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Um homem precisa viajar.

Por sua conta, não por meio de histórias, imagens, livros ou televisão.

Precisa viajar por si, com seus olhos e pés, para entender o que é seu.

Para um dia plantar as suas próprias árvores e dar-lhes valor.

Conhecer o frio para desfrutar o calor. E o oposto.

Sentir a distância e o desabrigo para estar bem sob o próprio teto.

Um homem precisa viajar para lugares que não conhece para quebrar essa

arrogância que nos faz ver o mundo como o imaginamos,

e não simplesmente como é ou pode ser.

Que nos faz professores e doutores do que não vimos,

quando deverı́amos ser alunos,

e simplesmente ir ver.

(Amyr Klink)
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Al Pedro, a quien considero un gran ejemplo como profesional, investigador y

persona, le quiero dar las gracias porque siempre me ha brindado su total apoyo,

seriedad y responsabilidad, por los conocimientos que me ha transmitido, por los

buenos consejos que me ha dado, por el buen sentido del humor que siempre me

ha tratado, por la manera especial que ha tenido para dirigir mi tesis doctoral, pero

sobre todo por darme la oportunidad de vivir esta grande experiencia tanto en nivel

profesional como personal.
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longe sempre está junto comigo, dando-me alegrias, carinho e seu amor incondi-
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Abstract

This thesis presents an a posteriori estimator for the error in the wave number

in the context of finite element approximations of the Helmholtz equation, both

for standard and stabilized formulations. We also introduce a new goal-oriented

adaptive strategy using post-processing techniques.

The simple strategy assessing the error in the wave number is based on the de-

termination of the numerical wave number that better accommodates the numerical

solution. Compared to other goal-oriented error estimation strategies, the approach

proposed in this work is innovative because it adopts a new paradigm.

A distinctive feature of this method is that the error estimation procedure is

devoted to obtain the numerical wave number, corresponding to the approximate

solution, instead of the exact one, which is known as part of the data of the prob-

lem. Thus, the error in the wave number is consistently defined as the outcome

of a global minimization problem. This problem is computationally unaffordable

and, for practical error estimation purposes, is approximated. An enhanced ap-

proximation is obtained from the finite element solution using a simple local least-

squares technique. Once the enhanced solution is obtained, the associated numerical

wave number is readily recovered using a simple closed expression. An alternative

improved recovery technique is developed to take advantage of the nature of the

solutions of wave problems. The standard polynomial least-squares technique is

replaced by a new exponential fitting, yielding much sharper results in most cases.

The proposed new goal-oriented adaptive strategy is based on post-processed

solutions and is valid both for linear and non-linear quantities of interest. In the

non-linear case the linear contribution to the quantity of interest is assumed to be

the leading term. Two different representations to recover the error in the quantity
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of interest are studied, both providing similar results in the adaptive procedures. It

has been shown that the accuracy of these representations, which involve the post-

processing of either the primal or adjoint finite element approximations, is related

to the dispersion error of its corresponding problems. Moreover, the adaptive pro-

cedure leads to a faster reduction of the error when compared with a uniform refine-

ment. The proposed error estimate properly identifies the areas most contributing to

the error in the quantity of interest and consequently the adaptive procedure yields

adapted meshes that provide accurate results.

Key words: Wave problems, Helmholtz equation, Error estimation of wave

number, A posteriori error estimation, Dispersion/pollution error, Goal-oriented

adaptivity, Local indicators, Finite element method, Stabilized methods.



Chapter 1

Introduction and state-of-the-art

1.1 Motivation and objectives

Computational numerical methods are becoming an increasingly requested tool for

solving different types of problems in all branches of engineering and applied sci-

ences. However, any numerical method yields an approximated solution to the

problem. The numerical solutions are affected by errors coming from different

sources. The modeling error is accounting for the discrepancy between the math-

ematical model and the physical reality. In this work we concentrate in assessing

the discretization error which is associated with the numerical accuracy obtained

in solving the mathematical problem. The discretization error can be computed

approximately using a posteriori error estimators. Besides providing information

about the global accuracy of a simulation, error estimates describe the spatial dis-

tribution of the error and consequently allow developing adaptive schemes.

In this context, it is worth highlighting the particular difficulty in solving wave

propagation problems. The numerical solution of these problems has been an active

area of research since the early sixties. This area is common to various fields of

application: acoustics, geophysics, meteorology, electromagnetics, shallow water,

fluid dynamics, among others. Unfortunately, standard numerical methods can not

cope with wave phenomena characterized by high frequencies (large wave numbers)

without requiring a prohibitive computational effort.

Recently, Bouillard, Almeida, Decouvreur and Mertens (2008) have considered

that the simulation of the wave propagation phenomenon is one of the most chal-
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2 Introduction

lenging amongst computational mechanics. In wave propagation problems, many

questions are still unsolved, namely: derivation of more accurate numerical meth-

ods in order enlarge the properly simulated frequency range; definition of artifi-

cial boundary conditions to effectively deal with unbounded domains; and finally,

formulation and implementation of reliable error estimators, preferably in local or

engineering quantities and their application to methods to adaptive methods.

The reference cited above shows that the key to face all these issues is the control

of the so-called pollution effect, associated mainly with the dispersive nature of the

numerical waves. To control such errors in an effective way is a major ongoing

challenge.

This work aims precisely at discussing error estimation and adaptivity for wave

propagation problems, specifically for the Helmholtz model. The original moti-

vation was to tackle the shallow water problem, and then we started studying the

Helmholtz equation, since it is a simplified version of the former. Thus, we concen-

trated in deriving error estimates for the pollution/dispersion error in the Helmholtz

equation as a first step (and currently unsolved) to proceed further.

Shallow water problems describe the behavior of water flow in rivers, lakes

and shallow seas in zones with smooth variation of the depth and with waves of

small amplitude. They are also applied to the study of many physical phenomena

of interest, such as, environmental effects, commercial activities on fisheries and

coastal wildlife, remediation of contaminated bays and estuaries for the purposes

of improving water quality. To efficiently perform these simulations, it is needed to

develop systems and programs of high technological level.

A mathematical model for the simulation of shallow water problems is given by

the mild slope or Berkhoff equation (Berkhoff, Booy and Radderc 1982):

∇ · (ccg∇u) + κ2ccgu = 0. (1.1)

This model is based on the theory of simple harmonic linear waves. The equa-

tions of the hydrodynamics (mass balance or continuity equation and momentum

equation) are used to describe the motion in fluid dynamics. The effects of non-

linearity, such as energy dissipation by friction or breaking, are not taken into ac-

count. Equation (1.1) accounts simultaneously the phenomena of refraction and

diffraction. It is an elliptic equation and, for constant depth (constants c and cg) it
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reduces to the Helmholtz equation:

Δu+ κ2u = 0.

Despite its simplicity, many of the fundamental models for wave propagation in

science and engineering are based on the Helmholtz equation. The active control

of sound is an example of an important practical problem where models based on

this equation play a fundamental role. Besides, to satisfy acoustic requirements is

nowadays important in many sectors, such as the aerospace, automotive and build-

ing industries, among others.

The attempts of introducing error estimators for assessing the dispersion error

in the Helmholtz problem have not been successful in the past, as explained later.

Most of these estimators are global (energy norm) and they have the tendency to

underestimate the error for high wave numbers, obtaining good estimates only when

the pollution error is negligible. Moreover, error estimators in quantities of interest

have not been explored to measure and control the dispersion error and often only

in an one-dimensional setup.

The main goal of this thesis is to assess and control the errors in the context

of finite element approximations of the Helmholtz equation. In this scenario the

following partial goals are considered:

• Obtaining a methodology to assess the dispersion error: the goal is to

develop a simple and inexpensive a posteriori technique to assess the error

in the wave number and generalize the procedures developed for others dis-

cretization methods, aiming at controlling the dispersion error;

• Strategies for obtaining goal-oriented error estimates and h-adaptivity:

the goal is to analyze the error for linear and non-linear outputs and to define

outputs of interest for acoustic problems. Furthermore, to define local indica-

tors and refinement strategies in order to implement an adaptive process.

To reach these goals, we accomplished the following tasks:

• analysis of the physical phenomena described by shallow water models, de-

duction of Berkhoff model and the simplified model, given by the Helmholtz

equation;
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• study of the dispersion and pollution effects, in order to propose more efficient

procedures related to the convergence rate, estimates and control errors;

• study of other discretization methods for the Helmholtz equation, to improve

the accuracy by reducing the dispersion error;

• building an inexpensive approximation through recovery techniques, so that

it can be exploited in a posteriori error assessment;

• analysis of the behavior of the proposed and applied methods in order to com-

pare the performance of the results obtained.

The first part of the goals is mainly related to the assessment of the dispersion

error. This work and its results are detailed in (Steffens and Dı́ez 2009), (Steffens,

Parés and Dı́ez 2010a) and also in chapter 2. The second part is related to goal-

oriented error estimates and h-adaptivity. These partial goals are developed and

presented in (Steffens, Parés and Dı́ez 2010b) and in chapter 3.

1.2 Model problem - The Helmholtz equation

The propagation of acoustic waves through a fluid medium is governed by the wave

equation
1

c2
∂2P

∂t2
= ΔP,

where c stands for the speed of sound in the medium. This equation describes the

evolution of the acoustic pressure P as a function of the position x and time t.

In order to reduce the complexity of the simulations, it is often assumed that the

acoustic waves are harmonic in time. In this case, the acoustic pressure associated

to an angular frequency ω is P (x, t) = u(x)eiωt where u(x) is the complex spatial

distribution of the acoustic pressure and i =
√
−1 is the imaginary unit, and the

wave equation reduces to the homogeneous Helmholtz equation:

Δu+ κ2u = 0, (1.2)

where κ = ω/c ∈ R stands for the wave number. It is worth nothing that the wave

number κ characterizes the oscillatory behavior of the solution: the larger the value

of κ, the stronger the oscillations.
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Wave propagation problems are usually classified as interior or exterior, depend-

ing on whether one is interested in the sound field in bounded or unbounded regions

in space.

The remainder of this section is devoted to provide an overview of interior and

exterior problems for future reference.

1.2.1 Interior problems

Interior problems deal with acoustic phenomena in enclosed regions of space, such

as cavity or room acoustics problems. The unknown u(x) is the physical pressure,

taking values for x ∈ Ω ⊂ R
d (d being the number of spatial dimensions, d =1, 2 or

3). The boundary of the domain Ω is denoted by ∂Ω.

A complete definition of the problem to be solved, requires adding to equation

(1.2) proper boundary conditions. For interior acoustic problems, three types of

boundary conditions are considered: Dirichlet, Neumann and Robin (or mixed).

Dirichlet boundary conditions prescribe the values of the pressure on a part of

the boundary ΓD ⊂ ∂Ω. Namely,

u = uD on ΓD.

On the Neumann part of the boundary ΓN ⊂ ∂Ω the normal component of the

velocity is prescribed, namely

∇u · n = g on ΓN.

If the Neumann boundary condition is produced by a vibrating rigid wall wich

vibrates with the normal velocity vn, producing a sound propagation in the medium,

the Neumann data g is given by g = −iρcκvn, where ρ is the density of the medium.

It is worth noting that for time-harmonic waves of the form P (x, t) = u(x)e−iωt the

Neumman data becomes g = iρcκvn (note the change in sign).

Finally, the most general form of boundary condition is embodied in the Robin

part of the boundary ΓR ⊂ ∂Ω as

∇u · n = mu on ΓR,
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with m = −iρcκAn, where the coefficient An denotes the field admittance in the

normal direction and represents the structural damping. The value of An depends

on the nature of the enclosure and is associated with absorbent panels. For An = 0

it turns out to be an homogeneous Neumann boundary condition, standing for a

perfectly reflecting panel or rigid wall. In the limit case as An → ∞, the wall is

said to be acoustically soft and one recovers the homogeneous Dirichlet boundary

condition u = 0. For 0 < An < 1, the wall acts as an absorbing surface, and the

Robin condition is usually referred to as an absorbing boundary condition. Finally,

for An = 1/ρc the boundary condition describes a fully absorbent panel, also called

anechoic situation.

In order to get a well posed problem these three parts of the boundary must

cover the whole boundary, that is ∂Ω = ΓD ∪ ΓN ∪ ΓR, see figure 1.1.

vibrating
wall ΓD

ΓN

ΓN

Ω

computational
domain

Figure 1.1: Acoustic problems in an interior region Ω.

To summarize, the general form of interior acoustic problems consists in finding

the spatial component of the acoustic pressure field u : Ω → C such that

−Δu− κ2u = 0 in Ω,

u = uD on ΓD,

∇u · n = g on ΓN,

∇u · n = mu on ΓR.
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1.2.2 Exterior problems

Exterior problems are concerned with the characterization of the acoustic field in

the surrounding space of a given structure. The main difficulty in dealing with this

class of problems is that the domain is unbounded in space and, therefore, a bounded

computational domain has to be introduced. Examples of exterior problems are

radiation, scattering and transmission problems. Figure 1.2 shows an example of a

scattering problem, where an obstacle D is hit by a plane wave. It also shows the

computational domain Ω.

ur
ui

α

obstacle

D

B

Ω = B\D

computational
domain

Figure 1.2: Scattering problems: a plane wave hits an obstacle D. The computa-
tional domain B\D is obtained by introducing a sufficiently large ball B.

Consider first the radiation problem. Let D ⊂ Rd, d = 1, 2 or 3, be the re-

gion occupied by a body embedded in a homogeneous isotropic medium at rest,

with smooth boundary ∂D. Suppose that the walls of the body vibrate with normal

velocity vn and that the radiated waves propagate in space, see figure 1.3. The

physical requirement that all radiated waves can not be reflected at infinity leads to

the Sommerfeld radiation condition (Ihlenburg 1998)

lim
r→∞

r
d−1
2 (∇u · r − iκu) = 0,

where r = |x| and ∇u ·r denotes the derivative in the radial direction. Imposing the

Sommerfeld radiation condition requires solving the Helmholtz equation in an in-

finite domain and prevents the immediate use of traditional computational methods

designed for bounded domains, such as the finite element method.
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vibrating
body

D

B

Ω = B\D

computational
domain

Figure 1.3: Radiation problem: a body D vibrates and the radiated waves propagate
in the space.

To overcome this difficulty, one introduces a sufficiently large circle B ⊂ Rd,

containing the obstacle D. Using the Dirichlet-to-Neumann map (DtN) technique,

one can approximate the Sommerfeld condition at infinity by the Robin-type bound-

ary condition on ∂B,

∇u · n = mBu on ∂B, (1.4)

where mB is the linear operator DtN that defines an absorbing boundary condition

on the artificial boundary ∂B. Therefore, the computational domain reduces to the

region Ω = B \ D ⊂ Rd, with boundary ∂Ω = ∂B ∪ ∂D. On the artificial bound-

ary, one can prescribe absorbing boundary conditions that incorporate (exactly or

approximately) the far-field behavior into the finite element model. For different

conditions considered see Djellouli, Farhat, Macedo and Tezaur (2000) and Harari

and Djellouli (2004) and references therein.

Then, the radiation problem for a vibrating body consists in finding the acoustic

pressure u : Ω → C such that:

−Δu− κ2u = 0 in Ω,

∇u · n = g on ∂D,

∇u · n = mBu on ∂B.

Recall that if the wall of the body D vibrates with normal velocity vn, the Neu-
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mann data is g = −iρcκvn. Also, note that Dirichlet or Robin boundary conditions

may also be prescribed on parts of the boundary ∂D. Finally, the expressions for

the first and second DtN boundary conditions are

mB = −iκu+
ζ

2
u and mB = −iκu+

ζ

2
u− ζ2

8(ζ − iκ)
u− ∂

∂s

(
1

2(ζ − iκ)

∂u

∂s

)
,

where ζ is the curvature of the surface of the scatterer, and s is the curvilinear

abscissa defined on the surface of the scatterer.

Let’s now move to the scattering problem. In this case an incident plane wave

ui(x) = eiκ(cos αx+sinαy) is scattered by an obstacle D, where α denotes the incident

direction of the plane wave, see figure 1.2. The reflected wave is given by ur and

the total solution is u = ur + ui. The total solution u, the incident plane wave ui

and the reflected wave ur, all satisfy the Helmholtz equation in Rd \D. Similarly to

the radiation problem, the infinite outer region is restricted to a circle B on which

the reflected wave ur satisfies the absorbing boundary condition (1.4).

A perfectly sound-soft obstacle leads to the Dirichlet condition u = 0, or

ur = −ui. For an acoustically rigid scatterer, acoustic waves satisfy the Neumann

boundary condition ∇u · n = 0, or equivalently ∇ur · n = −∇ui · n. Finally,

obstacles characterized by an acoustic admittance An will satisfy the Robin bound-

ary condition ∇u · n = mu, where m = −iρcκAn. Naturally, Dirichlet, Neumann

and Robin boundary conditions may also be prescribed on parts of the boundary

∂D, where ∂D = ΓD ∪ ΓN ∪ ΓR. Hence the general formulation of the scattering

problem consists in finding the spatial component of the scattered acoustic pressure

ur : Ω → C such that:

−Δur − κ2ur = 0 in Ω,

ur = −ui on ΓD ⊂ ∂D,

∇ur · n = −∇ui · n on ΓN ⊂ ∂D,

∇ur · n + ∇ui · n = m(ur + ui) on ΓR ⊂ ∂D,

∇ur · n = mBur on ∂B.

Note that the reflected solution ur also verifies the homogeneous Helmholtz

equation in Ω since the incident wave satisfied −Δui − κ2ui = 0.
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Finally, the transmission problem, also called elastic scattering problem, differs

from the scattering problem since the incident sound is allowed to penetrate the

obstacle. If the obstacle D is made of another fluid with different sound speed and

density, the transmission problem leads to a coupled problem in which the total

pressure u = ur + ui outside of D and the interior pressure in D both satisfy the

Helmholtz equation and on the boundary ∂D the pressure and normal velocities are

assumed to be continuous. We refer to (Ihlenburg 1998) for details of the formula-

tion.

1.3 Numerical schemes

The finite element method (FEM) is probably the most well known numerical scheme

to solve Helmholtz equation. This method performs satisfactory for low and medium

frequencies, but one of the major computational challenges nowadays is dealing

with high-frequencies. Recently, considerable efforts have been devoted to obtain

more accurate numerical solutions, by extending the finite element method to a

frequency range able to simulate practical applications. The key is to control the

pollution error, originated mainly from the dispersive nature of the numerical waves.

The development of numerical methods to solve the Helmholtz equation, which

behaves robustly with respect to the wave number, is a topic of vivid research. Many

enhancements and extensions of the finite element method have been proposed in

the last decade to improve the accuracy of the simulations, but none of them being

totally dispersion-free. Amongst them, one finds the stabilized Galerkin schemes,

high-order approximants, multi-scale variational methods, and other discretization

techniques. The number is too large to discuss all of them, so, only the most relevant

ones will be briefly revised.

1.3.1 The finite element method

The use of the finite element method for time-harmonic acoustics governed by the

Helmholtz equation has been an active research area for almost half a century. Initial

applications focused on interior problems, but in the recent years, huge progress has
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been also achieved on exterior problems in unbounded domains. The main difficulty

of applying the standard Galerkin finite element method to the Helmholtz equation

is to accurately resolve the oscillating wave solutions for higher wave numbers.

This section summarizes the main properties of the finite element method for the

Helmholtz equation. However, the reader is referred to Ihlenburg (1998) and Harari

(2006) for a deep insight of the issues, properties, applications and methodologies

related to the finite element method for time-harmonic acoustics.

The Helmholtz problem both for interior and exterior problems can be formu-

lated as: find u : Ω → C such that

−Δu− κ2u = f in Ω, (1.7a)

u = uD on ΓD, (1.7b)

∇u · n = g on ΓN, (1.7c)

∇u · n = mu on ΓR, (1.7d)

where Ω is the either the true domain or the computational domain for exterior

problems. Note that, in most applications, as the ones show in the previous section,

f = 0. However a non-zero source term may appear in acoustic problems, where

the non-homogeneous Helmholtz equation models time-harmonic wave propaga-

tion in free space due to a localized source. For instance,a non-zero source term

may appear in the study of a vibrating string where a force is applied to drive a

wave on this string.

The boundary value problem defined by equations (1.7) is readily expressed in

its weak form using the corresponding natural functional spaces. The space for

the trial functions is U = {u ∈ H1(Ω), u|ΓD
= uD} while the space for the test

functions is V = {v ∈ H1(Ω), v|ΓD
= 0}, where H1(Ω) is the standard Sobolev

space of complex-valued square integrable functions with square integrable first

derivatives.

The weak form of the problem then reads: find u ∈ U such that

a(u, v) = 	(v) ∀v ∈ V, (1.8)

where the sesquilinear form a(·, ·) and the antilinear form 	(·) are defined as follows
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a(u, v) =

∫
Ω

∇u · ∇v̄ dΩ −
∫

Ω

κ2uv̄ dΩ −
∫

ΓR

muv̄ dΓ, (1.9a)

	(v) =

∫
Ω

f v̄ +

∫
ΓN

gv̄ dΓ, (1.9b)

and the symbol ·̄ denotes the complex conjugate. Recall that this formulation is

also valid for exterior problems where Robin boundary conditions are applied the

fictitious boundary ∂B ⊂ ΓR.

The classical Galerkin finite element discretization is applied to the variational

formulation of the Helmholtz equation (1.8). For this, let the discrete counterparts

of U and V be the finite element spaces UH ⊂ U and VH ⊂ V associated with a

mesh of characteristic element size H and degree p for the complete interpolation

polynomial base. The discrete finite element solution is uH ∈ UH such that

a(uH , v) = 	(v) ∀v ∈ VH .

where uH is expressed in terms of the basis-functions {N j}j=1,...,nnp spanning UH ,

nnp being the number of nodes of the mesh. Namely,

uH =

nnp∑
j=1

N juj
H = NuH , (1.10)

where uj
H is the complex nodal value associated with the mesh node xj, N =

[N1, N2, . . . , Nnnp] and uT
H = [u1

H , u
2
H , . . . , u

nnp
H ].

The accuracy of the Galerkin finite element approximation is characterized by

the dispersion error. The dispersion error is related to the phase difference between

the exact solution and its finite element approximation, that is, the difference be-

tween the wave number κ associated with the exact solution u and the numerical

wave number associated with numerical solution uH , namely denoted by κH . This

effect has been deeply analyzed in Ihlenburg and Babuška (1995a), Ihlenburg and

Babuška (1995b), Ihlenburg (1998) and Babuška and Sauter (2000).

Sharp error estimates for the dispersion error have been obtained under the as-

sumption that the magnitude κH is small. In particular, Ihlenburg and Babuška

(1995a) showed that the relative error of the finite element solution in the H1-
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seminorm is controlled by a sum of two contributions depending on the wave num-

ber. Specifically, for linear elements

|u− uH |1
|u|1

≤ C1κH + C2κ
3H2, (1.11)

where

|u|1 =

√∫
Ω

(
du

dx

)2

stands for the H1-seminorm and C1, C2 are constants independent of κ and H . This

result is fundamental for understanding the nature of the approximation error. The

first term of equation (1.11) represents the interpolation error (difference between

the exact solution and its best approximation in the space UH) and the second term is

the pollution or dispersion error (difference between the best approximation in UH

and the finite element approximation). The interpolation error is the classical error

arising in elliptic problems and pertains to the ability of the discretization to prop-

erly approximate the exact solution, whereas the pollution error is the responsible

of the phase lag of the finite element approximation, see figure 1.4.

Note that the interpolation error is bounded if κH is constant, which is the so-

called rule of the thumb and corresponds to taking a certain fix number of elements

per wavelength. However, as can be seen in equation (1.11), this rule is not sufficient

to keep the pollution error under control, as it increases with κ. Thus, to obtain an

accurate approximation, the second term also needs to be controlled. In practice,

standard Galerkin methods are not competitive for high wave numbers because con-

trolling the pollution term requires using extremely fine meshes. The enhancements

and extensions of the finite element method focus on overcoming this drawback.

1.3.2 Stabilized finite element methods

Stabilized finite element methods were originally developed for fluid problems. The

first upwind-type stabilized methods (Hughes and Brooks 1979) subsequently gave

rise to consistent stabilization techniques - ensuring that the exact solution is also

a solution of the weak stabilized problem. Amongst these techniques, the Galerkin

least-squares method (GLS) has been successfully applied both to fluids (Hughes,
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Figure 1.4: Illustrative example of the errors arising in the finite element approxi-
mation. Exact solution (thicker solid line), best approximation in UH (solid thinner
line with circles) and the finite element approximation (dashed line). The finite ele-
ment approximation reproduces approximately the shape of the wave with a larger
wavelength.

Franca and Hulbert 1989, Donea and Huerta 2003) and to the Helmholtz equation

(Harari and Hughes 1992, Harari and Nogueira 2002).

Stabilized methods are one of the most popular techniques because they provide

a significant reduction in the dispersion error with an extremely simple implemen-

tation. These approaches belong to the first class of methods aiming at reducing

the dispersion for Helmholtz equation. This is achieved by including additional

residual terms in the sesquilinear form a(u, v) of the weak formulation. For in-

stance, the Galerkin least-squares method (Harari and Hughes 1992, Thompson

and Pinsky 1995) includes an additional stabilization term which is a function of

the residual of the Helmholtz equation, namely,

a(u, v) − (Lu− f, τHLv̄)bΩ = 	(v),

whereas the Galerkin gradient least-squares method (Harari 1997) includes the gra-

dient of this residual, namely,

a(u, v) − (∇(Lu− f), τH∇Lv̄)
bΩ = 	(v).

In the previous equationsLu = −Δu−κ2u is the indefinite Helmholtz operator,

Ω̂ is the union of element interiors of the mesh and τH represents the stabilization

parameter. The selection of an optimal stabilization parameter completely elimi-

nates the dispersion error in the one-dimensional problem. Unfortunately, this is

not the case for higher-dimensional problems, where the selection of an optimal

stabilization parameter can only eliminate the dispersion error in certain preferred

directions. In two or three dimensions, the pollution effect is substantially reduced

but can not be completely eliminated.
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1.3.3 Higher-order finite element methods

In order to reduce the effect of numerical dispersion: when approximating the so-

lution using the finite element method, one can consider stabilized formulations

which only involve a simple modification of the code while substantially improving

the accuracy of the results with no additional computational cost. However the stan-

dard finite element method also offers another possibility to improve the precision

of simulations: the combination of h and p-refinement in which the mesh size h

and the polynomial degree p are allowed to vary among the elements. The number

of elements per wavelength to obtain a given discretization error strongly depends

on the p, order of the finite element basis functions. Since higher-order elements

generally provide greater computational efficiency, fewer degrees of freedom are

generally needed to achieve a given discretization error, even for oscillatory wave

solutions.

A dispersion analysis similar to the standard analysis for linear elements can be

carried out for high-order polynomials of order p ≥ 2 and a dispersion relation in

the same form as equation (1.11) is obtained. In particular, Ihlenburg (1998), shows

that, under certain assumptions, the H1-seminorm of the finite element error can be

bounded by

|u− uH |1
|u|1

≤ C1

(
κH

2p

)p

+ C2κ

(
κH

2p

)2p

,

C1 and C2 being constants independent of κ, H and p, which shows that the pol-

lution effect for p ≥ 2 is significantly reduced if the mesh is fine enough such that

κH/2p < 1.

Various authors have shown the advantages of using higher-order finite element

method. Thompson and Pinsky (1994) studied the dispersive and attenuation prop-

erties of finite element method for the one-dimensional scalar Helmholtz equation

up to fifth order approximations. Harari and Avraham (1997) applied these meth-

ods to stabilized formulations, in order to develop robust methods in which stabil-

ity properties are enhanced while maintaining higher-order accuracy. Ainsworth

(2004) generalizes the a priori estimates obtained by Ihlenburg and Babuška (1997)

by deriving explicit expressions for the dispersion error of h− p methods.
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1.3.4 Meshless methods

Two of the main advantages of meshless methods are that they do not require to

construct a mesh fitting the computational domain and that it is possible to use

high-order shape functions of arbitrary continuity. These methods have been ex-

tensively investigated by Belytschko, Lu and Gu (1994), Belytschko, Krongauz,

Organ, Fleming and Krysl (1996), and have been applied in various branches of

engineering: fluids, solids, biomechanics, etc.

In acoustics applications, both the possibility of using high-order interpolations

and the case of enriching the interpolation space with information on the wave char-

acteristics make of the meshless methods a particularly attractive alternative to fi-

nite element. Specifically, the can exploit known analytical solutions such as plane

waves, trigonometric functions, or other analytical solutions to define or enrich the

approximate solution space.

Bouillard and Suleau (1998) have shown that the meshless methods, in partic-

ular the element-free Galerkin (EFG) method based on the moving least-squares

approximation (MLS), are very general and accurate approaches for interior acous-

tic problems.

Suleau and Bouillard (2000) investigate the problem of the dispersion effect

in one-dimensional setting. Interesting developments of the theory of dispersion

error concerning acoustic problems were presented by the same authors in Suleau,

Deraemaeker and Bouillard (2000) and Bouillard, Lacroix and De Bel (2004). In

particular, Bouillard et al. (2004) focuses on analyzing the dispersion phenomena

and manages to achieve accurate results on academic as well as real-life three-

dimensional problems within a large frequency range.

