14. Example 3: Description of boundary conditions for the car cavity.

refinement series (meshes with 144 structured quadrilaterals, 288
structured triangles and 480 unstructured triangles).

6.3. Example 3: 2D acoustic car cavity

Noise transmission inside the interior of passenger cars is con-
sidered as a practical application. This example has been fre-
quently used as a benchmark in error assessment for interior
acoustics [5,18].

The size of the domain is characterized by the maximum hori-
zontal and vertical lengths, L, = 2.7 m and L, = 1.1 m, respectively.
The values of the material parameters are p = 1.225 kg/m> (den-
sity) and ¢ = 340 m/s (speed of sound). Fig. 14 describes the geom-
etry of the domain and the boundary conditions: a unit normal
velocity 7, =1 m/s is imposed on the left vertical side. The roof
is considered to be an absorbent panel with A, = 20% m/Pas and
the rest of the boundary is assumed to be perfectly reflecting
(7, =0).

The wave number of the incoming vibrations x =9.7 corre-
sponds to a frequency of 525 Hz. Fig. 15 shows the distribution
of the real part of the pressure and the pressure distribution along
of the line A displayed in Fig. 14. The two curves correspond to a
coarse and a finer computational meshes. Note that, compared
with the finer mesh, the dispersion error in the coarse mesh is
important.

The strategy to asses the dispersion error introduced in this pa-
per is used in a series of uniformly refined FE meshes. The results
are shown in Table 7 and Fig. 16. The estimate E* is showing again
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— — — FEM 469 nodes
— FEM 6556 nodes -~

300

200
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-100

_200 . . . .
0 0.5 1 1.5 2 25

Fig. 15. Example 3: Solution of the pressure field (top) and dispersion effect
(bottom) for 525 Hz.

Table 7
Example 3: Results corresponding to k = 9.7, dispersion error in a uniformly refined
series of meshes.

dof el Ky E e Emin K E*

137 195 9.0618 6.598 9.0831 6.378 8.5908 11.452
469 780 9.5318 1.754 9.5363 1.708 9.5203 1.872
1718 3120 9.6518 0.517 9.6507 0.529 9.6534 0.501

a good performance, fairly approximating the academic estimates
E and E™" and converging at the proper rate (the slope of the line
is approximately 1.2). Finally, the error map is displayed in Fig. 17
and the larger contributions to the error are located at the expected
zones.

An additional numerical experiment is performed for the same
problem as described above but for a larger frequency of 1100 Hz,
that is a wave number x =20.3280. The results obtained are dis-
played in Table 8. The quality of the estimates is also fair for this
larger frequency. A good agreement is observed between the refer-
ence value E and the estimates E™" and E*.

7. Concluding remarks

The strategy introduced is based on the determination of the
numerical wave number ky as the wave number of a modified
problem that better accommodates the numerical solution uy.
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Fig. 16. Example 3: Convergence of the error.

-

Fig. 17. Example 3: Map of the error for the car cavity problem in an mesh
unstructured triangular of 137 dof.

Table 8
Example 3: Results corresponding to x =20.328, dispersion error in a uniformly
refined series of meshes.

dof Ng K E e Emin & E*

469 780
1718 3120

18.7052 7.983
19.9152 2.031

18.8382 7.328
19.9200 2.007

18.8105 7.465
19.8178 2.509

The modified problem is defined on a reference refined discretiza-
tion because the resolution has to be increased to properly describe
the oscillatory nature of the solution. Compared to other goal ori-
ented error estimation strategies, the approach proposed here is
innovative because it adopts a new paradigm. The computational
effort in the error estimation procedure is devoted to obtain the
wave number of the approximate solution xy instead of the exact
one, K, which is known as a problem data. The error estimator pro-
vides reasonable approximations of the actual errors, in agreement
also with the measured valued of the dispersion error in the simple
cases where they can be evaluated. In the practical cases the re-
sults match the expected distributions and converge at the pre-
dicted rates.
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SUMMARY

An estimator for the error in the wave number is presented in the context of finite element approximations of
the Helmholtz equation. The proposed estimate is an extension of the ideas introduced in [28]. In the previous
work, the error assessment technique was devel oped for standard Galerkin approximations. Here, the methodol ogy
is extended to deal also with stabilized approximations of the Helmholtz equation. Thus, the accuracy of the
stabilized solutions is analyzed, including also their sensitivity to the stabilization parameters depending on the
mesh topology. The procedure builds up an inexpensive approximation of the exact solution, using post-processing
techniques standard in error estimation analysis, from which the estimate of the error in the wave number is
computed using a simple closed expression. The recovery technique used in [28] is based in a polynomial least
squares fitting. Here a new recovery strategy is introduced, using exponential (in a complex setup, trigonometric)
local approximations respecting the nature of the solution of the wave problem. Copyright (©) 2009 John Wiley &
Sons, Ltd.

KEY WORDS: Wave problems, Helmholtz equation; A posteriori error estimation; Error estimation of wave
number; Dispersion/pollution error; Stabilized methods.

1. INTRODUCTION

Acoustic wave propagation phenomena are often modeled using the Helmholtz equation, assuming a
harmonic character of the solution. Thus, time-dependent acoustic pressure is represented as p(x, t) =
u(x)e™? for a given angular frequency w, and the unknown u(x) is the spatia distribution of the
pressure. Function u(x) is the solution of the Helmholtz eguation, with an associated wave number
Kk = w/¢, ¢ being the speed of sound [22].
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2 L.M. STEFFENS, N. PARES AND P. DIEZ

Galerkin approximations of the Helmholtz equation are affected by dispersion (or pollution) errors,
that may beimportant especially if thewave number islargewith respect to the mesh size. The pollution
error, as opposed to the standard interpolation error, is global in nature because the error sources affect
(pollute) the solution everywhere in the domain, and not only where the resolution of the mesh is not
sufficient to properly approximate the solution. Thus, the pollution error cannot be removed by local
refinement, even if the quantity to be assessed is defined locally.

The effect of the pollution or dispersion error has been extensively addressed in the literature [23,
24,2, 22, 16, 6, 1] and a priori estimates for the dispersion error are available. Also, a posteriori error
estimates assessing the accuracy of the Finite Element approximationsof the Helmholtz equation either
in global norms or in certain quantities of interest have been proposed [26, 25, 8, 9, 27, 4, 3, 29, 30].
However, the issue of measuring the dispersion error of the approximations of the Helmholtz equation
using a posteriori error estimates was first addressed in [28].

The wave number corresponding to the approximate solution is different than the exact one. The
corresponding error is directly related with the dispersion error and it is, according to practitioners, a
good measurein order to assess the overall quality of the numerical solution. The problem of assessing
theerror in thewave number is addressed in [28] for standard finite element (Gal erkin) approximations.
The proposed error estimation strategy is paradoxical in the sense that, in the error to be assessed, the
obviousinformationisthe exact value « and all the efforts are devoted to compute the value of the wave
number corresponding to the approximate solution. Note that in the usual error estimation business the
situation is the opposite: the approximate value is available and the exact value has to be estimated.

In practice, standard Galerkin methods are not competitive for high wave numbers because
controlling the pollution effect requires using extremely fine meshes. Numerous approaches alleviating
this deficiency have been proposed based on modifications of the classical Galerkin approximation
[2, 5, 15, 18]. The Galerkin/Least-squares method is one of the most popular techniques. It provides
a significant reduction in the dispersion error with an extremely simple implementation using only
standard resources available in finite element codes [17].

Stabilized formulations allow eliminating the pollution effect for one-dimensional problems. In two
dimensions, the pollution effect is reduced substantialy but it cannot be completely eliminated [6].
Thus, also when using stabilized formulations, the end-user of a finite element acoustic computation
is concerned with the accuracy of the solution in terms of the dispersion. In this work, an extension
of [28] is proposed allowing to assess the dispersion error when the approximate solution is computed
either using the standard Galerkin method or the GL S method.

The assessment of the dispersion error aims at obtaining a good estimate of the value of the
numerical wave number, corresponding to the approximate solution. Here the definition of the
numerical wave number provided in [28], based on the idea of fitting the numerical solution into a
modified equation, is adopted. This strategy requires obtaining an inexpensive approximation of the
solution of the modified problem using post-processing techniques. Here, a new recovery techniqueis
introduced, using exponential functions rather than polynomials, to take advantage of the nature of the
solutions of wave propagation problems.

The remainder of the paper is structured as follows. Section 2 introduces the notation and the
description of the problem to be solved along with the standard and stabilized Galerkin formulations.
Section 3 describes the main ideas of the paper. First, the basics of the dispersion error assessment are
reviewed. Then, the extension to stabilized formulationsis described. Finally, the standard polynomial
recovery is recalled and the novel exponential post-processing technique is introduced. Section 4
contains four numerical examples demonstrating the efficiency of the proposed technique both in
academic and practical examples.
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 3

2. PROBLEM STATEMENT

2.1. Acoustic modeling: the Helmholtz equation

The acoustic pressure u(x) is a complex function taking values in the spatial domain Q ¢ R¢ (being
d =1, 2 or 3). Thefunction v is determined as the solution of the Helmholtz equation

—Au—r*u=7f inQ, (@D}

which is stated for a given wave number « as the Fourier transform of the transient wave equation.
Equation (1) has to be complemented with proper boundary conditions on 0€2. For interior problems,
three types of boundary conditions are considered: Dirichlet, Neumann and Robin (or mixed). Thus,
the boundary 02 is partitioned into three digoint sets I'p, I'y and I'g such that 99 = Ip UIn UTg
and its associated boundary conditions are

u=1u onIp, (29)
Vu-n=g onIy, (2b)
Vu-n= Mu onTIkg, (20)

where n is the outward normal to €2 and @, f, g and M are the prescribed data, which are assumed to
be sufficiently smooth.

Remark 1. For interior acoustic wave propagation problems g = —ipckv,, and Mu = —ipckA,u,
where ¢ is the speed of sound in the medium, p is the mass density, v,, corresponds to the normal
velocity of a vibrating wall producing the sound that propagates within the medium and the coefficient
A, istheadmittance and represents the structural damping. For exterior problems, reduced to fictitious
domains, M isalinear operator called the Dirichlet-to-Neumann (DtN) map relating Dirichlet data
to the outward normal derivative of the solution on thefictitious boundary I'r . It isworth noting that in
general thedata g and M depend on the wave number «. A notation explicitly stating the dependence of
k, for instance g(x) and M k), would be more accurate but for the sake of simplicity this dependence
is omitted in the notation.

The boundary value problem defined by equations (1) and (2) is readily expressed in its weak form
introducing the solution and test spacesi/ := {u € H'(Q),u|r, = a} and V := {v € H(Q),v|r, =
0}. Here H'(Q) is the standard Sobolev space of complex-valued square integrable functions with
square integrable first derivatives. The weak form of the problem then reads: find v € U/ such that

a(k;u,v) = l(k;v) Yo €V, 3

where
a(k;u,v) 1= / Vu - VodQ —/ w2ud dQ — Mut dl,
Q Q

I'r

l(k;v) ::/Qf@dﬂ—f—/F godl,

the symbol ~ denotes the complex conjugate, a(k; -, -) isasesquilinear form and [(x; -) is an antilinear
functional depending on « through the Neumann boundary conditions g. The notation adopted marks
the explicit dependence of x on the forms a(k; -, -) and I(k; -). Although not standard, this is useful
in the following to assess the error in the wave number. It is worth noting that the sesquilinear form
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4 L.M. STEFFENS, N. PARES AND P. DIEZ

a(k;-,-) isnot eliptic but it satisfies the inf-sup condition and the Gérding inequality. However, for
large wave numbers «, the upper bound for the inf-sup condition is too crude [22]. Moreover, the inf-
sup property is not carried over from V' to a discrete subspace yielding to a loss of stability which
produces spurious dispersion in the discrete approximations.

2.2. Galerkin finite element approximation

The Galerkin approximation is obtained from a partition 75 of the domain €2 into nonoverlapping
elements and introducing the discrete spacesi/y; C U and Vg C V associated with the parameters
of the discretization, namely the characteristic element size H, and the degree of the polynomial
approximation inside the elements p. The discrete finite element solution isthen u ; € Uy such that

a(kyumg,v) =1l(k;v) Yo € Vy. 4

In practice, low-order Galerkin approximations to the Helmholtz equation involving high wave
numbers are corrupted by large dispersion or pollution errors due to the loss of stability of a(x; -, -).
The wave number x characterizes the oscillatory behavior of the exact solution: the larger the value
of k, the stronger the oscillations. Hence the rule of thumb is used in computations: each wavelength
is resolved by a certain fixed number of elements. For linear elements, the rule of thumb is stated as
kH = constant < 1. However, it is widely known that this rule is not sufficient to obtain reliable
results for large . The dispersion error, which is related to the phase lag of the FE-solution, can
only be controlled when x2H /p is small. This undermines the practical utility of the Galerkin finite
element method since severe mesh refinement is needed for large wave numbers. The performance of
finite element computations at high wave numbers can be improved by using stabilization techniques.
These techniques, which are extremely simple to implement, alleviate the dispersion effect of thefinite
element solution without requiring mesh refinement.

2.3. Galerkin/Least-sguares finite element approximation

Stahilized finite element methods were originally developed for fluid problems [14]. The first upwind
type stabilized methods [20] subsequently gave rise to consistent stabilization techniques — ensuring
that the exact solution « is aso a solution of the weak stabilized problem. Among these techniques, the
Galerkin/L east-squares method (GL S) has been successfully applied both to fluids and to the Helmholtz
equation [21, 19].

The idea behind stabilized finite element methods is to modify the variational form a(x; -, ) (and,
accordingly, the right hand side) in such away that the new variational form is unconditionally stable.
In particular, the weak form of consistent stabilized methods is obtained from (3) by adding extra
terms over the element interiors which are a function of the residual of the differential equation to
ensure consistency. For instance, the additional stabilization terms of the GL S method are an element-
by-element weighted |east-squares formulation of the original differential equation.

The weak form of the GL S method associated with the partition 7 is: find v € U such that

a(k;u,v) + (Lu — f,7aL0)g = l(v) Yv eV, (5)

where Lu = —Au — k%u is the indefinite Helmholtz operator, Q= UZ;l 1 &, denotes the union
of element interiors of 75, n. being the number of elements of 7%, and (-,-)q is the reduced L?
inner product, where integration is carried out only on the element interiors (i.e., the singularities at

interelement boundaries are suppressed in the reduced inner product). Note that the GLS formulation
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 5

depends on the stabilization parameter 75 which has to be properly defined to make the form on the
I.h.s. unconditionally stable.

Remark 2. The exact solution u verifies equation (5) for any choice of the stabilization parameter 7 g
since Lu — f = 0. That is, the GLS method is consistent for any choice of 7.

The GL Sfinite element approximation of v isu gz € Uy such that

acrs(k, Ty um, v) = laLs(k, T v) Yo € Vi (6)
where
agrs (K, T;u,v) = a(k;u,v) + (TLu, LO)g, 7
and
laus(k, 5 v) == l(k;0) + (Tf, LD)g. (8)

Note that for the sake of simplicity, the same notation, « g, for the Galerkin and GLS finite element
approximations has been used. A different notation for the GL S/FE approximation, for instance u $-5,
would be more precise. However, since the error estimation strategy is valid for any approximation
ug € Vg of u, there is no need to distinguish between u  and v or any other approximation.
Moreover, note that 7 = 0 resultsin the Galerkin approximation.

The stabilization parameter 75 is usually determined using discrete dispersion analyses with theaim
of eliminating spurious dispersion of plane wavesin auser-prescribed direction (6). That is, the goal is
that the GL S/FE approximation has no phase lag if the exact solution is aplane wave in the direction 6.
Different definitions for the parameter T depending on the underlying size and topology of the mesh
may be found in the literature [18, 19] .

Unfortunately, it is not possible in general to design a stabilization parameter 7 that confers the
ability of fully removing the dispersion error on the GL S method. Thereason istwofold. First, ageneral
signal consists of plane waves going in an infinite number of directions. Even if there are directionally
prevalent components in this decomposition, they are not necessarily known a priori. Moreover it is
not clear if the GLS method improves the approximations of solutions that are not dominant in the
preferred direction. Second, the parameter 75 is derived for particular structured topology meshes.
The optimal behavior obtained for some particular structured meshes (which are of limited usein real-
life applications) is partialy lost when general unstructured meshes are used.

2.4. Matrix form

The Galerkin or GLS finite element approximation « z is expressed in terms of the basis-functions
{N7}1...,, SPANNING Uy, NAMEly

Mnp

uH:ZNjuil:NuH, 9
j=1

where n,,,, isthe number of nodesin the mesh, «7, is the complex nodal val ue associated with the mesh
nodex’, N = [N', N2 ... N™ | andul; = [ul,u%,. .., u5"]. A
In the case of linear finite element elements (p = 1), Lu y reducesto Luy = —k2uy in €, and the
matrix form of (7) reads
(Ky — Cy — i*MP uy = £ + £y, (10)

Copyright (© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1-1
Prepared using nmeauth.cls



6 L.M. STEFFENS, N. PARES AND P. DIEZ

where K 7, Cy and M} are the so-called stiffness, damping and mass matrices respectively

Nel

Ky = /(VN)T(VN)dQ, Cy:= | MN'Ndl, M} := Z/ (1 —7r*)NTNAQ,
Q n=1 Qn

I'r
and the right-hand side vectors accounting for the source term and the Neumann boundary conditions
are

MNel
i = Z/ (1—rus>)NTfdQ and fN:= [ NTgdl.
n=1"8n In
In the particular case where the stabilization parameter 7 is constant in the elements of the mesh,
M;F = (]. — THHQ)MH and f}_—IH = (]. — TH/ﬁZQ)fH, where

My ::/NTNdQ and fy ::/NdeF, (12)
Q Q

are the standard (non-weighted) mass matrix and vector force. Besides, recall that 7 = 0 resultsin
the matrix form of the Galerkin finite element method (4).

3. A POSTERIORI ERROR ESTIMATION OF THE WAVE NUMBER

3.1. Basicsof error estimation of the wave number for the Galerkin method

It iswell known that the error introduced in the numerical solution of wave problems has two different
components. interpolation error and pollution error. The interpolation error is the classical error
arising in eliptic problems and pertains to the ability of the discretization to properly approximate
the solution,

Nnp

e =y — it = u(x) — Z NI (x)u(x?),
j=1

where w5t is the approximation of w iny coinciding with v at the mesh nodesx7, j = 1,2, ..., npy.
Thus, the pollution error is defined as:

Mnp

ePol = it — gy = ZNj(x)(u(xj) — u%,)
j=1

In standard thermal and elasticity problems, the error in the finite element solution is equivalent to
the interpolation error, and converges with the same rate. This error is local in nature because it may
be reduced in a given zone by reducing the mesh size locally in this zone.

The pollution error, however, is especially relevant in the framework of Helmholtz problems due to
the blowup of the inf-sup and continuity constants of the weak form when the wave number is large
(i.e. the inf-sup constant tends to zero and the continuity constant tends to oo as x tends to o). In
transient wave problems, pollution is associated with the variation of the numerical wave speed with
the wavelength. This phenomenon results in the dispersion of the different components of the total
wave. In the steady Helmholtz problem, the word dispersion is aso used and corresponds to the error
in the numerical wave number « g7, which is therefore identified with the pollution. In other words, the
FE error is decomposed into two terms

FE error = u — uy = ™ + eP° = Interpolation error + Dispersion/pollution error,
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 7

which, in the case of wave problems, behave completely differently (see figure 1). It has been shown
that the pollution term converges at a different rate, lower than the standard interpolation error.

exact

— % —interp
—S&— FEM

Figure 1. lllustration of the errors arising in the approximation of the Helmholtz equation. The exact solution (solid
line, smooth) and interpolant (dashed line) coincide at the nodes, the FEM solution reproduces approximately the
shape of the wave with alarger wavelength (kg < k).

The pollution error eP°! is related to the phase difference between the exact and FE solutions, that
is, the difference between the wave number « associated with « and the numerical wave number g
associated with u . Usually, the dispersion or pollution error is assessed by obtaining an approximation
of the error in the wave number x — & g instead of trying to measure the pollution error eP°! in some
predefined norm.

A priori error estimates assess the dispersion error by means of providing a closed formula of the
numerical wave number x ;. Recently, a new approach to a-posteriori estimate the dispersion error,
thus using the information given by « ;7, has been developed [28].

The key ideais to define an auxiliary solution v’} € U having the same wave number as v i and
from which to recover the value of « . Intuitively, u%; € U is the best solution of the Helmholtz
equation (3) associated with awave number « i matching vy at the nodes of the mesh, see figure 2.

To fix the ideas, consider the one dimensional Helmholtz equation in 2 = (0, 1) with boundary
conditions w(0) = 1 and «/(1) = 4xku(l). This smple problem admits the analytical solution
u(x) = €. Then, given a uniform finite element mesh and its associated FE approximation w g,
it turns out that it exists a wave number g such that the solution of equation (3) associated to x g,
ul = e exactly fulfills the equations of the Galerkin method (10) associated to the interior nodes.
Thiswave number is

1 1 — (kH)?/3 L 5.9 3 54 7176
= — — | & Kk— —kK"H —rk'H Ok'H 12
KH = 7 arccos (1 ("6 K=ot + c10" +O(k"H"), (12
see [23]. The verification of the equations (10) associated to the interior nodes enforces that the
auxiliary solution v} shares the same wave number than v, although this does not guarantee that « %;
matches exactly u at the nodes of the mesh, due to the influence of the Robin boundary conditions.
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8 L.M. STEFFENS, N. PARES AND P. DIEZ

However, the difference of «%; and uy at the nodes of the mesh is nearly negligible. Thus, for this
particular problem, a very good measure of the dispersion error can be computed as

1 .
E=k—kpy~ ﬂ/{SHQ + O(K°HY). (13)

Figure 2. lllustration of the exact solution w, the approximate solution vz and the auxiliary solution u%; coinciding
with u g at the nodes and sharing its wave number .

Unfortunately, in general, it is not possible to determine u%; € U verifying (3) for a suitable wave
number kg € R and concurrently fulfilling the equations of the Galerkin method associated to the
interior nodes. However adlight modification of thisideayields aproper definitionfor « ;. Specifically,
ufy € U and kg € R are such that:

e vl € U coincides with uy at the nodes of the mesh (that is u’}(x’) = up(x’) for
J=1,2,... nnp)
o foragivenxy, uy; € U issuch that
a(km;upy,v) = l(kg;v) Yo € Vo, (14

where )
Vo := {U S V;U(X]) =0, = 1v2a""nnp}

e sy and u}; minimize the norm of the residual functional

R(km,uly;v)

R(kg,uly;- = max
H ( Hy Wy )”* veHI {0} HUH

where R(k g, ulf;+) := Ukm; ) — a(km;ul,-), Hy == {v € H(Q2),v]on = 0} and ||v]| isthe
H' norm.

Note that the values of «%; on the boundary of 2 do not affect the norm of the residua || - || .. This
definition is used to minimize the influence of the errors due to the boundary conditions (which are
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 9

considered to be a part of the interpolation error and not of the dispersion error) in the assessment of
the dispersion error. Also note that, the condition enforcing that « 7} and uy share the same phase lag,
i.e. fulfilling of the equations of the Galerkin method associated to the interior nodes, is replaced by
the more simple and equivalent condition of matching u 5 at the nodes of the mesh.

In acompact form, x z and u’; are the solution of the following constrained optimization problem

(kg ufy) = argmin [[R(&™, u™;-).
KM eR
u™ el (15)
subjectto  a(k™;u™,v) = I(k™;v) Vv €V
u™(x?) =ug(x?), 5=1,2,... npp.

The relation between the finite element solution «  and the modified solution w7} alowsto state that
the numerical wave number associated with v g, coincides with the wave number associated with the
solution w%;. That is, the finite element solution « i and u; share the same phase lag and therefore the
dispersion error associated touy iISE = k — k.

It is worth noting that the definition of the numerical wave number through the modified solution
u'y is not applicable as a practical error estimation strategy, since x i and u; are even more difficult
to compute than the exact solution u. Nevertheless, this rationale is used as a starting point to obtain a
fully computable estimate for the dispersion error, by just introducing two simple modifications.

3.2. Practical a posteriori explicit error estimate for the wave number

First, the finite dimensional reference spaces U4, and V;, much finer than I/ and V' are introduced.
These spaces yield to the following approximations of « g and u;

(km[h],ufh]) = argmin [[R(&™,u™;")|«n
KM eR
u™ e Uy (16)
subjectto  a(k™;u™,v) = (k™ v) Yo € VLNV
u™(x?) =ug(x?), j=1,2,.. <y Minp
o R{salh], wlh]; )
m kg lh],u't|h];v
|R(km[h], wph];-)|l«n == max =
v e Vi \{0} [[vll
Vg =

If the finite element mesh V;, is sufficiently fine, one expects that u}; ~ u%;[h] and therefore
kulh] = kpy. If the finite element mesh V), is not fine enough, as mentioned in [28] a correction
factor has to be applied to recover a good approximation of x i from kg [h], i.e., ku[0] = crruh],
where ¢; is the correction factor based on a Richardson extrapol ation technique.

Second, since the computation of « [h] and w7} [h] is still unaffordable in practical applications
another simplification is introduced. An approximation of « %} [h] in U}, denoted by «*, is obtained by
post-processing v . In general, the approximation «* is not obtained solving equation (14) for some
x g and thus the computation of « g isindependent. Indeed u* does not verify

a(kplhl;u*,v) =U(kulh];v) Yo €V, NV,

and is therefore no longer linked with the computation of « g [h]. Once this approximation u* is
computed, the wave number « g [h] is approximated by ~* solution of

k* = arg min|[[R(K™,u"; )|« n-
o

€R
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10 L.M. STEFFENS, N. PARES AND P. DIEZ

It is worth noting that the norm of the residual || R(x™, u*; )]« is afunction depending only on
the scalar variable <™ and may be computed as

HR(K"L,U;*; )H*h — \/I‘(Iim, u*)/r(ﬁvrz7u*),

where
r(k™,u*) = B0<(Kh ~Cp — (K™)EM)u* — £, — f}f)
(17)
= BO((K}L _ (Iim)QMh) ut — fh);

isthe residual associated with the interior nodes of the fine ~-mesh, the approximation « * and the wave
number ™. The symbol / stands for the conjugated transpose, that isv’ = o7, and B is a diagonal
matrix on the h-mesh with onesin the positions associated with the interior nodes and zero elsewhere.
That is, the matrix B sets the values of the residual at the boundary (either Dirichlet, Neumann or
Robin) to zero.

Thus, for a given value of v* ~ wu%[h], the wave number x* is the parameter of the modified
problem that better accommodates «*. In practice, * is determined minimizing the squared norm of
theresidual, namely

k" = arg min || R(k™, u*; )|+, = arg min Vr'r = arg minr'r. (18)

K™ ER wmER kM ER

Note that given u*, the squared residual norm r’r is a fourth degree polynomial in ™ and thus x* is
computed explicitly, see [28] for the computational details.

In short, the approximation x* of the numerical wave number « g is assessed by first post-processing
thefinite element solution « ;; to computew* and then explicitly solving equation (18). The computable
aposteriori error estimate for the wave number is then

E* =k — K" (29)

3.3. Assessment of the wave number for stabilized formulations

The dispersion error associated with a stabilized finite element approximation of « may be assessed
using the same methodology detailed for the standard Galerkin approximation. Given the GLS/FE
approximation u gy, a post-processing techniqueis used to compute an approximation « * of the solution
u'f}[h] of (16). Then, the wave number « ;7 is approximated by ~* solution of (18).

However, the use of stabilized formulationsalso for the fine mesh solutionsin (16) alowsto improve
the quality of the estimates. Note that the accuracy of the estimate « * relies on two facts: first on the
quality of the approximation «* of «%}[h], and second on the quality of the approximation w7;[h] of
u'y. Thequality of »* depends on the post-processing strategy which will be discussed in the following
section. The quality of 7} [h], on the other hand, depends on the size h of the reference mesh V.. In
fact, it depends on the ratio of « versus h since for large values of « the reference mesh should be finer
in order to get good approximations of « ;. Thus, for large wave numbers, the discrete approximation
u'f}[h] will only be agood approximation of w7} if the reference mesh is taken remarkably fine.

A simple workaround which avoids dealing with fine reference meshes is to stabilize the problem
associated to u%[h]. That is, for a given finite element approximation (either stabilized or not), the
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 11

stabilized approximation w} [k, 75,] is the solution of

(kulh, o], uflh,h]) = argmin [[Rers(K™, 7h, u™;)|[xn
K™ eR
u™ e U,
subjectto  agrs(kK™, Th;u™,v) = laLs (K™, Thyv) Yo € Vi, NV
u™(x?) = ug(x?), j=1,2,...,npnp
(20)
where

Rars (K™, mh,u™;v) == lars (K™, 7h;v) — acrs (K™, Th; u™, v).
This modification yields to the following strategy to assess the error in the numerical wave number:

1. compute v* approximation of w%}[h, 7,,] by post-processing u g
2. compute the approximation  *[r3,] solution of

K*[Th] = arg ngn |RaLs (K™, Th,u™; ) ||«,n = arg n]gn rais (k™) rans(k™),  (21)
KM E KmE
where
rans (k™) = Bo((Kh — (k™M) ut — fgh). (22)

The explicit dependence of the vector r g1, on 7, and u*, rars (K™, 7, u*), is omitted for simplicity
of presentation. Note that the matrix M ;" and the vector f;" depend explicitly on the wave number
" and also implicitly viathe stabilization parameter 7,. Therefore the dependency of r; srqrs With
respect to the wave number ™ isno longer afourth order polynomial and the solution of (21) may not
be computed explicitly in general.

3.4. Computation of the wave number x*[73]

In order to detail the computation of «*[7] verifying (21) in a simple manner, the stabilization
parameter 7, is assumed constant on the elements of the fine mesh. In this case, x*[7;,] is the solution
of (21) where

I‘GLS(Hm) = BO (Kh, u* — (Iim)QMh u* + Th,(lim)‘th u* — fh + Th,(lim)th), (23)

and 7;, depends nonlinearly on ™. For instance, to minimize the phase lag on the z-direction for a
structured regular quadrilateral mesh, [18] proposes the use of

1 6 1—cos(k™h)
(km)2  (5™)%h2 2 + cos(k™h)’

(™) =

Thus, the computation of «*[73,] requires solving a scalar root-finding problem.

Three different options have been considered in the present work to approximate « *[73,]. The first
approach is to compute an approximation of «*[73] using an algorithm to numerically approximate
the minimum of F(k™) := rqrLs(s™)'reLs (k™). Namely, a root-finding method on the derivative
of F\(k™) isused taking as initial guess k™ = k. This approximation is taken to represent the exact
value x*[7,] sinceits accuracy can be controlled by the end-user through adjusting the tolerance of the
root-finding method.

The second approach assumes that 7, does not vary considerably when varying the parameter x ™.
In this case, the dependency of the parameter 7;, with respect to ™ is removed by setting the value of
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12 L.M. STEFFENS, N. PARES AND P. DIEZ

7, (k™) = 177, where 77 := 7, (), and the approximation of *[7;,] is denoted by ~*[7;7]. Note that 7;7
denotes the value of the parameter 7, associated to the wave number . Doing this approximation, the
residua rgps (k™) isapproximated by afourth order polynomial on k™

rars (™) & ag + ag(k™)? 4+ ay(k™)*, (24)
forayg = Bo(Khu* — fh), as = Bo(—Mhu* + T}'ffh) anday = T}':'B()Mhu*. The minimization of
the squared residual F'(x™) isthen reduced to find the critical points of F'(x™) whichis equivalent to
find the solutions of

dF
dr™
where ¢y = ajas + abag, co = ajay + abas + ajjag, ¢y = abay + ajas, cg = ajja,. Although
equation (25) may have seven real solutions, «*[7/7] is defined to be the solution of (25) closer to .