In the case of the Helmholtz equation, it is advantageous that the local ba-

sis functions of the element-free Galerkin method can naturally contain terms of

trigonometric type (Lacroix, Bouillard and Villon 2003). Indeed, since the pressure

is a complex valued field, it is useful to introduce sine and cosine functions in the

meshless basis, depending on the value of the propagation angle (α) or phase of

the pressure field at each point of the domain. It is worth noting that α is unknown

a priori. Thus, first, an approximation of the problem using a standard element-

free Galerkin basis functions is computed which is subsequently enriched with a
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posteriori knowledge of the solution.

It is shown that the use of α-dependant local meshless basis involves a signif-

icant reduction of the dispersion error in comparison with the corresponding finite

element method. In the one-dimensional case, it is possible to construct shape func-

tions that are better suited to represent the solution of the wave propagation problem,

especially for high wave numbers. These shape functions include an oscillatory

behavior, enabling to completely eliminate the dispersion. In the two-dimensional

case, it is not possible to completely eliminate the dispersion error, but, as what oc-

curs in stabilized finite element methods, it can be minimized in a user-prescribed

direction, α, and substantially reduced for closer values.

1.3.5 Generalized finite element methods

Another class of very popular methods, conceptually very close to meshless ideas,

and which allow the incorporation of local known information of the solution into

the approximation space, are the generalized methods based on the partition of

unity, first proposed by Babuška and Melenk (1997).

This section briefly discusses the two main methods which fall in this category:

the partition of unity method (PUM) and the generalized finite element method

(GFEM). Both methods are based on an enrichment of the standard polynomial fi-

nite element basis with local solutions of the corresponding homogeneous problem.

The main capabilities of these methods are: first, the possibility of using meshes

which are partially or totally independent of the domain and, second, the potentiality

of enriching the approximation by any special functions of interest. These methods

aim at reducing the dispersion by incorporating a priori knowledge about the global

behavior of the solution in the local approximation field.

Partition of unity method

The partition of unity method can be seen as a generalized finite element method

where the core ideas are the construction of proper interpolation spaces with desir-

able local approximation properties and the conformity of these spaces.
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The interpolation space associated to the partition of unity method is defined

using two sets of functions.

First a decomposition of the domain is used to define a set of functions being a

partition of unity on this decomposition. For simplicity of representation, assume

that a finite element mesh is given, and let {N j}j,...,nnp denote the standard linear

finite element basis. It is well known that the functions N j form the partition of

unity on Ω, namely
nnp∑
j=1

N j(x) = 1 ∀x ∈ Ω

and that the shape functions have a local support. Indeed, the support of N j is

denoted by ωj and consists of all elements containing node xj . It is worth noting

that other decompositions of the domain and other partition of unity may be defined.

Once the partition of unity and the associated patches ωj are introduced, a suit-

able approximation space W j is defined in each patch. Note that the spaces W j

can contain known local information of the solution. Usually, the local spaces W j

are set to be equal in all the patches, unless specific information is known about the

local behavior of the solution at a particular patch.

In Helmholtz context, two sets of spaces are generally used: plane-wave func-

tions and wave-band functions (Strouboulis and Hidajat 2006). Specifically, the

local space of wave-plane functions associated to a parameter m is given by

W(m) = span

{
eiκ(x cos θn+y sin θn), θn =

2πn

m
, n = 0, . . . , m− 1

}
,

which includes the linear combinations of plane waves traveling in the directions

θn = 2πn/m, n = 0, . . . , m− 1. It is worth noting that if a priori knowledge of the

solution in a particular patch ωj is at hand, the local space W j can be modified to

better fit the information.

Once the partition of unity {N j}j,...,nvp and the local spaces W j = W(m) are

defined, the partition of unity approximation is defined as

uH =

nnp∑
j=1

N j

(
m∑

n=0

eiκ(x cos θn+y sin θn)ujm
H

)
,

where ujm
H represent the unknowns of the partition if unity method.
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Note that this expression is particular for the specific choice of the partition of

unity and local interpolation spaces that has been considered. However, the general

approximation is obtain in an analogous way.

The locally defined spaces Wj contain a priori knowledge about the local be-

havior of the solution and the partition of unity guarantees the inter-element con-

tinuity. The application of the partition of unity method associated to the set of

plane-wave functions shows an improved computational efficiency compared with

stabilized methods. However, the treatise of essential boundary conditions and the

numerical integration require special attention. Furthermore, the set of algebraic

equations becomes ill-conditioned for a large dimension of the case W j (m in the

space of the plane-wave functions).

Babuška and Melenk (1997) apply the partition of unity method to the Lapla-

cian, the elasticity, the Helmholtz and a general class of elliptic problems. In this

work, the method is analyzed and a priori and a posteriori estimates are derived.

Strouboulis and Hidajat (2006) presents a numerical study of the method for

the Helmholtz equation. The authors study the effect of the choice of the local

interpolation spaces, the quadrature, and also discuss the a posteriori estimation of

quantities of interest. In the particular, a posteriori error estimates are used to find

out when the pollution becomes negligible. The partition of unity method provides

good accuracies but there is a need for developing theoretical results of the reduction

of the pollution in terms of as the number of plane-waves or wave-bands employed

in the local interpolation spaces W j .

Generalized finite element method

The generalized finite element method for the Helmholtz equation is a direct exten-

sion of the classical finite element method which involves an enrichment of the so-

lution using the partition of unity method (Strouboulis, Babuška and Hidajat 2006).

The generalized finite element approximation is obtained by adding to the stan-

dard finite element approximation, the partition of unity method approximation.

Namely, for the particular example of the partition of unity method described above,
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the generalized finite element approximation is

uH = uFE
H +

nnp∑
j=1

N j

(
m∑

n=0

eiκ(x cos θn+y sin θn)ujm
H

)
,

where uFE
H is the standard finite element approximation.

Note that, although the partition of unity method usually considers N j to be

the standard linear finite element basis functions, the generalized method allows

combining the partition of unity method with the p-version of the finite element

method (included in uFE
H ). Thus, two different finite element shape functions can be

involved in the generalized method: the linear ones describing the partition of unity

and the shape functions of degree p describing uFE
H .

The application of the finite element generalized method using plane-wave func-

tions for the two-dimensional Helmholtz equation with cartesian finite element

meshes shows an improved computational efficiency, however, the pollution effect

can not be totally removed. It is increasing with κ and decreasing for larger values

of p. The authors mention some open problems such as: the characterization of the

pollution effect or the extension of the theory for coarse meshes since the existing

theory is only valid for sufficiently fine meshes.

1.3.6 Discontinuous methods

The discontinuous enrichment method (DEM) is a general approach for problems

with sharp gradients and rapid oscillations. A complete description of the method

and its application to Helmholtz and advection-diffusion problems is presented in

Farhat, Harari and Franca (2001).

Farhat, Harari and Hetmaniuk (2003) present a discontinuous method for the

solution of the Helmholtz equation in the mid-frequency regime. The approach

proposed by the authors is based on the discontinuous enrichment method in which

the standard polynomial field is enriched within each finite element by a non-

conforming field that contains space solutions of the homogeneous partial differen-

tial equation to be solved. Thus, for the Helmholtz equation, the enrichment field is

chosen as the superposition of plane waves. The method enforces a weak continuity

of these plane waves across the element interfaces by suitable Lagrange multipliers.
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The results obtained for two-dimensional problems discretized by uniform meshes

reveal that the proposed discontinuous method enables the development of elements

that are far more competitive than both the standard linear and the standard quadratic

Galerkin elements for the discretization of Helmholtz problems.

Farhat, Wiedemann-Goiran and Tezaur (2004) extend this discontinuous method

to irregular meshes and exterior Helmholtz problems, being able to consider practi-

cal acoustic scattering problems. The results of this approach for two-dimensional

problems highlight the superior performance of the method over the standard finite

element method.

Recently, interesting studies and developments in the context of acoustics gov-

erned by the Helmholtz equation have been developed by Gabard (2006), Tezaur

and Farhat (2006) Grosu and Harari (2008). All the studies conclude that these

methods are competitive in situations where the standard finite element method runs

into difficulties.

1.3.7 Multi-scale methods

The multi-scale methods aim at reducing the dispersion by incorporating a priori

knowledge about the dispersive behavior in the local approximation field similar

to generalized methods. However, the multi-scale methods follow an additive ap-

proach rather than multiplicative approach.

Multi-scale methods decompose the solution into the two subproblems: the

coarse-scale problem and the fine-scale problem. Several multi-scale methods have

been proposed (Hughes 1995, Hughes, Feijoo, Mazzei and Quincy 1998).

Numerical experiments for multi-scale methods show that the same level of ac-

curacy than the finite element method is achieved for frequencies which are three

times higher. Oberai and Pinsky (1998) solve the fine-scale problem approximately

by applying Green’s functions. The derived multi-scale method shows a super con-

vergent behavior in the one-dimensional problem. However, for the two-dimensional

problem where the exact solution is a plane wave, the accuracy depends on the di-

rection of propagation of the wave. This deficiency holds for all multi-scale methods

based on a fine-scale solution, which vanishes on the element boundaries.
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1.3.8 Variational theory of complex rays

The variational theory of complex rays (VTCR) proposed by Ladevèze and Ar-

naud (2000), Ladevèze, Arnaud, Rouch and Blanzé (2001) and Riou, Ladevèze

and Rouch (2004), is a numerical method aimed at the prediction of mid-frequency

vibrations. The method is able to yield numerical predictions with the same level

of accuracy in the mid-frequency range as the finite element method, however with

substantially less computational effort.

The features which characterize the method are: first, the use of a new varia-

tional formulation of the problem to be solved. The transmission conditions are in-

corporated in the variational formulation. Second, a two-scale approximation with

a strong mechanical meaning is introduced: the solution is assumed to be well-

described locally in the neighborhood of a point as the superposition of an infinite

number of local vibration modes. These basic modes verify the laws of dynamics.

All wave directions are taken into account and the unknowns are discretized ampli-

tudes relative to particular wavelengths. The authors also suggest that only effective

quantities are retained from the calculated discretized amplitudes, such as: elastic

energy, kinetic energy, dissipation work, effective displacements, among others.

The method has been successfully applied to assemblies of homogeneous or

heterogeneous substructures. Riou et al. (2004) extend the method to shells for

medium-frequency vibrations, where the space of approximation is enriched by lo-

cal solutions of the wave equation.

1.3.9 Trefftz methods

Trefftz methods are a classical approache to incorporate information in the approx-

imation space. These methods can also be classified by the way the boundary con-

ditions are enforced. There are three well known strategies: a collocation scheme, a

least-squares formulation or a Galerkin approach. Furthermore, two large classes of

Trefftz-elements exist based on the treatment of the continuity conditions between

elements, namely the hybrid elements and the frameless elements. For instance,

Pluymers, Van Hal, Vandepitte and Desmet (2007) classify the discontinuous en-

richment method as an hybrid Trefftz method and the variational theory of complex
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rays as a frameless Trefftz method.

The key issue in these methods is the definition of the so-called T-complete

function sets. Several T-complete function sets have already been defined for solv-

ing steady-state acoustic problems. Although the theoretical convergence for these

function sets has been proven, their practical convergence is disturbed, or even pre-

vented, due to the ill-conditioning of the involved model matrices. These numerical

problems may be circumvented by subdividing the considered continuum domain

into small elemental subdomains. This has led to the development of the Trefftz-

element approach, which allows the introduction of the Trefftz idea into a standard

finite element scheme. That is, the internal field variables within the T-elements

are approximated in terms of a suitably truncated non-conforming T-complete set

of functions, satisfying the governing equations a priori, while the boundary condi-

tions and inter-element continuity are enforced in an average integral sense.

Pluymers et al. (2007) present a detailed review on the existing numerical meth-

ods for the analysis of time-harmonic acoustics, with a specific focus on Trefftz-

based methods.

1.4 Error estimation

Computational approximations of a given mathematical model always involve nu-

merical errors. The assessment of such errors is crucial for the computations to be

reliable, as well as a basis for adaptive control of the numerical process.

The first use of error estimates for adaptive remeshing strategies, in significant

engineering problems, was in the work of Guerra (1977), but the paper of Babuška

and Rheinboldt (1978) is often cited as the first work aimed at developing rigorous

global error bounds for finite element approximations. A brief history of the subject

is given in the book by Ainsworth and Oden (2000). Also the books by Verfurth

(1996), Ladevèze and Oden (1998) and Babuška and Strouboulis (2001) provide a

good overview of the techniques developed in the late nineties.

It can be argued that the vast majority of the published work on a posteriori error

estimation deals with global estimates of the errors of finite element approximations

of linear elliptic problems, and moreover, most estimates are usually energy-type
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norms. For the Helmholtz equation these estimators have the natural tendency to

underestimate the true error as the wave number increases. In the late 1990’s, tech-

niques for computing estimates of the errors committed in the approximation of

some quantities of interest began to appear. Such quantities manifest themselves

as functionals on the solutions of boundary- and initial-value problems. These esti-

mates provide the basis of the so-called goal-oriented adaptivity wherein adaptive

remeshing procedures are devised to control the error in these user-defined quanti-

ties of interest, also named after outputs.

This section is intended to provide a brief overview of the main error estimation

techniques for numerical approximations of boundary value problems. In particular,

special interest is placed in specific results or techniques concerning time-harmonic

waves in interior regions modeled by the Helmholtz equation and approximated by

the finite element method. The main objective is to describe existing a priori and

a posteriori error estimation techniques which have been developed and applied to

acoustic wave problems in the last years, both for global measures of the error and

for the error assessing in quantities of interest.

1.4.1 A priori error estimation

A priori estimation of the errors arising in numerical simulations has long been

an enterprise for numerical analysts. Such estimates give information on the con-

vergence and stability of the finite element approximations and provide rough in-

formation on the asymptotic behavior of the errors of the calculations if the mesh

parameters are appropriately set.

In the wave propagation problem modeled by Helmholtz equation an important

a priori result refers to the dispersion error committed when using linear finite el-

ement approximations. Ihlenburg and Babuška (1995a) shows that the dispersion

error, defined as the phase difference between the exact and numerical waves, can

be approximated by

κ− κH ≈ 1

24
κ3H2 + O(κ5H4).

Equation (1.11) is another important result of a priori error estimation for acous-

tic problems that provides a bound on the H1-seminorm of the error. Similar a priori
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estimates have been also derived for the h− p version of the finite element method

(Ihlenburg and Babuška 1997, Ihlenburg 1998, Ainsworth 2004).

1.4.2 A posteriori error estimation

A distinctive characteristic of a priori error estimation is that the error is estimated

without employing the discrete solution uH . The primary objective of these esti-

mates is to derive rates of convergence with respect to the discretization parameters,

h and p, to evaluate the performance of a given numerical method. It follows that a

priori error estimates generally involve unknown constants (independent of h and p)

which prevent them from providing useful information about the quantitative error

of a particular solution uH .

In contrast, a posteriori error estimation aims at developing quantitative meth-

ods in which the error e = u − uH is estimated using the solution uH as data for

the error estimation strategies. A posteriori error estimates are useful in two ways:

first, to assess the accuracy of a given approximation uH , and second, since they are

the basis of adaptive strategies.

Initially, error estimation methods were confined to global estimates, which

measure the error with respect to global norms computed over the whole compu-

tational domain. Although the error is measured using global norms, the resulting

estimates are usually decomposable into local contributions, providing the neces-

sary information for adaptivity. Theses estimates are usually classified into: explicit

residual methods, implicit residual methods and recovery-type methods. Some de-

velopments and features of these techniques in the context of the Helmholtz equa-

tion are presented in the following. First, residual methods are shortly revised and

then a brief overview of recovery-type estimates is given.

To set the notation, let u denote the solution of the problem (1.8) and uH be its

finite element approximation. The approximation error e ∈ V is the unique solution

of the equation

a(e, v) = 	(v) − a(uH, v) = RP (v) ∀v ∈ V, (1.12)

where RP (v) is the weak residual associated to uH . Furthermore, since uH is a
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Galerkin approximation, the error satisfies the Galerkin orthogonality property

a(e, v) = 0 ∀v ∈ VH , (1.13)

which is equivalent to say that the residual is orthogonal to VH , namely RP (v) =

0, ∀v ∈ VH .

Residual methods aim at obtaining estimates, either for a global measure of the

error or for a given quantity of interest, by using the information provided by the

residual RP (·). Depending on the treatment of this information, residual meth-

ods are classified into explicit and implicit. Explicit methods are those which do

not require solving any auxiliary problems. They only involve direct computations

using available data, in particular, they usually employ the strong residuals in the

current approximation. In contrast, implicit methods involve the solution of local or

global problems, using the residuals indirectly. They generally involve the solution

of small linear systems of equations where the r.h.s of the problems involve local

restrictions of the weak residual RP (·).

Explicit residual methods

Irimie and Bouillard (2001) employ an explicit residual method to compute error

estimates in the context of the Helmholtz equation. The conclusions of this inves-

tigation are that the quality of the error estimator deteriorates as the wave number

increases and that it is incapable of detecting the pollution error.

Stewart and Hughes (1996), Stewart and Hughes (1997) and Stewart and Hughes

(1997) develop explicit residual error estimators for the classical Galerkin and -

Galerkin least-squares finite element methods, for the Helmholtz equation in ex-

terior domains. The authors focus on the development of an a posteriori error

estimator for the error distribution, and an h-adaptive strategy. The methodology

for computing the error estimates is to determine the scaling constants appearing in

the error estimator. Several measures are computed to assess the quality of the error

estimator and results indicate that the error distributions are adequately captured.

However, the quality of the global error estimates degrades as the wave number is

increased.
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Implicit residual methods

The main motivation in developing implicit residual methods is to be able to com-

pute more accurate estimates, or even bounds, of the residual norm by avoiding

introducing the unknown constants that are characteristics of explicit methods. Im-

plicit residual methods require the solution of auxiliary problems, approximating

the residual equation (1.12) satisfied by the error itself. These estimate are classi-

fied into element, subdomain, and global residual methods, depending on whether

the local problems are posed over a single element, a small patch of elements, or in

the whole computational domain.

Babuška, Ihlenburg, Strouboulis and Gangaraj (1997) presents a one-dimensional

study of a Dirichlet element error estimator for the Helmholtz problem. That is, the

estimates are computed solving local elementary problems with Dirichlet boundary

conditions at the edges of the element (or nodes in the one-dimensional case). They

show that, at high wave numbers, the error estimator actually approximates the dif-

ference between the finite element solution and the associated shifted function. That

is, instead of approximating the exact error the estimate approximates the difference

between the solution of a modified problem with wave number κH (the numerical

wave number) and the finite element approximation.

Bouillard (1999) extends the element residual approach proposed by Ladevezè

in the late 1990’s (Ladevèze and Maunder 1996, Ladevèze and Rougeot 1997) to

the Helmholtz problem. These estimates are also referred to error estimation in

the constitutive law or equilibrated flux-splitting approach. These investigations

concern vibro-acoustic problems and are limited to low values of the wave number

where the pollution error is negligible. Various examples demonstrate that, in the

case of linear or bilinear elements, the estimator provides asymptotic upper bounds

on the error with effectivity indices closer to two.

In subdomain residual methods, the global residual problem for the error is de-

composed in local problems posed over small patches of elements. Although some

progress has been achieved since the first pioneer work of Babuška and Rheinoldt

in 1978 (Carstensen and Funken 2000, Machiels, Maday and Patera 2000, Parés,

Dı́ez and Huerta 2006), these kind of estimates have not yet been used to calculate

error estimates for the Helmholtz equation.
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Recovery-type methods

Recovery-based error estimators were first suggested by Zienkiewicz and Zhu

(1987) and improved later by the same authors in 1992. These methods follow

the simple observation that piecewise continuous finite element solutions gener-

ally exhibit discontinuous gradients at the interface of the elements. If the exact

solution to be sought is smooth enough, such jumps in the gradients of the numer-

ical solution indicate that the numerical solution is erroneous. Several approaches

have been proposed in the literature to compute these gradients (Zienkiewicz and

Zhu 1992b, Ainsworth and Oden 2000).

Bouillard and Ihlenburg (1999) performed numerical experiments to test the

quality of recovery or smoothening techniques on acoustic. The results show that

the effectivity index of recovery-type methods converge to one as the discretization

parameter tends to zero, meaning that the recovered smooth function gets closer

and closer to the exact solution as the pollution error diminishes. However, the

effectivity index clearly deteriorates when κ becomes large, i.e. when dispersion

becomes too significant. They also show that the estimates are suitable to drive

mesh adaptation for low wave numbers.

1.4.3 Error estimation in quantities of interest

A class of methods based on duality techniques which compute error estimates in

terms of quantities of interest is described by various authors (Becker and Rannacher

1996, Paraschivoiu, Peraire and Patera 1997, Becker and Rannacher 2001, Oden and

Prudhomme 2001). These strategies are also called goal-oriented adaptive methods

strategies.

In goal-oriented error estimation, analysts specify the goal of their calculations

by identifying a quantity of interest, where this quantity of interest or output is

represented by a functional defined on the space of admissible solutions. Namely,

the desired output of the simulation is J(u) where J(·) is a linear or non-linear

functional representing the quantity of interest. In this thesis, J(u) will represent

a general non-linear quantity of interest. However, most strategies are developed

with respect to linear outputs. In this case, 	O(u) will be used to denote only linear
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quantity of interest. It is worth noting that in the general case, the functional 	O(·)
will be obtained from J(·) using a linearization technique.

The standard approach to obtain error estimates in some quantity of interest

defined by a linear functional is to obtain an error representation using an adjoint

problem. The adjoint problem is similar to the direct one but with different loads

(source term and/or boundary conditions). The error representation is an alternative

expression for the error in the quantity of interest as energy products of the errors

of the direct and adjoint problems.

In the following, the basis of a posteriori goal-oriented error estimation strate-

gies is briefly summarized.

Let 	O(·) be a linear functional representing the quantity of interest. That is, the

goal of the numerical simulation is to evaluate 	O(u). The accuracy of the solution

is then estimated in terms of the exact error 	O(e) = 	O(u)− 	O(uH) or a reference

counterpart 	O(e) ≈ 	O(uh)−	O(uH), where the reference solution uh is associated

with a much finer over kill discretization (for instance with h H).

An adjoint problem is introduced associated with 	O(·) reading: find ψ ∈ V
such that

a(v, ψ) = 	O(v) ∀v ∈ V, (1.14)

along with its finite element approximation ψH and its associated error ε = ψ−ψH .

Using equation (1.14), the error in the quantity of interest is readily expressed as an

inner product of the error in the direct problem and the adjoint solution or, using the

Galerkin orthogonality property (1.13), as an inner product of the direct and adjoint

errors. Namely,

	O(e) = a(e, ψ) = a(e, ψ − ψH) = a(e, ε) (1.15)

Thus, if one can get approximations to e and ε properly behaving in terms of

energy, then the error representation (1.15) allows obtaining a proper approximation

of the error in the quantity of interest, 	O(e).

Moreover, using the definition of the primal residual, RP (·), given in equation

(1.12), an alternative representation for the error in the output follows:

	O(e) = a(e, ε) = RP (ε). (1.16)
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Thus, an approximation to ε suffices to obtain estimates for 	O(e), if injected into

the residual of the direct problem, as suggested in (Dı́ez and Calderón 2007a).

In the above mentioned reference effort is devoted to obtain a better approxima-

tion to the exact/reference solution (u/uh or ψ/ψh) based on the numerical ap-

proximation (uH or ψH ) via some post-processing techniques (Zienkiewicz and

Zhu 1992a, Zienkiewicz and Zhu 1992b, Zienkiewicz and Zhu 1992c, Wiberg, Zeng

and Li 1992).

Its is important to highlight that most goal-oriented estimates are based on using

similar technique to the ones proposed to obtain global measures of the error. These

techniques provide approximations to e and ε that are then injected in one of the

error representations for the quantity of interest.

Few contributions on goal-oriented error estimation for the Helmholtz equation

have been published. Sarrate, Peraire and Patera (1999) extend the implicit error

estimates based on the equilibrated residual method given in (Paraschivoiu et al.

1997) to interior Helmhotz equation problems. Asymptotic bounds for linear and

non-linear quantities of interest are reported. The results confirm that the bounds

are less sharp with increasing wave number. However, they do not mention whether

the pollution error in the solutions is significant or not.

Walsh and Demkowicz (2003) give another approach to goal-oriented adaptation

techniques for acoustic problems, where a technique for the modeling the external

human auditory system by the boundary element method is presented.

In fact, not many works in goal-oriented error estimation and adaptation tech-

niques for the wave propagation problem modeled by Helmholtz equation are present

in the literature. The time-dependent wave equation is studied in (Bangerth and

Rannacher 1999, Becker and Rannacher 2001). One extra difficulty for estimating

the error in quantities of interest for transient wave problems is that the adjoint func-

tion is the solution of a reversed time-dependent problem that has to be integrated

backwards in time. In this context Bangerth, Geiger and Rannacher (2010) have

recently presented an overview of goal-oriented adaptivity for acoustic problems,

in particular, for the elastic wave equation.
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1.5 Overview

The thesis is organized in two parts: the exposition and the contributions of the

thesis enclosed in form of published or accepted papers.

The exposition part is divided in 4 chapters: this first chapter is intended to pro-

vide an overview of numerical methods for the Helmholtz problem, placing special

interest in new methods aiming at reducing the pollution effects, along with a state-

of-art in error estimation. In chapter 2 an a posteriori error estimation technique to

assess the dispersion error of standard and stabilized finite element approximations

for the Helmholtz equation is proposed. Chapter 3 is concerned with goal-oriented

error estimates and h-adaptivity. It presents the study and analysis of linear and

non-linear outputs for the Helmholtz equation. Finally chapter 4 presents the main

conclusions and future developments.

The three appended papers at the end of the thesis correspond to the references

Steffens and Dı́ez (2009), Steffens et al. (2010a) and Steffens et al. (2010b), re-

spectively. Throughout the thesis these papers are cited using the corresponding

reference.
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Chapter 2

Assessment of the dispersion error
for the Helmholtz equation

In this chapter an a posteriori estimator for the error in the wave number is presented

in the context of finite element approximations of the Helmholtz equation for both

standard and stabilized formulations. This chapter is a summary of the main ideas

introduced in (Steffens and Dı́ez 2009) and (Steffens et al. 2010a). The reader may

find some discrepancies between the notation used in this chapter and the afore-

mentioned references since a unified framework for assessing the dispersion error

joining both works presented.

The chapter is structured as follows: section 2.1 introduces the acoustic model

problem and the finite element method for both standard and Galerkin least-squares

formulations. In section 2.2 the concepts of dispersion and pollution errors are re-

minded. Section 2.3 is devoted to introduce the a posteriori technique proposed to

assess the error in the wave number. In section 2.4 the recovery technique based in a

standard polynomial least-squares fitting and a new recovery strategy is introduced.

The procedure builds up an inexpensive approximation of the exact solution, using

standard post-processing techniques in error estimation analysis, from which the

estimate of the error in the wave number is computed using a simple closed expres-

sion. Finally, in section 2.5 the estimation procedure is used in several numerical

examples demonstrating the efficiency of the proposed technique both in academic

and practical examples.

33
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2.1 Model problem

Consider the acoustic problem (1.8) given in weak form as: find u ∈ U such that

a(κ; u, v) = 	(κ; v) ∀v ∈ V. (2.1)

Note that the notation adopted in this chapter marks the explicit dependence of κ

on the sesquilinear form a(κ; ·, ·) and on the antilinear functional 	(κ; ·). However

these forms are the same as the ones described in equation (1.9). Although not

standard, this is useful in the following to assess the error in the wave number.

It is worth noting that the sesquilinear form a(κ; ·, ·) is not elliptic but it satisfies

the inf-sup condition and the Gärding inequality. However, for large wave numbers

κ the upper bound for the inf-sup condition is too crude (Ihlenburg 1998). Moreover,

the inf-sup property is not carried over from V to a discrete subspace yielding to a

loss of stability which produces spurious dispersion in the discrete approximations.

2.1.1 Galerkin finite element approximation

As described in section 1.3.1 the Galerkin approximation is obtained from a par-

tition TH of the domain Ω into nonoverlapping elements and by introducing the

discrete spaces UH ⊂ U and VH ⊂ V . The discrete finite element solution is then

uH ∈ UH such that

a(κ; uH , v) = 	(κ; v) ∀v ∈ VH . (2.2)

In practice, low-order Galerkin approximations to the Helmholtz equation in-

volving high wave numbers are corrupted by large dispersion or pollution errors

due to the loss of stability of a(κ; ·, ·). Moreover, it is widely known that the rule

of thumb is not sufficient to obtain reliable results for large κ. This undermines the

practical utility of the Galerkin finite element method since severe mesh refinement

is needed for large wave numbers.

The performance of finite element computations at high wave numbers can be

improved by using stabilization techniques. These techniques, which are extremely

simple to implement, alleviate the dispersion effect of the finite element solution

without requiring mesh refinement.
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2.1.2 Galerkin least-squares finite element approximation

The idea behind stabilized finite element methods is to modify the variational form

a(κ; ·, ·) and, accordingly, the right hand side, in such a way that the new variational

form is unconditionally stable. In particular, the additional stabilization terms of the

Galerkin lest-squares method method are an element-by-element weighted least-

squares formulation of the original differential equation.