Thus, ruling out the trivial solution ™ = 0, x*[7/’] is computed by first finding the roots of the bicubic
polynomial appearing in equation (25), which is equivalent to find the three solutions = of

=2x™ (co + 2c2(K™)? + 3ea (™) + deg(K™)°) = 0, (25)

Cco + 2¢cok + 304/?62 + 406/763 =0,

and then set *[7/°] to be the value of /% nearer to «, see [28] for the computational details. Thus, the
assumption 7, (k™) = 7} yields to a simple and explicit algorithm to approximate the exact value of
K]

Finally, the third approach directly applies the strategy presented in [28] by considering that the
terms added by the GL S method are constant with respect to ™, that is, not only the parameter 7, is
set to 7/° but also the (k™)? associated with the GLS method is set to 2. In this way, the residual is
approximated by the quadratic function

rars(k™) = By (Kh, ut — (/@"”)QM;L u® + T[fliQ(/fm)QMh, u* —f, + T;f/foh,),

and the minimization of the fourth order polynomia F(x™) which alows to compute the
approximation of x*[r3,] is done by using the technique detailed in [28].

As will be seen in the numerical examples, the second option yields a fairly good approximation
of the exact solution of the one-dimensional non-linear optimization problem (21). The practical and
straightforward algorithm to estimate the dispersion error using this second option is summarized in
the box shown in figure 3.

Remark 3. Note that the second step of the previous procedure requires to compute the coefficientsc g,
co, ¢4 and cg associated to theresidual rrs. These coefficients depend on the stabilization parameter
7## which in turn depends on a user prescribed direction # which will be denoted in the following by
01, In the case that v i is computed using the standard Galerkin method, it is not natural to define a
direction ;. However, information of the prevalent wave direction of the exact solution can be used
if available. If uy is computed using the GLS method with wave direction 6, the estimates may be
computed using 6, = 0 or again, if information of the exact solution is available, this parameter may
be set to adjust the prevalent wave direction of the exact solution. The choice of this parameter will be
further discussed in the numerical examples.

3.5. Enhanced solution «* by post-processing u g
The quality of the estimate x* depends on the quality of the approximation «* of wj[h] € U,
(respectively w2 [h, 71,]). The idea proposed here is to build up an inexpensive approximation using
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 13

0.- Compute afinite element approximation g of the Helmholtz problem
(either using the Galerkin method or a stabilized method).

1.- Compute an approximation v * by post-processing v i (See section 3.5).

2.- Compute the real coefficients cp = ajas + abag, co = ajas + abas + ajag, ¢4 =
aba, + ajjas, cg = ajay Where

ap = BO(Khu* — fh,), as = BQ(_Mhu* + T;:'fh,) and a, = Tf'fBQMh,u*.
3.- Compute the roots of the polynomial
Cco + 2¢cok + 304/?62 + 406/763.

4.- Set *[7/] to be the value of /& nearer to ~ and compute the a posteriori error estimate
for the wave number as
Erlm] =k — RT[7h]

Figure 3. Practical and straightforward algorithm to estimate the dispersion error

a postprocessing technique standard in error estimation analysis [32, 12] and likely having al its
features. The post-processing technique starts from the finite element solution v 7 € Uy and computes
an approximationu™ of w'} [h] iINUy,.

Reference [28] presents a procedure to compute v * following the work by Calderon and Diez [11].
For each element of the H-mesh, Q,,, the patch of elements surrounding €2, is considered and its
denoted by w,,. In this patch, the values of u y at the nodes of the H-mesh are used asinput dataand a
polynomial is fitted using a constrained least squares technique. That is, in atwo dimensional setting,
for agiven polynomial degree ¢, a complex valued polynomial field

p(x) = Z pri’y’
k+1<q
is determined from the following constrained least squares problem
. L2
min Z ‘ujH—p(xj)‘

pr1€C ‘
xJ Ewn

restricted to p(x’) = u}, forx’ € Q,,,

where | - | denotes the modulus of a complex number. Note that the real and imaginary parts of p(x)
can be computed separately. The real part of p(x) (and analogously its imaginary part) may be found
solving the real-valued constrained optimization

min " R(uy) - Rp(x))

R(pri)ER

2

XJ Ewn
restricted to R(p(x7?)) = R(u},) forx? € Q,,.

Once the polynomial is obtained in w,, it is evaluated to find the nodal values of «* in the nodes of
the h-mesh lying in element Q2,, of the H-mesh. This approach allows recovering the curvatures of the
solution coinciding with v i at the nodes whereit is computed.

This simple and straightforward strategy provides fairly good results. However, this approach does
not use specific information about the differential operator or the exact solution. The use of analytical
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14 L.M. STEFFENS, N. PARES AND P. DIEZ

information on the natural solutions of the differential operator yields an aternative approach to
compute u*.

The approach to compute . * also requires solving alocal constrained least squares problem for each
element €2,,. Instead of using a polynomial representation for « *|,, an exponential fitting is used. This
isanatural choice because the exact solution of the 2D homogeneous Helmholtz equationis an infinite
sum of plane waves of the form Ae™ >, wherek = x[cos(6), sin(8)].

Thus, in each patch w,,, ug isapproximated by an exponentia field of the form

A(X)eip(X),

where A(x) and p(x) are polynomial fields representing the amplitude and wave direction. The fields
A(x) and p(x) are determined by a constrained least squares criterion and hence, they are taken as
those minimizing

, 2
min Z }ugq — A(x%)ePx")
xI €wn,

restricted to A(x7)e?™") = 4%, forx’ € Q,,.

Using a standard technique to linearize the exponential least squares fitting transforms the previous
problem into an equivalent linear constrained least squares problem

min Z ‘hl(ujé) —In (A(xj)e“’(xf)) ‘2
xJ Ewnp,

restricted to In (A(xj)eip(x”) = In(u};) forx? € Q,.

Splitting the real and imaginary part of the previous problem yields a ssimple strategy to compute
In(A(x)) and p(x) independently using arestricted least squares fitting, namely:
. . 2
min Z }ln(|u§1|) - ln(A(xJ))‘
xJ Ewn, ) _
restricted to In(A(x?)) = In(|u};|) forx? € Q,,
and )
min Z ‘arg(u%) — p(xj)‘
X Ewn ) )
restricted to p(x’) = arg(u?,) forx’ € Q,,
where arg(-) denotes the argument of a complex number and a polynomial fitting of In(A(x)) and
p(x) is considered. ‘
Theonly intricate part of this strategy involvesthe input data arg(u’, ), of theleast squares problem
for p(x). The non-unique arguments associated to the data « 7}, haveto be carefully selected so that the

polynomial fitting yields proper results.
4. NUMERICAL EXAMPLES

The strategy to assess the error in the wave number presented in the previous sections is validated in
four numerical examples. The performance of the estimates of the dispersion error is shown both for
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 15

Galerkin and GL S approximations. Moreover, the influence of the post-processing technique yielding
u* in the resulting effectivity is also discussed.

The finite element approximations are computed using triangular and quadrilateral meshes of linear
(resp. bilinear) elements, p = 1. Different definitions of the stabilization parameter 7 are used to
compute the GL S approximations depending on the underlying topol ogy of the mesh. In particular, for
structured and unstructured quadrilateral meshes the following definition of the parameter, designed to
minimize the dispersion error of plane wave in the direction 6 on cartesian meshes, is used [18, 19]:

1(1_(6 (1—cos(mhcos€) 1—cos(f<ohsin9)>).

TH= 3 kh)? \ 2 4 cos(khcosf) 2+ cos(khsinf)
For triangular meshes, the definition derived for hexagonal meshes, namely,

(8 3—f(sh0)
K2 (  (kh)? 3—|—f(/$h,9)> ’

where f(kh,0) = cos(rhcosf) + 2 cos(kh cos0/2) cos(v/3khsin 0/2) is used because it provides
good results also for unstructured meshes.

For non-uniform meshes, the stabilization parameter is not constant over the whole mesh. In each
element 2,, adifferent stabilization parameter is used depending on its characteristic element size h ,,.
This characteristic element size is taken as the smallest side of the element both for quadrilateral and
triangular meshes.

As mentioned in section 2.3 the parameter T depends on a user-prescribed direction 6. The
influence of the selection of this direction in the reduction of the dispersion error is studied in the
following examples.

TH —

(26)

4.1. Example 1: 1D strip

Thefirst example models a plane wave propagating in the x-direction in atwo dimensional rectangular
domain, with length L = 1 and width V' = 1/3/8, seefigure 4. The boundary conditions are specified
in order to yield the exact solution u(x,y) = e*2: Dirichlet on the left hand side, Robin on the right
hand side and Neumann homogeneous on the upper and lower sides to maintain the one-dimensional
character of the solution. That is, the data entering in equation (2) arew = 1 onz = 0, Mu = ixu On
r=1andg=0ony = 0andy = /3/8. The performance of the Galerkin and GL S finite element
solutionsis studied for ~ = 8x. Dueto the 1D character of the problem, the stabilization angle used in
all the GLS computations (both for the coarse and fine meshes) is set to 0, that is, § = 0 = 0. Note
that the solution of the problem is independent of the width of the domain V' and the value v/3/8 has
been selected in order to accommodate an hexagonal triangular mesh.

First the influence of the selection of the finite reference mesh associated to V), is studied. If the
finite element mesh V), is sufficiently fine, one expects that v} ~ u%[h, 7] ~ uf}[h] and therefore
kg =~ kglh, ] ~ kglhl]. If the finite element mesh V), is not fine enough, one should apply a
correction factor to « g [h] to account for the finite size & of the reference mesh and recover a good
approximation of « g, see [28]. This correction factor is not necessary for the estimate « g [k, 7,]. That
iswhen the reference problem is al so stabilized.

A uniform coarse mesh of 24 x 2 quadrilateral elementsis used both for the Galerkin and the GLS
method. The dispersion error associated with the Galerkin approximation can be assessed using the
a-priori estimate of the wave number given by (12)

ri ri 1 1_(,€H)2/3
EP" =k — kP :K—ﬁarCCOS(m s
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16 L.M. STEFFENS, N. PARES AND P. DIEZ

purely reflecting

prescribed

absorbant
pressure A%

L=1

A
v

Figure 4. Example 1; 1D strip: problem setup.

which in this caseis taken as the actual error in the wave number due to the one dimensional character
of the solution (up to the pollution errors introduced by the Robin boundary conditions). Note that
the GLS solution is, for this particular mesh and problem, dispersion free. Thus, the Robin boundary
conditions are the unique perturbation producing errorsin the approximations of «.

Thedifferent aposteriori estimates of the dispersion error are computed using a series of successively
nested reference meshes, both triangular and quadrilateral. For the quadrilateral meshes, refinement is
performed only in the z-direction and thus maintaining two rows of elements on al the reference
meshes, due to the one-dimensional character of the solution: for h = H/2 each quadrilateral in the
coarse mesh is divided into two new ones yielding a mesh of 48 x 2 elements, for h = H/4, each
quadrilateral element is divided into 4 new onesyielding amesh of 96 x 2 elements...

Thefirst columns of the table | show the truth estimates of the dispersion error E[h] := k — k g [h]
and E[h,73] := k — kplh, ] where the numerica wave numbers xy[h] and kglh, 7] are
computed solving the nonlinear problems (16) and (20) respectively, and c; = n2/(n? — 1) stands
for the correction factor applied to gy [h] where n, = H/h. Note that these truth estimates are
computationally unaffordable in real applications, because they involve many resolutions of the
problem in the reference mesh. They are computed in academic problems to see the effectivity of
the proposed practical estimates. As can be seen, both the estimates ¢; E[h] and E[h, 73,] assessing the
dispersion error of the Galerkin approximation are in very good agreement with the a-priori estimate.
It is worth noting that the estimate E[h, 73] yields very good results even for the case h = H/2 being
less sensitive than ¢; E'[1] to the choice of the reference mesh size.

The last columns in table I, correspond to the practical estimates obtained from the recovered
solution w*. In this case u* is computed using the exponential fitting. Four different estimates are
computed. The first one is the estimate proposed by [28], E* := k — k*, associated to the assessed
wave number obtained from (18) and enhanced by its multiplicative factor. The other three options
correspond to the three approximations of  *[73,] detailed in section 3.3. Recall that Option 1 results
from numerically solving the non-linear one dimensional problem and, since this approximation only
depends on an end-user relative tolerance set to 10 ~'2, it is assumed to be exact, that is E*[r;] :=
k — k*[,]. Option 2 is associated with «*[7;7] yielding the estimate E*[7}'] = s — x*[7/], and
Option 3 is the most crude approximation of «*[73,] since it considersthat all the termsin the residual
associated to the GL S formulation are constant with respect to the wave number. It is worth nothing
that all estimates produce similar and sharp approximationsto the dispersion error for all the values of
the reference mesh size h.

As expected, the truth estimates provide almost exact valuesfor the dispersion error, fully coinciding
withthe apriori estimate. The effect of correcting the estimate with factor ¢ or considering astabilized
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Galerkin EPr=1.02211

Option 1 Option 2 Option 3
h E[h] c¢tE[h]  Elh, T3] B E*[7y) E*[m]
H/2 || 076790 1.02387 1.02211 || 1.01428 | 1.01469  1.01486  1.03682
H/4 | 095869 1.02261 1.02211 || 1.01428 | 1.01469  1.01486  1.03682
H/8 || 1.00627 1.02224 1.02211 || 1.01227 | 1.01232 1.01232  1.01368
H/16 || 1.01815 1.02214 1.02211 || 1.01214 | 1.01215 1.01215 1.01249
H/32 || 1.02112 1.02212 1.02211 || 1.01210 | 1.01210 1.01210 1.01218
H/64 || 1.02186 1.02211 1.02211 || 1.01208 | 1.01208 1.01208  1.01210

Table l. Example 1: Assessment of the dispersion error for a uniform coarse quadrilateral mesh (24 x 2 elements)

an successively refined reference meshes for the Galerkin approximations of the solution. The truth error estimates

(left) are computed using the fully nonlinear solution yielding to E[r] and E[h,7,]. The exponential post-

processed solution (right) »* obtained from wx and then different options are used to recover the wave number
k" associated to u™* only for the Galerkin approximation.

reference problem are equivalent.

Following these results, in the remainder of the numerical examples, the parameter h is set to
h = H/4 (refining only in the z-direction for this example and uniformly refining the elements in
the following examples) and the wave number is approximated using Option 2 which provides realy
good approximations. Hence, in the following the notation £ * is used to denote the estimate E*[7/]
(both for the Galerkin and GL S method). A subindex is added to the notation E * to specify the type
of recovery used to compute u*, namely E7 | ans EZ,, for the polynomia and exponential fittings
respectively. Finally, the estimate E* is compared with the truth estimate E[h, 71,] which is considered
as the one providing the most accurate-but not computable approximation of the dispersion error, and
it isdenoted by E.

Table Il and figures 5 and 6 present the estimates corresponding to a sequence of uniformly refined
meshes. Two series of meshes are used: one of structured quadrilaterals and one of triangular el ements
following an hexagonal pattern. The two fitting strategies (polynomial and exponential) are compared.

Note that the dispersion error associated with the GLS solution is almost negligible for the
truth estimates. The Robin boundary conditions are the unique perturbation producing errors in the
approximations of « for the practical estimates.

Figure 5 shows the convergence of the estimates for the dispersion error of the Galerkin
approximation using cartesian quadrilateral meshes. The convergence rate of al the estimates is 2
in the number of points of the mesh, matching the a priori expected convergencerate for the dispersion
error, since, for afix vaue of k, E = k — kg = O(H?) which is equivalent to O((n,y)?) since
the elements are not refined in the y-direction, see equation (13). However it can be observed that
the exponential fitting provides estimates which are in better agreement with the a-priori or reference
estimates.