Recall that, as introduced in section 1.3.2, the weak form of the Galerkin least-

squares method associated with the partition TH is: find u ∈ U such that

a(κ; u, v) + (Lu− f, τHLv̄)
bΩ = 	(v) ∀v ∈ V, (2.3)

where Lu = −Δu − κ2u, Ω̂ =
⋃nel

k=1 Ωk denotes the union of element interiors

of TH , nel being the number of elements in the mesh and (·, ·)
bΩ is the reduced L2

inner product, where integration is carried out only on the element interiors, that

is, the singularities at inter-element boundaries are suppressed in the reduced inner

product. Thus, the Galerkin least-squares formulation depends on the stabilization

parameter τH which has to be properly defined to make the form on the l.h.s. un-

conditionally stable.

Note that the Galerkin least-squares method is consistent for any choice of τH ,

since the exact solution u verifies equation (2.3) for any choice of the stabilization

parameter τH due to Lu− f = 0.

The Galerkin least-squares finite element approximation of u is uH ∈ UH such

that

aGLS(κ, τH ; uH , v) = 	GLS(κ, τH ; v) ∀v ∈ VH , (2.4)

where

aGLS(κ, τ ; u, v) = a(κ; u, v) + (τLu,Lv̄)
bΩ,

and

	GLS(κ, τ ; v) = 	(κ; v) + (τf,Lv̄)
bΩ.

Note that for the sake of simplicity, the same notation, uH , for the Galerkin

and Galerkin least-squares finite element approximations is used. A different nota-

tion for the Galerkin least-squares finite element approximation, for instance uGLS
H ,

would be more precise. However, since the error estimation strategy is valid for any
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approximation uH ∈ VH of u, there is no need to distinguish between uH and uGLS
H

or any other approximation. Moreover, note that τH = 0 results in the Galerkin

approximation.

The stabilization parameter τH is usually determined by using discrete disper-

sion analysis with the aim of eliminating spurious dispersion of plane waves in a

user-prescribed direction (θ). That is, the goal is that the Galerkin least-squares

finite element approximation has no phase lag if the exact solution is a plane wave

in the direction θ. Different definitions for the parameter τH depending on the un-

derlying size and topology of the mesh may be found in the literature (Harari and

Magoulès 2004, Harari and Nogueira 2002). The reader is also referred to (Steffens

et al. 2010a) for different choice of the stabilization parameter.

Unfortunately, it is not possible in general to design a stabilization parameter

τH that confers the ability of fully removing the dispersion error on the Galerkin

least-squares method. The reason is twofold. First, a general signal consists of

plane waves going in an infinite number of directions. Even if there are direction-

ally prevalent components in this decomposition, they are not necessarily known

a priori. Second, the parameter τH is derived for particular structured topology

meshes. The optimal behavior obtained for some particular structured meshes is

partially lost when general unstructured meshes are used.

2.1.3 Matrix form

The Galerkin or Galerkin least-squares finite element approximation uH is expressed

in terms of the finite element basis-functions as uH = NuH , see equation (1.10),

where uH is the vector containing the complex nodal values of uH . In the case of

linear finite elements (p = 1), LuH reduces to LuH = −κ2uH in Ω̂, and the matrix

form of (2.4) reads (
KH − CH − κ2MτH

H

)
uH = f τH

H + fN
H , (2.5)

where KH , CH and MτH
H are the so-called stiffness, damping and mass matrices

defined by

KH =

∫
Ω

(∇N)T(∇N)dΩ, CH =

∫
ΓR

mNTNdΓ,
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and

MτH
H =

nel∑
k=1

∫
Ωk

(1 − τHκ
2)NTNdΩ.

The right-hand side vectors accounting for the source term and the Neumann

boundary conditions are

f τH
H =

nel∑
k=1

∫
Ωk

(1 − τHκ
2)NTf dΩ and fN

H =

∫
ΓN

NTg dΓ.

In the particular case where the stabilization parameter τH is constant in the

elements of the mesh the mass matrix and the source vector can be rewritten as

MτH
H = (1 − τHκ

2)MH and f τH
H = (1 − τHκ

2)fH , where

MH =

∫
Ω

NTNdΩ and fH =

∫
Ω

NT dΓ,

are the standard mass matrix and unit vector force. Besides, recall that τH = 0

results in the matrix form of the Galerkin finite element method (2.2).

2.2 Dispersion and pollution effects

As mentioned in chapter 1, Galerkin approximations of the Helmholtz equation

at high frequencies show dispersion which pollutes the interpolation errors. The

pollution effect, originating mainly from the dispersive behavior of the numerical

wave, is global in nature because the error sources affect the solution in the whole

domain, and not only where the resolution of the mesh is not sufficient to properly

approximate the solution. Thus, opposed to the standard interpolation error, the

pollution error cannot be removed by local refinement.

Recently, many attempts have been made in the mathematical and engineering

literature to overcome this lack of robustness by various modifications of the clas-

sical finite element and the application of news methods. Numerical experiments

show that in some situations the pollution effect can be reduced but, in two and more

space dimensions it has been proved that it is impossible to eliminate. Moreover,

quantitative results about the size of the pollution are very vague and a theoretical

foundation is missing. In this thesis, a tool for obtaining quantitative measures of

the dispersion error is given.
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The error introduced in the numerical solution of wave problems has two dif-

ferent components: interpolation error and pollution error. The interpolation error

is the classical error arising in elliptic problems and pertains to the ability of the

discretization to properly approximate the solution. In the present work it is defined

as

eint = u− uproj
H = u(x) −

nnp∑
j=1

N j(x)u(xj),

where uproj
H is the approximation of u in UH coinciding with u at the mesh nodes

xj , j = 1, 2, . . . ,nnp, nnp being the number of nodal points in the mesh. Thus, the

pollution error is defined as:

epol = uproj
H − uH =

nnp∑
j=1

N j(x)(u(xj) − uj
H).

In standard thermal and elasticity problems, the error in the finite element solu-

tion is equivalent to the interpolation error, and converges with the same rate. This

error is local in nature because it may be reduced in a given zone by reducing the

mesh size locally in this zone.

The pollution error, however, is especially relevant in the framework of Helmholtz

problems due to the blowup of the inf-sup and continuity constants of the weak

form when the wave number is large. In transient wave problems, pollution is as-

sociated with the variation of the numerical wave speed with the wavelength. This

phenomenon results in the dispersion of the different components of the total wave.

In the steady Helmholtz problem, the word dispersion is also used and corre-

sponds to the error in the numerical wave number κH , which is therefore identified

with the pollution. In other words, the finite element error (FE error) is decomposed

into two terms

FE error = u−uH = eint+epol = Interpolation error +Dispersion/pollution error,

which, in the case of wave problems, behave completely differently (see figure 2.1).

It has been shown that the pollution term converges at a different rate, lower than

the standard interpolation error.

The pollution error epol is related to the phase difference between the exact and

finite element solutions, that is, difference between the wave number κ associated
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Figure 2.1: Illustration of the errors arising in the approximation of the Helmholtz
equation. The exact solution (solid line, smooth) and best approximation (dashed
line) coincide at the nodes, the finite element solution reproduces approximately the
shape of the wave with a larger wavelength (κH < κ).

with u and the numerical wave number κH associated with uH . Usually, the disper-

sion or pollution error is assessed by obtaining an approximation of the error in the

wave number κ − κH instead of trying to measure the pollution error epol in some

predefined norm.

2.2.1 A priori error assessment

A priori error estimates assess the dispersion error by means of providing a closed

formula of the numerical wave number κH . The key idea is to define an auxiliary

solution um
H ∈ U having the same wave number as uH and from which to recover

the value of κH . Intuitively, um
H ∈ U is the best solution of the Helmholtz equation

(2.1) associated with a wave number κH matching uH at the nodes of the mesh, see

figure 2.2.

The a priori error analysis is performed by studying a simple one-dimensional

case. This analysis is recalled here because its basic rationale is useful in the follow-

ing. Consider the one dimensional Helmholtz equation in Ω = (0, 1) with boundary

conditions

u(0) = 1 and
du

dx
(1) = iκu(1).
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exact
mod
FEM

Figure 2.2: Illustration of the exact solution u, the approximate solution uH and the
auxiliary solution um

H coinciding with uH at the nodes and sharing its wave number
κH .

This simple problem admits the analytical solution u(x) = eiκx. Then, given a

uniform finite element mesh and its associated finite element approximation uH ,

it turns out that there is a wave number κH such that the solution of Helmholtz

equation associated to κH , um
H = eiκHx, exactly fulfils the equations of the Galerkin

method (2.5) associated to the interior nodes. In other words, consider the patch

of elements surrounding node xj, see figure 2.3. Let N j−1, N j and N j+1 be the

linear shape functions corresponding to the nodes xj−1, xj and xj+1, which are

consecutive in the mesh and are the only ones involved in the equation for node xj.

The discrete equation corresponding to node xj reads

xxx

NNN

H

j

j

j − 1

j − 1

j + 1

j + 1

Figure 2.3: Nodes surrounding xj in a one-dimensional linear finite element mesh
and their corresponding shape functions.
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Ruj−1
H + 2Suj

H +Ruj+1
H = 0, (2.6)

where the coefficients R and S are

R = −1 − 1

6
(κH)2 and S = 1 − 1

3
(κH)2.

Recall that uj
H stands for the nodal unknown at node xj . Noting that xj−1 =

xj − H and xj+1 = xj + H and imposing that the modified solution um
H = eiκHx

exactly fulfills the discrete equation (2.6) yields the following expression for the

numerical wave number

κH =
1

H
arccos

(
1 − (κH)2/3

1 + (κH)2/6

)
≈ κ− 1

24
κ3H2 +

3

640
κ5H4 + O(κ7H6),

see (Ihlenburg and Babuška 1995a).

The verification of the equations (2.6) associated to the interior nodes enforces

that the auxiliary solution um
H shares the same wave number of uH , although this

does not guarantee that um
H matches exactly uH at the nodes of the mesh, due to the

influence of the Robin boundary conditions. However, the difference of um
H and uH

at the nodes of the mesh is nearly negligible. Thus, for this particular problem, a

very good measure of the dispersion error can be computed as

E = κ− κH ≈ 1

24
κ3H2 + O(κ5H4) (2.7)

2.3 A posteriori error estimation of the wave number

The standard approach to obtain an error estimate in some quantity of interest de-

fined by a linear functional is to obtain an error representation using an adjoint

problem. In the present case, the quantity of interest is the wave number κ, and,

therefore, the goal is to assess the error in the wave number. The error assessment

using an adjoint problem and the corresponding error representation is not appli-

cable to the wave number quantity of interest. This is due to two reasons. First,

there is no linear functional extracting the wave number of an arbitrary function u.

Second, in this case, the value for κ is known for the exact solution u (it is an input

data!), but not for the numerical solution uH : κ is known but κH is unknown.
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The strategy of the error estimate is reversed in this case. Instead of devoting

effort to obtain a better approximation, as close as possible to the exact solution

and then, compare it with the numerical result, here the effort has to be oriented to

obtain the wave number of the approximate solution.

A new approach to a posteriori error estimation is introduced here, based on

the ideas of the a priori analysis sketched in section 2.2.1. The first problem to

face is to find a proper definition for the numerical wave number κH . The concept

of defining κH based on the idea of fitting the numerical solution into a modified

equation, implicitly used in a priori analysis, is extended so that it can be exploited

in a posteriori error assessment setting.

Unfortunately, in general, it is not possible to determine um
H ∈ U verifying

the weak form of problem (2.1) for a suitable wave number κH ∈ R and con-

currently fulfilling the equations of the Galerkin method associated to the interior

nodes. However a slight modification of this idea yields a proper definition for um
H .

Specifically, um
H ∈ U and κH ∈ R are such that:

• um
H ∈ U coincides with uH at the nodes of the mesh, that is

um
H(xj) = uH(xj) for j = 1, 2, . . . ,nnp,

• for a given κH , um
H ∈ U is such that

a(κH ; um
H , v) = 	(κH ; v) ∀v ∈ V0, (2.8)

where

V0 = {v ∈ V, v(xj) = 0, j = 1, 2, . . . ,nnp}

• κH and um
H minimize the norm of the residual functional

‖R(κH , u
m
H ; ·)‖∗ = max

v∈H1
0\{0}

R(κH , u
m
H ; v)

‖v‖ ,

where

R(κH , u
m
H; ·) = 	(κH ; ·) − a(κH ; um

H, ·),

H1
0 = {v ∈ H1(Ω), v|∂Ω = 0},

and ‖v‖ is the H1 norm.
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Note that the values of um
H on the boundary of Ω do not affect the norm of the

residual ‖ · ‖∗. This definition is used to minimize the influence of the errors due to

the boundary conditions (which are considered to be a part of the interpolation error

and not of the dispersion error) in the assessment of the dispersion error. It is also

important to note that the condition enforcing that um
H and uH share the same phase

lag, i.e., fulfilling of the equations of the Galerkin method associated to the interior

nodes, is replaced by the more simple and equivalent condition of matching uH at

the nodes of the mesh.

In a compact form, κH and um
H are the solution of the following constrained

optimization problem

(κH , u
m
H) = arg min

κm ∈ R

um ∈ U

‖R(κm, um; ·)‖∗

subject to a(κm; um, v) = 	(κm; v) ∀v ∈ V0

um(xj) = uH(xj), j = 1, 2, . . . ,nnp.

The relation between the finite element solution uH and the modified solution

um
H allows us to state that the numerical wave number associated with uH , coincides

with the wave number associated with the solution um
H . That is, the finite element

solution uH and um
H share the same phase lag and therefore the dispersion error

associated to uH is

E = κ− κH

It is worth noting that this definition of the numerical wave number through the

modified solution um
H is not applicable as a practical error estimation strategy, since

κH and um
H are even more difficult to compute than the exact solution u. Neverthe-

less, this rationale is used as a starting point to obtain a fully computable estimate

for the dispersion error, by just introducing two simple modifications.

First, the finite dimensional reference spaces Uh and Vh much finer than UH and

VH are introduced. These spaces yield to the following approximations of κH and
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um
H

(κH [h], um
H [h]) = arg min

κm ∈ R

um ∈ Uh

‖R(κm, um; ·)‖∗,h

subject to a(κm; um, v) = 	(κm; v) ∀v ∈ Vh ∩ V0

um(xj) = uH(xj), j = 1, 2, . . . ,nnp
(2.9)

and

‖R(κH [h], um
H [h]; ·)‖∗,h = max

v ∈ Vh\{0}
v|∂Ω = 0

R(κH [h], um
H [h]; v)

‖v‖ .

If the finite element mesh Vh is sufficiently fine, one expects that um
H ≈ um

H [h]

and therefore κH [h] ≈ κH . If the finite element mesh Vh is not fine enough a cor-

rection factor has to be applied to recover a good approximation of κH from κH [h],

that is, κH [0] = cfκH [h], where cf is the correction factor based on a Richardson

extrapolation technique, see (Steffens and Dı́ez 2009).

Second, since the computation of κH [h] and um
H[h] is still unaffordable in prac-

tical applications another simplification is introduced. An approximation of um
H [h]

in Uh, denoted by u∗, is obtained by post-processing uH .

In general, the approximation u∗ is not obtained solving equation (2.8) for some

κH and thus the computation of κH is independent. Indeed, u∗ does not verify

a(κH [h]; u∗, v) = 	(κH [h]; v) ∀v ∈ Vh ∩ V0,

and is therefore no longer linked with the computation of κH [h]. Once this approx-

imation u∗ is computed, the wave number κH [h] is approximated by κ∗ solution

of

κ∗ = arg min
κm∈R

‖R(κm, u∗; ·)‖∗,h.

It is worth noting that the norm of the residual ‖R(κm, u∗; ·)‖∗,h is a function

depending only on the scalar variable κm and may be computed as

‖R(κm, u∗; ·)‖∗,h =
√

r(κm, u∗)′r(κm, u∗),
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where

r(κm, u∗) = B0

((
Kh − Ch − (κm)2Mh

)
u∗ − fh − fN

h

)
= B0

((
Kh − (κm)2Mh

)
u∗ − fh

)
,

is the residual associated with the interior nodes of the fine h-mesh, the approxima-

tion u∗ and the wave number κm. The symbol ′ stands for the conjugated transpose,

that is v′ ≡ v̄T, and B0 is a diagonal matrix on the h-mesh with ones in the positions

associated with the interior nodes and zero elsewhere. That is, the matrix B0 sets

the values of the residual at the boundary (either Dirichet, Neumann or Robin) to

zero.

Thus, for a given value of u∗ ≈ um
H [h], the wave number κ∗ is the parameter of

the modified problem that better accommodates u∗. In practice, κ∗ is determined by

minimizing the squared norm of the residual, namely

κ∗ = arg min
κm∈R

‖R(κm, u∗; ·)‖∗,h = arg min
κm∈R

√
r′r = arg min

κm∈R

r′r. (2.10)

Note that given u∗, the squared residual norm r′r is a fourth degree polynomial

in κm and thus κ∗ is computed explicitly. Indeed

r(κm, u∗) = a0 + a2(κ
m)2, (2.11)

where

a0 = B0(Khu
∗ − fh) and a2 = −B0Mhu

∗.

Thus, the squared residual norm r′r is a fourth degree polynomial in κm, namely

F (κm) = r′r = c0 + c2(κ
m)2 + c4(κ

m)4, (2.12)

with the coefficients

c0 = a′
0a0, c2 = a′

0a2 + a′
2a0 and c4 = a′

2a2.

It is worth noting that despite the vectors a0 and a2 are complex, the coefficients

c0, c2 and c4 are real.
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Thus, for a given value of u∗, the wave number κ∗ minimizing the squared

residual is explicitly computed by solving the cubic equation

dF

dκm
= 2c2(κ

m) + 4c4(κ
m)3 = 0.

The previous equation admits the trivial solution κm = 0 and two solutions

κm = ±
√

−c2/(2c4). Since the wave number is a positive parameter, the numerical

wave number is approximated by κ∗ = +
√

−c2/(2c4). Since c4 ≥ 0, κ∗ provides

a proper estimate for κ as long as c2 < 0. In all the numerical tests that have been

carried out, a negative value for c2 has been obtained. However, it is expected that

positive values of c2 could appear for arbitrary choices of u∗ not reproducing the

main features of uH . A positive c2 parameter would indicate that either u∗ has not

been properly chosen or that the numerical method has provided a really really poor

approximation uH .

In short, the approximation κ∗ of the numerical wave number κH is assessed

by first post-processing the finite element solution uH to compute u∗ and then set-

ting κ∗ =
√

−c2/(2c4). The computable a posteriori error estimate for the wave

number is then

E∗ = κ− κ∗

Remark 2.3.1. The expression given in Steffens and Dı́ez (2009) for the squared

residual norm r′r involves extra terms not appearing in equation (2.12). This is

due the fact that in (2.12) the coefficients including the Robin boundary conditions

are not presented due to the use of the non-boundary matrix B0. However, both

formulations provide fairly similar results.

2.3.1 Assessment of the wave number for stabilized formula-

tions

The dispersion error associated with a stabilized finite element approximation of

u may be assessed using the same methodology detailed for the standard Galerkin

approximation. Given the Galerkin least-squares finite element approximation uH ,

a post-processing technique is used to compute an approximation u∗ of the solution

um
H [h] and then the wave number κH is approximated by κ∗.
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However, the use of stabilized formulations also for the fine mesh solutions

in (2.9) allows to improve the quality of the estimates. Note that the accuracy of

the estimate κ∗ relies on two facts: first on the quality of the approximation u∗ of

um
H [h], and second on the quality of the approximation um

H [h] of um
H . The quality of

u∗ depends on the post-processing strategy which will be discussed in the following

section. The quality of um
H[h], on the other hand, depends on the size h of the

reference mesh Vh. In fact, it depends on the ratio of κ versus h since for large

values of κ the reference mesh should be finer in order to get good approximations

of um
H . Thus, for large wave numbers, the discrete approximation um

H [h] will only

be a good approximation of um
H if the reference mesh is taken remarkably fine.

A simple workaround which avoids dealing with fine reference meshes, is to

stabilize the problem associated with um
H [h]. That is, for a given finite element

approximation, either stabilized or not, the stabilized approximation um
H[h; τh] is

the solution of

(κH [h; τh], u
m
H [h; τh]) = arg min

κm ∈ R

um ∈ Uh

‖RGLS(κ
m, τh, u

m; ·)‖∗,h

subject to

aGLS(κ
m, τh; u

m, v) = 	GLS(κ
m, τh; v) ∀v ∈ Vh ∩ V0

um(xj) = uH(xj), j = 1, 2, . . . ,nnp
(2.13)

where

RGLS(κ
m, τh, u

m; v) = 	GLS(κ
m, τh; v) − aGLS(κ

m, τh; u
m, v).

This modification yields to the following strategy to assess the error in the nu-

merical wave number:

1. compute u∗ approximation of um
H [h; τh] by post-processing uH

2. compute the approximation κ∗[τh] solution of

κ∗[τh] = arg min
κm∈R

‖RGLS(κ
m, τh, u

∗; ·)‖∗,h, (2.14)
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where the residual norm

‖RGLS(κ
m, τh, u

∗; ·)‖∗,h = rGLS(κ
m, τh, u

∗)′rGLS(κ
m, τh, u

∗)

for

rGLS(κ
m, τh, u

∗) = B0

((
Kh − (κm)2Mτh

h

)
u∗ − f τh

h

)
.

Note that the matrix Mτh
h and the vector f τh

h depend explicitly on the wave num-

ber κm and also implicitly via the stabilization parameter τh. Therefore the depen-

dency of r′GLSrGLS with respect to the wave number κm is no longer a fourth order

polynomial and the solution of (2.14) may not be computed explicitly in general.

In order to detail the computation of κ∗[τh] verifying (2.14) in a simple manner,

the stabilization parameter τh is assumed constant on the elements of the fine mesh.

In this case, κ∗[τh] is the solution of (2.14) where

rGLS(κ
m, τh, u

∗) = B0

(
Kh u∗ − (κm)2Mh u∗ + τh(κ

m)4Mh u∗ − fh + τh(κ
m)2fh

)
and τh depends non-linearly on κm.

For instance, to minimize the dispersion error of a plane wave in the direction

θ for structured regular quadrilateral meshes, Harari and Magoulès (2004) propose

the use of

τh(κ
m, θ) =

1

(κm)2
− 6

(κm)4h2

(
1 − cos(κmh cos θ)

2 + cos(κmh cos θ)
+

1 − cos(κmh sin θ)

2 + cos(κmh sin θ)

)
.

Thus, the computation of κ∗[τh] requires solving a scalar root- finding problem.

Three different options have been considered in the present work to approximate

κ∗[τh]:

Option 1: the first approach is to compute an approximation of κ∗[τh] using an

algorithm to numerically approximate the minimum of

F (κm) = rGLS(κ
m, τh, u

∗)′rGLS(κ
m, τh, u

∗).

Namely, a root-finding method on the derivative of F (κm) is used taking as

initial guess κm = κ. This approximation is taken to represent the exact value

κ∗[τh] since its accuracy can be controlled by the end-user through adjusting

the tolerance of the root-finding method.
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Option 2: the second approach assumes that τh does not vary considerably when

varying the parameter κm. In this case, the dependency of the parameter τh

with respect to κm is removed by setting the value of

τh(κ
m) = τκ

h ,

where τκ
h = τh(κ). This approximation of κ∗[τh] is denoted by κ∗[τκ

h ]. Note

that τκ
h denotes the value of the parameter τh associated to the wave number

κ. Doing this approximation, the residual rGLS(κ
m, τh, u

∗) is approximated

by a fourth order polynomial on κm

rGLS(κ
m, τh, u

∗) ≈ a0 + a2(κ
m)2 + a4(κ

m)4,

for

a0 = B0(Khu
∗ − fh), a2 = B0(−Mhu

∗ + τκ
h fh) and a4 = τκ

h B0Mhu
∗.

Note that the vectors a2 and a4, in this case, depend on the stabilization pa-

rameter τκ
h . Note also that if the stabilization parameter is set to zero, τ κ

h = 0,

the expression for the residual given in (2.11) is recovered.

The minimization of the squared residual F (κm) is then reduced to find the

critical points of F (κm), which is equivalent to find the solutions of

dF

dκm
= 2κm

(
c2 + 2c4(κ

m)2 + 3c6(κ
m)4 + 4c8(κ

m)6
)

= 0, (2.15)

where

c2 = a′
0a2 +a′

2a0, c4 = a′
0a4 +a′

2a2 +a′
4a0, c6 = a′

2a4 +a′
4a2, c8 = a′

4a4.

Although equation (2.15) may have seven real solutions, κ∗[τκ
h ] is defined to

be the solution of (2.15) closer to κ. Thus, ruling out the trivial solution κm =

0, κ∗[τκ
h ] is computed by first finding the roots of the bicubic polynomial

appearing in equation (2.15), which is equivalent to find the three solutions κ̂

of

c2 + 2c4κ̂+ 3c6κ̂
2 + 4c8κ̂

3 = 0,
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and then set κ∗[τκ
h ] to be the value of

√
κ̂ nearer to κ. Thus, the assumption

τh(κ
m) = τκ

h yields a simple and explicit algorithm to approximate the exact

value of κ∗[τκ
h ].

As in the case of the non-stabilized approach, a negative result could be en-

countered for very crude approximation u∗. However, none of the considered

numerical tests yield negative values for κ̂.

Note also that the coefficients cj , for j = 2, 4, 6, 8 associated to the residual

rGLS, depend on the stabilization parameter τ κ
h which in turn depends on a

user prescribed direction θ which will be denoted in the following by θh. In

the case that uH is computed using the standard Galerkin method, it is not

natural to define a direction θh. However, information of the prevalent wave

direction of the exact solution can be used if available. If uH is computed

using the Galerkin least-squares method with wave direction θ, the estimates

may be computed using θh = θ or again, if information of the exact solution

is available, this parameter may be set to adjust the prevalent wave direction

of the exact solution. The choice of this parameter will be further discussed

in the numerical examples.

Option 3: finally, the third approach considers that the terms added by the Galerkin

least-squares method are constant with respect to κm, that is, not only the

parameter τh is set to τκ
h but also the (κm)2 associated with the Galerkin least-

squares method is set to κ2. In this way, the residual is approximated by the

quadratic function

rGLS(κ
m, τh, u

∗) ≈ B0

(
Kh u∗−(κm)2Mh u∗+τκ

hκ
2(κm)2Mh u∗−fh+τ

κ
hκ

2fh

)
,

that can be rewritten as

rGLS(κ
m, τh, u

∗) ≈ a0 + a0(κ
m)2,

where

a0 = B0(Kh u∗ + (τκ
hκ

2 − 1)fh) and a2 = B0((τ
κ
hκ

2 − 1)Mhu
∗).

Therefore, the minimization of the fourth order polynomial F (κm) which

allows to compute the approximation of κ∗[τh] is done as in equation (2.12)
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with the only difference that here the vectors a0 and a2 contain an extra con-

tribution coming from the stabilization terms.

2.4 Enhanced solution u∗ by postprocessing of uH

The methodology introduced in the previous section is only applicable as a practical

error estimation strategy if the cost of computing u∗ is low. Thus, as mentioned

before, the error estimation procedure can not be based on solving problems in the

complete finer reference mesh. It has also been noted that once the solution u∗ is

found, the corresponding wave number κ∗ is fairly computed solving explicitly an

equation as discussed previously.

The quality of the estimate κ∗ depends on the quality of the approximation u∗

of um
H [h] ∈ Uh or of um

H [h; τh], respectively. The idea proposed here is to build up

an inexpensive approximation using a postprocessing technique standard in error

estimation analysis (Wiberg et al. 1992, Dı́ez and Calderón 2007a) and likely to

have all its features. The post-processing technique starts from the finite element

solution uH ∈ UH and computes an approximation u∗ of um
H[h] in Uh.

The enhanced solution is produced locally, in patches of elements, centered in

every element of the mesh. For each element of the H-mesh, Ωk, the patch of

elements surrounding Ωk is considered and it is denoted by ωk. In this patch, the

values of uH at the nodes of the H-mesh are used as input data and a polynomial is

fitted using a constrained least squares technique, as illustrated in figure 2.4.

In particular, in a two dimensional setting, where x = (x, y) for a given polyno-

mial degree q, a complex valued polynomial field

p(x) =
∑

n+l≤q

pnlx
nyl

is determined from the following constrained least squares problem

min
pnl∈C

∑
xj∈ωk

∣∣uj
H − p(xj)

∣∣2
restricted to p(xj) = uj

H for xj ∈ Ωk,

where | · | denotes the modulus of a complex number.
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a b

c

Figure 2.4: Element Ωk of the H-mesh (darkened in plot a) is associated with a
patch (shadowed in plot b). A polynomial is fitted using the values in the nodes
in this patch ωk using a least squares criterion (b). This polynomial is evaluated
to obtain the nodal values of the enhanced function u∗ in the nodes of the refined
h-mesh in the element under consideration (c).