Finally, figure 6 shows the convergenceof the boundsfor both the Galerkin and GL S approximations
using either quadrilateral or hexagonal triangular meshes. The reduction of the dispersion error using
the stabilized GL S formulation becomes apparent both for quadrilateral and hexagonal meshes. This
important reduction is due to the fact that the stabilization parameters that have been used are
particularly designed to eliminate the spurious dispersion of the exact solution e ** for the particular
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18 L.M. STEFFENS, N. PARES AND P. DIEZ

Galerkin GLS/FE
Tnp Epri E E;ol E:xp E E;ol E:xp

75 || 1.02211 1.02211 | 1.23174 1.01293 || -4.1.10 ¥ 0.23026 -0.00626
99 || 0.60404 0.60404 | 0.71868 0.59251 | -5.1.10 % 0.12522 -0.00134
123 || 0.39584 0.39584 | 0.46304 0.38942 | 5.1.10~® 0.07167 -0.00035
147 || 027851 0.27851 | 0.32051 0.27525 | 4.1.10 ~®  0.04401 -0.00011

Galerkin GLS/FE
"np EPT E Egol E;xp E Egol E;xp

172 || 0.79686 0.79782 | 0.58502 0.78168 || 2.6:10 ° -0.22714 -0.00542
293 || 0.47022 0.46319 | 0.36999 0.45619 || 2.9-10 % -0.09656 -0.00229
446 || 0.30565 0.30074 | 0.25304 0.29794 || 5.4-10 % -0.04915 -0.00116
631 || 0.21365 0.21040 | 0.18306 0.20935 || 3.6:10 = -0.02829 -0.00066

Table 1. Example 1: Convergence of the estimates of the dispersion error through a uniform mesh refinement
using cartesian quadrilateral meshes (top) and hexagonal triangular meshes (bottom).

R S
— Epri

x
pol
£

exp

log(|El)

1.85 1.9 1.95 2 2.05 21 2.15 2.2 2.2t
log(Nnp )

Figure 5. Example 1: Convergence of the estimates of the dispersion error of the Galerkin approximations through
a uniform mesh refinement using cartesian quadrilateral meshes.

quadrilateral and hexagona meshes at hand. It is also clear that the exponential fitting, in this example,
captures more precisely the shape of the solution and thus yields better estimates for the dispersion
error.

Although extremely simple, this example demonstrates that the proposed methodology is able to
assess the dispersion error in both for Galerkin and GLS formulations. The estimate clearly detects
that GLS method reduces the dispersion. As it is shown in the next examples, the same tools are also
useful in more involved situations.
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Figure 6. Example 1. Convergence of the dispersion error both for the Galerkin and GLS approximations in a
series of uniformly refined meshes: quadrilateral meshes (left) and hexagonal triangular meshes (right).

4.2. Example 2: Plane Wave in Square Domain

We consider theunit square2 =]0, 1[x]0, 1[ withinhomogeneous Robin boundary conditions specified
on all the boundaries of the square so that the exact solution is u = e?f(cosaztsinay) Tha s the
solution is a plane wave propagating in the direction of angle «, asillustrated in figure 7. The model
parameters are k. = 8 and o = 7/8 and the analytical solution associated with these parameters is

depicted in figure 7.

Y

Figure 7. Example 2: Problem setup (left) and solution for « = 7r/8 (right).

The performance of the estimates is studied for three different structured uniform quadrilateral
meshes (8 x 8,16 x 16 and 32 x 32 elements). In order to estimate the dispersion error associated with the
Galerkin approximation, the stabilization parametersinvolved in the computation of £ := Elh, 73] and
E* := E*[rf] in equations (20) and (24) are computed using the predefined direction 6 ;, = a = 7/8.
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20 L.M. STEFFENS, N. PARES AND P. DIEZ

Theresults are shown in table [l wheren ) := E5 ) /E and 1, == EZ,/ E is the effectivity index
of the estimates with respect to the reference value E (truth estimates). Again, the exponential fitting
provides better estimates to the dispersion error yielding very good effectivity indices near to one. The
rate of convergence of the estimates with respect to the number of nodesin the meshis 1, matching the
apriori expected convergencerate for the dispersion error, since E = x — x i = O(H?) which, in this
case, isequivalent to O(n,,) because the uniform refinement is done in both the = and y directions.

Galerkin
Tap E Epol  Eop || Mot Mexp

81 0.24912 0.41670 0.23725 || 1.6727 0.9524
289 || 0.06330 0.09033 0.06328 || 1.4271 0.9998
1089 || 0.01563 0.01943 0.01593 || 1.2434 1.0197

Table I11. Example 2: Assessment of the dispersion error of the Galerkin method for uniformly refined structured
quadrilateral meshes.

The same study isdonefor the GL S approximations of the problem using the same meshes. Although
the exact solution is a plane wave, since the cartesian meshes are not aligned with the wave direction
«a = 7/8, none of the possible choices for the stabilization direction § yields a nodally exact solution.
Table 1V shows the dispersion error of the GLS method for three different stabilization parameters
0 =0,0=mn/8andfd = /4. In adl the computations the error estimates are performed using the
same value of ¢ for the reference h—mesh, that is 8, = 0. The GLS method substantially reduces de
dispersion error even for the non-optimal parameters§ = 0 and 0 = 7 /4. The error estimate £, , are
properly approximating the truth error E in the al cases. For 6 = /8 the dispersion error so small
that the resulting effectivity is not as sharp as for the choices producing longer errors.

GLS/FE
0=0 0=m/8 0=m/4
Nonp E E E E E Eo
81 -7.451072 -7.17-10°2 | 6.82.10~* 34010 * | 771102 7.34.10 2
289 || -1.99-1072 -1.93-1072 | -4.43-10~* 3.80-107° | 1.91.1072 1.951072
1089 || -5.02-1073 -4.87-10~3 | -1.84-10~* 1.68-10°% | 4.66-10~2 4.88.10°3

Table IV. Example 2: Assessment of the dispersion error of the GLS method for uniformly refined structured
quadrilateral meshes. The GL S approximations are computed using different stabilization directions 6.

Figure 8 graphically displays the information shown in the tables in tables |11 and IV. As can be
seen, the estimates (depicted on the right of the figure) are in very good agreement with the reference
mesh computations (depicted on the left of the figure). As mentioned before, the GL S method always
performs better than the Galerkin method but there is a qualitative leap of accuracy when the optimal
parameter 0 = /8 is used.

Finally, figure 9 shows the influence of the stabilization direction 6 used to compute the GL S finite
element approximation in the dispersion error. The study is done varying 6 in the range [0, 77/2]. As
expected, the optimal performance is reached when the wave direction of the GLS method coincides
with the angle of the exact solution, § = o = 7/8. In any case, if no information of the exact
solution is at hand and thus, an arbitrary choice of 6 is considered, the GLS method provides
an important reduction of the dispersion error when compared to the Galerkin approximation: the
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Figure 8. Example 2: Performance of the estimates of the dispersion error for the Galerkin method and the GLS
method for a plane wave associated with o = 7/8 using areference mesh (left) and the exponential fitting (right).
The GL S approximations are computed using different stabilization parameters.

estimated dispersion error isreduced from £ = 0.06328 to E_ ~ 0.02 in the worst case.

exp exp
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E*  wurt Galerkin = 0.06328
exp

0 /8

0

Figure 9. Example 2: Influence of the selection of the stabilization angle 6 in the dispersion error of the GLS
approximation for the mesh with 269 nodes. The estimates are computed both using 6 = «.

4.3. Example 3: Scattering from Submarine-Shaped Obstacle

The acoustic scattering from an acoustically hard obstacleis studied. The geometry isasubmarine-like
object parametrized by the distances | = 3, L = 60 and D = 6, see figure 10. The incident wave
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22 L.M. STEFFENS, N. PARES AND P. DIEZ

is characterized by its wave number x = 7/3 and an angle of incidence « = 57 /4. The origina
problem is an unbounded Helmholtz problem which is reduced to an interior problem over a bounded
computational domain with a circular boundary of radius R = 36. In the fictitious boundary, second-
order Bayliss-Gunzberger-Turkel (BGT) [7, 13] absorbing boundary conditions are applied.
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Figure 10. Example 3: Geometry of thefictitious bounded domain to study the scattering from a submarine-shaped
obstacle problem (top) and a mesh of 2567 nodes (bottom).

The solution of the acoustic scattering problem is decomposed into v = u - + u;, where u,. and u;
are the so-called reflected and incident waves respectively. For a given wave number « and incident
wave direction «, theincident wave isu; = e*f(cos axtsinay) and the reflected wave u.,. is the solution
of the Helmholtz equation (1) with f = 0 (because —Aw; — ku; = 0). Neumann boundary conditions
are applied on the boundary of the obstacle

Vu, -n=-Vu;-n,

(g = 0in(2b)), and first order Bayliss-Gunzberger-Turkel (BGT) non-reflecting boundary conditions
are applied to the fictitious boundary

Vu,  -n=Mu, = —iku, + gur
in (2c). Here, ¢ isthe curvature of the surface of the scatterer, which for the particular case of acircular
boundary of radius Ris¢{ = 1/R.

In this example, the dispersion error committed in the approximation of the reflected solution w ,. is
studied. The total approximated scattered field « is computed from « . adding the known incident field
u;. Figures 11 and 12 show the approximations obtained using the Galerkin method with a triangular
mesh of 10026 nodes.

The behavior of the estimates of the dispersion error is analyzed for different unstructured triangular
meshes both for the Galerkin and SUPG approximations of the reflected solution « ,.. The triangular
meshes are obtained from the initial mesh (see figure 10) using a uniform refinement, that is, a new
mesh is obtained from a previous mesh by refining each triangle into 4 new triangles.

Table V shows the results associated to the Galerkin approximation. In this case, the stabilization
parameters involved in the computation of the truth estimate £ and the practical estimate £ * are
computed using the predefined direction 6, = « = 57 /4. Both the estimates obtained using
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Figure 11. Example 3: Real part of the approximated solutions of the scattering problem for @ = 57/4 and
kL = 62.83: scattered wave (top) and total wave (bottom). Approximations computed using the Galerkin method
and amesh of 10026 nodes.

a polynomial and an exponentia fitting provide fairly good approximations to the truth value E.
However, the exponential approach provides better effectivities, closer to one. Moreover the expected
rate of convergence of the estimates of the dispersion error is obtained in all the cases.

Galerkin
Tnp E E;ol ngp n;ol n;xp

2567 || 0.69064 0.55271 0.67186 | 0.8003 0.9728
10026 || 0.19509 0.15604 0.20538 | 0.7998 1.0527
39620 || 0.04829 0.02959 0.05003 | 0.6128 1.0360

Table V. Example 3: Assessment of the dispersion error committed by the Galerkin method for uniformly refined
unstructured triangular meshes.

Table VI shows the results obtained by the GLS approximations. Three different stabilized
approximations are computed associated with the stabilization directions ¢ = 0, § = «/12 and
6 = m/6. The corresponding estimates are computed using the same values of 6 in the reference
mesh, 0, = 0.
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imagiu }

D |

Figure 12. Example 3: Imaginary part of the approximated solutions of the scattering problem for o = 57/4 and
kL = 62.83 computed using the Galerkin method and a mesh of 10026 nodes: scattered wave (left) and total

imag(u)

)

wave (right).
GLS/FE
0=0 0=m/12 0=m/6
Tnp E;;ol ngp E;ol ngp E;;ol ngp

2567 || 1.31.1072 4.357-102 | 1.37-10°2 4.89-10° | 1.42.10~2 5.42.10 3
10026 || 4.77-10~% 1.771-1073 | 4.80-10~% 179102 | 4.83-10~% 1.81.10°3
39620 || 2.84-1073 1.866:10~* | 2.8510~3 1.89-10~* | 285103 1.89-10~*

Table V1. Example 3: Assessment of the dispersion error of the GLS method for uniformly refined unstructured
triangular meshes. The GL S approximations are shown for different stabilization directions 6.

Asexpected, the use of stabilized formulationsreduces considerably thedispersion error. Inthiscase,
the three tested stabilization directions provide similar results. Moreover, the exponential fitting which
provides really good estimates for the Galerkin solution, yields really low estimates of the dispersion
error of the stabilized approximations indicating that, in this example, the dispersion error is nearly
negligible when using a GL S approach.

4.4. Example 4: 2D acoustic car cavity

This example studies the noise transmission inside a two-dimensional section of the cabin of a car
which is excited by vibrations of the front panel and damped by Robin boundary conditions. This
exampleis frequently used as a benchmark problem in error assessment for interior acoustic problems
[10, 31, 18]. The geometry of the cabin is shown in figure 13. The size of the domain is characterized
by the maximum horizontal and vertical lengths, L, = 2.7m and L, = 1.1m, respectively. The
source term entering in equation (1) is f = 0, and as mentioned in Remark 1, for interior acoustic
wave propagation problems, the Neumann and Robin boundary conditions entering in equation (2) are
of the form g = —ipckv,, and Mu = —ipckA,u, where in this case the material parameters are
¢ = 340m/s standing for the speed of sound of the medium and p = 1.225 kg/m 3 standing for the
mass density. The vibrating front panel is excited with a unit normal velocity 7,, = 1m/s whereas
the roof is considered to be an absorbent panel with associated admittance 4 ,, = 1/2000 m.(Pa.s)~'.
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The rest of the boundary is assumed to be perfectly reflecting and thus v,, = 0m/s. Finaly, a wave

absorbant panel

vibrating
panel

Figure 13. Example 4: Description of the two-dimensional section of the cabin of acar and its associated boundary
conditions.

number of k ~ 9.7 has been considered in the computations (equivalent to a frequency of 525 H z).

In this problem, the exponential fitting presented aboveyields bad estimates, worse than the standard
polynomial fitting. Thisis dueto the fact that the solution is extremely complex, without a predominant
direction. At many points of the domain, the solution can be expressed as a sum of several plane waves
with similar amplitudes. Thus, the exponential fitting fails to properly approximate the local behavior
of the modified solution in the vicinity of these points. Actually, the exponential recovery in these zones
introduces unrealistic discontinuities resulting in bad estimates. In the following, this phenomenonis
described in detail, as well as the proposed remedy.

Itiswell known that the exact solution of the 2D homogeneous Helmholtz equation can be expressed
as an infinite sum of plane waves traveling in different directions. In the previous examples, the
solutions were either a single plane wave traveling in a predefined direction (see examples 1 and 2)
or had a prevalent plane wave direction, although the prevalent wave direction may vary from different
zones of the domain (see the scattered solution of example 3). The sound transmission inside a car
cabin is a more complex phenomenon and the solution does not present clear prevalent directions but
is acombination of different plane waves with similar amplitudes (see figure 14).

Evenif the exact solution has no prevalent directions, one can consider an exponential representation
of the exact solution of the problem

u(x) = r(x)e? ™),

where r(x) and §(x) are the real-valued functions providing the modulus and angle of « respectively.
In the cases where the solution does not have a prevalent direction two phenomena may appear: on one
hand the angle distribution 6(x) may present discontinuities coinciding with areas where the modulus
vanishes, and, on the other hand, the modulus distribution r(x) may present a highly non-linear and
non-smooth behavior in some regions.

To illustrate these phenomena, the modulus and angle distributions of three simple solutions are
shown in figure 15. First, the solution u = 2e"%* + "% is considered. Note that, in this case, the plane
wave traveling in the z-direction, e"**, prevails over the wave traveling in the y-direction, e . As
can be seen in figure 15, the standard representation of the angle distribution 6(x) is a discontinuous
function, which can be easily post-processed to recover a continuous angle distribution. Moreover,
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Figure 14. Example 4: Solution of the noise transmission problem inside the cabin of a car obtained with an
overkill mesh of 20160 nodes: real part of « (top) and imaginary part of « (bottom).

the modulus does not present large variations over small regions. In this case, the exponential fitting
described in section 3.5 provides accurate approximations of . The second example, u = e % 4 ",
shows that if the solution is obtained combining two plane waves of the same amplitude, and thus it
does not have any prevalent direction, angle discontinuities appear in some predefined straight lines.
Asthe number of plane wavesthat comprise the solution « increases, see for instance the third example
u = e 4" e~ the modulus and angle distributions may present areas with ahighly non-linear
and non-smooth behavior. Note that, although the angle distribution only presents point or removable
discontinuities at nine points of the domain, obtaining a globally smooth angle distribution from the
standard angle representation is not a trivial task. Figure 16 shows, the behavior of the modulus and
angle distribution associated to the acoustic pressure inside the car cabin. As can bee seen, its not easy
to clearly identify the regions where the angle distribution is discontinuous.

The exponentia fitting technique is based on finding a proper local polynomial representation for
the modulus and angle distributions. Thus, in regions where either the angle is discontinuous or the
modulus presents large oscillations, the exponential representation yields poor results. In this work,
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Figure 15. Example 4: Behavior of the modulus and angle distributions, 6(x) and r(x) respectively, for three

simple solutions in the unit square. From top to bottom: v = 2e%%¢ + % o = " 4 "% and u =

e 4 e e for k = 9.7. For each solution, the modulus distribution (left) and two views of the angle

distributions (middle left, middle right) are shown. When possible, equivalent angle distributions only containing

non-removable discontinuities — where the discontinuities associated to a 27 angle jump have been smoothed —
are shown (right).

Figure 16. Example 4: Modulus (left) and angle (middle and right) distribution of the acoustic pressure inside the
car cabin. The areas where the modulus is nearly zero are highlighted in the plot in the middle to see the areas
where the angle distribution may present discontinuities.

a simple workaround is proposed: first, the smoothing technique identifies the elements near the
angle discontinuities or near the regions where the modulus has a non-smooth behavior. Then, the
exponential fitting is applied only to the non-selected elements while a polynomia fitting is applied
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to the problematic elements. The estimates obtained with this combined approach are denoted in the
following by E, ..

Estimates of the dispersion error for the Galerkin approximations of the solution are computed for
two different triangular meshes of 568 and 2122 nodes respectively. The results are shownin table V1.
As can be seen, both the polynomial and the combined estimates provide fairly good approximations
to the truth value . However, using an exponential representation, where possible, allows obtaining
effectivities closer to one.

Galerkin
Tnp E E;ol ngp n;ol n;xp

568 || 0.15001 0.08231 0.12960 | 0.5486 0.8639
1092 || 0.07506 0.06694 0.07389 | 0.8918 0.9845

Table VII. Example 4: Assessment of the dispersion error of the Galerkin method for unstructured triangular
meshes.

Figure 17 shows the elements that have been selected in the combined approach to apply the
polynomia smoothing technique instead of the exponential one. Note that these regions are in good
agreement with those highlighted in figure 16.

Figure 17. Example 4: Two unstructured triangular mesh where the red elements corresponding to solution fitting
polynomial.

The reduction in the dispersion error obtained by using stabilization techniques is shown in table
VIII. Thistable aso shows the influence of the selection of the stabilization parameter. As can be seen
the results of the GL S approximations with the three stabilization parameters are nearly identical for
the two meshes, and provide significant improvement over the Galerkin method.

5. Conclusions
This paper introduces an error assessment technique for the numerical wave number g of the
Helmholtz problem, both for standard Galerkin and stabilized formulations. The strategy introduced

in [28], which determines the numerical wave number i as the one that better accommodates the
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GLSFE
Tinp E E;ol ngp
0=0

568 || 0.03792 0.02267 0.03563
1092 || 0.00577 0.00653 0.00644
0=m/12

568 || 0.03808 0.02281 0.03583
1092 || 0.00583 0.00658 0.00651
0=m/6

568 || 0.03824 0.02294 0.03601
1092 || 0.00589 0.00663 0.00656

Table VII1. Example 4: Assessment of the dispersion error of the GLS method for an unstructured triangular mesh.
The GL S approximations are shown for different stabilization directions 6.

numerical solution u g in amodified problem, has been extended to deal with stabilized formulations.
The numerical solution u z; and the reference modified problem are computed using stabilized methods
to obtain both more accurate approximations of the solution and sharper estimates of the dispersion
error.

The proposed strategy requires obtaining an inexpensive approximation of the modified problem,
using post-processing techniques. Thus, the associated numerical wave number is readily recovered
using a closed expression. A new improved recovery technique is developed to take advantage of the
nature of the solutions of wave problems. The standard polynomial least squares techniquesis replaced
by an exponential fitting yielding much sharper results in most applications. However, both the error
estimates computed using a polynomial and exponential fitting provide reasonable approximations of
the true errors.

The estimates of the dispersion error reaffirm that using stabilized approximations substantially
improves the performance of finite-element computations of time-harmonic acoustics at high wave
numbers. The sensitivity of the choice of the stabilization parameter for the GLS method has been
studied concluding that the change in the orientation of the stabilization parameter has little effect on
the results of non-academic problems or when considering non-structured meshes.
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Abstract This paper introduces a new goal-oriented adap-
tive technique based on a simple and effective post-process
of the finite element approximations. The goal-oriented char-
acter of the estimate is achieved by analyzing both the di-
rect problem and an auxiliary problem, denoted as adjoint
or dual, which is related to the quantity of interest. Thus,
the error estimation technique proposed in this paper would
fall into the category of recovery-type and explicit residual a
posteriori error estimates. The procedure is valid for general
linear quantities of interest and it is also extend to non-linear
ones. The numerical examples demonstrate the efficiency of
the proposed approach and discuss: 1) different error rep-
resentations, 2) assessment of the dispersion error, and 3)
different remeshing criteria.

1 INTRODUCTION

One of the major problems in acoustic simulations, and in
particular in problems governed by the Helmholtz equation,
is that the Galerkin method requires too fine meshes. This is
computationally unaffordable and undermines the practical
utility of the method. Often the rule of the thumb, which pre-
scribes the minimal discretization per wavelength, is used.
However, it is widely known that this rule is not sufficient to
obtain reliable results for large wave numbers due to disper-
sion and pollution errors [1-5]. Furthermore, non-uniform
meshes are required to resolve singularities or large gradi-
ents in the solution. This suggests using adaptivity to con-
trol accuracy and obtain optimal meshes refining at the right
locations.

Lindaura Maria Steffens - Nuria Parés - Pedro Diez
Laboratori de Calcul Numeric

Departament de Matematica Aplicada IIT

Universitat Politecnica de Catalunya, Barcelona, Spain
E-mail: lindaura.steffens@upc.edu

The basic scheme of the adaptive procedure is: first, es-
timate the discretization error; second, develop the strategy
associated with the #-adaptive refinement, which determines
the elements to be refined; and finally, generate a new mesh.
Obviously, the most important ingredient in any adaptive
procedure is a reliable error estimation procedure.

Goal-oriented adaptivity is related with controlling the
error in a given quantity of interest, and optimal refinement
techniques should only refine the areas affecting this quan-
tity. Moreover, error assessment for the quantity of interest
provides both the global error quantity and the local contri-
butions to the error in the quantity of interest in each ele-
ment. These local quantities are used to design the adaptive
procedure.

‘While some progress has been done in assessing the glo-
bal accuracy of finite element approximations for the Hel-
mbholtz equation [6—10], there exist very few literature con-
cerning a posteriori goal-oriented error estimation for the
Helmbholtz equation [11-14]. For instance, [12] provides a
strategy to compute asymptotic bounds for linear and non-
linear quantities of interest based on the equilibrated resid-
ual method. Another example is [13] which proposes a goal-
oriented adaptive technique for modeling the external hu-
man auditory system by the boundary element method.

The remainder of the paper is structured as follows: sec-
tion 2 introduces the description of the problem to the solved.
Section 3 presents a general framework for assessing the er-
ror in general linear and non-linear quantities of interest.
Different representations for the linear contribution to the
output are introduced in section 4. Section 5 is devoted to
obtain error estimates for general outputs using the different
error representations given in section 4. The adaptive strat-
egy is introduced in the section 6, where local indicators and
several strategies of refinement are defined. Finally, in sec-
tion 7 the proposed procedure for goal-oriented adaptivity
is tested in some numerical examples. The relation between



the different error representations and the dispersion error of
the direct and adjoint problems is also discussed.

2 PROBLEM STATEMENT

The propagation of acoustic waves is governed by the wave
equation describing the evolution of the acoustic pressure p
as a function of the position x and time 7. The harmonic as-
sumption states that for a given angular frequency o, p(x,7) =
u(x)e'®, where the new unknown u(x) is the complex am-
plitude of the acoustic pressure. For an interior spatial do-
main €, u(x) is the solution of the Helmholtz equation

—Au—K’u=f in Q, (1)

taking the acoustic wave number k = /¢ where ¢ is the
speed of sound. Equation (1) is complemented with the fol-
lowing boundary conditions

u=up on Ip, (2a)
Vu-n=g on Iy, (2b)
Vu-n=mu+f on Iz, (2¢)

where I, Iy and I are a disjoint partition of the boundary
where Dirichlet, Neumann and Robin boundary conditions
are applied respectively. The outward unit normal is denoted
by nand up, f,g,m and 3 are the prescribed data, which are
assumed to be sufficiently smooth.

The boundary value problem defined by equations (1)
and (2) is readily expressed in its weak form introducing the
solution and test spaces % := {u € 1 (Q),u|r, = up} and
V= {ve H(Q),v| = 0}. Here 51 (Q) is the standard
Sobolev space of complex-valued square integrable func-
tions with square integrable first derivatives. The weak form
of the problem then reads: find # € % such that

a(u,v)=L(v) Wwev,

where the sesquilinear form a(-,-) and antilinear functional
£(-) are defined as

a(u,v):= / Vu-VvdQ — / Kzu\TdQ—/ muvdl,
JQ JQ Iz

o) = /Q fdQ + /F gvdl + /FR Bvdr, 3)

and the symbol - denotes the complex conjugate.

The finite element approximation of u is found by first
discretizing the domain €2 into triangular or quadrilateral
elements Q;, k=1,...,ng|, ne being the number of elements
in the mesh. This mesh has an associated characteristic mesh
size H and induces the discrete functional spaces %y C %
and ¥y C V. The finite element approximation uy € %y is
then such that

a(ug,v) =L0(v) YveE .

3 ERROR ASSESSMENT FOR GENERAL
(NONLINEAR) QUANTITIES OF INTEREST

A posteriori error estimation techniques aim at assessing
the error committed in the approximation of u, e := u — u
where e € 7 is the solution of the primal residual problem

ae,v) = L(v) —a(up,v) = R (v) Wwe¥, 4)

RP(-) standing for the weak residual associated to the finite
element approximation uz.

When applied to classical problems (in which a(-,-) is
coercive) a first step in a posteriori assessment is estimating
the error measured in the energy norm, that is obtaining a
good approximation of e and computing a(e, e). However,
in acoustic problems, since the Helmholtz equation is not
elliptic, the form ||v||?> = a(v,v) does not define a squared
norm. There is no natural energy norm to measure the error.

Additionally, assessing the error measured in some func-
tional norm is not sufficient for many applications. In prac-
tice, the finite element user is interested in specific mag-
nitudes extracted from the global solution by some post-
process. These magnitudes are referred as quantities of in-
terest or functional outputs. Goal-oriented error assessment
strategies aim at estimating the error committed in these
quantities and possibly providing bounds for it.

The quantities of interest considered here are nonlinear
functional outputs of the solution, J(u), and the aim is to as-
sess the error committed when approximating these quanti-
ties using the finite element approximation. Specifically, the
goal is to assess and control the quantity

J(u) —J(un).

For the purposes of this paper, it is convenient to make
the linear, quadratic and higher order terms contributions of
J(u) more explicit. To this end, J(u) is expanded introduc-
ing the Gateaux first and second derivatives of J(-) at uy,
namely

T +v) = J(up) + 07 0) + 200,v) + # (v), &)

where £ (v) = [DJ](ug) - (v) and 2.2(vy,v2) = [D2J) (uy) -
(vi,v2), see [12,15]. Note that £7 : #'(2) — C and 2 :
N (Q) x 1 (Q) — C are the linear and bilinear contri-
butions of J(-), respectively, and that the functional # con-
tains the higher order terms. In the case of a linear output,
notice that 2 = % = 0.

Using this decomposition and taking into account that
u = uy + e, the error in the quantity of interest may be rewrit-
ten as

J(u) = J(uzr) = J(ug+e) —J(ug) =7 () + 2(e,e) + # (e).
(6)



Thus, it is clear that in order to estimate the error in the quan-
tity of interest, it is sufficient to estimate the linear, quadratic
and higher-order terms separately, £ (e), 2(e,e) and # (e)
respectively.

Requiring 2 and # to be .#?-continuous, which in this
particular case is equivalent to | 2(v)| < ¢1]|v|3 and | 2(v)| <
c2||v||3 where || - |[o denotes the .#2-norm, shows that the
quadratic and higher-order contributions to the error, 2(e, e)
and # (e), converge as O(H*) and 0 (H®) respectively, whe-
reas the linear term ¢ ﬁ(e) converges quadratically — recall
that the finite element method for a regular problem con-
verges quadratically in the .#?-norm. Thus, for sufficiently
small H the linear term provides a good inside to the error
in the output since the other terms are negligible.

The following sections are devoted to describe the error
assessment techniques to estimate J(e) (linear and higher or-
der contributions) and to provide local error estimators able
to effectively drive the adaptive procedures.

4 ERROR REPRESENTATION OF A LINEARIZED
OUTPUT AND ADJOINT PROBLEM

This section presents alternative representations for the lin-
ear contribution to the error in the output £ (e). This al-
ternative representations do not directly yield computable
expressions for the estimates of the output because they de-
pend on the exact errors on the primal and adjoint problems.
However, estimates may be easily recovered using existing
techniques providing approximations for the errors, as de-
scribed in the following section.

The quantities of interest considered here are such that
their linear part is expressed as

eﬁ’(v):/!'zf”vdmr/r g”vdr+/rﬁ”‘vdr., 7
N 'R

where /7, g7 and B9 are given functions characterizing the
linearized quantity of interest. Note that £7 (v) has the same
structure as £(v), see equation (3), excepting the conjugate
in its argument. Thus, £ is a linear functional whereas ¢ is
a anti-linear functional.

Most existing techniques to estimate the error in a quan-
tity of interest introduce an alternative representation for
£9(e). In practice, different error representations are used
to properly estimate ¢ (7(@). These error representations re-
quire introducing an auxiliary problem, denoted as adjoint
or dual problem which reads: find y € 7 such that

a(vy) = (7(v) Wev, ®)

which is equivalent to determine the adjoint solution y ver-
ifying the Helmholtz equation

“Ay—k*y=/? inQ,

complemented with the boundary conditions

v=0 on Ip, (9a)
Vy-n=g" on Iy, (9b)
Vu/-n:rﬁu/JrB{] on Iz. (9¢)

In order to assess the error in the quantity of interest the
adjoint solution y is approximated numerically by yy € 4
such that

alv,yi) =7 (v) Vv e Yy,

introducing the adjoint error € := ¥ — yy solution of the
adjoint residual problem

a(v,e) =7 (v) —a(v,y) = R°(v) Vve ¥, (10)

where RP(-) is the weak adjoint residual associated with y.
The adjoint problem is introduced such that the follow-
ing error representation holds:

09 (e) = ale,y) = ale, )

where the Galerkin orthogonality of the adjoint approxima-
tion Yy is used in the last equality. In turn, this error repre-
sentation allows assessing the error in terms of the residuals
of the direct and adjoint problems, namely

09(e) = a(e,e) = R"(e) = RP(e). (11)

These representations are obtained substituting v = € in (4)
and v = e in (10) respectively.

5 RECOVERY TYPE: ERROR ESTIMATES FOR
LINEAR AND NONLINEAR OUTPUTS

A posteriori assessment of quantities of interest relies on ob-
taining a good approximation of J(u) —J(u ). This trans-
lates in finding a new enhanced solution u*, based on the
information at hand, that is uy, and such that #* approx-
imates the actual solution # much better than #y. Thus, a
computable error estimate is readily obtained

e~e ' =u" —uy

yielding also the corresponding estimate for the quantity of
interest

J(u) —J(ug) ~ €9 (e*) + 2(e*,e") + W (). (12)

This approximation of the error in the quantity of interest is
obtained from equation (6) substituting the actual error e by
its approximation e*.