Once the polynomial is obtained in ωk it is evaluated to find the nodal values

of u∗ in the nodes of the h-mesh lying inside the element Ωk of the H-mesh. This

approach allows recovering the curvatures of the solution coinciding with uH at the

nodes where it is computed.

This simple and straightforward strategy provides fairly good results. However,

this approach does not use specific information about the differential operator or

the exact solution. The use of analytical information on the natural solutions of the

differential operator yields an alternative approach to compute u∗.

The approach to compute u∗ also requires solving a local constrained least

squares problem for each element Ωk. However, instead of using a polynomial

representation for u∗|ωk
an exponential fitting is used. This is a natural choice be-

cause the exact solution of the two-dimensional homogeneous Helmholtz equation

is an infinite sum of plane waves of the form Aeik·x, where k = κ[cos θ, sin θ].

Thus, in each patch ωk, uH is approximated by an exponential field of the form

A(x)eip(x),

where A(x) and p(x) are polynomial fields representing the amplitude and wave

direction, respectively. The fields A(x) and p(x) are determined by a constrained
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least squares criterion and hence, they are taken as those minimizing

min
∑

xj∈ωk

∣∣∣uj
H − A(xj)eip(xj)

∣∣∣2
restricted to A(xj)eip(xj) = uj

H for xj ∈ Ωk.

Using a standard technique to linearize the exponential least squares fitting

transforms the previous problem into an equivalent linear constrained least squares

problem

min
∑

xj∈ωk

∣∣∣ln(uj
H) − ln

(
A(xj)eip(xj)

)∣∣∣2
restricted to ln

(
A(xj)eip(xj)

)
= ln(uj

H) for xj ∈ Ωk.

Indeed, let uj
H ∈ C be represented in its exponential form

uH(xj) = |uj
H |ei arg(uj

H),

where | · | and arg(·) denote the modulus and argument of a complex number. Then,

the restriction ln
(
A(xj)eip(xj)

)
= ln(uj

H) becomes

ln
(
A(xj)

)
+ ip(xj) = |uj

H| + i arg(uj
H).

Thus, splitting the real and imaginary parts yield

ln
(
A(xj)

)
= |uj

H| and p(xj) = arg(uj
H).

Similarly, the objective function can be rewritten as:

∑
xj∈ωk

∣∣∣ln(uj
H) − ln

(
A(xj)eip(xj)

)∣∣∣2
=
∑

xj∈ωk

∣∣ln(|uj
H |) + i arg(uj

H) − ln
(
A(xj)

)
− ip(xj)

∣∣2
=
∑

xj∈ωk

∣∣ln(|uj
H |) − ln

(
A(xj)

)
+ i
(
arg(uj

H) − p(xj)
)∣∣2

=
∑

xj∈ωk

(
ln(|uj

H|) − ln
(
A(xj)

))2
+
∑

xj∈ωk

(
arg(uj

H) − p(xj)
)2
.
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Thus, splitting the modulus and angle contributions, both in the objective func-

tion and in the constraint, yields a simple strategy to compute ln(A(x)) and p(x)

independently, namely:

min
∑

xj∈ωk

∣∣ln(|uj
H|) − ln(A(xj))

∣∣2
restricted to ln(A(xj)) = ln(|uj

H |) for xj ∈ Ωk,

and
min

∑
xj∈ωk

∣∣arg(uj
H) − p(xj)

∣∣2
restricted to p(xj) = arg(uj

H) for xj ∈ Ωk,

where a polynomial fitting of ln(A(x)) and p(x) is considered.

The only intricate part of this strategy involves the input data, arg(uj
H), of the

least squares problem for p(x). The non-unique arguments associated to the data

uj
H have to be carefully selected so that the polynomial fitting yields proper results.

In the following, a brief description of the main difficulties involved in the pre-

processing of the input data, arg(uj
H), and the adopted solution is presented.

Consider the simplest case where the finite element approximation is a plane

wave traveling in a predefined direction θ, namely

uH = Aei(κ cos θx+κ sin θy).

In this case, it is clear that |uj
H | = A. However, since the argument of a complex

number it is a multi-valued function, the computation of arg(uj
H) does not neces-

sarily return (κ cos θx+ κ sin θy). That is, in general

arg(uj
H) = �m(ln(uj

H)) �= κ cos θxj + κ sin θyj

but

arg(uj
H) = κ cos θxj + κ sin θyj + 2πl

for a given number l ∈ Z. Thus, although the least-square fitting problem should

return the plane p(x) = κ cos θx + κ sin θy, if the input data is not carefully pre-

processed, the results are not the expected.

For this simple case, a workaround to this problem can be found by adding

multiples of 2π to the input data in the patch ωk, arg(uj
H), so that its deviation from

a plane is minimum.
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However, the exact solution of the general homogeneous Helmholtz equation

is not a simple plane wave, but it is general expressed as an infinite sum of plane

waves traveling in different directions.

In the case that the solution is extremely complicated, without a predominant

direction, the exponential fitting may fail to properly approximate the local behav-

ior of the enhanced solution. Actually, the exponential recovery in these zones

introduces unrealistic discontinuities.

Even if the exact solution has no prevalent directions, one can consider an ex-

ponential representation of the solution of the problem

u(x) = r(x)eiθ(x),

where r(x) and θ(x) are the real-valued functions providing the modulus and angle

of u respectively.

In the cases where the solution does not have a prevalent direction two phenom-

ena may appear: on one hand the angle distribution θ(x) may present discontinuities

coinciding with areas where the modulus vanishes, and, on the other hand, the mod-

ulus distribution r(x) may present a highly non-linear and non-smooth behavior in

some regions.

To illustrate these phenomena, three different solutions are considered for the

wave propagation problem in a unit square: u1(x) = 2eiκx+eiκy, u2(x) = eiκx+eiκy

and u3(x) = eiκx + eiκy + e−iκy. The modulus and angle distributions of the three

solutions are shown in figure 2.6.

First, consider the solution u1(x) = 2eiκx + eiκy. Note that, in this case, the

plane wave traveling in the x-direction, eκix, prevails over the wave traveling in

the y-direction, eκiy. As can be seen in figure 2.6, the standard representation of

the angle distribution θ(x) is a discontinuous function, which can be easily post-

processed to recover a continuous angle distribution. Moreover, the modulus does

not present large variations over small regions. In this case, the exponential fitting

provides accurate approximations of u.

The second example u2(x) = eiκx + eiκy, shows that if the solution is obtained

combining two plane waves of the same amplitude, and thus it does not have any

prevalent direction, angle discontinuities appear in some predefined straight lines.

In this case, as can be see in figure 2.6, even if the fictitious discontinuities may
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Figure 2.5: Real part (left) and imaginary part (right) for three solutions in the
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Figure 2.6: Behavior of the modulus and angle distributions, θ(x) and r(x) re-
spectively, for three simple solutions in the unit square. From top to bottom: u1,
u2 and u3. For each solution, the modulus distribution (left) and two views of the
angle distributions (middle left, middle right) are shown. When possible, equivalent
angle distributions only containing non-removable discontinuities – where the dis-
continuities associated to a 2π angle jump have been smoothed – are shown (right).

be removed bye pre-processing the initial data arg(uj
H), the real discontinuities are

poorly approximated using a polynomial least-squares technique. Note however,

that after smoothing is applied, the elements surrounding the discontinuity may be

clearly identified.

As the number of plane waves that comprise the solution u increases, see for

instance the third example u3(x) = eκix + eκiy + e−κiy, the modulus and angle

distributions may present areas with a highly non-linear and nonsmooth behavior.

Note that, although the angle distribution only presents point or removable disconti-

nuities at nine points of the domain, obtaining a globally smooth angle distribution

from the standard angle representation is not a trivial task.

The exponential fitting technique is aimed at finding a proper local polynomial

representation for the modulus and angle distributions. Thus, in regions where ei-

ther the angle is discontinuous or the modulus presents large oscillations, the expo-

nential representation yields poor results.

In this work, a simple workaround is proposed: first, the smoothing technique
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is applied to remove the fictitious discontinuities. The same smoothing technique

identifies the elements near the angle discontinuities or near the regions where the

modulus has a non-smooth behavior. Finally, the exponential fitting is applied only

to the non-selected elements while a polynomial fitting is applied to the problematic

elements.

2.5 Numerical examples

The presented strategy to assess the error in the wave number is illustrated in three

numerical examples. Additional results and examples can be found in (Steffens and

Dı́ez 2009) and (Steffens et al. 2010a), see the enclosed papers at the end of the

thesis.

First, the influence of the selection of the finite reference mesh and the different

options to approximate the wave number are studied for the simple one-dimensional

case. For the following examples -the plane wave in a square domain and the noise

transmission inside a car cavity- the performance of the estimates of the disper-

sion error is shown both for Galerkin and Galerkin least-squares approximations.

A study of the influence of the post-processing technique yielding u∗ in the re-

sulting effectivity is analyzed. Finally an analysis of the impact of the choice of

the prescribed direction θ for stabilized formulations in the dispersion error is also

presented.

The finite element approximations are computed using triangular and quadri-

lateral meshes of linear (resp. bilinear) elements, p = 1. Different definitions

of the stabilization parameter τH are used to compute the Galerkin least-squares

approximations depending on the underlying topology of the mesh. In particu-

lar, for structured and unstructured quadrilateral meshes the following definition

of the parameter, designed to minimize the dispersion error of plane wave in the

direction θ on cartesian meshes, is used (Harari and Magoulès 2004, Harari and

Nogueira 2002):

τH =
1

κ2
− 6

κ4h2

(
1 − cos(κh cos θ)

2 + cos(κh cos θ)
+

1 − cos(κh sin θ)

2 + cos(κh sin θ)

)
.
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For triangular meshes, the definition derived for hexagonal meshes, namely,

τH =
1

κ2
− 8

κ4h2

3 − f(κh, θ)

3 + f(κh, θ)

where f(κh, θ) = cos(κh cos θ) + 2 cos(κh cos θ/2) cos(
√

3κh sin θ/2) is used be-

cause it provides good results also for unstructured meshes.

For non-uniform meshes, the stabilization parameter is not constant over the

whole mesh. In each element Ωk a different stabilization parameter is used depend-

ing on its characteristic element size hk. This characteristic element size is taken as

the smallest side of the element both for quadrilateral and triangular meshes.

2.5.1 One-dimensional strip

The first example models a plane wave propagating in the x-direction in strip a

rectangular 1 ×
√

3/8 domain. The boundary conditions are specified in order to

yield the exact solution u(x, y) = eiκx: Dirichlet on the left hand side, Robin on

the right hand side and Neumann elsewhere. The performance of the Galerkin finite

element solutions is studied for κ = 8π.

If the finite element mesh Vh is sufficiently fine, one expects that

um
H ≈ um

H[h; τh] ≈ um
H [h]

and, therefore

κH ≈ κH [h; τh] ≈ κH [h].

If the finite element mesh Vh is not fine enough, one should apply a correction

factor to κH [h] to account for the finite size h of the reference mesh and recover a

good approximation of κH . This correction factor is not necessary for the estimate

κH [h; τh]. That is when the reference problem is also stabilized.

To analyze the influence of the selection of the finite element reference mesh,

the different a posteriori estimates of the dispersion error are computed using a

series of successively refined nested reference meshes. An initial uniform coarse

mesh of 24 × 2 quadrilateral elements is used. The refinement is performed only

in the x-direction and thus maintaining two rows of elements on all the reference

meshes, due to the one-dimensional character of the solution.
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The results are shown in the table 2.1. The first columns of the table show the

truth or reference estimates of the dispersion error

E[h] = κ− κH [h] and E[h; τh] = κ− κH [h; τh],

where the numerical wave numbers κH [h] and κH [h; τh] are computed solving the

non-linear problems (2.9) and (2.13) respectively. The correction factor applied to

κH [h] is defined as

cf =
n2

r

(n2
r − 1)

,

where nr = H/h. Note that these reference estimates are computationally unaf-

fordable in real applications, because they involve many resolutions of the problem

in the reference mesh. They are computed here to see the effectivity of the proposed

practical estimates. As can be seen, both the estimates cfE[h] andE[h; τh] assessing

the dispersion error of the Galerkin approximation are in very good agreement with

the a-priori estimate defined by equation (2.7), namely Epri. It is worth noting that

the estimate E[h; τh] yields very good results even for the case h = H/2 being less

sensitive than cfE[h] to the choice of the reference mesh size.

The last columns in the table 2.1, correspond to the practical estimates obtained

from the recovered solution u∗. In this case u∗ is computed using the exponential

fitting. Four different estimates are computed. The first one is the estimate, E∗ =

κ − κ∗, associated with the assessed wave number obtained from equation (2.10)

and enhanced by its multiplicative factor. The other three options correspond to the

three approximations of κ∗[τh] detailed in section 2.3.1. It is worth nothing that all

estimates produce similar and sharp approximations to the dispersion error for all

the values of the reference mesh size h.

As expected, the reference estimates provide almost exact values for the dis-

persion error, fully coinciding with the a priori estimate. There is an equivalence

between the effect of correcting the estimate with factor cf or considering a stabi-

lized reference problem.

Following these results, in the remainder of the numerical examples, the param-

eter h is set to h = H/4 and the Option 2 of the stabilized formulation is set to

approximate the wave number κ∗[h], which provides a really good result. Note that

Option 1 y 2 provide practically identical results at a very different cost: Option 1
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Galerkin Epri = 1.02211

Option 1 Option 2 Option 3
h E[h] cfE[h] E[h; τh] cfE

∗ E∗[τh] E∗[τκ
h ]

H/2 0.76790 1.02387 1.02211 1.01428 1.01469 1.01486 1.03682
H/4 0.95869 1.02261 1.02211 1.01428 1.01469 1.01486 1.03682
H/8 1.00627 1.02224 1.02211 1.01227 1.01232 1.01232 1.01368
H/16 1.01815 1.02214 1.02211 1.01214 1.01215 1.01215 1.01249
H/32 1.02112 1.02212 1.02211 1.01210 1.01210 1.01210 1.01218
H/64 1.02186 1.02211 1.02211 1.01208 1.01208 1.01208 1.01210

Table 2.1: Example 1: Assessment of the dispersion error for a uniform coarse
quadrilateral mesh (24 × 2 elements) an successively refined reference meshes for
the Galerkin approximations of the solution. The reference error estimates (left)
are computed using the fully non-linear solution yielding to E[h] and E[h; τh]. The
exponential post-processed solution (right) u∗ obtained from uH and then differ-
ent options are used to recover the wave number κ∗ associated to u∗ only for the
Galerkin approximation.

involves the solution of a one-dimensional non-linear problem while the estimate for

Option 2 is computed from a simple closed-formula. Hence, in the following the no-

tation E∗ is used to denote the estimate E∗[τκ
h ] (both for the Galerkin and Galerkin

least-squares methods). Finally, the estimate E∗ is compared with the reference

estimate E[h; τh] which is considered as the one providing the most accurate-but

not computable approximation of the dispersion error, and it is denoted by E.

2.5.2 Plane wave in a square domain

The second considered example is the unit square Ω =]0, 1[×]0, 1[ with inhomoge-

neous Robin boundary conditions specified on all the boundaries of the square so

that the exact solution is u = eiκ(cos αx+sinαy). That is, a plane wave propagating

in the direction of angle α, as illustrated in figure 2.7. The model parameters are

κ = 8 and α = π/8 and the analytical solution associated with these parameters is

depicted in figure 2.7.

The performance of the estimates is studied for three different structured uni-

form quadrilateral meshes (8 × 8, 16 × 16 and 32 × 32 elements). In order to

estimate the dispersion error associated with the Galerkin approximation, the stabi-
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α

Figure 2.7: Example 2: Problem setup (left) and solution for α = π/8 (right).

lization parameters involved in the computation of E = E[h; τh] and E∗ = E∗[τκ
h ]

are computed using the predefined direction θh = α = π/8.

The results of the dispersion error for Galerkin approximations are shown in

table 2.2, where Ieff
pol = E∗

pol/E and Ieff
exp = E∗

exp/E is the effectivity index of the

estimates with respect to the reference value E and E∗
pol and E∗

exp are the estimates

obtained from uast using the polynomial or exponential least-squares recovery re-

spectively. It is clear that the exponential fitting captures more precisely the shape

of the solution and thus provides better estimates to the dispersion error yielding

very good effectivity indexes near to one.

Galerkin
nnp E E∗

pol E∗
exp Ieff

pol Ieff
exp

81 0.24912 0.41670 0.23725 1.6727 0.9524
289 0.06330 0.09033 0.06328 1.4271 0.9998
1089 0.01563 0.01943 0.01593 1.2434 1.0197

Table 2.2: Example 2: Assessment of the dispersion error of the Galerkin method
for uniformly refined structured quadrilateral meshes.

The same study is done for the Galerkin least-squares approximations of the

problem using the same meshes. Although the exact solution is a plane wave, since

the cartesian meshes are not aligned with the wave direction α = π/8, none of

the possible choices for stabilization direction θ yields a nodally exact solution.

Table 2.3 shows the dispersion error of the Galerkin least-squares method for three

different stabilization parameters θ = 0, θ = π/8 and θ = π/4. In all the computa-

tions the error estimates are performed using the same value of θ for the reference
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h−mesh. The error estimatesE∗
exp are properly approximating the reference error E

in all cases. The Galerkin least-squares method substantially reduces de dispersion

error even for the non-optimal parameters θ = 0 and θ = π/4. For θ = π/8 the

dispersion error is so small that the resulting effectivity is not as sharp as for the

choices producing longer errors.

GLS/FE
θ = 0 θ = π/8 θ = π/4

nnp E E∗
exp E E∗

exp E E∗
exp

81 -7.45·10−2 -7.17·10−2 6.82·10−4 3.40·10−4 7.71·10−2 7.34·10−2

289 -1.99·10−2 -1.93·10−2 -4.43·10−4 3.80·10−5 1.91·10−2 1.95·10−2

1089 -5.02·10−3 -4.87·10−3 -1.84·10−4 1.68·10−6 4.66·10−3 4.88·10−3

Table 2.3: Example 2: Assessment of the dispersion error of the Galerkin least-
squares method for uniformly refined structured quadrilateral meshes. The Galerkin
least-squares approximations are computed using different stabilization directions
θ.

Figure 2.8 graphically displays the information shown in the tables in tables 2.2

and 2.3. As can be seen, the estimates depicted on the left of the figure are in very

good agreement with the reference mesh computations, depicted on the right of the

figure. As mentioned before, the Galerkin least-squares method always performs

better than the Galerkin method but there is a qualitative leap of accuracy when the

optimal parameter θ = π/8 is used.

Figure 2.9 shows the influence of the stabilization direction θ used to compute

the Galerkin least-squares finite element approximation in the dispersion error. The

study is done varying θ in the range [0, π/2]. As expected, the optimal performance

is reached when the wave direction of the Galerkin least-squares method coincides

with the angle of the exact solution, θ = α = π/8. In any case, if no information

of the exact solution is at hand and thus, an arbitrary choice of θ is considered, the

Galerkin least-squares method provides an important reduction of the dispersion

error when compared to the Galerkin approximation: the estimated dispersion error

is reduced from E∗
exp = 0.06328 to E∗

exp ≈ 0.02 in the worst case.
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Figure 2.9: Example 2: Influence of the selection of the stabilization angle θ in the
dispersion error of the Galerkin least-squares approximation for the mesh with 269
degrees of freedom. The estimates are computed both using θ = α.
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2.5.3 Two-dimensional acoustic car cavity

The noise transmission inside the interior of passenger cars is considered as a prac-

tical application. A two-dimensional section of the cabin of a car which is excited

by vibrations of the front panel and damped by Robin boundary conditions is stud-

ied. Moreover, this example is frequently used as a benchmark problem in error

assessment for interior acoustic problems (Bouillard and Ihlenburg 1999, Suleau

et al. 2000, Harari and Magoulès 2004).

The geometry of the cabin is shown in figure 2.10. The size of the domain is

characterized by the maximum horizontal and vertical lengths, Lx = 2.7m and

Ly = 1.1m, respectively. The source term is f = 0, and, as mentioned in chapter 1,

for interior acoustic wave propagation problems, the Neumann and Robin boundary

conditions are of the form g = −iρcκvn and mu = −iρcκAnu. In this case the

material parameters are c = 340m/s standing for the speed of sound of the medium

and ρ = 1.225 kg/m3 standing for the mass density. The vibrating front panel is

excited with a unit normal velocity vn = 1m/s whereas the roof is considered to

be an absorbent panel with associated admittance An = 1/2000m.(Pa.s)−1. The

rest of the boundary is assumed to be perfectly reflecting and thus vn = 0m/s.

Finally, a wave number of κ ≈ 9.7, equivalent to a frequency of 525Hz, has been

considered in the computations.

The dispersion effect along a specific line L is depicted on the right of the fig-

ure 2.10. The two curves correspond to the finite element approximations obtained

using a coarse and finer computational meshes. Note that, compared with the finer

mesh, the dispersion error in the coarse mesh is significant.

In this problem, the exponential fitting yields bad estimates, worse than the

standard polynomial fitting. As mentioned in section (2.4), this is due to the fact

that the solution is extremely complex, without a predominant direction. At many

points of the domain, the solution can be expressed as a different sum of diverse

plane waves. Thus, the exponential fitting fails, in the vicinity of these points, to

properly approximate the local behavior of the enhanced solution.

In the previous examples, the solutions were either a single plane wave travel-

ing in a predefined direction or had a prevalent plane wave direction, although the

prevalent wave direction may vary from different zones of the domain (see also the
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Figure 2.10: Example 3: Description of the two-dimensional section of the cabin of
a car and its associated boundary conditions (left) and dispersion effect for the real
part of an approximated solution for 525 Hz (right).

scattered solution from submarine obstacle in Steffens et al. (2010a)). The sound

transmission inside a car cabin is a more complex phenomenon and the solution

does not present clear prevalent directions but is a combination of different plane

waves with similar amplitudes, see figure 2.11.

Figure 2.12 shows the behavior of the modulus and angle distribution associated

to the acoustic pressure inside the car cabin. As can bee seen, its not easy to clearly

identify the regions where the angle distribution is discontinuous.

Therefore, in this example we identify the elements near the angle disconti-

nuities or near the regions where the modulus has a non-smooth behavior, and in

these problematic elements a polynomial fitting is applied while the exponential

fitting is applied only to the non-selected elements. The estimates obtained with

this combined approach are denoted in the following by Ê∗
exp.

Estimates of the dispersion error for the Galerkin approximations of the solution

are computed for two different triangular meshes of 568 and 2122 nodes respec-

tively. The results are shown in table 2.4. As can be seen, both the polynomial and

the combined estimates provide fairly good approximations to the reference value

E. However, using an exponential representation, where possible, allows obtaining

effectivities closer to one.

Figure 2.13 shows the elements that have been selected in the combined ap-

proach to apply the polynomial smoothing technique instead of the exponential one.

Note that these regions are in good agreement with those highlighted in figure 2.12.
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Figure 2.11: Example 3: Solution of the noise transmission problem inside the
cabin of a car obtained with an overkill mesh of 20160 nodes: real part of u (top)
and imaginary part of u (bottom).

300

700

1100

400

500

1000

900

200

800

600

100

-2

0

3

-1

1

2

-3

Figure 2.12: Example 3: Modulus (left) and angle (middle and right) distribution
of the acoustic pressure inside the car cabin. The areas where the modulus is nearly
zero are highlighted in the plot in the middle to see the areas where the angle distri-
bution may present discontinuities.
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Galerkin
nnp E E∗

pol Ê∗
exp Ieff

pol Ieff
exp

568 0.15001 0.08231 0.12960 0.5486 0.8639
1092 0.07506 0.06694 0.07389 0.8918 0.9845

Table 2.4: Example 3: Assessment of the dispersion error of the Galerkin method
for unstructured triangular meshes.

Figure 2.13: Example 3: Two unstructured triangular mesh where the red elements
corresponding to solution fitting polynomial.

The reduction in the dispersion error obtained by using stabilization techniques

is shown in table 2.5. This table also shows the influence of the selection of the

stabilization parameter. As can be seen, the results of the Galerkin least-squares

approximations with the three stabilization parameters are nearly identical for the

two meshes, and provide significant improvement over the Galerkin method.

2.6 Summary

An error assessment technique for the numerical wave number κH of the Helmholtz

problem has been proposed, both for standard Galerkin and stabilized formulations.

The proposed strategy requires obtaining an inexpensive approximation of the

modified problem, using post-processing techniques. Thus, the associated numeri-

cal wave number is readily recovered using a closed expression. The standard poly-



Chapter 2. Dispersion error 69

GLS/FE
stabilization direction nnp E Ieff

pol Ieff
exp

θ = 0 568 0.03792 0.6052 0.9396
1092 0.00577 1.1304 1.1157

θ = π/12 568 0.03808 0.5990 0.9409
1092 0.00583 1.1279 1.1155

θ = π/6 568 0.03824 0.5999 0.9417
1092 0.00589 1.1255 1.1128

Table 2.5: Example 3: Assessment of the dispersion error of the Galerkin least-
squares method for an unstructured triangular mesh. The Galerkin least-squares
approximations are shown for different stabilization directions θ.

nomial least squares techniques is replaced by an exponential fitting yielding much

sharper results in most applications. However, both the error estimates computed

using a polynomial and exponential fitting provide reasonable approximations of

the true errors.

Amongst the different possibilities to approximate the wave number, both the

correction factor and the second option - which assumes that the stabilization pa-

rameter does not vary considerably with respect to numerical wave number - yield

fairly good results. The estimates obtained produce similar and sharp approxima-

tions to the dispersion error.

The numerical examples demonstrate that the proposed methodology is able to

assess the dispersion error for both Galerkin and Galerkin least-squares formula-

tions. The estimates clearly detected that the Galerkin least-squares method consid-

erably reduces the dispersion error.

The sensitivity of the selection of the stabilization parameter for the Galerkin

least-squares method has been studied, concluding that the change in the orientation

of the stabilization parameter has a significant effect on academic problems. It has,

however, little effect in non-academic problems or when considering non-structured

meshes.
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Chapter 3

Goal-oriented error estimation and
h-adaptivity

This chapter introduces a new goal-oriented adaptive strategy based on the post-

processing techniques introduced in the previous chapter. A simple but very effec-

tive post-process of the finite element approximations of the direct and the adjoint

problems, see section 1.4.3, allow computing competitive estimates for linear and

non-linear quantities of interest. Thus, the error estimation proposed herein would

fall into the category of recovery-type explicit a posteriori error estimation tech-

niques.

This chapter is a summary of the ideas introduced in (Steffens et al. 2010b) and

is structured as follows: section 3.1 presents a general framework for assessing the

error in general linear and non-linear quantities of interest. Different representations

for the linear contribution to the output are introduced in section 3.2. Section 3.3 is

devoted to obtain error estimates for general outputs using the different error rep-

resentations given in section 3.2. The adaptive strategy is introduced in the section

3.4, where local indicators and several strategies of refinement are defined. Finally,

in section 3.5 the proposed procedure for goal-oriented adaptivity is analyzed in

some numerical examples. The relation between the different error representations

and the dispersion error of the direct and adjoint problems is also investigated.

71
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3.1 Error assessment for quantities of interest

Consider a general acoustic problem given in weak form as: find u ∈ U such that

a(u, v) = 	(v) ∀v ∈ V.

and denote by uH its finite element approximation.

A posteriori error estimation techniques aim at assessing the error committed in

the approximation of u, e = u − uH , where e ∈ V is the solution of the primal

residual problem

a(e, v) = 	(v) − a(uH, v) = RP (v) ∀v ∈ V, (3.1)

RP (·) standing for the weak residual associated to the finite element approximation

uH .

In acoustic problems, since the Helmholtz equation is not elliptic, the form

||v||2 = a(v, v) does not define a squared norm. Therefore, there is no natural

energy norm to measure the error. Additionally, assessing the error measured in

some functional norm is not sufficient for many applications. In practice, the finite

element user is interested in specific magnitudes extracted from the global solution

by some post-process. These magnitudes are referred as quantities of interest or

functional outputs. Goal-oriented error assessment strategies aim at estimating the

error committed in these quantities and possibly providing bounds for it.

The quantities of interest considered in this work are non-linear functional out-

puts of the solution, J(u), and the aim is to assess the error committed when ap-

proximating these quantities using the finite element approximation. Specifically,

the goal is to assess and control the quantity

J(u) − J(uH).

For the purposes of this thesis, it is convenient to make the linear, quadratic

and higher order terms contributions of J(u) more explicit. To this end, J(u) is

expanded introducing the Gateaux first and second derivatives of J(·) at uH , namely

J(uH + v) = J(uH) + 	O(v) + Q(v, v) + W(v), (3.2)
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where 	O(v) = [DvJ ](uH) · (v) and 2Q(v1, v2) = [D2
vJ ](uH) · (v1, v2), see (Sarrate

et al. 1999, Maday, Patera and Peraire 1999). Note that 	O : H1(Ω) → C and Q :

H1(Ω)×H1(Ω) → C are the linear and bilinear contributions of J(·), respectively,

and that the functional W contains the higher order terms. In the case of a linear

output, notice that Q = W = 0.

Using this decomposition and taking into account that u = uH + e, the error in

the quantity of interest may be rewritten as

J(u) − J(uH) = J(uH + e) − J(uH) = 	O(e) + Q(e, e) + W(e). (3.3)

Thus, it is clear that in order to estimate the error in the quantity of interest, it is

sufficient to estimate the linear, quadratic and higher-order terms separately, 	O(e),

Q(e, e) and W(e) respectively.