Thus, the key issue in any error estimation technique
is to produce a properly enhanced solution #* (or in some
cases obtaining an enhanced approximation of the gradient
of the solution ¢* =~ Vu suffices). The strategies producing



the enhanced solution u* (or ¢* respectively) are classified
into two categories: recovery type estimators and implicit
residual type estimators. Recovery techniques, based on the
ideas of Zienkiewicz and Zhu [16-18], are often preferred
by practitioners because they are robust and simple to use.
On the other hand, a posteriori implicit residual-type esti-
mators have a sounder mathematical basis and produce esti-
mates that are upper or lower bounds of the error [19-23]. At
first glance on could think that, once the enhanced solutions
u* or ¢g* are obtained either using recovery or residual-type
error estimators, estimates for the error in the quantity of
interest may be directly obtained using equation (12). How-
ever, as mentioned in section (4), this representation does
not provide sound results. This is because inserting the en-
hanced error e* (or its gradient ¢*) in the functionals £7(-),
2(-,-) and #(-) may not yield accurate results even when
the enhanced approximation «* provides a reasonable ap-
proximation of u in terms of energy. In practice, since the
most-contributing term to the error in the quantity of inter-
est is the linear term, alternative representations are used for
this term, as the ones described in section (4), whereas no
additional effort is done in the higher-order terms.

The linear term fﬁ(e) may be assessed by any of the
following strategies:

1. Compute the primal enhanced solution * to obtain e* =
u* — uy and evaluate £ (e*). This option is readily dis-
carded as announced previously

2. Compute the primal enhanced solution #* to obtain e*
and evaluate R” (e*).

3. Compute the adjoint enhanced solution y* to obtain £* =
y* — yy and evaluate R” ("),

4. Compute both the primal and enhanced errors e* and €*
and evaluate a(e*, €*).

In this work, the strategies presented in [24,25] are used
to recover the enhanced solutions #* and y* from uy and
yy respectively. A simple and inexpensive post-processing
technique is used to recover the approximations #* and y* of
u and y in a finer reference mesh of associated characteristic
mesh size h << H. Thus, u* € %, and y* € ¥}, where %,
and ¥}, are the discrete functional spaces associated to the
finer reference mesh, %y C %, C % and ¥y C ¥, C V.

As mentioned before, for sufficiently refined meshes, the
error in the quantity of interest is controlled by the linear
term, since the quadratic and higher-order contributions con-
verge faster to zero, see section (3). For this, the proposed
approach is to make use of the available estimate e* to ob-
tain a simple and inexpensive estimate of the non-linear con-
tributions. Namely, the quadratic and higher-order contribu-
tions to the error in the output, 2(e,e) and # (e) respec-
tively, are assessed using the reconstruction of the primal
error e* used to assess the linear part of the error, namely

Q(e,e) = 2(e*,e") and #'(e)~= W ().

6 LOCAL INDICATORS AND ADAPTIVITY
CRITERIA

Adaptive mesh refinement is nowadays an essential tool to
obtain high-fidelity simulations at the lesser cost. The main
ingredients of the proposed adaptive procedure are: the /-
refinement, that is, the new meshes are obtained by subdi-
viding the elements of the mesh; optimal indicators, the re-
finement is organized with the aim of achieving equal error
in each element of new mesh; iterative process, the target in
each step of refinement is to reduce the global error until the
calculated error drops below the tolerance specified by the
user.

Additionally, assessing the error measured in some func-
tional norm is not sufficient for many applications. In prac-
tice, the finite element user is interested in specific mag-
nitudes extracted from the global solution by some post-
process. These magnitudes are referred as quantities of in-
terest or functional outputs. Goal-oriented error assessment
strategies aim at estimating the error committed in these
quantities and possibly providing bounds for it.

This requires obtaining local error indicators allowing to
decide the elements to be marked for refinement — those with
larger contribution to the total error. In order to determine
the contribution of every element to the total error, spatial
error distributions of the estimates are derived decomposing
the global estimates into a sum of local contributions in each
element of the mesh induced by %;.

The estimates for the error in the quantity of interest are
of the form

J(u) = J(up) = 09 (") + 2(e*,e") + # (e*),

where the linear term 7 (e*) is replaced by either a(e*,e*),
RP (%) or RP(e*), depending on the selected representation
of the linear term. Since the linear term is the driving term
of the error in the quantity of interest, in this work, the adap-
tive procedure is chosen to be driven by £ (¢*). That is, the
global estimate for the linear term £¢ is decomposed into
a sum of local contributions in each element. These local
quantities are used to design the adaptive procedure.

6.1 Local Indicators

The natural restriction to every element £ of the integral
forms a(-,-), £(-) and £7(-) yield the elementary contribu-
tions denoted by a(-,-), ¢4(-) and £{ (-) such that

D]

a(u,v) = 2 ag(u,v), L(v)= kzd‘lk(v), () = kz"l‘ ).
—1 =1

k=1
Similarly, the primal and adjoint residuals are decom-
posed as

Nel Ne|

R (v) =3, R{(v) WM:;ﬁM7
k=1 =1



where RY(+) := €4 (-) — ay(up;,-) and RP () := éf()
Hence, the error representations for the linear contribu-

tion of the error in the quantity of interest given in equation

(11) are associated to the elementary error distributions

Ne|

:24@:§m@
=1

D Ne|

€)=Y Ri(e)= Y R{(e)
=1 k=1

It is worth mentioning that, while the global error quanti-
ties are equal in all the representations, the local quantities
7 (e), ax(e,€), RY (€) and R (e) represent different clemen-
tary contributions to the error and, besides, they are not nec-
essarily positive nor even real numbers.

From the four possible representations of the linear con-
tribution of the error £ (e), in this work only the two expres-
sions involving the primal and adjoint residuals are used,
thus yielding the global estimates

n=R(e") and n°:=RP(e), (13)

and its associated local error indicators 1§ := RE(e*) and
nf¢ := RP(e*), such that

De| D

=3 mnf and n°:=Y 14
k=1 k=1

(14)

Remark 1 The local elemental contributions 1 and n; are
the natural decomposition of the estimates N¢ and n° to the
elements. However, the computation of the local contribu-
tions Mg and Ny requires the computation of local integral
forms. This can be done either by storing the elemental con-
tributions to the system matrices and vectors or by recom-
puting these contributions in an elementary loop. A cheaper
and more natural to implement alternative is to decompose
the estimates M¢ and M° into nodal contributions. This is
because it uses the finite element nature of the estimates 1n°¢
and n®. In practice, the estimates e* and €* are computed in
a finer reference mesh associated with the space ¥}, namely
e =3;e;0p; and € =3 ;€ O, ;, where @y, j are the shape
functions associated with the nodes of the reference mesh,
Xy, j. Thus, a natural decomposition of the estimates ¢ and
n¢ into nodal contributions on the reference mesh holds

€= ZSfRP(%.j) =: Zﬂfh_,
J J

and

¢=Y R () = Y g, -
J =

Note that ng, ]_ and nxh are readily computed multiplying
the j-th components of the finite element vectors associated
to €* and R"(-) and * and RP(-) respectively.

Then, the local elemental contributions associated to the el-
ement Ly of the coarse mesh are computed from a weighted

—ar(, ¥).

average of the local nodal contributions nx o and n,‘h -
sociated to the nodes X, ; belonging to ;.. To be vpeczﬁc

Ne| Nej
Sy, =3 S aunt, =3 a9)
J k=1x), €% k=1
and
D¢l Del
=2, =2 X owmy,, —.Zn-, (16)
7 k=1

k=1x), €

where oy, ; is the inverse of the number of elements in the
coarse mesh to which a particular node xj, ; belongs. For a
detailed description, see [26].

A simple adaptive strategy is employed, using the local
indicators 17 or ¢ produced during the calculation of the
estimate for the output, to drive the non-linear output to a
prescribed precision. That is, the algorithm ends if

D

217 '+ 2(e* )+ (e) < A,

where 1) k@ stands for any of the following local contributions
Ne» M- A or N, Al is a user-prescribed desired final ac-
curacy, and at each level of refinement, the elements marked
for refinement are those with larger values of the local linear
contribution N k? .

6.2 Remeshing criterion

In acoustic problems, the local contributions are not neces-
sarily positive and in fact, in contrast to what occurs in ther-
mal or elasticity problems, they can be complex numbers.
To select the elements with larger local contributions, the
modulus of the values n ,f is considered, and the elements
selected to be refined are the ones verifying

D¢y ®
> ng

k=1

®
M | 2
Ine'l -

a7
Note that this marking algorithm aims at obtaining elements
with equal local error contribution. However, this is not equiv
alent to obtaining a uniform spatial error distribution, since
the elements with larger area are penalized. In order to ob-
tain a uniform spatial error distribution, the local contribu-
tions are weighted by the element area yielding the follow-
ing marking criterion: the elements to be subdivided are the
ones verifying

Nep
el &

T 18
ez (1s)
where Ay is the area of the element €, and A is the area of
the whole domain €2. Note that expressions (17) and (18) are
equivalent in uniform meshes where all the elements have
the same area since in this case Ay = Ag /ne is constant.



7 NUMERICAL EXAMPLES

The performance of the estimates and error indicators de-
scribed above is illustrated in three numerical examples. The
quantities of interest are expressed as linear and quadratic
functionals of the solution u. In particular, three different
engineering outputs are considered. The first output is the
integral of the solution over a subdomain Q7 € Q

M= [ ude,

that is, the data entering in (7) are g7 = B¢ =0 and /7 =
1in Q7 and f7 = 0 elsewhere. Since the output depends
linearly on u, £§ (v) =J; (v) and 2; (v,v) = #1 (v) = 0in (5).
Note that eventually Q¢ can be Q to compute an average of
the solution over the whole domain.

The second output is the average of the squared modulus
of the solution over a boundary strip I'? C Iy U Tz

1 _
Jo(u) = lr_f//rﬁ uudll

where /1-¢ is the length of the boundary strip. Since this out-
put depends quadratically on u, #>(v) = 0 and the linear and
quadratic contributions are

(19)

(20)

B =

1/ (upv+upv)dl,  22(v,v) =5 (v).
lro Jre

Indeed, appealing to (5)

S (upg+v) = /I;ﬂ(uH+v)(uH+v)dF

= —/ (uHLTH+uHV+VL7H+V\_/) dr
lro Jro

= (un) + / (ugv+ugv)dl + 5 (v).

lro Jre

It is worth noting that the error estimation procedure de-
scribed above can not be directly applied to this output as it
stands since the linear functional ¢ 57 (+) can not be expressed
in the form of (7). A simple workaround to overcome this
limitation is adopted noting that £4 (v) is a real number co-
inciding with

e%):z%(if LTHvdI“>.
lro Jre

The adjoint problem is then defined with respect to the aux-
iliary linear functional [psupvdI /I-o which corresponds
to fﬁ =0, Bﬁ =up/lpo on I'? NI and zero elsewhere and
g’ = up/l-o on I'? NI} and zero elsewhere.

The third output is the normalized squared .Z 2-norm of

the solution over a region Q27

1 _
= Q
J3(u) T /quud

@2n

where 4, stands for the area of the subdomain Q 7 Again,
since the output is quadratic, #3(v) = 0 and

) =

=+ (,/Qo(uH‘T+u_Hv)d'Q’ 23(v,v) =S(v).
Q

The derivation is analogous to the one provided for J,(+)
except for the integrals being placed over a subdomain of
€ instead of its boundary. As in the second output, the ad-
joint problem is defined with respect to the modified func-
tional [ upvdQ /A4 e, for which the data entering in (7)
are g7 = B7 =0 and f7 = up/Aqe in Q7 and 7 =0
elsewhere.

Remark 2 The second and third outputs Jo(u) and J3(u)
are real quantities since they only involve the squared mod-
ulus of the solution. In particular, all the involved function-
als, are real functions of a single complex variable, that is,
for instance Zf : C — R. As mentioned above, in this case,
the adjoint problem is defined with respect to an auxiliary
non-real linear functional output. The original linear func-
tional (and all the required estimates and local indicators) is
recovered from this auxiliary functional taking the real part
and multiplying by a factor two.

When reporting the numerical results, n;ol =Rl (egol),
T'esxp = RP(‘c::xp)a 77501 = RD(e;;ol) and ngxp =R (e;xp) de-
note the estimates of the linear contribution to the error in
the quantity of interest 1 := £7(e) obtained by using the
post-processing strategy described in [24,25]. The subinde-
ces exp and pol indicate the kind of approximation used in
the least squares fitting: either polynomial both for the real
and imaginary part of the solution or a complex-exponential
fitting (polynomial fitting for the logarithm of the modulus
and for the angle). In order to see how well the estimators
perform, the value of the true error J(u) —J(u z) or £7 (¢) are
required, but the analytical solutions of the considered prob-
lems are not available. An accurate value for the true error
is obtained by making use of a sufficiently accurate approx-
imation u;, of u in a finer reference mesh, that is, the esti-
mates are compared with the reference values J(up,) —J(up)
and 7, := £ (ey,) respectively.

Note that this reference value can also be recovered from
a faithful representation of the adjoint problem v, since 1, =
09 (e,) = R"(yy) = RP(g). In the examples, the approxima-
tions #* and y* used to recover the estimates of the errors
e =u* —uy and €* = y* — yy and its corresponding es-
timates for the output n¢ = RP(e*) and n¢ = R ("), are
also computed using the same reference mesh. Noting that
N, = RP(e;,) = R (g;) reveals that the quality of the esti-
mates depends on the quality of the approximations e* ~ ¢,
and €* & g;,. The accuracy of these approximations is closely
related to the so-called pollution or dispersion error. Since
the approximations ™ and y* are constructed using a con-
strained least-squares technique, the estimates for the error



e* and €* vanish at the nodes of the coarse mesh, yield-
ing crude approximations if the solutions presents large dis-
persion errors. In the examples, the influence of the disper-
sion error in the estimates for the quantity of interest is ana-
lyzed using the estimates for the dispersion error introduced
in [24,25]. These estimates are denoted by E¢ and E¢ for
the primal and adjoint problems respectively. A detailed de-
scription of the computation of these estimates is given in
[25].

7.1 Square with obstacle

The first example is the scattering of a plane wave by a rigid
obstacle introduced in [12]. The incident wave travels in the
negative y-direction inside a square domain which contains
a rigid body, see figure 1.
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Fig. 1 Example 1: Description of the geometry and boundary condi-
tions for the plane wave scattering by a rigid body.

The solution of the problem is composed of a prescribed
incident wave plus a scattered wave, u = u, + u;, where u,
and u; are the so-called reflected and incident waves respec-
tively. The incident wave is of the form u; = e*(cosox+sinay)
where x is the wave number and oo = /2 is the incident
wave direction. To reproduce the scattering nature of the
problem, no essential boundary conditions are imposed and
it is assumed that there are no sources in the domain, f =0
in equation (1), and that the rigid obstacle is perfectly re-
flecting. This is, Vu-n = 0 or, in terms of the incident wave,
Vu,-n = —Vu;-n on Iy. On the exterior boundary, Robin ab-
sorbing boundary conditions are applied. Thus, the reflected
wave u, is the solution of the Helmholtz equation (1) for

f =0 and Ip = 0 and where the data entering in (2) are
g=—Vu;-n,m=—ikand f =0.

To demonstrate the dependence of the results on the wave
number, two values of the wave number are considered: Kk =
7 and k¥ = 37. Both the reflected and total waves obtained
for this problem in a mesh of 9825 nodes are shown in figure
2.
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Fig. 2 Example 1: Real part (top), imaginary part (middle top) and
modulus of the scattered solution u, (middle bottom), that is, Re(u; ),
3m(u,) and |u,|, and modulus of the total solution |u| (bottom) for
Kk = 7 (left) and k¥ = 37 (right), computed using the Galerkin method
and a mesh of 9852 nodes.

For this problem, two different quantities are considered:
the average of the reflected solution over the whole domain,
that is Jj (u,) for Q 7 = Q, which is a linear quantity of inter-
est, and the average of the squared modulus of the reflected
solution over the boundary strip I ¢ depicted in figure 1, that
is, J2(ur), which depends quadratically on u,.

The behavior of the estimates for the linear quantity of
interest Jj (u,) is first analyzed for a uniform mesh refine-
ment in a series of unstructured triangular meshes for the
value K = . Three triangular meshes are considered, start-



ing from an initial mesh of 636 nodes and obtaining the sub-
sequent meshes by refining each triangle into four new ones,
see figure 3.

Fig. 3 Example 1: Initial mesh of 636 nodes and subdivision of each
triangle into four new ones for the uniform mesh refinement.

The finite element approximation of the adjoint solution
computed at the final mesh of the refinement procedure of
9825 nodes is shown in figure 4.
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Fig. 4 Example 1: Real part (left), imaginary part (middle) and mod-
ulus (right) of the adjoint solution associated to the first quantity of
interest J; (u,) for k = m computed using the Galerkin method and a
mesh of 9852 nodes.

Table 1 shows the estimates obtained for the error in the
quantity of interest J; (u,). Since the quantity of interest is
linear, in this case, the estimates coincide with those for the
linear term. Thus, the estimates given by the different error
representations (13) are compared with the reference value
Ny. For each coarse mesh, the reference value is obtained by
computing and approximation u; of  in a finer mesh (each
element of the coarse mesh is subdivided into 16 new ones
which corresponds to # = H/4). Also the table shows the
estimates for the dispersion error for the primal and adjoint
problem E¢ and E¢ respectively.

As can be seen, the estimates for the error in the quan-
tity of interest underestimate the reference value both for the
polynomial and exponential fitting. However, as reported in
[25] the exponential fitting provides better results, although
in this example the improvement is not that substantial when
compared to the reference value. The estimates for the dis-
persion error are also shown in the table. Looking at the dis-
persion errors provided by the exponential fitting, the disper-
sion for the primal problem ranges from a 28% for the first
mesh to a 5% for the final mesh and for the adjoint prob-
lem are below 0.3% in all the meshes. Although the dis-
persion is larger in the primal problem, for both problems

number of nodes
636 2445 9852
Khmax = 0.18 Khmax = 0.09 Khmax = 0.05

Nn 5.06e-4 + 7.90e-4i | 2.0de-4 +3.09e-4i | 8.14e-5+ 1.22e-4i
nsol 2.78¢-4 +5.41e-4i | 1.03e-4 + 1.79¢-4i | 3.93e-5 +6.23e-51
Nexp || 349e-4 +5.68e-4i | 1.12e-4 + 1.85e-4i | 4.00e-5 + 6.22e-5i
Npor || 2:32¢-4 +4.44e-4i | 9.76e-5 + 1.68¢-4i | 3.82¢-5 +6.02¢-5i
N&p || 2.72e-4 +531e-4i | 1.02e-4 + 1.77e-4i | 3.92e-5 +6.21e-5i
E§n1 -3.17e-2 -3.25e-3 7.93¢-4
E&p -9.33e-3 1.84e-3 -3.43e-4

E;ol -1.34e+0 -4.08e-1 -1.26e-1
E&p -8.95e-1 -3.15e-1 -1.50e-1

Table 1 Example 1: Estimates for the error in the linear quantity of
interest J; () = ¢{ (). The table shows the reference value for the
error in the quantity of interest 7, along with its different estimates.
Also, the estimated dispersion error associated to the primal and adjoint
problems are given, namely Eso] and E¢,.

the ratio K/max << 1, in fact in average, K/, = 0.08,0.04
and 0.02. This explains that, although the dispersion error is
significantly smaller in the adjoint problem, the difference
between quality of the representations 1) ¢ with respect to n¢
are only slightly better. Indeed, since all the meshes properly
satisfy the rule of thumb, the dispersion error is negligible in
front of the errors appearing from the singular nature of the
solution. The main source of error for this problem is not
the dispersion error, and thus, even though the dispersion is
smaller in the adjoint problem, the estimate € * does not pro-
vide a much better approximation of €, than e¢* is of ;. In
fact, it is worth noting that most of the estimated dispersion
errors are negative, yielding to finite element solutions with
associated numerical wave number larger wave number than
K, opposing the predicted behavior given by a-priori esti-
mates. This phenomena only appears when dispersion is not
relevant for the problem at hand. When dispersion errors are
important, the finite element method behaves as predicted
by the a-priori estimates providing approximations with as-
sociated numerical wave number smaller than x.

Figure 5 shows the local elementary contributions to the
error in the quantity of interest for the initial mesh of 636
nodes. Both the local contributions of the reference values
ng and 1y and its estimates (obtained using the polyno-
mial and the exponential fitting) computed using the rep-
resentations given in Remark 1, equations (15) and (16), are
shown. Note that even though the global error quantities 1/
and 1 are equal, they represent different elementary con-
tributions to the error. The spatial distribution of the esti-
mates is in good agreement with the reference ones: they
properly detect the elements with larger contributions to the
error even though the obtained elemental contributions un-
derestimate its reference value. The local contributions ob-
tained using the natural restriction of the global estimates



to the elements given in equation (14) are also shown in
figure 6 for 17, 17, and ng,. Again, although the global
values coincide with those computed distributing the nodal
contributions over the elements, the obtained local distribu-
tions is not the same. As can be seen, the use of the easier
and cheaper to compute local contributions described in re-
mark 1 provides fairly good approximations to the natural
restriction of the global quantities to the elements, yielding
a nearly equivalent distribution of elements to be refined in
the adaptive procedure. In this example, the natural decom-
position yields higher values of the modulus of the elemen-
tary contributions |ny| since the local distribution presents
larger positive and negative contributions 1, in neighboring
elements. The averaging involved in the nodal-to-element
representation, smoothes out this larger values yielding a
more uniform distribution. Henceforth in this example, all
the local contributions shown in the numerical examples are
computed using the nodal-to-element representation instead
of the natural representation.

Fig. 5 Example 1: Local maps of the error in the linear quantity of in-
terest J; (u,). The distributions on the top are obtained using the repre-
sentation n¢, thatis, n;, (left), nlfnl (middle) and nfxp (right) are shown.
The distributions on the bottom correspond to 1, that is, ) (left), n;ol
(middle) and ng,, (right) are shown.

Fig. 6 Example 1: Local maps of the error in the linear quantity of in-
terest J; (u,) computed using the restrictions of the integrals over the
elements (14). The distributions on the top are obtained using the in-
tegral representation 1°, that is, n;; (left), n[fol (middle) and ng,, are
shown.

Figure 7 shows the elements with larger values of the
estimates weighted by its area, |1,°|/Ay. In particular, the
elements marked for refinement if 1%, 5%, 10% and 25%
of the total elements are refined are shown respectively. Al-
though the estimates underestimate the reference value for
the error, they provide good information to guide the adap-
tive procedures.
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Fig. 7 Example 1: Elements marked for refinement if 1% (red), 5%
(red-+blue), 10% (red+bluetgreen) and 25% (red+bluetgreentyellow)
of the total elements are refined. The elements are selected using the
local maps of the error in the linear quantity of interest Ji (u,) given in
figure 5, namely: 1} (top-left), nlfol (top-middle), n&,, (top-right), nj
(bottom-left), '7;01 (bottom-middle) and ngxp (bottom-right).

The convergence of the estimates is shown in figure 8.
Two refinement strategies are implemented: first, the meshes
are uniformly refined whereby each triangle is subdivided
into four sub-triangles at each step and second, the meshes
are adaptively refined using the criterion given in equation
(18). The singular nature of the solution yields an order of
convergence for the uniform mesh refinement of &(H*/3)
for the quantity of interest, which is equivalent to &((np)*3)
where n,, denotes the number of nodes of the mesh, in-
stead of the standard convergence rate of &'(H*) obtained
for regular solutions. As expected, the use of an adaptive
refinement strategy leads to a faster reduction of the error
in the quantity of interest than if a uniform refinement is
used. Again it can be seen that, in this example, all the esti-
mates provide similar results providing an underestimation
of the reference values. For comparison, the adaptive algo-
rithm guided by the reference errors 17 and 17 are also run.
Comparing the convergence curves obtained for these two
local indicators and the ones produced by the estimates, it
can be seen that the estimates perform optimally since they
lead to even slightly better convergence ratios than the ref-
erence errors.

The series of adapted meshes produced by the local in-
dicator associated to ng, = RP (€%p) subdividing at each
remeshing step the elements satisfying the criterion given by
equation (18) are shown in figure 9. The adaptive procedure
is started from the initial mesh shown in figure 3 and pro-
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Fig. 8 Example 1: Performance of the estimators for the error in the
quantity of interest J; (u,) with a uniform and an adaptive refinement

strategies. The estimates are compared with the reference values.

duces six new adapted meshes. The meshes obtained using
the other local error indicators are virtually identical and are
therefore not shown. Since the quantity of interest is the non-
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Fig. 9 Example 1: Sequence of adapted meshes obtained using the lo-
cal error indicators provided by the estimate nfxp with 857, 1579, 3229,
5870, 9226 and 13852 nodes respectively, for the quantity of interest

Ji(uy).
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weighted average of the solution over the whole domain, the
meshes are refined in the areas where the primal solution
presents larger errors, that is, at the neighborhood of the ob-
stacle where the singularities occur.

The performance of the estimates is also studied for the
non-linear quantity of interest J,(u,). Figure 10 shows the
finite element approximation of the adjoint solution com-
puted using a finite element mesh of 9825 nodes for the two
wave numbers Kk = 7 and K = 37. Recall that, the adjoint
solution associated with a non-linear output is defined us-
ing its linear approximation, and in this case, the r.h.s. of
the adjoint problem (8) is given by the auxiliary linear func-
tional [i-o upvdID /Io. Thus, the adjoint solution varies for
each finite element approximation uy and the adjoint so-
lution shown in figure 10 only corresponds to the adjoint
problem associated to the finite element approximation u g
computed using the mesh of 9825 nodes.

Fig. 10 Example 1: Real part (left), imaginary part (middle) and mod-
ulus (right) of the adjoint solution associated to the second quantity of
interest J, (u,) for the two parameters kK = 7 on the figures on the top
and Kk = 37 on the bottom figures computed using the Galerkin method
and a mesh of 9852 nodes. The adjoint problem is defined with respect
to the auxiliary functional [-o upyvdl /I .

In order to illustrate the influence of the different terms
contributing to the error in the quantity of interest, the linear
and quadratic contributions to the error along with the full”
error are shown separately for the parameter Kk = 7. As pre-
dicted by the theory, the total error is guided by the linear
contribution, whereas the quadratic contribution is negligi-
ble since it converges faster to zero. As occurs with the first
quantity of interest J; (u,), the rate of convergence of these
two terms are not the expected since the solution is sin-
gular: the finite element approximation has a convergence
rate of ¢’(H?/?) and therefore the linear and quadratic con-
tributions to the output converge as &(H*/?) and (H®/?)
respectively, as can be appreciated in the obtained results.
The same behavior is observed when the reference values
are substituted by its estimates.

Neglecting the higher order terms yields the following
approximation of the reference value of the quantity of in-
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Nyp Glen) | Zolenen) || Slun)—Ihlun)
636 1.6572e-3 | 3.5279e-5 1.6925¢-3
2445 6.8740e-4 | 5.7170e-6 6.9311e-4
9582 2.7799¢-4 | 9.1190e-7 2.7891e-4

Table 2 Example 1: Influence of the linear and quadratic terms to the

total error in the nonlinear quantity of interest J5 (u,.) for k¥ = 7.

terest

() = S (u) + 15 (en) + 2a(en. en)

7 (en

, l
< f )+ f o) = ) 1+ 22
2

)

(un

)

of'the error and it can be seen that the local indicators associ-
ated to the estimates behave properly since the convergence
curves of the estimates are in very good agreement with the
reference ones. Only the estimates for the exponential fit-
ting are shown since the polynomial fitting provide similar
but slightly worst results. Comparing the results for the two
different wave numbers reveals that for k = 37 there is a
short range where the solution is in its pre-asymptotic stage
[7,27]. Note that the curves associated to the uniform refine-
ments converge with a slightly smaller rate than the asymp-
totic one (0.5 instead of %).

Thus, the relative error pj, :=£9 (e;) /€9 (ugr) provides a good
inside of the error in the quantity of interest. Table 3 shows
the values of the reference relative error and its correspond-

L

. . )
ing estimates pesxp = nesxp/[g (uH) and peexp = neexp/eg(uf‘[)
along with the estimates for the relative dispersion error pgj =

Ef,/x and pfy = ES, /K both for k = 7 and for k = 37.

K=Tm
Nop Pi Pép | PEy Pap | Py
636 0.0411 0.0210 | 0.0189 || -0.0247 | -0.2849
2445 || 0.0170 || 0.0084 | 0.0080 || -0.0089 | -0.1003
9582 || 0.0069 || 0.0034 | 0.0033 || -0.0039 | -0.0479
K=3m
Nnp Pn pef_xp pgxp peL;(p péi;
636 0.1647 || 0.0584 | 0.0436 || -0.0077 | -0.0368
2445 || 0.0840 || 0.0387 | 0.0364 || -0.0028 | -0.0090
9582 || 0.0359 || 0.0167 | 0.0164 || -0.0012 | -0.0041

Table 3 Example 1: Estimates for the error in the linear term ff(eh)
relative to £7 (uy;)) and relative dispersion error for the primal and ad-
joint problem for a uniformly refined set of meshes.

The results are very similar to those obtained for the first
quantity of interest. The two representations for the linear
part of the quantity of interest 11§, and 1¢,, corresponding
to the relative values pg, and p&,. The errors are larger
for Kk = 37 but the estimates behave similarly: the represen-
tation using the recovered adjoint error €* is slightly bet-
ter than the representation using the recovered primal error
¢* both underestimating the reference error. Also, since the
values of K,y remains below 0.25 for all the meshes, the
dispersion error is very small when compared to the errors
due to the singular behavior of the solution. Note that in-
creasing k yields smaller negative dispersion errors since
for larger k’s the numerical wave number underestimates
the true value yielding positive dispersion errors.

The convergence of the estimates for a uniform and an
adaptive procedure using the criterion given in equation (18)
are shown in figure 11 starting with the finite element mesh
shown in figure 3. As in the results for the first quantity of
interest, the adaptive refinement leads to a faster reduction
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Fig. 11 Example 1: Convergence of the relative error for the quantity
of interest J; for kK = 7 (left) and k = 37 (right) for uniform and adap-
tive processes in the reference solution compared with the enhanced
solutions.

Figures 12 and 13 show the meshes produced by the
adaptive procedure associated to the estimate 77&,. The adap-
tive procedure refines the neighborhood of the obstacle but
also refines around the boundary strip where the solution is
evaluated to compute the quantity of interest. Additionally,
for k¥ = 3, the procedure also refines the zones where the
solution has a larger oscillatory behavior faraway from the
obstacle.
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Fig. 12 Example 1: Sequence of adapted meshes with 834, 1384,2619,
4781, 7709 and 13212 nodes, respectively. The adaptive process is
driven by representation nfxp, corresponding to the linear contribution

() for k =m.
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Fig. 13 Example 1: Sequence of adapted meshes with 846, 1486, 2649,
4277, 6457 and 9718 nodes. The adaptive process is driven by rep-
resentation 7&,, corresponding to the linear contribution () for
K =3mT.

v,

7.2 Expansion chamber

The second example is a two-dimensional model of an ex-
pansion chamber with a perforated outlet pipe as shown in
Figure 14. The source term entering in equation (1) is /' =0,

prescribed = 0o
velocity = oo
v, =0.1m/s

/absorbant

Fig. 14 Example 2: Description of the geometry and boundary condi-
tions for the expansion chamber.

and the Neumann and Robin boundary conditions entering
in equations (2b) and (2c) are of the form g = —ip«kcv,, and
Vu - n = iku, respectively, where in this case the material
parameters are ¢ = 340m /s standing for the speed of sound
of the medium and p = 1.225kg/m? standing for the mass
density. An acoustic excitation is imposed at the inlet of the
chamber, associated to a velocity v, = 0.1m/s, whereas the
chamber is assumed to be perfectly reflecting at the outlet,
that is, Robin boundary conditions are applied to the out-
let of the chamber. The rest of the boundary is assumed to
be perfectly reflecting corresponding to v, = Om/s. In the
computations, a wave number of k¥ = 27 f/c ~ 12.936, cor-
responding to a frequency of 700 Hz, has been considered.
The quantity of interest is the normalized .#?-norm of
the squared modulus of the solution over a region surround-
ing the outlet of the pipe, see the subdomain ¢ shown in
figure 14, namely J3 (u). Figures 26 and 27 show the Galerkin
approximations of the primal and adjoint problems for a
mesh of 1859 nodes respectively. Recall that the adjoint
problem is defined using the auxiliary linear functional
Joo upvdQ /A4 ge. Along with the finite element approxi-

mations, the reference solutions obtained by refining each
element into 64 new ones and the reference errors are shown.
The dispersion error for this mesh is one of the main sources

Fig. 15 Example 2: Galerkin finite element approximation of the pri-
mal problem for a mesh of 1859 nodes (top). The middle figures are the
Galerkin approximation for a mesh obtained dividing each element into
64 new ones. The reference error with respect to this mesh is shown in
the bottom.