We assume that Q and W are L2-continuous. Thus, for all v, |Q(v)| ≤ c1‖v‖2
0

and |Q(v)| ≤ c2‖v‖3
0, where ‖ · ‖0 denotes the L2-norm. Consequently, Q(e, e) and

W(e), converge as O(H4) and O(H6) respectively, whereas the linear term 	O(e)

converges quadratically. Therefore, for sufficiently smallH the linear term provides

a good inside to the error in the output since the other terms are negligible.

In this work, three different engineering outputs are considered. The first output

is the integral of the solution over a subdomain ΩO ⊂ Ω

J1(u) =

∫
ΩO
u dΩ.

Since the output depends linearly on u, J1(v) = 	O1 (v) and Q1(v, v) = W1(v) = 0

in (3.2). Note that eventually ΩO can be Ω to compute an average of the solution

over the whole domain.

The second output is the average of the squared modulus of the solution over a

boundary strip ΓO ⊂ ΓN ∪ ΓR

J2(u) =
1

lΓO

∫
ΓO
uū dΓ,

where lΓO is the length of the boundary strip. Since this output depends quadrati-

cally on u, W2(v) = 0 and the linear and quadratic contributions are

	O2 (v) =
1

lΓO

∫
ΓO

(uH v̄ + ūHv) dΓ, Q2(v, v) = J2(v). (3.4)
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Indeed, appealing to (3.2)

J2(uH + v) =
1

lΓO

∫
ΓO

(uH + v)(uH + v) dΓ

=
1

lΓO

∫
ΓO

(uHūH + uHv + vūH + vv) dΓ

= J2(uH) +
1

lΓO

∫
ΓO

(uH v̄ + ūHv) dΓ + J2(v).

The third output is the normalized squared L2-norm of the solution over a region

ΩO

J3(u) =
1

AΩO

∫
ΩO
uū dΩ,

where AΩO stands for the area of the subdomain ΩO. Again, since the output is

quadratic, W3(v) = 0 and

	O3 (v) =
1

AΩO

∫
ΩO

(uH v̄ + ūHv) dΩ, Q3(v, v) = J3(v). (3.5)

The derivation is analogous to the one provided for J2(·) except for the integrals

being placed over a subdomain of Ω instead of its boundary.

Note that, the second and third outputs J2(u) and J3(u) are real quantities since

they only involve the squared modulus of the solution. In particular, all the involved

functionals, are real functions of a single complex variable, that is, for instance

	O2 : C → R.

The following sections are devoted to describe the error assessment techniques

to estimate the linear and higher order contributions of J(u)−J(uH) and to provide

local error estimators able to effectively drive the adaptive procedures.

3.2 Error representation of a linearized output

This section presents alternative representations for the linear contribution to the

error in the output 	O(e). This alternative representations do not directly yield com-

putable expressions for the estimates of the output because they depend on the exact

errors on the primal and adjoint problems. However, estimates may be easily recov-

ered using existing strategies providing approximations for the errors, as described

in section 3.3.
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The quantities of interest considered here are such that their linear part is ex-

pressed as

	O(v) =

∫
Ω

fOv dΩ +

∫
ΓN

gOv dΓ, (3.6)

where fO and gO are given functions characterizing the linearized quantity of in-

terest. Note that 	O(v) has the same structure as 	(v), see equation (1.9), excepting

the conjugate in its argument. Thus, 	O is a linear functional while 	 is an antilinear

functional.

Most existing techniques to estimate the error in a quantity of interest introduce

an alternative representation for 	O(e). In practice, different error representations

are used to properly estimate 	O(e). These error representations require introducing

an auxiliary problem, denoted as adjoint or dual problem which reads: find ψ ∈ V
such that

a(v, ψ) = 	O(v) ∀v ∈ V, (3.7)

which is equivalent to determine the adjoint solution ψ verifying the Helmholtz

problem

−Δψ − κ2ψ = f̄O inΩ, (3.8a)

ψ = 0 on ΓD, (3.8b)

∇ψ · n = ḡO on ΓN, (3.8c)

∇ψ · n = mψ on ΓR. (3.8d)

In order to assess the error in the quantity of interest the adjoint solution ψ is

approximated numerically by ψH ∈ VH such that

a(v, ψH) = 	O(v) ∀v ∈ VH ,

introducing the adjoint error ε = ψ − ψH solution of the adjoint residual problem

a(v, ε) = 	O(v) − a(v, ψH) = RD(v) ∀v ∈ VH , (3.9)

where RD(·) is the weak adjoint residual associated with ψH .

The adjoint problem is introduced such that the following error representation

holds:

	O(e) = a(e, ψ) = a(e, ε)
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where the Galerkin orthogonality of the adjoint approximation ψH is used in the last

equality. In turn, this error representation allows assessing the error in terms of the

residuals of the direct and adjoint problems, namely

	O(e) = a(e, ε) = RP (ε) = RD(e). (3.10)

These representations are obtained substituting v = ε in (3.1) and v = e in (3.9)

respectively.

It is worth noting that for general non-linear quantity of interest J(u), its first

Gateux derivative which provides the functional 	O(v) is not necessarily of the form

of (3.6). Indeed, a close look on the linear contributions to the quantities J2(v) and

J3(v) given in the previous section, equations (3.4) and (3.5), reveals that even for

simple outputs 	O(v) can not be written as in (3.6).

The proposed strategy is valid for general functionals 	O(v). However, if the

functional 	O(v) is not in the form of (3.6), the adjoint problem is no longer the

solution of the strong Helmholtz problem given in (3.8). Depending on the form of

	O(v), r.h.s. of equation (3.7), the adjoint problem might have no physical meaning.

In many practical applications a simple workaround to overcome this limitation

cause adopted.

To be specific, consider the quantity of interest J2(u) with the associated linear

contribution

	O2 (v) =
1

lΓO

∫
ΓO

(uH v̄ + ūHv) dΓ, Q2(v, v) = J2(v).

Note that, 	O2 (v) is a real number coinciding with

	O2 (v) = 2�e

(
1

lΓO

∫
ΓO
ūHv dΓ

)
.

The adjoint problem is then defined with respect to the auxiliary linear func-

tional
∫

ΓO ūHv dΓ/lΓO which corresponds to fO = 0 and zero elsewhere and gO =

ūH/lΓO on ΓO ∩ ΓN and zero elsewhere in equation (3.6). The original linear func-

tional and all the required estimates are recovered from this auxiliary functional

taking the real part and multiplying by a factor two.

The same approach is used for 	O3 (v). Recall that

	O3 (v) =
1

AΩO

∫
ΩO

(uH v̄ + ūHv) dΩ, Q3(v, v) = J3(v).
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Then, the adjoint problem is defined with respect to the modified functional∫
ΩO ūHv dΩ/AΩO , for which the data entering in (3.6) are gO = 0 and fO =

ūH/AΩO in ΩO and fO = 0 elsewhere.

3.3 Error estimates for linear and non-linear outputs

A posteriori assessment of quantities of interest relies on obtaining a good approx-

imation of J(u) − J(uH). This translates in finding a new enhanced solution u∗,

based on the information at hand, that is uH , and such that u∗ approximates the

actual solution u much better than uH . Thus, a computable error estimate is readily

obtained

e ≈ e∗ = u∗ − uH

yielding also the corresponding estimate for the quantity of interest

J(u) − J(uH) ≈ 	O(e∗) + Q(e∗, e∗) + W(e∗). (3.11)

This approximation of the error in the quantity of interest is obtained from equation

(3.3) substituting the actual error e by its approximation e∗.

The key issue in any error estimation technique is to produce a properly en-

hanced solution u∗, or in some cases obtaining an enhanced approximation of the

gradient of the solution q∗ ≈ ∇u suffices. The strategies producing the enhanced

solution u∗, or q∗ respectively, are classified into two categories: recovery type

estimators and implicit residual type estimators. Recovery techniques, based on the

ideas of Zienkiewicz and Zhu (Zienkiewicz and Zhu 1987, Zienkiewicz and Zhu

1992a, Dı́ez, Rodenas and Zienkiewicz 2007), are often preferred by practitioners

because they are robust and simple to use. On the other hand, a posteriori implicit

residual-type estimators have a sounder mathematical basis and produce estimates

that are upper or lower bounds of the error (Ainsworth and Oden 2000, Ladevèze

and Leguillon 1983, Dı́ez, Parés and Huerta 2003, Parés et al. 2006).

At first glance on could think that, once the enhanced solutions u∗ are obtained

either using recovery or residual-type error estimators, estimates for the error in the

quantity of interest may be directly obtained using equation (3.11). However, as

mentioned in section 3.2, this representation does not provide sound results. This
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is because inserting the enhanced error e∗ in the functionals 	O(·), Q(·, ·) and W(·)
may not yield accurate results even when the enhanced approximation u∗ provides

a reasonable approximation of u in terms of energy. In practice, since the most-

contributing term to the error in the quantity of interest is the linear term, alternative

representations are used for this term, as the ones described in section 3.2, whereas

no additional effort is done in the higher-order terms.

The linear term 	O(e) may be assessed by any of the following strategies:

1. Compute the primal enhanced solution u∗ to obtain e∗ = u∗−uH and evaluate

	O(e∗) (not used in practice).

2. Compute the primal enhanced solution u∗ to obtain e∗ and evaluate RD(e∗).

3. Compute the adjoint enhanced solution ψ∗ to obtain ε∗ = ψ∗ − ψH and eval-

uate RP (ε∗).

4. Compute both the primal and enhanced errors e∗ and ε∗ and evaluate a(e∗, ε∗).

Here, the postprocessing strategies presented in section 2.4 are used to recover

the enhanced solutions u∗ and ψ∗ from uH and ψH respectively. Thus, u∗ ∈ Uh and

ψ∗ ∈ Vh, where Uh and Vh are the discrete functional spaces associated to the finer

reference mesh, UH ⊂ Uh ⊂ U and VH ⊂ Vh ⊂ V .

As mentioned before, for sufficiently refined meshes, the error in the quantity of

interest is controlled by the linear term, since the quadratic and higher-order contri-

butions converge faster to zero. For this, the proposed approach is to make use of the

available estimate e∗ to obtain a simple and inexpensive estimate of the non-linear

contributions. Namely, the quadratic and higher-order contributions to the error in

the output, Q(e, e) and W(e) respectively, are assessed using the reconstruction of

the primal error e∗ used to assess the linear part of the error, namely

Q(e, e) ≈ Q(e∗, e∗) and W(e) ≈ W(e∗).

3.4 Local indicators and adaptivity criteria

Adaptive mesh refinement is nowadays an essential tool to obtain high-fidelity sim-

ulations at the lesser cost. The main ingredients of the proposed adaptive procedure
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are: the h-refinement, that is, the new meshes are obtained by subdividing the ele-

ments of the mesh; optimal indicators, the refinement is organized with the aim of

achieving equal error in each element of new mesh; iterative process, the target in

each step of refinement is to reduce the global error until the calculated error drops

below the tolerance specified by the user. Figure 3.1 displays the flow diagram of

an adaptive procedure.

Adaptive refinement Solve with given mesh

Output results

Initial mesh
  

Assess the error

YES  

NO 
desired  
accuracy 
reached ?

Figure 3.1: Flow diagram of an adaptive algorithm

The adaptive procedure requires obtaining local error indicators allowing to de-

cide the elements to be marked for refinement – those with larger contribution to

the total error. In order to determine the contribution of every element to the total

error spatial error distributions of the estimates are derived decomposing the global

estimates into a sum of local contributions in each element of the mesh induced by

UH .

The estimates for the error in the quantity of interest are of the form

J(u) − J(uH) ≈ 	O(e∗) + Q(e∗, e∗) + W(e∗),

where the linear term 	O(e∗) is replaced by either a(e∗, ε∗), RP (ε∗) or RD(e∗),

depending on the selected representation of the linear term. Since the linear term
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is the driving term of the error in the quantity of interest, in this work, the adaptive

procedure is chosen to be driven by 	O(e∗). That is, the global estimate for the

linear term 	O(e) is decomposed into a sum of local contributions in each element.

These local quantities are used to design the adaptive procedure.

The natural restriction to every element Ωk of the integral forms a(·, ·), 	(·) and

	O(·) yield the elementary contributions denoted by ak(·, ·), 	k(·) and 	Ok (·) such

that

a(u, v) =

nel∑
k=1

ak(u, v), 	(v) =

nel∑
k=1

	k(v), 	O(v) =

nel∑
k=1

	Ok (v).

Similarly, the primal and adjoint residuals are decomposed as

RP (v) =

nel∑
k=1

RP
k (v), RD(v) =

nel∑
k=1

RD
k (v),

where RP
k (·) = 	k(·) − ak(uH , ·) and RD

k (·) = 	Ok (·) − ak(·, ψH).

Hence, the error representations for the linear contribution of the error in the

quantity of interest given in equation (3.10) are associated to the elementary error

distributions

	O(e) =

nel∑
k=1

	Ok (e) =

nel∑
k=1

ak(e, ε) =

nel∑
k=1

RP
k (ε) =

nel∑
k=1

RD
k (e).

It is worth mentioning that, while the global error quantities are equal in all

the representations, the local quantities 	Ok (e), ak(e, ε), RP
k (ε) and RD

k (e) represent

different elementary contributions to the error and, besides, they are not necessarily

positive nor even real numbers.

From the four possible representations of the linear contribution of the error

	O(e), in this work only the two expressions involving the primal and adjoint resid-

uals are used, thus yielding the global estimates

ηε = RP (ε∗) and ηe = RD(e∗),

and its associated local error indicators ηε
k = RP

k (ε∗) and ηe
k = RD

k (e∗), such that

ηε =

nel∑
k=1

ηε
k and ηe =

nel∑
k=1

ηe
k.
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It is worth noting that the local elemental contributions η ε
k and ηe

k are the natural

decomposition of the estimates ηε and ηe to the elements. However, the computation

of the local contributions ηε
k and ηe

k requires the computation of local integral forms.

This can be done either by storing the elemental contributions to the system matrices

and vectors or by recomputing these contributions in an elementary loop. A cheaper

and more natural to implement alternative is to decompose the estimates η ε and ηe

into nodal contributions. This is because it uses the finite element nature of the

estimates ηε and ηe.

In practice, the estimates e∗ and ε∗ are computed in a finer reference mesh asso-

ciated with the space Vh, namely e∗ =
∑

j e
∗
jN

h,j and ε∗ =
∑

j ε
∗
jN

h,j, where Nh,j

are the shape functions associated with the nodes of the reference mesh, xh,j. Thus,

a natural decomposition of the estimates ηε and ηe into nodal contributions on the

reference mesh holds

ηε =
∑

j

ε∗jR
P (Nh,j) =

∑
j

ηε
xh,j and ηe =

∑
j

e∗jR
D(Nh,j) =

∑
j

ηe
xh,j .

Note that ηε
xh,j and ηe

xh,j are readily computed multiplying the j-th components

of the finite element vectors associated to ε∗ and RP (·) and e∗ and RD(·) respec-

tively. Then, the local elemental contributions associated to the element Ωk of the

coarse mesh are computed from a weighted average of the local nodal contributions

ηε
xh,j and ηe

xh,j associated to the nodes xh,j belonging to Ωk. To be specific

ηε =
∑

j

ηε
xh,j =

nel∑
k=1

∑
xh,j∈Ωk

σh,jηε
xh,j =

nel∑
k=1

η̂ε
k, (3.12)

and

ηe =
∑

j

ηe
xh,j =

nel∑
k=1

∑
xh,j∈Ωk

σh,jηe
xh,j =

nel∑
k=1

η̂e
k, (3.13)

where σh,j is the inverse of the number of elements in the coarse mesh to which

a particular node xh,j belongs. For a detailed description, see (Dı́ez and Calderón

2007b).

A simple adaptive strategy is employed, using the local indicators η ε
k or ηe

k (or η̂ε
k

and η̂e
k respectively) produced during the calculation of the estimate for the output,

to drive the non-linear output to a prescribed precision. That is, the algorithm ends
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if
nel∑
k=1

η�
k + Q(e∗, e∗) + W(e∗) < Δtol,

where η�
k stands for any of the following local contributions ηε

k, ηe
k, η̂ε

k or η̂e
k, Δtol is

a user-prescribed desired final accuracy. At each level of refinement, the elements

marked for refinement are those with larger values of the local linear contribution

η�
k .

In acoustic problems, the local contributions are not necessarily positive and in

fact, in contrast to what occurs in thermal or elasticity problems, they can be com-

plex numbers. To select the elements with larger local contributions, the modulus

of the values η�
k is considered, and the elements selected to be refined are the ones

verifying

|η�
k | ≥

nel∑
k=1

|η�
k |

nel

. (3.14)

Note that this marking algorithm aims at obtaining elements with equal local er-

ror contribution. However, this is not equivalent to obtaining a uniform spatial error

distribution, since the elements with larger area are penalized. In order to obtain a

uniform spatial error distribution, the local contributions are weighted by the ele-

ment area yielding the following marking criterion: the elements to be subdivided

are the ones verifying

|η�
k |

Ak
≥

nel∑
k=1

|η�
k |

AΩ
, (3.15)

where Ak is the area of the element Ωk and AΩ is the area of the whole domain Ω.

Note that expressions (3.14) and (3.15) are equivalent in uniform meshes where all

the elements have the same area since in this case Ak = AΩ/nel is constant.

Other alternative of remeshing criterions can be implemented to refine the ele-

ments at each step of the adaptive refinement algorithm. In (Steffens et al. 2010b),

the two previous strategies are compared with the following alternatives:

• at each step, a fix percentage of the elements are refined, those with larger

contributions |η�
k | or to |η�

k |/Ak.

• the smallest number of elements such that the sum of the contributions |η�
k |
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toward the global error
∑nel

k=1|η�
k | from these elements exceeds a fix percent-

age of the value.

• all elements on which the local error estimate |η�
k | exceeds a fixed percentage

of the largest local error estimate are refined at each step.

3.5 Numerical examples

The performance of the goal-oriented estimates and error indicators described above

is illustrated in two numerical examples. Additional results can be found in Steffens

et al. (2010b) the following acoustic problems: noise transmission in an expansion

chamber and in a cabin car cavity.

In the examples, when reporting the numerical results, ηε
pol = RP (ε∗pol), η

ε
exp =

RP (ε∗exp), η
e
pol = RD(e∗pol) and ηe

exp = RD(e∗exp) denote the estimates of the linear

contribution to the error in the quantity of interest η = 	O(e) obtained by using the

post-processing strategy described in section. Recall that the subindeces exp and

pol indicate the polynomial and exponential fitting, respectively.

In order to see how well the estimators perform, the value of the true error

J(u) − J(uH) or 	O(e) are required, but the analytical solutions of the considered

problems are not available. An accurate value for the true error is obtained by mak-

ing use of a sufficiently accurate approximation uh of u in a finer reference mesh,

that is, the estimates are compared with the reference values J(uh) − J(uH) and

ηh = 	O(eh) respectively. Note that this reference value can also be recovered from

a faithful representation of the adjoint problem ψh since ηh = 	O(eh) = RP (ψh) =

RP (εh).

In the examples, the approximations u∗ and ψ∗ used to recover the estimates of

the errors e∗ = u∗ − uH and ε∗ = ψ∗ − ψH and its corresponding estimates for the

output ηe = RD(e∗) and ηε = RP (ε∗), are also computed using the same reference

mesh. Noting that ηh = RD(eh) = RP (εh) reveals that the quality of the estimates

depends on the quality of the approximations e∗ ≈ eh and ε∗ ≈ εh.

The accuracy of the approximations is closely related to the pollution or disper-

sion error. Since the approximations u∗ and ψ∗ are constructed using a constrained

least-squares technique, the estimates for the error e∗ and ε∗ vanish at the nodes of
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the coarse mesh, yielding crude approximations if the solutions presents large dis-

persion errors. The influence of the dispersion error in the estimates for the quantity

of interest is analyzed using the estimates for the dispersion error introduced in

chapter 2. These estimates are denoted by Ee and Eε for the primal and adjoint

problems respectively.

3.5.1 Scattering from a obstacle in a square domain

The first example is the scattering of a plane wave by a rigid obstacle introduced in

(Sarrate et al. 1999). The incident wave travels in the negative y-direction inside a

square domain which contains a rigid body, see figure 3.2.

ΓO

ΓN

ΓR

Ω

0.050.05

0.1

0.2

0.20.3

0.40.4

0.4

0.4

0.5

ui

Figure 3.2: Example 1: Description of the geometry and boundary conditions for
the plane wave scattering by a rigid body.

Recall that the solution of the scattering problem is composed of a prescribed

incident wave and a reflected wave, namely u = ur + ui. The incident wave is

characterized by its wave number κ = π and the angle of incidence α = π/2. To

reproduce the scattering nature of the problem, no essential boundary conditions are

imposed and it is assumed that there are no sources in the domain and that the rigid
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obstacle is perfectly reflecting, that is, ∇ur · n = −∇ui · n on ΓN. On the exterior

boundary, Robin absorbing boundary conditions are applied. Thus, the reflected

wave ur is the solution of the Helmholtz equation for f = 0 and where the data are

g = −∇ui · n and m = −iκ.

For this problem, the quantity of interest is the average of the reflected solution

over the whole domain, that is J1(ur) for ΩO = Ω, which is a linear quantity of in-

terest. The behavior of the estimates for this quantity is first analyzed for a uniform

mesh refinement in a series of unstructured triangular meshes. Three triangular

meshes are considered, starting from an initial mesh of 636 nodes and obtaining the

subsequent meshes by refining each triangle into four new ones.

The finite element approximations for both the primal and adjoint solutions,

computed at the final mesh of the uniform refinement procedure of 9825 nodes, are

shown in figure 3.3.

Figure 3.3: Example 1: Real part, imaginary part and modulus of the primal solu-
tion (top) and of the adjoint solution (bottom) associated to the quantity of interest
J1(ur), for κ = π computed using the Galerkin method and a mesh of 9852 nodes.

Figure 3.4 shows the local elementary contributions to the error in the quantity

of interest for the initial mesh of 636 nodes. Both the local contributions of the

reference values ηε
h and ηe

h and its estimates computed using the representations

given by equations (3.12) and (3.13) are shown. The estimates are obtained using

the polynomial and the exponential fitting. Note that even though the global error
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quantities ηε
h and ηe

h are equal, they represent different elementary contributions to

the error. The spatial distribution of the estimates is in good agreement with the

reference ones: they properly detect the elements with larger contributions to the

error even though the obtained elemental contributions underestimate its reference

value.

0.5

1

1.5

2

2.5

3

3.5

x 10−5

Figure 3.4: Example 1: Local maps of the error in the linear quantity of interest
J1(ur). The distributions on the top are obtained using the representation η ε, that is,
ηε

h (left), ηε
pol (middle) and ηε

exp (right) are shown. The distributions on the bottom
correspond to ηe, that is, ηe

h (left), ηe
pol (middle) and ηe

exp (right) are shown.

The convergence of the estimates is shown in figure 3.5. Two refinement strate-

gies are implemented: first, the meshes are uniformly refined whereby each triangle

is subdivided into four subtriangles at each step and second, the meshes are adap-

tively refined using the criterion given in equation (3.15).

The singular nature of the solution yields an order of convergence for the uni-

form mesh refinement of O(H4/3) for the quantity of interest, which is equivalent

to O((nnp)2/3) where nnp denotes the number of nodes of the mesh, instead of the

standard convergence rate of O(H4) obtained for regular solutions. As expected,

the use of an adaptive refinement strategy leads to a faster reduction of the error in

the quantity of interest than if a uniform refinement is used.

It can be seen that, in this example, all the estimates provide similar results



Chapter 3. Adaptivity 87

 

 
η

h
−unif

η
h
ε−adap

η
h
e−adap

ηε
pol

−unif

ηε
pol

−adap

ηe
pol

−unif

ηe
pol

−adap

ηε
exp

−unif

ηε
exp

−adap

ηe
exp

−unif

ηe
exp

−adap

2

3

10
3

10
4

3·10
3

10
−4

5·10
−5

5·10
−4

9·10
−4

number of nodes

es
tim

at
es

fo
r
	O

(e
)

Figure 3.5: Example 1: Performance of the estimators for the error in the quantity of
interest J1(ur) with a uniform and an adaptive refinement strategies. The estimates
are compared with the reference values.

providing an underestimation of the reference values. For comparison, the adaptive

algorithm guided by the reference errors ηe
h and ηε

h are also run. Comparing the

convergence curves obtained for these two local indicators and the ones produced

by the estimates, it can be seen that the estimates perform optimally since they lead

to even slightly better convergence ratios than the reference errors.

The first and final adapted meshes produced by the local indicator associated

to ηε
exp = RP (ε∗exp) subdividing at each remeshing step the elements satisfying the

criterion given by equation (3.15) are shown in figure 3.6, along with a intermediate

mesh of the adaptive procedure. The meshes obtained using the other local error

indicators are virtually identical and are therefore not shown.

Since the quantity of interest is the non-weighted average of the solution over the

whole domain, the meshes are refined in the areas where the primal solution presents

larger errors, that is, at the neighborhood of the obstacle where the singularities

occur.

Additional results for this example can be found in Steffens et al. (2010b) in-

cluding the influence of the dispersion error in the estimates for the quantities of

interest and the behavior of the estimates for the non-linear quantity of interest

J2(ur), that is, the average of the squared modulus of the reflected solution over the
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Figure 3.6: Example 1: First, intermediate and final adapted meshes obtained using
the local error indicators provided by the estimate ηε

exp with 857, 3229 and 13852
nodes respectively, for the quantity of interest J1(ur).

boundary strip ΓO depicted in figure 3.2.

3.5.2 Radar wave problem

This example involves the scattering from an acoustically hard obstacle. In this

case the obstacle is composed of three ellipses, see figure 3.7. Two different com-

putational domain containing the ellipses are considered: rectangular domain of

dimensions 30 × 20 and a circular domain with radius r = 25.

This problem was developed as a benchmark problem for the Industrial and

Academic Database Workshop held in Finland in March 2010. In particular, the

rectangular geometry was develop to study the inverse problem of recovering a

target pressure on the surface of the two small ellipses. The objective of the inverse

problems was to recover the position of the small ellipses. Although the original

goal was to study the full inverse problem, the performance of different methods

was also studied for smaller involved subproblems. In particular, interest was placed

in studying the behavior of adaptive algorithms for the computation of the acoustic

field either in global norms or in specific quantities of interest.

Here, this benchmark test is used to analyze the proposed adaptive refinement

strategy. Although the most relevant quantity of interest for this problem is the

scattering cross section, here an initial not-so-ambitious goal has been considered:

obtaining the average of squared modulus of the scattered solution on ΓO and ΩO re-

spectively. For a proper definition of the problem see: http://jucri.jyu.fi/?q=testcase/5.

Consider the scattering problem of computing the reflected wave ur solution of
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Figure 3.7: Example 2: Description of the geometry and boundary conditions for
the plane wave scattering by tree rigid ellipses where the exterior boundary is de-
scribed by a rectangular form (left) and a circular one (right).

the Helmholtz equation with f = 0. Neumman boundary conditions are applied

on the boundary of the obstacle, ∇ur · n = −∇ui · n, and first order Bayliss-

Gunzberger-Turkel (BGT) non-reflecting boundary conditions are applied to the

fictitious boundary

∇ur · n = mur = −iκur +
ζ

2
ur, (3.16)

where ζ is the curvature of the surface of the scatterer. For the case of a rectangular

exterior boundary ζ = 0, and equation (3.16) reduces to a standard Robin condition,

which is equivalent to a zero-order BGT-0 condition. It is known that a BGT-0

boundary is not very accurate in practical implementations (Ihlenburg 1998). For

the circular exterior boundary of radius r, the curvature is given by ζ = 1/r. Thus,

the circular domain approximation is expected to yield smaller errors due to the

approximation of the boundary conditions.

As mentioned before, the simplified problem of predicting the noise (an even-

tually reducing it) in a specific area of the domain is considered. For this, the aim

is placed in measuring the modulus of the reflected solution. Specifically, for the

example with the rectangular boundary, the output of interest is the average of the

squared modulus of the solution over the boundary strip ΓO shown on the left of

the figure 3.7, namely J2(ur). For the example with circular boundary, the quantity

of interest is the normalized L2-norm of the squared modulus of the solution over
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the subdomain ΩO shown on the right of the figure 3.7, namely J3(ur). Note that,

for simplicity of computation in the circular region, instead of considering a strip

inside the domain, a subdomain ΩO is used. In this case, ΩO is obtained from ΓO

by expanding the strip to a width of 1m.

Figures 3.8 and 3.9 show the Galerkin approximations of the primal and adjoint

problems both for the rectangular and circular geometries for two wave numbers

κ = π/4 and κ = π, respectively. As expected, both approximations provide

similar results for the acoustic field surrounding the obstacles.
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Figure 3.8: Example 2: Galerkin finite element approximation of the primal prob-
lem (top) and of the adjoint solution (bottom) for the waver number κ = π/4 and
for the meshes of 16212 and 26584 nodes, corresponding to the problems with rect-
angular (a) and circular (b) exterior boundaries, respectively.

First, the error in the linear contribution 	O3 (ur) is analyzed for a uniform mesh

refinement in a series of unstructured meshes for both wave numbers. Table 3.1

shows the values of the reference relative errors, ρh = 	O3 (eh)/	
O
3 (uH), and its

corresponding estimates ρε
exp = ηε

exp/	
O
3 (uH) and ρe

exp = ηe
exp/	

O
3 (uH) along with the

estimates for the relative dispersion error ρEε

exp = Eε
exp/κ and ρEe

exp = Ee
exp/κ. Note

that while the errors are larger for κ = π the estimates behave similarly providing

similar relative errors. Since the dispersion error is an important source of error

for this problem, the dispersion error is closely associated to the behavior of the

representations ηε and ηe. Indeed, representation using the recovered adjoint error
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Figure 3.9: Example 2: Galerkin finite element approximation of the primal prob-
lem (top) and of the adjoint solution (bottom) for the waver number κ = π and for
the meshes of 16212 and 26584 nodes, correspondent to the problems with rectan-
gular (a) and circular (b) exterior boundaries, respectively.

ε∗ is slightly better than the representation using the recovered primal error e∗. Thus,

the dispersion error can be used to choose the error representation from which to

obtain the approximation for the output.

Note also that increasing the value of κ does not involve a deterioration of the

estimates. In fact, in this example, the effectivity indices improve. Indeed, looking

at the representation ηε, the effectivity index ρe
exp/ρh is decreasing from 0.58 to 0.40

in the in the first mesh, and from 0.89 to 0.81 in the final mesh.

It is worth noting that a similar behavior is obtained for the problem with rect-

angular boundary and the quantity of interest J2(ur).

Table 3.2 shows the estimates obtained for the quantity of interest J2(ur) for

the parameter κ = π/4 using three uniformly refined meshes for the rectangular

geometry. In order to illustrate the influence of the different terms contributing to

the error in the quantity of interest, the linear and quadratic contributions are shown

separately. As can be seen, the linear term provides a very good inside to the total

error since the quadratic term converges rapidly to zero. In this example, for all

the meshes, the dispersion error is smaller for the adjoint problem which causes the

representation ηε to be more accurate than ηe.
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κ = π/4
nnp ρh ρε

exp ρe
exp ρEε

exp ρEe

exp

1711 0.1006 0.0590 0.0472 0.0429 0.0468
6713 0.0690 0.0353 0.0305 0.0124 0.0131
26584 0.0279 0.0248 0.0233 0.0030 0.0031

κ = π
nnp ρh ρε

exp ρe
exp ρEε

exp ρEe

exp

1711 0.8873 0.3563 0.3430 0.1101 0.1906
6713 0.7341 0.2753 0.2699 0.0994 0.1002
26584 0.1313 0.1067 0.0780 0.0431 0.0504

Table 3.1: Example 2: Estimates for the error in the linear term 	O3 (eh) relative
to 	O3 (uH) and relative dispersion error for the primal and adjoint problem for a
uniformly refined set of meshes.

The convergence of the estimates for a uniform and an adaptive procedure using

the strategy given in equation (3.15) are shown in figure 3.10. Note that the adaptive

refinement leads to a faster reduction of the error and it can be seen that the local

indicators associated to the estimates behave properly since the convergence curves

of the estimates are in good agreement with the reference ones. For κ = π/4,

the curve associated to the reference estimate ηh and a uniform refinement has a

convergence of O(nnp)2/3. However, for the estimates ηε
exp and ηe

exp, there is a short

range where the solution is in a preasymptotic stage (Ihlenburg 1998). Note that as

the wave number κ grows, for instance κ = π, the preasymptotic range is increased

due to dispersion errors.

Figure 3.11 shows the local elementary contributions of ηε
exp to the error in the

quantity of interest in the initial mesh of the problem for both wave numbers and

the rectangular geometry. Also, the intermediate and the final meshes produced by

the adaptive procedure associated to this estimate are shown in figure 3.12. Note

that the adaptive procedure refines the neighborhood of the obstacle but also refines

around the boundary strip, where the solution is evaluated to compute the quantity

of interest.

Finally, figure 3.13 shows the elements marked to be refined for the problem

with circular boundary in the first step, in on intermediate mesh and the final mesh

produced by the adaptive procedure associated to the estimate ηε
exp for the wave
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number of nodes
1065 4123 16212

J(uh) 3.3862e-2 4.2634e-2 4.7342e-2
J(uH) 2.4265e-2 3.7859e-2 4.5476e-2

J(uH) + ηε + Q(e∗, e∗) 2.6712e-2 3.9939e-2 4.6638e-2
J(uH) + ηe + Q(e∗, e∗) 2.6622e-2 3.9867e-2 4.6588e-2

ηε 2.4350e-3 2.0785e-3 1.1621e-3
ηe 2.3456e-3 2.0068e-3 1.1117e-3

Q(e∗, e∗) 1.2002e-5 1.2984e-6 1.0155e-7

Eε 5.9456e-3 1.4779e-3 3.5560e-4
Ee 8.7771e-3 3.9217e-3 1.5675e-3

Table 3.2: Example 2: Estimates for the non-linear quantity of interest J2(ur) for
κ = π/4 and for the its error, including the linear and and quadratic contributions to
the quantity of interest and the dispersion errors for the primal and adjoint problems.

number κ = π/4.

It can be seen that the regions refined in the both geometries are very similar.

However, since the circular domain is slightly bigger, in this case the adaptive pro-

cedure has to refine areas not included in the rectangular domain.

3.6 Summary

In this chapter a simple strategy for guiding goal-oriented adaptive procedures has

been presented, based on the post-processing techniques introduced in chapter 2.

Two different representations for the error in the quantities of interest have been

studied which provide similar results. It has been shown that the accuracy of these

representations, which involve the post-processing of either the primal or adjoint

finite element approximations, is related to the dispersion error of its corresponding

problems.

The adaptive procedure is valid both for linear and non-linear quantities of in-

terest. However it has been shown that the linear part of the quantity of interest is

the leading term, since the higher order contributions converge faster to zero.

The performance of the adaptive procedure is tested in comparison with uniform

refinements of the computational mesh. As expected, the adaptive refinement leads
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Figure 3.10: Example 2: Convergence of the relative error for the quantity of in-
terest J2(ur) for κ = π/4 (left) and κ = π (right), respectively for uniform and
adaptive processes in the reference solution compared with the enhanced solutions.
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Figure 3.11: Example 2: Local maps of the error in the linear term contribution to
the quantity of interest J2(ur) using the representation ηε

exp for κ = π/4 (left) and
κ = π (right).

to a faster reduction of the error.



Chapter 3. Adaptivity 95

Figure 3.12: Example 2: Intermediate and final adapted meshes for the rectangular
exterior boundary. For κ = π/4 (top) with 3050 and 17916 nodes and for κ = π
(bottom) with 3842 and 23635 nodes.

Figure 3.13: Example 2: Elements to be refined in the first step highlighted for
the strategy proposed (left) and the intermediate (middle) and final (right) adapted
meshes with 2790 and 14207 nodes for the circular exterior boundary with κ = π/4.
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Chapter 4

Conclusions

This chapter summarizes the main achievements and conclusions and also provides

some ideas for future research.

The main contributions of this work are summarized in three items, all addressed

to obtaining error estimates for outputs of interest for wave propagation problems

described by the Helmholtz equation.

The first contribution is a simple strategy to assess the error in the wave number

of the Helmholtz problem, both for standard Galerkin and stabilized formulations.

The introduced strategy is based on the determination of the numerical wave number

that better accommodates the numerical solution. Compared to other goal-oriented

error estimation strategies, the approach proposed in this work is innovative be-

cause it adopts a new paradigm. A distinctive feature of this method is that the

error estimation procedure is devoted to obtain the numerical wave number of the

approximate solution instead of the exact one, which is data for the problem. An

enhanced approximation is obtained from the finite element solution using a simple

local least-squares technique. Once the enhanced solution is obtained, the associ-

ated numerical wave number is readily recovered using a simple closed expression.

It is worth highlight that the behavior of the estimates obtained for the dis-

persion error reaffirm that using stabilized approximations substantially improves

the performance of finite element computations of time-harmonic acoustics at high

wave numbers. Unfortunately, the dispersion error for the Helmholtz equation can

not be totally avoided by using stabilized formulations, as confirmed by the new

a posteriori error technique. Moreover, the error estimates provide reasonable ap-

97
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proximations of the reference errors, in agreement also with the measured values of

the dispersion error in the simple cases where they can be evaluated. In practical ap-

plication the results match the expected distributions and converge at the predicted

rates.

Second, a new improved recovery technique is developed to take advantage

of the nature of the solutions of wave problems. The strategy proposed to assess

the dispersion error requires obtaining an inexpensive approximation of a modified

problem, using post-processing techniques. The standard polynomial least-squares

technique is replaced by an new exponential fitting, yielding much sharper results

in most applications. However, both the error estimates computed using the poly-

nomial and the exponential fitting provide reasonable approximations of the true

errors. Besides, a simple combination of both, polynomial and exponential fitting,

is proposed for the cases where the solution is extremely complicated and the expo-

nential fitting fails to recover a proper approximation in some regions of the domain.

Finally, a new goal-oriented adaptive strategy is proposed. This strategy is based

on the post-processing techniques discussed above. The proposed procedure is valid

both for linear and non-linear quantities of interest. However it has been shown that

the linear contribution to the quantity of interest is the leading term. Two differ-

ent representations to recover the error in the quantity of interest are studied, both

providing similar results. It has been shown that the accuracy of these representa-

tions, which involve the post-processing of either the primal or adjoint finite element

approximations, is related to the dispersion error of its corresponding problems.

Moreover, the performance of the adaptive procedure compared with an uniform

refinement leads to a faster reduction of the error. The proposed error estimation

procedure properly identifies the areas most contributing to the error in the quantity

of interest and consequently the adaptive procedure yields adapted meshes which

provide accurate results.

4.1 Future developments

The work carried out in this thesis leaves some open research lines that will be

studied in the near future. We suggest the following lines:
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• First, some applications have been considered in goal-oriented error estima-

tion and adaptive techniques for the wave propagation problem modeled by

Helmholtz equation. However, it would be interesting to analyze the behavior

of the estimates for more types of quantities of interest in order to confirm its

accuracy and also to reaffirm whether the method is sensitive to the disper-

sion error for high wave numbers. It would be also interesting to study the

described goal-oriented mesh adaptivity technique in real-life problems.

• Second, a goal-oriented mesh adaptive procedure has been derived in the con-

text of the standard Galerkin method. This technique could be extended to

able to assess stabilized formulations.

• Third, as discussed in this thesis, the lack of precision in most simulations

of the Helmholtz equation is mainly due to the dispersion error. In this work

a precise analysis of the dispersion error arising in standard and stabilized

finite element methods is given. However, as described in the chapter 1, there

are many alternatives to alleviate the dispersion appearing in the simulations.

An extension of the a posteriori error estimate for the dispersion error pro-

posed in this thesis to these methods would provide a general framework for

comparing the performance of the different methods.

• Fourth, it would be interesting to extend the error estimation and adaptivity

procedures developed in this thesis to the Berkhoff equation, since a goal-

oriented adaptive strategy based on post-processing techniques can be easily

applied to this problem. It is worth noting that in this case the error assessment

in the wave number becomes more complex because the wave number is not

constant over the whole domain since it depends on the depth. Thus, it is not

possible to obtain a global estimate for the error in the wave number but it has

to be estimated locally and maps of the dispersion error have to be build.

• Finally, since the Berkhoff equation can be seen as a Helmholtz equation with

non-constant coefficients. Thus more general problem could also be studied.

It would be interesting to propose alternative methods aiming at reducing the

dispersion error in this context. Some very preliminary results have been

obtained in this respect.
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Ladevèze, P., Arnaud, L., Rouch, P. and Blanzé (2001), ‘The variational theory
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a b s t r a c t

The standard approach for goal oriented error estimation and adaptivity uses an error representation via
an adjoint problem, based on the linear functional output representing the quantity of interest. For the
assessment of the error in the approximation of the wave number for the Helmholtz problem (also
referred to as dispersion or pollution error), this strategy cannot be applied. This is because there is no
linear extractor producing the wave number from the solution of the acoustic problem. Moreover, in this
context, the error assessment paradigm is reverted in the sense that the exact value of the wave number,
j, is known (it is part of the problem data) and the effort produced in the error assessment technique
aims at obtaining the numerical wave number, jH , as a postprocess of the numerical solution, uH . The
strategy introduced in this paper is based on the ideas used in the a priori analysis. A modified equation
corresponding to a modified wave number jm is introduced. Then, the value of jm such that the modified
problem better accommodates the numerical solution uH is taken as the estimate of the numerical wave
number jH . Thus, both global and local versions of the error estimator are proposed. The obtained esti-
mates of the dispersion error match the a priori predicted dispersion error and, in academical examples,
the actual values of the error in the wave number.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The numerical simulation of acoustic problems requires an
accurate answer to properly predict their performance. In the
low frequency range domain the finite element method (FEM) is
a standard tool for solving the acoustic equations. In the medium
and high frequency ranges the end-user should be concerned by
the errors associated with the numerical discretization. In practice,
two components of the error are clearly identified in this frame-
work: interpolation error and pollution error. The classical interpo-
lation error decays with the mesh size as predicted by standard a
priori error estimates. The behavior of the pollution error is more
complex: the convergence rate predicted by the a priori estimates
depends on the range where the mesh size lies (relative to the
wavelength) [1].

In practice, the end-user of a finite element acoustic computa-
tion is concerned with the accuracy of the solution in terms of

the dispersion, the error committed in the evaluation of the wave
number, j. Paradoxically, this is not because the value of j is a
quantity of interest that has to be evaluated accurately. In fact,
the exact value of j is known a priori as part of the problem data.
The overall quality of the numerical solution is however associated
with the error in the approximation of j.

The standard approach for goal oriented error estimation and
adaptivity is based on the representation of the error in a quantity
of interest obtained using an adjoint problem [14,17]. The solution
of the adjoint problem is also denoted extractor and the corre-
sponding error representation combines the extractor and the
original solution. Thus, the error assessment for the quantity of
interest is reduced to assess the error in energy norm of this auxil-
iary problem. This strategy cannot be used when the quantity to be
assessed is the wave number. This is because there is not a proper
extractor associated with this quantity, j. Moreover, as already
noted, the exact value of j is a priori known. This reverts the final
goal of the error assessment technique. The target of the error esti-
mation strategies is in standard cases to find a better approximation
than the one provided by the numerical solution, uH , and then com-
pare them. In the present situation, this is somehow reverted to find
the actual approximation of the quantity of interest provided by uH ,
say jH , and to compare it with the exact value j. Summarizing,
assessing the error in j requires a complete different paradigm.
The quality of the solution is assessed via the approximation of a
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quantity which is exactly known. The numerical wave number jH is
unknown and has to be evaluated.

The first problem to face is to find a proper definition for jH .
Heuristically, the wavelength of the approximate solution is the
distance of two consecutive local maxima (or minima). Although
this represents a precise definition for 1D waves, it cannot be easily
generalized to higher dimensions. Moreover, it cannot be con-
verted into an explicit functional output of the numerical solution.
One definition for jH is implicitly used in a priori analysis, based on
the idea of fitting the numerical solution into a modified equation.
Here, this concept is extended such that it can be exploited in a
posteriori error assessment setting.

Namely, this paper introduces a technique to assess the value of
jH based on finding the wave number of a modified problemwhich
better accommodates the numerical solution uH . This approach is
inspired by the a priori estimates developed in [12].

The idea is also extended to find a local indicator of the error in
the wavelength. This local quantity is assumed to measure the abil-
ity of the local discretization (in a given portion of the domain) to
properly capture the wavelength. The possible use of this informa-
tion to adapt the mesh and reduce the overall error is beyond the
scope of this paper but is part of the work in progress.

The remainder of the paper is structured as follows. Section 2
introduces the notation presenting the problem to be solved, the
finite element formulation and the concepts of dispersion and pol-
lution effect in this type of problem. The basic lines of the a priori
analysis performed in [12] are briefly sketched in Section 3. Then,
Section 4 is devoted to introduce the a posteriori technique pro-
posed to assess the error in the wave number. A local version of
the estimate providing a spatial error distribution for adaptive pur-
poses is introduced in Section 5. Finally, Section 6 contains numer-
ical examples showing the good behavior of the proposed
technique both in academic and practical examples.

2. Problem statement

2.1. Acoustic modeling: the Helmholtz equation

The presentation and notation introduced by Ihlenburg [11] is
followed in the remainder of this section.

The transient acoustic problem consists in obtaining the un-
known pressure field P(x, t), taking values for x 2 X � Rd (d being
the dimension in space, d = 1, 2 or 3). The field P(x, t) is the solution
of the following partial differential equation:

DP ¼ 1
c2

@2P
@t2

; ð1Þ

where c is the speed of sound in the medium.
The pressure time dependency is eliminated assuming a har-

monic behavior and selecting an angular frequency x, namely

Pðx; tÞ ¼ uðxÞ expðixtÞ; ð2Þ
where u(x) is the complex spatial distribution of the acoustic pres-
sure and i the imaginary unit. Substituting (2) into (1), the wave
equation reduces to the Helmholtz equation:

Duþ j2u ¼ 0; ð3Þ
where j :¼ x=c stands for the wave number.

The physical pressure is the real part of the complex unknown
u. The velocity v is proportional to the gradient of pressure:

ru ¼ �iqcjv; ð4Þ
where q is the density of the fluid.

A complete definition of the Boundary Value Problem to be
solved requires adding to Eq. (3) a proper set of boundary condi-

tions. For interior acoustic problems, three types of boundary con-
ditions are considered: Dirichlet, Neumann and Robin (or mixed).

The Dirichlet boundary conditions prescribe values of the pres-
sure on part of the boundary, say CD � @X, where u is prescribed to
be equal to a given value �u, that is

u ¼ �u on CD: ð5Þ
On the Neumann part of the boundary CN � @X the normal compo-
nent of the velocity v is prescribed to be equal to �vn, namely

@u
@n

¼ �iqcj�vn on CN : ð6Þ

The prescribed value �vn corresponds to the normal velocity of a
vibrating wall producing the sound that propagates within the
medium.

Finally, on the Robin part of the boundary CR � @X the velocity
is imposed to be proportional to the pressure, that is

@u
@n

¼ �iqcjAnu on CR; ð7Þ

where the coefficient An is the admittance and represents the struc-
tural damping. This type of boundary conditions is associated with
absorbing walls. For An ¼ 0 it coincides with the homogeneous Neu-
mann boundary condition, standing for a perfectly reflecting panel.
For particular case of plane waves, the value An ¼ 1=qc describes a
fully absorbent panel.

In order to get a well posed Boundary Value Problem, the three
parts of the boundary must cover the whole boundary, that is
@X ¼ CD

S
CN

S
CR.

The weak form of the Boundary Value Problem defined by Eqs.
(3), (5)–(7) is readily expressed in its weak form using the corre-
sponding natural functional spaces. The space for the trial func-
tions is U ¼ fu 2 H1ðXÞ;ujCD

¼ �ug while the space for the test
functions is V ¼ fv 2 H1ðXÞ;v jCD

¼ 0g, H1ðXÞ being the standard
Hilbert space of square integrable functions with square integrable
first derivatives.

Thus, the weak form of the problem reads: find u 2 U such that

aðu;vÞ ¼ lðvÞ 8v 2 V ; ð8Þ
where the bilinear and linear forms are defined as follows:

aðu;vÞ :¼
Z
X
ru � r~v dX�

Z
X
j2u~v dXþ

Z
CR

iqcjAnu~v dC and

lðvÞ :¼ �
Z
CN

iqcj�vn~v dC

and the symbol ~� denotes the complex conjugate.

2.2. Finite element approximation

The discrete counterparts of U and V are the finite element
spaces UH � U and VH � V associated with a mesh of characteristic
element size H. Thus, the discrete finite element solution is the
function uH 2 UH such that

aðuH;vHÞ ¼ lðvHÞ 8vH 2 VH: ð9Þ

The finite element solution uH is expressed in terms of the basis-
functions Nj spanning UH:

uH ¼
Xn
j¼1

Njuj ¼ NuH; ð10Þ

where uj, for j = 1,2, . . . ,n, are the complex nodal values,
N ¼ ½N1;N2; . . . ;Nn� and uT

H ¼ ½u1;u2; . . . ;un�.
The matrix form of (9) reads

ðKH þ iqcjAnCH � k2MHÞuH ¼ �iqcjfH; ð11Þ
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where KH , CH and MH are the so-called stiffness, damping and mass
matrices defined by

KH :¼
Z
X
ðrNÞTðrNÞdX; CH :¼

Z
CR

NTNdC and

MH :¼
Z
X
NTNdX:

Note that the damping matrix CH accounts for the Robin boundary
conditions while the right-hand side term vector fH given by

fH :¼
Z
CN

NT�vn dC

includes the effect of Neumann boundary conditions.

2.3. Dispersion and pollution effects

The error introduced in the numerical solution of wave prob-
lems has two different components: interpolation error and pollu-
tion error. The interpolation error is the classical error arising in
elliptic problems and pertains to the ability of the discretization
to properly approximate the solution. The interpolation error is ob-
tained by simply using the exact values of u at the mesh nodes xj,
j = 1,2, . . . ,n:

Interpolation error ¼ uðxÞ �
Xn
j¼1

NjðxÞuðxjÞ:

In standard thermal and elasticity problems (i.e. problems for
which the bilinear form a(u,v) in (8) is symmetric as positive-defi-
nite, that is, induces an inner product), the error in the finite ele-
ment solution is equivalent to the interpolation error, and
converges with the same rate. This error is local in nature because
it may be reduced in a given zone by reducing the mesh size locally
in this zone.

In wave problems, in particular in the solution of the Helmholtz
equation, a new error component has to be considered which is re-
ferred to as pollution error. This error component is especially rel-
evant in the framework of Helmholtz problems due to the blowup
of the inf–sup and continuity constants of the weak form when the
wave number is large (i.e. the inf–sup constant tends to zero and
the continuity constant tends to 1 as j tends to 1). In transient
wave problems, pollution is associated with the variation of the
numerical wave speed with the wavelength. This phenomenon re-
sults in the dispersion of the different components of the total
wave. In the steady Helmholtz problem, the word dispersion is also
used and corresponds to the error in the numerical wave number,
jH , and it is therefore identified with the pollution. In other words,
the FE error is decomposed into two terms which, in the case of
wave problems, behave completely differently:

FE error ¼ uðxÞ �
Xn
j¼1

NjðxÞuj

¼ Interpolation errorþ
Xn

j¼1
NjðxÞðuðxjÞ � ujÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dispersion=pollution

:

This is illustrated in Fig. 1. The second term in this estimate charac-
terizes the pollution error and is denoted by epol. This error compo-
nent is related to the phase difference between the exact and FE
solutions, that is the dispersion.

Much attention has been paid to the a priori analysis of the pol-
lution/dispersion error, see for instance [4,12,13]. As shown in Sec-
tion 3, the pollution term converges at a different rate, lower than
the standard interpolation error. The pollution effect may be sup-
pressed only in 1D problems, as noted in [2,3]. In higher dimen-

sions, pollution affects every numerical scheme and cannot be
avoided [4].

3. A priori error assessment

The a priori error analysis is performed studying a simple 1D
case [12]. This analysis is recalled here because its basic rationale
is useful in the following. The analysis is based on considering a
modified problem and identifying the parameter of the modified
problem that better accommodates the FE solution.

3.1. Modified problem

A modified Helmholtz equation is introduced as

Dum þ j2
mum ¼ 0: ð12Þ

Note that in the 1D case, this reduces to

d2um

dx2
þ j2

mum ¼ 0: ð13Þ

Therefore, in 1D case, supposing that X = (0,1), the solution eijmx is
obtained from the characteristic solutions by selecting the following
boundary conditions: umð0Þ ¼ 1 and u0

mð1Þ ¼ ijuð1Þ.
The a priori analysis aims at determining the value of jm that

better accommodates the numerical solution of the Helmholtz
equation. This value jm is identified with the discrete wave num-
ber and it is denoted by jpri

H (the superscript pri stands for a priori)
(see Fig. 2).

To this end, the patch of elements surrounding node xj in a 1D
mesh is considered, see Fig. 3. Let Nj�1, Nj and Njþ1 be the linear
shape functions corresponding to the nodes xj�1, xj and xjþ1, which
are consecutive in the mesh and are the only ones involved in the
equation for node xj. The discrete equation corresponding to node
xj reads

Ruj�1 þ 2Suj þ Rujþ1 ¼ 0; ð14Þ
the coefficients R and S being defined as

R :¼ �1� 1
6
ðjHÞ2 and S :¼ 1� 1

3
ðjHÞ2

and uj the nodal unknown at node xj. Noting that xj�1 ¼ xj � H and
xjþ1 ¼ xj þ H, using umðxÞ ¼ eijmx and replacing jm by jpri

H in the dis-
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Fig. 1. Illustration of the errors arising in the approximation of the Helmholtz
equation. The exact solution (solid line, smooth) and interpolant (dashed line)
coincide at the nodes, the FEM solution reproduces approximately the shape of the
wave with a larger wavelength ðjH < jÞ.
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crete equation (14) yields the following expression (see [12] for
details):

jpri
H H � jH � 1

24
ðjHÞ3 þ OððjHÞ5Þ: ð15Þ

Consequently, the following a priori estimate for the dispersion er-
ror is defines as

Epri :¼ j� jpri
H � j3H2

24
: ð16Þ

Next section introduces an a posteriori error estimation technique
that is inspired by the derivation of the above a priori estimate.

4. A posteriori error estimation of the wave number

The standard approach to obtain an error estimate in some
Quantity of Interest (QoI) defined by a linear functional is to ob-
tain an error representation using an adjoint problem. The ad-
joint problem for linear problems is similar to the direct one
but with different loads (source term and/or boundary condi-
tions). The error representation is an expression of the error in
the QoI as an energy product of the errors of the direct and ad-
joint problems [1].

Recall however that the aim is here to assess the error in the
wave number j, which is the current QoI. The error assessment
using an adjoint problem and the corresponding error representa-
tion is not applicable for the wave number QoI. This is due to two
reasons. First, there is no linear functional extracting the wave
number (or the wavelength) of an arbitrary function u. Second, in
this case the value for j is known for the exact solution u (it is an
input data!) but not for the numerical solution uH : j is known
but jH is unknown. The strategy of the error estimate is reversed
in this case. Instead of devoting effort to obtain a better approxima-
tion, as close as possible to the exact solution and then, compare it
with the numerical result, here the effort has to be oriented to ob-
tain the wave number of the approximate solution.

A new approach to a posteriori error estimation is introduced
here, based on the ideas of the a priori analysis sketched in Section 3.

4.1. Direct and inverse solution of a computable modified equation

Recall that, in the a priori analysis, a modified problem is intro-
duced into which the numerical solution can be somehow injected.
The same idea is used here in an a posteriori setup. To do that, a
computable modified problem has to be defined on a computable
basis as it is standard in error estimation procedures [9,15]. To this
effect, the exact modified problem is replaced by a reference one,
associated with a finer mesh of characteristic element size h < H.
Thus, the solution of the modified problem is a nodal value vector
um (in the finer h-mesh) such that

½Kh þ iqcAnjmCh � j2
mMh�um ¼ �iqcjmfh: ð17Þ

Note that this can also be solved as an inverse problem by consid-
ering the solution um as input. Then, for the given um the inverse
problem is finding jm such that um is the solution of (17). This is
performed minimizing the residual norm.

For a given um, the residual is defined as a function of the wave
number jm, that is

rðjm; umÞ :¼ ½Kh þ iqcAnjmCh � j2
mMh�um þ iqcjmfh

¼ a0 þ a1jm þ a2j2
m; ð18Þ

where

a0 ¼ Khum; a1 ¼ iqcðAnChum þ fhÞ and a2 ¼ �Mhum:

Note that given um, the squared residual norm r0r (the symbol 0

stands for the conjugated transpose, that is v 0 � ~vT) is a fourth de-
gree polynomial in jm, namely

Fðjm;umÞ ¼ r0r ¼ c0 þ c1jm þ c2j2
m þ c3j3

m þ c4j4
m; ð19Þ

where

c0 ¼ a0
0a0; c1 ¼ a0

0a1 þ a0
1a0; c2 ¼ a0

0a2 þ a0
2a0 þ a0

1a1;

c3 ¼ a0
1a2 þ a0

2a1 and c4 ¼ a0
2a2:

Thus, for a given value of um, the wave number jm minimizing the
squared residual Fðjm;umÞ is explicitly found by solving the cubic
equation

dF
djm

¼ c1 þ 2c2jm þ 3c3j2
m þ 4c4j3

m ¼ 0: ð20Þ

Note that despite the fact that vectors ai, for i = 0,1,2 are complex,
coefficients ci, for i = 0,1,2,3,4, are real and there is at least one real
root of (20). In the case the three roots are real, two of the roots are
associated with local minima because F is a nonnegative function.
The root selected is the one providing the absolute minimum pro-
vided it is not negative: in all the examples it coincides with the
root closer to the exact value j.