Fig. 16 Example 2: Galerkin finite element approximation of the ad-
joint problem for a mesh of 1859 nodes (top). The middle figures are
the Galerkin approximation for a mesh obtained dividing each element
into 64 new ones. The reference error with respect to this mesh is
shown in the bottom.

of errors both for the primal and adjoint problem, as can be
appreciated by the globally oscillating behavior of the er-
TorS.

Table 4 shows the estimates obtained for the quantity of
interest J3(u) using three uniformly refined meshes, start-
ing from the mesh shown in figure 17. As can be seen the
estimates computed using the two proposed representations
an exponential fitting are in very good agreement with the
reference values, where the reference mesh is obtained from
the finite element mesh subdividing each element into 16
new ones. Also, the errors for the quantity of interest are
shown, highlighting the linear term contribution. As can be
seen, the linear term provides a very good inside to the to-
tal error since the quadratic term converges rapidly to zero.
Since the dispersion error is an important source of error for
this problem, the dispersion error is closely associated to the



behavior of the representations 1€ and 1¢. For the two first
meshes, the dispersion error is smaller for the adjoint prob-
lem which causes the representation 1€ to be more accurate
than n¢. Conversely, for the third mesh, the dispersion er-
ror is smaller for the primal problem and the representation
which uses the enhanced primal error e*, ¢, provide more
accurate results. Thus, the dispersion error can be used to
chose the error representation from which to obtain the ap-
proximation for the output.
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Fig. 17 Example 2: Initial mesh for the uniform and adaptive proce-
dures of 494 nodes.

number of nodes
494

| 1859 | 7193
J(up) 2.2067e+3 | 2.2588e+3 | 2.2763e+3
J(up) 1.8796e+3 | 2.1128e+3 | 2.2067¢+3
Jlug) +nt+2(e",e") || 2.1548e+3 | 2.1967e+3 | 2.2611et+3
Jug) +1° + 2(e*,¢*) || 2.1082e+3 | 2.1961e+3 | 2.2622e+3
T(un) - J(urr) 32701et2 | 1.4603¢12 | 6.9648¢+1
ne+ 2(e*,e") 2.7511et2 | 8.3916e+1 | 5.4420e+1
n°+2(e*,e*) 2.2854e+2 | 8.3293et+] | 5.5533e+1
ne 2.7276e+2 | 8.3709¢+1 | 5.4406e+1
n°¢ 2.2619¢+2 | 8.3087et+] | 5.5518e+1
E* 2.4556e-1 6.8103e-2 1.5967e-2
E° 2.6351e-1 6.8293e-2 1.5780e-2

Table 4 Example 2: Estimates for the non-linear quantity of interest
J3(u) and for the its error, including the linear contribution to the quan-
tity of interest and the dispersion errors for the primal and adjoint prob-
lems. The meshes are obtained by refining each element into 16 new
ones.

These results can also be appreciated in figure 18 where
the estimates for the quantity of interest are depicted along
with the finite element approximation and the reference value
J3(up). Although the estimates underestimate the true error
J3(u), they provide a much better approximation to the quan-
tity of interest than J3(u7) with very few effort.

The behavior of the estimate ¢ and its suitability for
guiding an adaptive refinement algorithm is illustrated by
applying different adaptive procedures. Starting from the
mesh given in figure 17 the following six strategies are im-
plemented to refine the elements at each step.

e Strategy 1: the elements to be refined are the ones veri-
fying criterion (17).

o Strategy 2: the elements to be refined are the ones veri-
fying criterion (18).

e Strategy 3. at each step, 10% of the elements are refined,
those with larger contributions 1§ .
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Fig. 18 Example 2: Behavior for the estimates for the quantity of in-
terest J3 (1) with respect to a uniform mesh refinement.

o Strategy 4: at each step, 10% of the elements are refined,
those with larger contributions |0 |/4.

e Strategy 5: the smallest number of elements such that
the sum of the contributions |1 ¢ | toward the global error
> [ng| from these elements exceeds 25% of its value.

e Strategy 6: all elements on which the local error estimate
[ng| exceeds 50% of the largest local error estimate are
refined at each step.

The results are shown in figure 19.

o | [ —@—uniform

error in Qol - n¢

5
10
number of nodes

Fig. 19 Example 2: Convergence of the error in the quantity of inter-
est for the different adaptive strategies using the local error indicators
associated to N°.

Strategy four produces the best results, with those ob-
tained using strategies three and five running a close second
and third. The indicators based on strategies one and two
produce noticeably poorer accuracy since they over refine
the meshes at each step. Note that in the initial steps the
behavior is similar to a uniform refinement. Penalizing the
elements with smaller area provides an improvement of the
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accuracy as can be seen comparing strategies one and two
and strategies three and four. Note also that strategies three
and four yield to similar accuracies, but at the initial steps,
strategy three yield poorer results since it produces nearly
uniformly refined meshes. Thus, analogous strategies to five
and six could be develop taking into account for the area of
the elements. From the graph it is clear that using a crite-
rion that controls the ratio of elements to be refined (pre-
venting the possibility of a uniform refinement) produces
optimal adapted meshes, that is, meshes with the least num-
ber of elements for a prescribed given accuracy. Increasing
the percentages in strategies three, four and six or decreas-
ing it in the sixth, increases the number of elements to be
refined producing not so optimal meshes. Hence a compro-
mise between number of adaptive steps and accuracy is re-
quired. Finally, strategy six does not provide very good re-
sults in problems where the error is substantially larger in
some parts of the domain. As can be seen in the figure, the
ratio of convergence of this strategy is better than the ratio of
a uniform refinement, but provides poorer results than other
strategies. Note also that very few elements are refined in
each iteration.

The intermediate meshes with precision closer to the one
obtained in the second iteration of the uniform refinement
procedure are shown in figure 20 for the six strategies. The
second iteration of the uniform refinement provides a mesh
of 7193 nodes and achieves a precision of ¢ = 54.41.

Fig. 20 Example 2: Intermediate meshes of the adaptive procedures
for the six different strategies: third step of strategy 1 (top-left) with
3047 nodes and ¢ = 79.11, third step of strategy 2 (top-right) with
3976 nodes and n° = 92.71, fifth step of strategy 3 (middle-left) with
2892 nodes and n° = 56.77, second step of strategy 4 (middle-right)
with 810 nodes with N = 66.62, third step of strategy 5 (bottom-left)
with 2050 nodes and N¢ = 63.86 and fifth step of strategy 6 (bottom-
right) with 1005 nodes and N = 52.56.

It can be observed that the meshes produced using strate-
gies one and two tend to exhibit a more uniform refinement
compared with those obtained using strategy four, which
accounts for the poorer accuracy of the resulting approxi-
mation. Also, from the intermediate meshes, it can be ob-
served that, as mentioned before, although strategies four,
three and five achieve similar results for the final mesh, at
the intermediate steps, joining the control of the elements to
be refined along with penalizing the elements with smaller

area, namely, strategy four, provides the best results. This
is clearly appreciated in the intermediate meshes, where the
mesh produced by strategy four is clearly more adapted to
the features of the solution that all the other strategies. Adding
the area factor to strategies five and six would produce simi-
lar results, although in the case of strategy 6 also a control on
the minimal elements to be refined would be also advisable.
It is worth mentioning, also, that strategies one and two can
be adapted to control the elements to be refined by introduc-
ing a constant factor into criterions (17) and (18) as follows:

Nej N
1€ 3 il and /= € 3 Infl /A A valus

of C = 1 corresponds to strategies one and two respectively.
Note that, however, increasing the value of C does not en-
sure that the set of elements to be refined is a non-empty set
(for instance if a uniform mesh with uniform distribution of
the error is obtained).

The final mesh of 10200 nodes obtained using strategy
four is shown in figure 21. Strategies three and four pro-
duce meshes with similar accuracy but with a more diffuse
or uniform refinement. The predicted quantity of interest
for this final mesh is J(u) ~ 2319.1 associated to the er-
rors N€ = 0.051528 and 2(e*,e*) = 0.0000375. Again, the
quadratic contribution to the error is negligible in front of
the linear contribution.

o
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Fig. 21 Example 2: Final mesh obtained using the adaptive procedure
described in strategy four with 10200 nodes.

Finally, figure 22 shows the local elementary contribu-
tions of 1€ to the error in the quantity of interest for the
initial mesh and figure 23 shows the elements marked to be
refined for each of the proposed adaptive strategies, reaf-
firming the behavior observed in the convergence curves and
the intermediate meshes.

Fig. 22 Example 2: Local maps of the error in the linear term contri-
bution to the quantity of interest J5 (u) using the representation 1.
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Fig. 23 Example 2: Elements to be refined in the first step highlighted
for the six different strategies (from top-left to bottom-right): strategy
1 (top-left) with 303 elements, strategy 2 (top-right) with 316 ele-
ments, strategy 3 (middle-left) with 87 elements, strategy 4 (middle-
right) with 87 elements, strategy 5 (bottom-left) with 183 elements and
strategy 6 (bottom-right) with 14 elements.

7.3 Car cavity

This example studies the noise transmission inside a two-
dimensional section of the cabin of a car which is excited by
vibrations of the front panel and damped by Robin boundary
conditions. This example is frequently used as a benchmark
problem in error assessment for interior acoustic problems
[9,28,29]. The geometry of the cabin is shown in figure 24.
The size of the domain is characterized by the maximum
horizontal and vertical lengths, L, = 2.7m and L, = 1.1m,
respectively. The source term entering in equation (1) is /' =
0, and the Neumann and Robin boundary conditions enter-
ing in equations (2b) and (2¢) are of the form g = —ipckv,
and mu = —ipckA,u, where in this case the material param-
eters are ¢ = 340m/s and p = 1.225kg/m>. The vibrating
front panel is excited with a unit normal velocity v, = 1 m/s
whereas the roof'is considered to be an absorbent panel with
associated admittance 4,, = 1/2000m.(Pa.s)~'. The normal
boundary velocity is set to be zero at the other sides, v, =
Om/s. Finally, a wave number of k ~ 9.7, equivalent to a
frequency of 525 Hz, has been considered in the computa-
tions.

absorbant panel

vibrating
panel

ey

Fig. 24 Example 3: Description of the two-dimensional section of the
cabin of a car and its associated boundary conditions.

The output of interest is the average of the squared mod-
ulus of the solution over the boundary strip I ¢ shown in fig-
ure 24, namely J; (u). The initial mesh used for this example
is shown in figure 25. Figures 26 and 27 show the Galerkin
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Fig. 25 Example 3: Initial mesh for the adaptive procedure with 568
nodes.

approximations of the primal and adjoint problems for the
initial mesh along with the finite element approximations
computed in a reference mesh obtained by refining each el-
ement into 256 new ones. The figures also show the approx-
imation of the true errors obtained by subtracting the two
finite element approximations. The dispersion errors asso-

Sm(upy)

20T -

Fig. 26 Example 3: Galerkin finite element approximation of the pri-
mal problem for the initial mesh of 568 nodes (top). The middle figures
are the Galerkin approximation for a mesh obtained dividing each ele-
ment into 256 new ones. The reference error with respect to this mesh
is shown in the bottom.

ciated to the primal and adjoint problems are £ ¢ = 0.075 and
E¢ =0.130, respectively. Thus, the adjoint problem presents
smaller dispersion errors and it is expected that in this mesh,
the estimate n¢ provides better approximations to the error
in the quantity of interest than n €.

The mesh is adaptively refined using the refinement al-
gorithm named after strategy 4 in the previous example. The
adaptive procedure is guided by the indicators provided by
n¢. However, in each step, the estimate ¢ is also computed
to compare the results.

The initial mesh of 568 elements provides the approx-
imation of the quantity of interest J, (uz) = 27093.7 while
the error estimation procedures described in this work pro-
vide the estimates for the error in the quantity of interest
N =32461.3,n¢ =31966.4 and 2(e*,e*) = 5.6.



Fig. 27 Example 3: Galerkin finite element approximation of the ad-
joint problem for a mesh of 568 nodes (top). The middle figures are the
Galerkin approximation for a mesh obtained dividing each element into
64 new ones. The reference error with respect to this mesh is shown in
the bottom.

Thus, the estimates for the quantity of interest in the first
mesh are J,(u) =~ 59560.6 and 59065.8 for the two differ-
ent representations, respectively. The reference value for the
quantity of interest J (u,) = 65821.7 confirming that, since
the dispersion error is smaller in the adjoint problem, the
estimate provided by n¢ is better than the one provided by
n¢, although since the underestimation is quite large in both
cases, both estimates produce similar accuracy of the es-
timates. It can also be seen that even for the initial mesh,
the contribution of the quadratic term to the quantity of in-
terest is negligible in front of the linear contribution. After
remeshing, the final mesh provides the approximation for
the quantity of interest J»(uz) = 67076.3 and the estimates
Jr(u) ~ 69089.6 and 69098.1 provided by 1 ¢ and n° re-
spectively. Note that in this case, since the estimates for the
dispersion errors are E£€ = 0.00358 and E£¢ = 0.00487, the
second estimates is expected to be more reliable.

The convergence of the estimates is shown in figure 28.
As can be seen, both representations for the quantity of in-
terest provide similar results improving the accuracy of the
finite element approximation with very little computational
effort (they only involve an inexpensive post-processing of
the finite element solutions).

Figure 29 shows the intermediate and final adaptively re-
fined meshes. As can be seen, the adaptive procedure refines
the corners where the solution presents larger singularities
and also the front part of the mesh which is the region most
affecting the quantity of interest. This is confirmed by the
fact that the mesh beside the seat is only refined in a reen-
trant corner where the solution is singular.

The same example is considered in [9] and [30] where
mesh adaptivity aiming at reducing global measures of the
error are considered. Although the examples shown therein
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Fig. 28 Example 3: Behavior of the estimates for the nonlinear quan-
tity of interest J> (u) (top) and convergence of the linear contributions
to the error (bottom). ¢

refer to lower wave numbers, a close comparison with the
results obtained with the goal-oriented strategy presented in
this work reveals that our technique properly resolves the
singularities of the primal problem (refining the regions of
the domain where the primal error is larger) while refining,
at the same time, the areas relevant for the quantity of inter-
est.

Fig. 29 Example 3: Intermediate and final meshes obtained using the
adaptive process associated to strategy 4. Iteration fourth (left) with
3235 nodes and final with 23380 nodes.

8 CONCLUSIONS

A simple and effective strategy for guiding goal-oriented
adaptive procedures has been presented, based on the post-
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processing techniques introduced in [24,25]. Two different
representations of the error in the quantities of interest have
been studied which provide similar results. It has been shown
that the accuracy of these representations, which involve the
post-processing of either the primal or adjoint finite ele-
ment approximations, is related to the dispersion error of
the corresponding problems. The adaptive procedure is valid
both linear and non-linear quantities of interest. The non-
linear case is solved using a linear approximation and ne-
glecting quadratic terms. In all the analyzed examples the
linear part of the quantity of interest is the leading term,
since the higher order contribution converge faster to zero.
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