In the next section, this idea is used to assess the numerical
wave number jH associated with the numerical solution uH . This
is performed selecting um properly representing the solution uH .

4.2. A new paradigm in a posteriori error assessment: best fitting of the
modified equation

As previously announced, the goal of this section is to select
um � uH , and then define jH as the parameter of the modified prob-
lem that better accommodates um, namely

jH :¼ argmin
jm

Fðjm; umÞ: ð21Þ

Note that the function um is in fact described by the vector of nodal
values um representing it in the reference h-mesh.

Thus, an a posteriori error estimate for the wave number can be
readily computed

Fig. 2. Illustration for the 1D case of the exact solution u (solid thinner line), the
approximate solution uH (dashed line) and the solution of the modified problem um

(thicker solid line) for jm ¼ jpri
H , coinciding with uH at the nodes.

N N Nj-1 j j+1

 H

x xj-1 j+1j x

Fig. 3. Nodes surrounding xj in a 1D linear FEM mesh and their corresponding
shape functions.
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E ¼ j� jH: ð22Þ
The question is now how to select a proper um approximating uH .

The idea is to imitate the derivation of the a priori estimate de-
scribed in Section 3. Recall that jH was selected as the value of jm

such that um was coinciding with uH at the nodes Pj, j ¼ 1;2; . . . ;nH ,
of the H-mesh. In the 1D model problem selected in Section 3, the
solution um is explicitly found as a function of jm and therefore jH

(in its a priori version, jpri
H ) is readily obtained.

A similar procedure is proposed here in the context of the dis-
crete modified problem (17) defined in the h-mesh. Now, for a gi-
ven value of jm, the solution um of the modified problem is
subjected to an additional constraint imposing that um coincides
with uH at the nodes of the coarse H-mesh, that is at Pj,
j ¼ 1;2; . . . ;nH .

That is, for a given value of jm, the constrained modified prob-
lem reads

½Kh þ iqcAnjmCh � j2
mMh�um

¼ �iqcjmfhenforcing the additional constraint umjPj ¼ uHjPj :
ð23Þ

The additional constraints are simply enforced using the Lagrange
multipliers technique. The resulting solution um is expressed in
the h-mesh. The residual r associated with the solution um is defined
as in (18) and it depends explicitly on um through the coefficients cj,
j = 0, . . . ,4, and the vectors aj, j = 0,1,2. Note that r is not null be-
cause the additional constraints induce unbalanced reaction terms.

Thus, function F is defined and computed exactly as in (19). The
only difference is that now um is not given a priori but is a function
of jm obtained by solving (23). Thus, F depends only on jm but in a
more complex way and, consequently, F is not anymore a polyno-
mial in jm. The numerical wave number jH is defined to be the va-
lue of jm minimizing F. This value results from solving an
optimization problem and the minimum is attained for the value
jH corresponding to the solution of (23) denoted as uopt

m . Once jH

is available, the corresponding estimate is readily computed:
E ¼ j� jH .

Note that for a given uopt
m , ignoring the value of jm, one could

compute the corresponding vectors and coefficients and derive
the value of jm solving the cubic equation (20). The result of this
procedure is denoted as jmin

H and the corresponding error estimate
is Emin ¼ j� jmin

H .
The computation of uopt

m and jH is computationally unaffordable
in a practical application. The optimization problem requires solv-
ing many times problem (23), which in every occasion results in a
large system of equations in the reference mesh. Consequently, this
can only be performed for academic examples. On the other hand,
once uopt

m is obtained, the computation of jmin
H is explicit and does

not require solving any system of equations.
It is observed in all the test cases that the values of jH and jmin

H

are practically identical. That is, once the function uopt
m is found, the

corresponding wave number is exactly computed solving explicitly
the cubic equation (20).

In any case, both jH and jmin
H behave well in the sense that they

match the a priori estimates described in Section 3 and the mea-
sured values of jH in the cases where such a measure is feasible.

Following this idea, the dispersion error is isolated of interpola-
tion error because the shape of the modified solution in the interior
of the elements of the coarse H-mesh is recovered as the solution of
the constrained modified equation (23).

Remark 1. In order to obtain a computable estimate, the definition
of jH introduced above depends on the selected reference mesh of
characteristic size h. For the sake if simplicity, the dependence of
jH with h is omitted in the notation. A notation explicitly stating
the dependence of h, for instance jH;h, would be more accurate. The

definition is however consistent in the sense that for h tending to
zero, the limit value jH;0 is actually the solution of a continuous
problem that can be stated as follows.

The continuous counterpart of (23), that is the constrained
modified equation, reads: find um 2 H1ðXÞ such that um ¼ uH at
the nodes of the H-mesh (that is umjPj

¼ uHjPj for j ¼ 1;2; . . . ;nH)
and fulfilling

amðjm; um;vÞ ¼ lmðjm;vÞ
for all v 2 H1ðXÞ such that v jPj ¼ 0 for j ¼ 1;2; . . . ;nH , where

amðjm; u;vÞ :¼
Z
X
ru � r~v dX�

Z
X
j2

mu~v dXþ
Z
CR

iqcjmAnu~v dC

and lmðjm;vÞ :¼ �
Z
CN

iqcjm�vn~v dC:

Thus, jH is selected as the value of jm minimizing the residual of
the non-constrained problem. Let us introduce the residual as

Rðjm; um; vÞ :¼ lmðjm;vÞ � amðjm;um;vÞ
for any v in H1ðXÞ. Note that the value of Rðjm;um;vÞ is only equal
to zero if vjPj ¼ 0 for j ¼ 1;2; . . . ;nH . For v functions taking non-zero
values at nodes, the residual is not null. The scalar measure of the
residual R( � ) is introduced as

Fðjm;umÞ :¼ max
v2H1ðXÞnf0g

Rðjm; um; vÞ
kvk :

Thus, the value of jH is retrieved as the value of jm minimizing F, as
indicated in Eq. (21) (the expression is valid both for the reference
h-solution and the continuous case).

Note that in the case that it exists a value of jm such that the
solution of the non-constrained problem coincides with uH at the
nodes Pj, this value of jm is precisely jH because for this value and
the corresponding um, F vanishes.

The definition of a practical error estimate following this ratio-
nale requires introducing a proper approximation to uopt

m , resulting
from a computationally affordable procedure.

4.3. Interpolation of uH in the h-mesh

The first and obvious choice is to set um as the interpolant of uH

in the h-mesh, ½uH�h. Since in practice the finer h-mesh is nested in
the coarser H-mesh, ½uH�h is an exact representation of uH .

For this choice the vector of nodal values um is readily obtained:
at the nodes of the coarse mesh Pi, for i ¼ 1;2; . . . ;nH , um and uH

coincide. At the rest of the nodes of the h-mesh, the nodal value
is obtained by simple interpolation in the element of the coarse
H-mesh where the node is located.

Once um is computed the corresponding value of jint
H is calcu-

lated analytically solving the cubic equation (20). Recall that the
coefficients c1, c2, c3 and c4 depend on the choice for um. As previ-
ously said, in the case the three roots are real the one selected is
the absolute minimum of F which in all the test cases coincides
with the closest root to j. Once the value of the numerical wave
number jint

H is assessed, the corresponding error estimate follows:

Eint ¼ j� jint
H : ð24Þ

As it is shown in the examples presented in Section 6, the approx-
imations to jH provided with this methodology are not as good as
expected when compared with the measured numerical wave num-
ber (this measurement can be performed in very simple test exam-
ples) or with the a priori estimates. The estimates obtained using
this strategy are not as sharp as desired, with effectivity indices be-
tween 70% and 90% in the simpler example. However, with the
methods proposed below, the effectivity index from 86% to 100%.
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This behavior is explained using the following rationale: the
interpolated function ½uH�h is not a natural solution of a modified
equation (17). The function ½uH�h is piecewise linear in the elements
of the coarse H-mesh and no solution of (17) would fulfill this type
of constraint. A typical solution of (17) is smoother, without the
slope discontinuities concentrated in the nodes Pi, for
i ¼ 1;2; . . . ;nH , of the coarse H-mesh. In other words, we cannot ex-
pect to find a value of jm properly accommodating ½uH�h in (17).

Moreover, in the a priori analysis sketched in Section 3 only the
nodal values of the numerical solution are used to recover the
numerical wave number jH . No information about the value of
uH inside the elements enters the analysis. This makes complete
sense because only the dispersion/pollution part of the error is to
be assessed. Including the information inside the elements would
result in assessing also the interpolation error.

Consequently, in the value of jint
H assessed with the a posteriori

strategy described here (using um ¼ ½uH�h), the effects of both the
dispersion error (error in j) and the interpolation error are taken
into account together. Next section is devoted to introducing a
new strategy allowing to assess the dispersion error separately.

4.4. Enhanced solution uw by postprocessing of uH

The methodology introduced in Section 4.2 is not applicable as a
practical error estimation strategy. The error estimation procedure
cannot be based on solving problems in the complete finer refer-
ence mesh. It has been noted also that once the function uopt

m is
found, the corresponding wave number is fairly computed solving
explicitly the cubic equation (20). The idea proposed here is to
build up an inexpensive approximation of uopt

m using a postprocess-
ing technique standard in error estimation analysis [19,8] and
likely having all its features. This approximation is expressed as a
nodal vector in the finer h-mesh and it is denoted by uw. Once
uw is obtained from uH , the corresponding wave number jH

H is
readily computed solving the cubic equation (20) and hence
EH ¼ j� jH

H .
The enhanced solution is produced locally, in patches of ele-

ments, centered in every element of the mesh. The values of
uH at the nodes of the H-mesh are used as the input data and
a polynomial is fitted using a least squares technique. The de-
gree of the polynomial fitted is larger than the degree of the fi-
nite elements used to compute uH . For every element Xn,
n ¼ 1; . . . ;nel, of the H-mesh, the patch of elements surrounding
Xn is considered. The polynomial fitting the values of uH in the
nodes of the patch is computed. Once the polynomial is obtained
it is evaluated to find the nodal values of uw in the nodes of the
h-mesh lying in element Xn of the H-mesh. This is illustrated in
Fig. 4. This approach allows to recover the natural curvatures of
the solution coinciding with uH at the nodes where it is com-
puted. Calderón and Díez [6] describes the details of the least
squares fitting strategy.

As it is shown in the numerical tests, this strategy provides a
fair and inexpensive approximation uw of the optimal solution
uopt
m of the constrained modified problem (23), which is computa-

tionally unaffordable. The corresponding numerical wave number
assessment and error estimate, jH

H and Ew, perform well, similarly
as the computationally unaffordable estimates jH and jmin

H .
The reference mesh in which uw is supported is described above

as generated by h-refinement. Obviously, the p-refined analogous
strategy is readily defined by just using a higher order H-mesh
and by using the locally fitted polynomial to compute the nodal
values of uw in the p-refined discretization. As it is shown in the
examples, the results produced by the p-refined solution are not
as good. This is probably due to the loss of accuracy observed in
parts of the frequency spectrum when using standard p-refine-
ment, as suggested by Hughes and co-workers [7,10].

4.5. Correction factor introduced to account for the finite size h of the
reference mesh

The estimates introduced in the previous section rely on a ref-
erence discretization of mesh size h which supposedly provides a
more accurate solution than the computed H-approximation. In
practice, h is far from being infinitesimal and it is taken as a subdi-
vision of H, namely h ¼ H=nr with relatively small values of nr (in
the examples nr ¼ 2) in order to lower the computational cost of
the estimate.

Thus, in practice, the values of the assessed error are with re-
spect to the numerical wave number corresponding to the h-mesh,
jh. The different values of E obtained in the previous sections are
approximations to jh � jH and not to j� jH as it could be
expected.

Here, a correction factor is introduced to account for this fact,
based on a Richardson-like extrapolation strategy [16].

The a priori estimate (16), described in Section 3, is assumed to
hold for both the H-mesh and the h-mesh, that is

j� jh � j3h2

24
and j� jH � j3H2

24
:

It follows that

jh � jH ¼ j3

24
ðH2 � h2Þ

and using h ¼ H=nr yields

jh � jH ¼ j3H2

24
1� 1

n2
r

� �
:

That is

j� jH ¼ n2
r

ðn2
r � 1Þ ðjh � jHÞ: ð25Þ

Thus, the factor n2
r =ðn2

r � 1Þ (4/3 for nr ¼ 2) is used to correct the
estimates which are, in principle, assessing the error with respect
to jh. Using above correction, we are now able to estimate the error
with respect to j.

5. Local version

As previously said, once the recovered function uw is obtained,
the estimate Ew is easily computed. Moreover, a local version of the
estimator giving local values of the wave number and, hence, of the
error is also straightforward. The goal is to approximate the value
of the numerical wave number associated with the element Xn,
n ¼ 1; . . . ;nel, of the H-mesh. Let us denote this value by jn

H . The
idea is simply to minimize the local version of the squared residual
(19) corresponding to a patch of elements around Xn. This ap-
proach is simple to implement and computationally inexpensive.

In order to obtain enough information and to properly recover
jn

H , the patch of elements around Xn must be of size larger than
a wavelength. This often requires using patches of more than one
layer of elements around Xn. Fig. 5 illustrates both, the simplest
case of a patch including just the first layer of elements around
Xn and a second patch including two layers of elements, corre-
sponding to a larger wave number.

Thus, the local version of the residual corresponding to patch n
is

rnðjnÞ ¼ an
0 þ an

1j
n þ an

2ðjnÞ2; ð26Þ
where rn is a function of jn and an

0, a
n
1 and an

2 are defined as in Sec-
tion 4, using uw as the modified function.

Then, the approximation for the local wave number jn
H is deter-

mined minimizing the squared local residual:
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jn
H :¼ argmin

jn
ðrn0rnÞ: ð27Þ

Recall that solving this minimization problem is a purely explicit
calculation because it only requires finding the roots of (20).

6. Numerical examples

The strategy to assess the error in the wave number presented
in the previous sections is validated in three numerical examples.

6.1. Example 1: 1D strip

The first example is a 1D problem solved in a rectangular do-
main as illustrated in Fig. 6. This simple case allows testing the per-

formance of the estimates provided by comparing them with the
actual values that, in this case, can be easily measured.

Eq. (3) is solved in the rectangular domain shown in Fig. 6, with
qc ¼ 1, An ¼ �1 and j = 8p (such that the wavelength is 1/4 and
therefore the solution has four complete waves in the domain of
length L = 1).

Dirichlet boundary condition is imposed on the left side of the
boundary, Eq. (5) with �u ¼ 1, while Robin boundary condition (de-
noted also as ficticious boundary condition) is enforced on the
right lateral side. The boundary condition on the upper and lower
horizontal boundaries are assumed to be Neumann homogeneous
to keep the 1D character of the solution.

The solution u(x,y) of the problem is independent of y and its
analytical expression is

uðx; yÞ ¼ cosðjxÞ þ i sinðjxÞ:
This solution obviously fulfills (3), with Dirichlet boundary condi-
tions (5) and Robin boundary conditions (7), respectively

uð0; yÞ ¼ 1 at x ¼ 0;
@u
@x

ð1; yÞ ¼ ijuð1Þ at x ¼ 1:

Having at hand the analytical expression for u(x,y) allows comput-
ing a direct measure of the error in the wave number or, conversely,
in the wavelength. Let uL

H be the average value of the real part of the
numerical solution at x = L (for uniform quadrilateral meshes all the

a b

c

Fig. 4. Every element of the H-mesh (darkened in plot a) is associated with a patch (shadowed in plot b). A polynomial is fitted to the values in the nodes in this patch using a
least squares criterion (b). This polynomial is evaluated to obtain the nodal values of the enhanced function uw in the nodes of the refined h-mesh in the element under
consideration (c).

Fig. 5. Every element of the mesh (darkened) generates a patch of all the elements
in contact with it (shadowed in gray). Two different patches are shown corre-
sponding to required sizes associated with different wavelengths.

          

Fig. 6. Example 1. 1D strip: problem setup.
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nodal values are equal on this line). Then the error in wavelength is
denoted by Dk and satisfies

uðx ¼ L� DkÞ ¼ uL
H ð28Þ

taking the real part of above equation, we obtain

cosðjðL� DkÞÞ ¼ ReðuL
HÞ ) Dk ¼ � arccosðuL

HÞ
j

þ L: ð29Þ

The wavelength error Dk is equally distributed among the n periods
present in the domain, where n = L/k and k = 2p/j. Thus the mea-
sure of numerical wavelength is kH ¼ kþ Dk=n and, consequently

jmeas
H ¼ 2p

kH
: ð30Þ

Thus, the resulting a posteriori measure of the dispersion is

Emeas ¼ j� 2p
kþ Dk

n

� � ; ð31Þ

where Dk is given by (29).
The problem is numerically approximated using quadrilateral

meshes (4-noded bilinear elements), starting from a coarse mesh
of 24 � 2 elements (in the x-direction H = 1/24, i.e. 6 elements
per wavelength. The corresponding approximation is depicted in
Fig. 7).

The error estimates described in the previous sections are com-
puted using a refinement factor nr ¼ 2 in order to reduce the com-
putational cost.

The numerical results are summarized in Tables 1–3. Each row
in the tables corresponds to a different mesh. Due to the 1D char-
acter of the problem the meshes are only refined in the x-direction.
The consecutive meshes have two rows of elements. The size of the
element in the x-direction is therefore H ¼ 2=nel. The different va-
lue for jH are displayed in Table 1, that is jpri

H ;jmeas
H ;jint

H ; . . . ;jH
H

corresponding to the notation introduced above. Table 2 shows
the corresponding error estimates and the effectivity indices with
respect to the measured value, namely

h� ¼ E�

Emeas : ð32Þ

Table 3 is analogous to Table 2 but for a p-refined reference discret-
ization, where the correction factor introduced in Section 4.5 cannot
be applied.

The analysis of the results of Tables 1–3 reveals that the esti-
mate E and Emin are yielding very good approximations of the ac-
tual error Emeas. Recall however that these two quantities are not
computationally affordable in a practical context and have been
produced only as an academic illustration of the presented para-
digm. The two practical estimates Eint and Ew are also showing a
good behavior, especially if the reference mesh is build up using
h-refinement (Table 2). When using p-refinement (Table 3), the
effectivity is degraded probably due to the effect suggested at
the end of Section 4.4. It is worth noting that the estimate Ew is,
as expected, sharper than Eint.

The convergence of the dispersion error when reducing H is
shown in Fig. 8. Note that the horizontal axis in these plots corre-
sponds to logdof which is equal to � logH up to an additive con-
stant. The plot on the top describes the convergence behavior for
the estimates taking as a reference solution an h-refined one. The
second plot is the analogous with a p-refined reference solution.
The results demonstrate that all the proposed estimates converge
at the due rate, compared with the a priori and the measured dis-
persion errors. Moreover, the h-refined reference mesh estimates
yields sharper results than the p-refined ones in all the tests.

Finally, the spatial error distribution corresponding to the local
(elementary) contributions to the dispersion error as described in
Section 5 is displayed in Fig. 9. The second plot corresponds to a
variant of the problem where the Dirichlet boundary conditions
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Fig. 7. Distribution pressure (a) and dispersion effect (b) for wave number j = 8p in a structured quadrilateral mesh.

Table 1
Example 1: Degrees of freedom dof; number elements nel; interval of mesh H and wave numbers jH .

dof nel H jpri
H jmeas

H jint
H jH jmin

H jH
H

75 48 1/24 23.9844 24.1126 24.4287 24.3595 24.3622 24.3643
99 64 1/32 24.4868 24.5196 24.6672 24.6795 24.6788 24.6989
123 80 1/40 24.7193 24.7315 24.7980 24.8295 24.8346 24.8610
147 96 1/48 24.8456 24.8513 24.8773 24.9195 24.9233 24.9497
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at the left side are replaced by Neumann type boundary condition.
It is worth noting that the local contributions to the dispersion er-
ror are, as expected, sensitive to the selected boundary conditions.

6.2. Example 2: 2D acoustic problem in L-shaped domain

The second example has a full 2D character. The L-shaped do-
main shown in Fig. 10 is considered. The size of the domain is

set by the values L1 = 0.8 m and L2 = 0.2 m. Most of the domain
boundary is of Neumann type, homogeneous everywhere on the
boundary except on the top left edge where the velocity is pre-
scribed to be �vn ¼ 1 m=s (this corresponds to a vibrating panel,
see Fig. 10). Moreover, the bottom side is an absorbent material,
corresponding to a Robin boundary condition (7) with An ¼ 1=qc
m/Pa s.

The wave number is j = 8p, as in the previous example. The
solution computed with a coarse mesh is displayed in Fig. 11.

The estimates E; Emin and Ew are computed for three series of re-
fined meshes; structured quadrilaterals, structured triangles and
unstructured triangles. The results are displayed in Tables 4–6,
respectively. The practical error estimate Ew produces values that
are reasonable approximations of the more accurate but computa-
tionally unaffordable estimates E and Emin.

The convergence of the different series of refined meshes is
shown in Fig. 12. Note that in this 2D case the relation between
the number of degrees of freedom (dof) and H is different, dof is
proportional to 1/H2, i.e. logdof is equal to �2 logH up to an addi-
tive constant.

One can observe in the plots of Fig. 12 that the estimate Ew is
behaving similarly to the reference estimates E and Emin.

The slope of the curves given by E and Emin is (approximately)
equal to 1 as predicted by the a priori estimate and the slopes asso-
ciated with Ew are 0.96, 0.71 (discrepancy due to a bad result in the
first coarse approximation in the series of structured triangular

Table 2
Example 1: Values of the relative dispersion error (%) a priori, measured and for the case h-refined solution with the respective effectivity indices.

dof Epri Emeas Eint hint E h Emin hmin Ew hHh

75 4.569 4.059 3.734 0.92 4.102 1.01 4.089 1.00 4.077 1.00
99 2.570 2.439 2.469 1.01 2.405 0.98 2.408 0.98 2.301 0.94
123 1.644 1.596 1.774 1.11 1.609 1.08 1.582 0.99 1.442 0.90
147 1.142 1.119 1.354 1.21 1.131 1.01 1.111 0.99 0.971 0.87

Table 3
Example 1: Values of wave numbers and relative dispersion error (%) correspondent to solution p-refined and the respective effectivity indices.

dof jH E h jmin
H Emin hmin jH

H Ew hw

75 24.0995 4.111 1.01 24.1088 4.074 1.00 23.4682 6.623 1.63
99 24.5295 2.400 0.98 24.5311 2.394 0.98 24.1255 4.007 1.64
123 24.7295 1.605 1.00 24.7324 1.593 0.99 24.4709 2.633 1.65
147 24.8495 1.127 1.00 24.8514 1.119 0.99 24.6703 1.839 1.64
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Fig. 8. Example 1: Convergence of the error for the h-refined reference mesh (top)
and the p-refined reference mesh (bottom).
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(bottom).
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meshes) and 0.98 for the different mesh typologies. Fig. 13 shows
the spatial error distribution for the second mesh of each of the

Fig. 10. Example 2: 2D L-shaped domain and boundary conditions.
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Fig. 11. Example 2: Real part of the acoustic pressure computed with an
unstructured triangular mesh of 281 dof and 480 elements.

Table 4
Example 2: Results corresponding to structured quadrilateral meshes.

dof nel jH E jmin
H Emin jH

H Ew

57 36 22.9895 8.528 21.8287 13.146 22.7910 9.317
185 144 24.0795 4.191 24.1039 4.093 24.1424 3.940
657 576 24.8395 1.167 24.8507 1.122 24.9077 0.895

Table 5
Example 2: Results corresponding to structured triangular meshes.

dof nel jH E jmin
H Emin jH

H Ew

57 72 22.6195 10.000 22.5721 10.189 23.9924 4.537
185 288 24.1895 3.753 24.2237 3.617 24.3199 3.234
657 1152 24.8495 1.127 24.8734 1.032 24.9306 0.804

Table 6
Example 2: Results corresponding to unstructured triangular meshes.

dof nel jH E jmin
H Emin jH

H Ew

81 120 22.6195 10.000 22.7151 9.619 23.6310 5.975
281 480 24.3095 3.276 24.3470 3.126 24.5641 2.262
1041 1920 24.9095 0.889 24.9193 0.849 25.0092 0.492
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Fig. 12. Example 2: Convergence of the error in the structured quadrilateral (top),
structured triangular (center) and unstructured triangular (bottom) series of
meshes.
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refinement series (meshes with 144 structured quadrilaterals, 288
structured triangles and 480 unstructured triangles).

6.3. Example 3: 2D acoustic car cavity

Noise transmission inside the interior of passenger cars is con-
sidered as a practical application. This example has been fre-
quently used as a benchmark in error assessment for interior
acoustics [5,18].

The size of the domain is characterized by the maximum hori-
zontal and vertical lengths, Lx ¼ 2:7 m and Ly ¼ 1:1 m, respectively.
The values of the material parameters are q = 1.225 kg/m3 (den-
sity) and c = 340 m/s (speed of sound). Fig. 14 describes the geom-
etry of the domain and the boundary conditions: a unit normal
velocity �vn ¼ 1 m=s is imposed on the left vertical side. The roof
is considered to be an absorbent panel with An ¼ 1

2000 m=Pa s and
the rest of the boundary is assumed to be perfectly reflecting
ð�vn ¼ 0Þ.

The wave number of the incoming vibrations j = 9.7 corre-
sponds to a frequency of 525 Hz. Fig. 15 shows the distribution
of the real part of the pressure and the pressure distribution along
of the line A displayed in Fig. 14. The two curves correspond to a
coarse and a finer computational meshes. Note that, compared
with the finer mesh, the dispersion error in the coarse mesh is
important.

The strategy to asses the dispersion error introduced in this pa-
per is used in a series of uniformly refined FE meshes. The results
are shown in Table 7 and Fig. 16. The estimate Ew is showing again

a good performance, fairly approximating the academic estimates
E and Emin and converging at the proper rate (the slope of the line
is approximately 1.2). Finally, the error map is displayed in Fig. 17
and the larger contributions to the error are located at the expected
zones.

An additional numerical experiment is performed for the same
problem as described above but for a larger frequency of 1100 Hz,
that is a wave number j = 20.3280. The results obtained are dis-
played in Table 8. The quality of the estimates is also fair for this
larger frequency. A good agreement is observed between the refer-
ence value E and the estimates Emin and Ew.

7. Concluding remarks

The strategy introduced is based on the determination of the
numerical wave number jH as the wave number of a modified
problem that better accommodates the numerical solution uH .
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Fig. 13. Example 2: Spatial error distribution for the problem defined in Fig. 10 in
structured quadrilateral and triangular and unstructured triangular meshes.

Fig. 14. Example 3: Description of boundary conditions for the car cavity.
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Fig. 15. Example 3: Solution of the pressure field (top) and dispersion effect
(bottom) for 525 Hz.

Table 7
Example 3: Results corresponding to j = 9.7, dispersion error in a uniformly refined
series of meshes.

dof nel jH E jmin
H Emin jH

H Ew

137 195 9.0618 6.598 9.0831 6.378 8.5908 11.452
469 780 9.5318 1.754 9.5363 1.708 9.5203 1.872
1718 3120 9.6518 0.517 9.6507 0.529 9.6534 0.501
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The modified problem is defined on a reference refined discretiza-
tion because the resolution has to be increased to properly describe
the oscillatory nature of the solution. Compared to other goal ori-
ented error estimation strategies, the approach proposed here is
innovative because it adopts a new paradigm. The computational
effort in the error estimation procedure is devoted to obtain the
wave number of the approximate solution jH instead of the exact
one, j, which is known as a problem data. The error estimator pro-
vides reasonable approximations of the actual errors, in agreement
also with the measured valued of the dispersion error in the simple
cases where they can be evaluated. In the practical cases the re-
sults match the expected distributions and converge at the pre-
dicted rates.
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Fig. 16. Example 3: Convergence of the error.

Table 8
Example 3: Results corresponding to j = 20.328, dispersion error in a uniformly
refined series of meshes.

dof nel jH E jmin
H Emin jH

H Ew

469 780 18.7052 7.983 18.8382 7.328 18.8105 7.465
1718 3120 19.9152 2.031 19.9200 2.007 19.8178 2.509
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SUMMARY

An estimator for the error in the wave number is presented in the context of finite element approximations of
the Helmholtz equation. The proposed estimate is an extension of the ideas introduced in [28]. In the previous
work, the error assessment technique was developed for standard Galerkin approximations. Here, the methodology
is extended to deal also with stabilized approximations of the Helmholtz equation. Thus, the accuracy of the
stabilized solutions is analyzed, including also their sensitivity to the stabilization parameters depending on the
mesh topology. The procedure builds up an inexpensive approximation of the exact solution, using post-processing
techniques standard in error estimation analysis, from which the estimate of the error in the wave number is
computed using a simple closed expression. The recovery technique used in [28] is based in a polynomial least
squares fitting. Here a new recovery strategy is introduced, using exponential (in a complex setup, trigonometric)
local approximations respecting the nature of the solution of the wave problem. Copyright c© 2009 John Wiley &
Sons, Ltd.

KEY WORDS: Wave problems; Helmholtz equation; A posteriori error estimation; Error estimation of wave
number; Dispersion/pollution error; Stabilized methods.

1. INTRODUCTION

Acoustic wave propagation phenomena are often modeled using the Helmholtz equation, assuming a
harmonic character of the solution. Thus, time-dependent acoustic pressure is represented as p(x, t) =
u(x)eiωt for a given angular frequency ω, and the unknown u(x) is the spatial distribution of the
pressure. Function u(x) is the solution of the Helmholtz equation, with an associated wave number
κ = ω/c, c being the speed of sound [22].
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2 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

Galerkin approximations of the Helmholtz equation are affected by dispersion (or pollution) errors,
that may be important especially if the wave number is large with respect to the mesh size. The pollution
error, as opposed to the standard interpolation error, is global in nature because the error sources affect
(pollute) the solution everywhere in the domain, and not only where the resolution of the mesh is not
sufficient to properly approximate the solution. Thus, the pollution error cannot be removed by local
refinement, even if the quantity to be assessed is defined locally.

The effect of the pollution or dispersion error has been extensively addressed in the literature [23,
24, 2, 22, 16, 6, 1] and a priori estimates for the dispersion error are available. Also, a posteriori error
estimates assessing the accuracy of the Finite Element approximations of the Helmholtz equation either
in global norms or in certain quantities of interest have been proposed [26, 25, 8, 9, 27, 4, 3, 29, 30].
However, the issue of measuring the dispersion error of the approximations of the Helmholtz equation
using a posteriori error estimates was first addressed in [28].

The wave number corresponding to the approximate solution is different than the exact one. The
corresponding error is directly related with the dispersion error and it is, according to practitioners, a
good measure in order to assess the overall quality of the numerical solution. The problem of assessing
the error in the wave number is addressed in [28] for standard finite element (Galerkin) approximations.
The proposed error estimation strategy is paradoxical in the sense that, in the error to be assessed, the
obvious information is the exact value κ and all the efforts are devoted to compute the value of the wave
number corresponding to the approximate solution. Note that in the usual error estimation business the
situation is the opposite: the approximate value is available and the exact value has to be estimated.

In practice, standard Galerkin methods are not competitive for high wave numbers because
controlling the pollution effect requires using extremely fine meshes. Numerous approaches alleviating
this deficiency have been proposed based on modifications of the classical Galerkin approximation
[2, 5, 15, 18]. The Galerkin/Least-squares method is one of the most popular techniques. It provides
a significant reduction in the dispersion error with an extremely simple implementation using only
standard resources available in finite element codes [17].

Stabilized formulations allow eliminating the pollution effect for one-dimensional problems. In two
dimensions, the pollution effect is reduced substantially but it cannot be completely eliminated [6].
Thus, also when using stabilized formulations, the end-user of a finite element acoustic computation
is concerned with the accuracy of the solution in terms of the dispersion. In this work, an extension
of [28] is proposed allowing to assess the dispersion error when the approximate solution is computed
either using the standard Galerkin method or the GLS method.

The assessment of the dispersion error aims at obtaining a good estimate of the value of the
numerical wave number, corresponding to the approximate solution. Here the definition of the
numerical wave number provided in [28], based on the idea of fitting the numerical solution into a
modified equation, is adopted. This strategy requires obtaining an inexpensive approximation of the
solution of the modified problem using post-processing techniques. Here, a new recovery technique is
introduced, using exponential functions rather than polynomials, to take advantage of the nature of the
solutions of wave propagation problems.

The remainder of the paper is structured as follows. Section 2 introduces the notation and the
description of the problem to be solved along with the standard and stabilized Galerkin formulations.
Section 3 describes the main ideas of the paper. First, the basics of the dispersion error assessment are
reviewed. Then, the extension to stabilized formulations is described. Finally, the standard polynomial
recovery is recalled and the novel exponential post-processing technique is introduced. Section 4
contains four numerical examples demonstrating the efficiency of the proposed technique both in
academic and practical examples.

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 3

2. PROBLEM STATEMENT

2.1. Acoustic modeling: the Helmholtz equation

The acoustic pressure u(x) is a complex function taking values in the spatial domain Ω ⊂ R d (being
d = 1, 2 or 3). The function u is determined as the solution of the Helmholtz equation

−Δu − κ2u = f in Ω, (1)

which is stated for a given wave number κ as the Fourier transform of the transient wave equation.
Equation (1) has to be complemented with proper boundary conditions on ∂Ω. For interior problems,
three types of boundary conditions are considered: Dirichlet, Neumann and Robin (or mixed). Thus,
the boundary ∂Ω is partitioned into three disjoint sets ΓD, ΓN and ΓR such that ∂Ω = ΓD ∪ ΓN ∪ ΓR

and its associated boundary conditions are

u = ū on ΓD, (2a)

∇u · n = g on ΓN, (2b)

∇u · n = Mu on ΓR, (2c)

where n is the outward normal to Ω and ū, f, g and M are the prescribed data, which are assumed to
be sufficiently smooth.

Remark 1. For interior acoustic wave propagation problems g = −iρcκv̄n and Mu = −iρcκAnu,
where c is the speed of sound in the medium, ρ is the mass density, v̄n corresponds to the normal
velocity of a vibrating wall producing the sound that propagates within the medium and the coefficient
An is the admittance and represents the structural damping. For exterior problems, reduced to fictitious
domains, M is a linear operator called the Dirichlet-to-Neumann (DtN) map relating Dirichlet data
to the outward normal derivative of the solution on the fictitious boundary ΓR. It is worth noting that in
general the data g andM depend on the wave number κ. A notation explicitly stating the dependence of
κ, for instance g(κ) and M(κ), would be more accurate but for the sake of simplicity this dependence
is omitted in the notation.

The boundary value problem defined by equations (1) and (2) is readily expressed in its weak form
introducing the solution and test spaces U := {u ∈ H1(Ω), u|ΓD = ū} and V := {v ∈ H1(Ω), v|ΓD =
0}. Here H1(Ω) is the standard Sobolev space of complex-valued square integrable functions with
square integrable first derivatives. The weak form of the problem then reads: find u ∈ U such that

a(κ; u, v) = l(κ; v) ∀v ∈ V , (3)

where

a(κ; u, v) :=
∫

Ω

∇u · ∇ṽ dΩ −
∫

Ω

κ2uṽ dΩ −
∫

ΓR

Muṽ dΓ,

l(κ; v) :=
∫

Ω

f ṽ dΩ +
∫

ΓN

gṽ dΓ,

the symbol ·̃ denotes the complex conjugate, a(κ; ·, ·) is a sesquilinear form and l(κ; ·) is an antilinear
functional depending on κ through the Neumann boundary conditions g. The notation adopted marks
the explicit dependence of κ on the forms a(κ; ·, ·) and l(κ; ·). Although not standard, this is useful
in the following to assess the error in the wave number. It is worth noting that the sesquilinear form

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
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4 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

a(κ; ·, ·) is not elliptic but it satisfies the inf-sup condition and the Gärding inequality. However, for
large wave numbers κ, the upper bound for the inf-sup condition is too crude [22]. Moreover, the inf-
sup property is not carried over from V to a discrete subspace yielding to a loss of stability which
produces spurious dispersion in the discrete approximations.

2.2. Galerkin finite element approximation

The Galerkin approximation is obtained from a partition TH of the domain Ω into nonoverlapping
elements and introducing the discrete spaces UH ⊂ U and VH ⊂ V associated with the parameters
of the discretization, namely the characteristic element size H , and the degree of the polynomial
approximation inside the elements p. The discrete finite element solution is then u H ∈ UH such that

a(κ; uH , v) = l(κ; v) ∀v ∈ VH . (4)

In practice, low-order Galerkin approximations to the Helmholtz equation involving high wave
numbers are corrupted by large dispersion or pollution errors due to the loss of stability of a(κ; ·, ·).
The wave number κ characterizes the oscillatory behavior of the exact solution: the larger the value
of κ, the stronger the oscillations. Hence the rule of thumb is used in computations: each wavelength
is resolved by a certain fixed number of elements. For linear elements, the rule of thumb is stated as
κH = constant < 1. However, it is widely known that this rule is not sufficient to obtain reliable
results for large κ. The dispersion error, which is related to the phase lag of the FE-solution, can
only be controlled when κ2H/p is small. This undermines the practical utility of the Galerkin finite
element method since severe mesh refinement is needed for large wave numbers. The performance of
finite element computations at high wave numbers can be improved by using stabilization techniques.
These techniques, which are extremely simple to implement, alleviate the dispersion effect of the finite
element solution without requiring mesh refinement.

2.3. Galerkin/Least-squares finite element approximation

Stabilized finite element methods were originally developed for fluid problems [14]. The first upwind
type stabilized methods [20] subsequently gave rise to consistent stabilization techniques – ensuring
that the exact solution u is also a solution of the weak stabilized problem. Among these techniques, the
Galerkin/Least-squares method (GLS) has been successfully applied both to fluids and to the Helmholtz
equation [21, 19].

The idea behind stabilized finite element methods is to modify the variational form a(κ; ·, ·) (and,
accordingly, the right hand side) in such a way that the new variational form is unconditionally stable.
In particular, the weak form of consistent stabilized methods is obtained from (3) by adding extra
terms over the element interiors which are a function of the residual of the differential equation to
ensure consistency. For instance, the additional stabilization terms of the GLS method are an element-
by-element weighted least-squares formulation of the original differential equation.

The weak form of the GLS method associated with the partition TH is: find u ∈ U such that

a(κ; u, v) + (Lu − f, τHLṽ)
bΩ = l(v) ∀v ∈ V , (5)

where Lu = −Δu − κ2u is the indefinite Helmholtz operator, Ω̂ =
⋃nel

n=1 Ωn denotes the union
of element interiors of TH , nel being the number of elements of TH , and (·, ·)

bΩ is the reduced L2

inner product, where integration is carried out only on the element interiors (i.e., the singularities at
interelement boundaries are suppressed in the reduced inner product). Note that the GLS formulation
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 5

depends on the stabilization parameter τH which has to be properly defined to make the form on the
l.h.s. unconditionally stable.

Remark 2. The exact solution u verifies equation (5) for any choice of the stabilization parameter τ H

since Lu − f = 0. That is, the GLS method is consistent for any choice of τH .

The GLS finite element approximation of u is uH ∈ UH such that

aGLS(κ, τH ; uH , v) = lGLS(κ, τH ; v) ∀v ∈ VH . (6)

where
aGLS(κ, τ ; u, v) := a(κ; u, v) + (τLu,Lṽ)

bΩ, (7)

and
lGLS(κ, τ ; v) := l(κ; v) + (τf,Lṽ)

bΩ. (8)

Note that for the sake of simplicity, the same notation, uH , for the Galerkin and GLS finite element
approximations has been used. A different notation for the GLS/FE approximation, for instance u GLS

H ,
would be more precise. However, since the error estimation strategy is valid for any approximation
uH ∈ VH of u, there is no need to distinguish between uH and uGLS

H or any other approximation.
Moreover, note that τH = 0 results in the Galerkin approximation.

The stabilization parameter τH is usually determined using discrete dispersion analyses with the aim
of eliminating spurious dispersion of plane waves in a user-prescribed direction (θ). That is, the goal is
that the GLS/FE approximation has no phase lag if the exact solution is a plane wave in the direction θ.
Different definitions for the parameter τH depending on the underlying size and topology of the mesh
may be found in the literature [18, 19] .

Unfortunately, it is not possible in general to design a stabilization parameter τH that confers the
ability of fully removing the dispersion error on the GLS method. The reason is twofold. First, a general
signal consists of plane waves going in an infinite number of directions. Even if there are directionally
prevalent components in this decomposition, they are not necessarily known a priori. Moreover it is
not clear if the GLS method improves the approximations of solutions that are not dominant in the
preferred direction. Second, the parameter τH is derived for particular structured topology meshes.
The optimal behavior obtained for some particular structured meshes (which are of limited use in real-
life applications) is partially lost when general unstructured meshes are used.

2.4. Matrix form

The Galerkin or GLS finite element approximation uH is expressed in terms of the basis-functions
{N j}j=1...nnp spanning UH , namely

uH =
nnp∑
j=1

N juj
H = NuH , (9)

where nnp is the number of nodes in the mesh, uj
H is the complex nodal value associated with the mesh

node xj , N = [N1, N2, . . . , Nnnp ] and uT
H = [u1

H , u2
H , . . . , u

nnp

H ].
In the case of linear finite element elements (p = 1), LuH reduces to LuH = −κ2uH in Ω̂, and the

matrix form of (7) reads
(KH − CH − κ2MτH

H )uH = fτH

H + fN
H , (10)
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6 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

where KH , CH and MτH

H are the so-called stiffness, damping and mass matrices respectively

KH :=
∫

Ω

(∇N)T(∇N)dΩ, CH :=
∫

ΓR

MNTNdΓ, MτH

H :=
nel∑
n=1

∫
Ωn

(1 − τHκ2)NTNdΩ,

and the right-hand side vectors accounting for the source term and the Neumann boundary conditions
are

fτH

H :=
nel∑
n=1

∫
Ωn

(1 − τHκ2)NTf dΩ and fN
H :=

∫
ΓN

NTg dΓ.

In the particular case where the stabilization parameter τH is constant in the elements of the mesh,
MτH

H = (1 − τHκ2)MH and f τH

H = (1 − τHκ2)fH , where

MH :=
∫

Ω

NTNdΩ and fH :=
∫

Ω

NTf dΓ, (11)

are the standard (non-weighted) mass matrix and vector force. Besides, recall that τ H = 0 results in
the matrix form of the Galerkin finite element method (4).

3. A POSTERIORI ERROR ESTIMATION OF THE WAVE NUMBER

3.1. Basics of error estimation of the wave number for the Galerkin method

It is well known that the error introduced in the numerical solution of wave problems has two different
components: interpolation error and pollution error. The interpolation error is the classical error
arising in elliptic problems and pertains to the ability of the discretization to properly approximate
the solution,

eint := u − uint
H = u(x) −

nnp∑
j=1

N j(x)u(xj),

where uint
H is the approximation of u in UH coinciding with u at the mesh nodes xj , j = 1, 2, . . . , nnp.

Thus, the pollution error is defined as:

epol := uint
H − uH =

nnp∑
j=1

N j(x)(u(xj) − uj
H).

In standard thermal and elasticity problems, the error in the finite element solution is equivalent to
the interpolation error, and converges with the same rate. This error is local in nature because it may
be reduced in a given zone by reducing the mesh size locally in this zone.

The pollution error, however, is especially relevant in the framework of Helmholtz problems due to
the blowup of the inf-sup and continuity constants of the weak form when the wave number is large
(i.e. the inf-sup constant tends to zero and the continuity constant tends to ∞ as κ tends to ∞). In
transient wave problems, pollution is associated with the variation of the numerical wave speed with
the wavelength. This phenomenon results in the dispersion of the different components of the total
wave. In the steady Helmholtz problem, the word dispersion is also used and corresponds to the error
in the numerical wave number κH , which is therefore identified with the pollution. In other words, the
FE error is decomposed into two terms

FE error = u − uH = eint + epol = Interpolation error + Dispersion/pollution error,
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 7

which, in the case of wave problems, behave completely differently (see figure 1). It has been shown
that the pollution term converges at a different rate, lower than the standard interpolation error.

 

 

 
exact

interp
FEM

e

e

int

pol

Figure 1. Illustration of the errors arising in the approximation of the Helmholtz equation. The exact solution (solid
line, smooth) and interpolant (dashed line) coincide at the nodes, the FEM solution reproduces approximately the

shape of the wave with a larger wavelength (κH < κ).

The pollution error epol is related to the phase difference between the exact and FE solutions, that
is, the difference between the wave number κ associated with u and the numerical wave number κ H

associated with uH . Usually, the dispersion or pollution error is assessed by obtaining an approximation
of the error in the wave number κ − κH instead of trying to measure the pollution error epol in some
predefined norm.

A priori error estimates assess the dispersion error by means of providing a closed formula of the
numerical wave number κH . Recently, a new approach to a-posteriori estimate the dispersion error,
thus using the information given by uH , has been developed [28].

The key idea is to define an auxiliary solution um
H ∈ U having the same wave number as uH and

from which to recover the value of κH . Intuitively, um
H ∈ U is the best solution of the Helmholtz

equation (3) associated with a wave number κH matching uH at the nodes of the mesh, see figure 2.
To fix the ideas, consider the one dimensional Helmholtz equation in Ω = (0, 1) with boundary

conditions u(0) = 1 and u′(1) = iκu(1). This simple problem admits the analytical solution
u(x) = eiκx. Then, given a uniform finite element mesh and its associated FE approximation u H ,
it turns out that it exists a wave number κH such that the solution of equation (3) associated to κH ,
um

H = eiκHx, exactly fulfills the equations of the Galerkin method (10) associated to the interior nodes.
This wave number is

κH =
1
H

arccos
(

1 − (κH)2/3
1 + (κH)2/6

)
≈ κ − 1

24
κ3H2 +

3
640

κ5H4 + O(κ7H6), (12)

see [23]. The verification of the equations (10) associated to the interior nodes enforces that the
auxiliary solution um

H shares the same wave number than uH , although this does not guarantee that um
H

matches exactly uH at the nodes of the mesh, due to the influence of the Robin boundary conditions.
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8 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

However, the difference of um
H and uH at the nodes of the mesh is nearly negligible. Thus, for this

particular problem, a very good measure of the dispersion error can be computed as

E = κ − κH ≈ 1
24

κ3H2 + O(κ5H4). (13)

 

 
exact
mod
FEM

Figure 2. Illustration of the exact solution u, the approximate solution uH and the auxiliary solution um
H coinciding

with uH at the nodes and sharing its wave number κH .

Unfortunately, in general, it is not possible to determine um
H ∈ U verifying (3) for a suitable wave

number κH ∈ R and concurrently fulfilling the equations of the Galerkin method associated to the
interior nodes. However a slight modification of this idea yields a proper definition for u m

H . Specifically,
um

H ∈ U and κH ∈ R are such that:

• um
H ∈ U coincides with uH at the nodes of the mesh (that is um

H(xj) = uH(xj) for
j = 1, 2, . . . , nnp)

• for a given κH , um
H ∈ U is such that

a(κH ; um
H , v) = l(κH ; v) ∀v ∈ V0, (14)

where
V0 := {v ∈ V , v(xj) = 0, j = 1, 2, . . . , nnp}

• κH and um
H minimize the norm of the residual functional

‖R(κH , um
H ; ·)‖∗ := max

v∈H1
0\{0}

R(κH , um
H ; v)

‖v‖ ,

where R(κH , um
H ; ·) := l(κH ; ·) − a(κH ; um

H , ·), H1
0 := {v ∈ H1(Ω), v|∂Ω = 0} and ‖v‖ is the

H1 norm.

Note that the values of um
H on the boundary of Ω do not affect the norm of the residual ‖ · ‖ ∗. This

definition is used to minimize the influence of the errors due to the boundary conditions (which are
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 9

considered to be a part of the interpolation error and not of the dispersion error) in the assessment of
the dispersion error. Also note that, the condition enforcing that u m

H and uH share the same phase lag,
i.e. fulfilling of the equations of the Galerkin method associated to the interior nodes, is replaced by
the more simple and equivalent condition of matching uH at the nodes of the mesh.

In a compact form, κH and um
H are the solution of the following constrained optimization problem

(κH , um
H) = arg min

κm ∈ R
um ∈ U

‖R(κm, um; ·)‖∗

subject to a(κm; um, v) = l(κm; v) ∀v ∈ V0

um(xj) = uH(xj), j = 1, 2, . . . , nnp.

(15)

The relation between the finite element solution uH and the modified solution um
H allows to state that

the numerical wave number associated with uH , coincides with the wave number associated with the
solution um

H . That is, the finite element solution uH and um
H share the same phase lag and therefore the

dispersion error associated to uH is E = κ − κH .
It is worth noting that the definition of the numerical wave number through the modified solution

um
H is not applicable as a practical error estimation strategy, since κH and um

H are even more difficult
to compute than the exact solution u. Nevertheless, this rationale is used as a starting point to obtain a
fully computable estimate for the dispersion error, by just introducing two simple modifications.

3.2. Practical a posteriori explicit error estimate for the wave number

First, the finite dimensional reference spaces Uh and Vh much finer than UH and VH are introduced.
These spaces yield to the following approximations of κH and um

H

(κH [h], um
H [h]) = arg min

κm ∈ R
um ∈ Uh

‖R(κm, um; ·)‖∗,h

subject to a(κm; um, v) = l(κm; v) ∀v ∈ Vh ∩ V0

um(xj) = uH(xj), j = 1, 2, . . . , nnp

(16)

and

‖R(κH [h], um
H [h]; ·)‖∗,h := max

v ∈ Vh\{0}
v|∂Ω = 0

R(κH [h], um
H [h]; v)

‖v‖ .

If the finite element mesh Vh is sufficiently fine, one expects that um
H ≈ um

H [h] and therefore
κH [h] ≈ κH . If the finite element mesh Vh is not fine enough, as mentioned in [28] a correction
factor has to be applied to recover a good approximation of κ H from κH [h], i.e., κH [0] = cfκH [h],
where cf is the correction factor based on a Richardson extrapolation technique.

Second, since the computation of κH [h] and um
H [h] is still unaffordable in practical applications

another simplification is introduced. An approximation of um
H [h] in Uh, denoted by u∗, is obtained by

post-processing uH . In general, the approximation u∗ is not obtained solving equation (14) for some
κH and thus the computation of κH is independent. Indeed u∗ does not verify

a(κH [h]; u∗, v) = l(κH [h]; v) ∀v ∈ Vh ∩ V0,

and is therefore no longer linked with the computation of κ H [h]. Once this approximation u∗ is
computed, the wave number κH [h] is approximated by κ∗ solution of

κ∗ = arg min
κm∈R

‖R(κm, u∗; ·)‖∗,h.
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10 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

It is worth noting that the norm of the residual ‖R(κm, u∗; ·)‖∗,h is a function depending only on
the scalar variable κm and may be computed as

‖R(κm, u∗; ·)‖∗,h =
√

r(κm, u∗)′r(κm, u∗),

where

r(κm, u∗) := B0

(
(Kh − Ch − (κm)2Mh)u∗ − fh − fN

h

)
= B0

(
(Kh − (κm)2Mh)u∗ − fh

)
,

(17)

is the residual associated with the interior nodes of the fine h-mesh, the approximation u ∗ and the wave
number κm. The symbol ′ stands for the conjugated transpose, that is v ′ ≡ ṽT, and B0 is a diagonal
matrix on the h-mesh with ones in the positions associated with the interior nodes and zero elsewhere.
That is, the matrix B0 sets the values of the residual at the boundary (either Dirichlet, Neumann or
Robin) to zero.

Thus, for a given value of u∗ ≈ um
H [h], the wave number κ∗ is the parameter of the modified

problem that better accommodates u∗. In practice, κ∗ is determined minimizing the squared norm of
the residual, namely

κ∗ = arg min
κm∈R

‖R(κm, u∗; ·)‖∗,h = arg min
κm∈R

√
r′r = arg min

κm∈R

r′r. (18)

Note that given u∗, the squared residual norm r′r is a fourth degree polynomial in κm and thus κ∗ is
computed explicitly, see [28] for the computational details.

In short, the approximation κ∗ of the numerical wave number κH is assessed by first post-processing
the finite element solution uH to compute u∗ and then explicitly solving equation (18). The computable
a posteriori error estimate for the wave number is then

E∗ = κ − κ∗. (19)

3.3. Assessment of the wave number for stabilized formulations

The dispersion error associated with a stabilized finite element approximation of u may be assessed
using the same methodology detailed for the standard Galerkin approximation. Given the GLS/FE
approximation uH , a post-processing technique is used to compute an approximation u ∗ of the solution
um

H [h] of (16). Then, the wave number κH is approximated by κ∗ solution of (18).
However, the use of stabilized formulations also for the fine mesh solutions in (16) allows to improve

the quality of the estimates. Note that the accuracy of the estimate κ∗ relies on two facts: first on the
quality of the approximation u∗ of um

H [h], and second on the quality of the approximation um
H [h] of

um
H . The quality of u∗ depends on the post-processing strategy which will be discussed in the following

section. The quality of um
H [h], on the other hand, depends on the size h of the reference mesh V h. In

fact, it depends on the ratio of κ versus h since for large values of κ the reference mesh should be finer
in order to get good approximations of um

H . Thus, for large wave numbers, the discrete approximation
um

H [h] will only be a good approximation of um
H if the reference mesh is taken remarkably fine.

A simple workaround which avoids dealing with fine reference meshes is to stabilize the problem
associated to um

H [h]. That is, for a given finite element approximation (either stabilized or not), the
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stabilized approximation um
H [h, τh] is the solution of

(κH [h, τh], um
H [h, τh]) = arg min

κm ∈ R
um ∈ Uh

‖RGLS(κm, τh, um; ·)‖∗,h

subject to aGLS(κm, τh; um, v) = lGLS(κm, τh; v) ∀v ∈ Vh ∩ V0

um(xj) = uH(xj), j = 1, 2, . . . , nnp
(20)

where
RGLS(κm, τh, um; v) := lGLS(κm, τh; v) − aGLS(κm, τh; um, v).

This modification yields to the following strategy to assess the error in the numerical wave number:

1. compute u∗ approximation of um
H [h, τh] by post-processing uH

2. compute the approximation κ∗[τh] solution of

κ∗[τh] = arg min
κm∈R

‖RGLS(κm, τh, u∗; ·)‖∗,h = arg min
κm∈R

rGLS(κm)′rGLS(κm), (21)

where
rGLS(κm) := B0

(
(Kh − (κm)2Mτh

h )u∗ − fτh

h

)
. (22)

The explicit dependence of the vector rGLS on τh and u∗, rGLS(κm, τh, u∗), is omitted for simplicity
of presentation. Note that the matrix Mτh

h and the vector f τh

h depend explicitly on the wave number
κm and also implicitly via the stabilization parameter τh. Therefore the dependency of r ′

GLSrGLS with
respect to the wave number κm is no longer a fourth order polynomial and the solution of (21) may not
be computed explicitly in general.

3.4. Computation of the wave number κ∗[τh]

In order to detail the computation of κ∗[τh] verifying (21) in a simple manner, the stabilization
parameter τh is assumed constant on the elements of the fine mesh. In this case, κ∗[τh] is the solution
of (21) where

rGLS(κm) := B0

(
Kh u∗ − (κm)2Mh u∗ + τh(κm)4Mh u∗ − fh + τh(κm)2fh

)
, (23)

and τh depends nonlinearly on κm. For instance, to minimize the phase lag on the x-direction for a
structured regular quadrilateral mesh, [18] proposes the use of

τh(κm) =
1

(κm)2
− 6

(κm)4h2

1 − cos(κmh)
2 + cos(κmh)

.

Thus, the computation of κ∗[τh] requires solving a scalar root-finding problem.
Three different options have been considered in the present work to approximate κ ∗[τh]. The first

approach is to compute an approximation of κ ∗[τh] using an algorithm to numerically approximate
the minimum of F (κm) := rGLS(κm)′rGLS(κm). Namely, a root-finding method on the derivative
of F (κm) is used taking as initial guess κm = κ. This approximation is taken to represent the exact
value κ∗[τh] since its accuracy can be controlled by the end-user through adjusting the tolerance of the
root-finding method.

The second approach assumes that τh does not vary considerably when varying the parameter κ m.
In this case, the dependency of the parameter τh with respect to κm is removed by setting the value of
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12 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

τh(κm) = τκ
h , where τκ

h := τh(κ), and the approximation of κ∗[τh] is denoted by κ∗[τκ
h ]. Note that τκ

h

denotes the value of the parameter τh associated to the wave number κ. Doing this approximation, the
residual rGLS(κm) is approximated by a fourth order polynomial on κ m

rGLS(κm) ≈ a0 + a2(κm)2 + a4(κm)4, (24)

for a0 = B0(Khu∗ − fh), a2 = B0(−Mhu∗ + τκ
h fh) and a4 = τκ

h B0Mhu∗. The minimization of
the squared residual F (κm) is then reduced to find the critical points of F (κm) which is equivalent to
find the solutions of

dF

dκm
= 2κm

(
c0 + 2c2(κm)2 + 3c4(κm)4 + 4c6(κm)6

)
= 0, (25)

where c0 = a′
0a2 + a′

2a0, c2 = a′
0a4 + a′

2a2 + a′
4a0, c4 = a′

2a4 + a′
4a2, c6 = a′

4a4. Although
equation (25) may have seven real solutions, κ∗[τκ

h ] is defined to be the solution of (25) closer to κ.
Thus, ruling out the trivial solution κm = 0, κ∗[τκ

h ] is computed by first finding the roots of the bicubic
polynomial appearing in equation (25), which is equivalent to find the three solutions κ̄ of

c0 + 2c2κ̄ + 3c4κ̄
2 + 4c6κ̄

3 = 0,

and then set κ∗[τκ
h ] to be the value of

√
κ̄ nearer to κ, see [28] for the computational details. Thus, the

assumption τh(κm) = τκ
h yields to a simple and explicit algorithm to approximate the exact value of

κ∗[τκ
h ].

Finally, the third approach directly applies the strategy presented in [28] by considering that the
terms added by the GLS method are constant with respect to κm, that is, not only the parameter τh is
set to τκ

h but also the (κm)2 associated with the GLS method is set to κ2. In this way, the residual is
approximated by the quadratic function

rGLS(κm) ≈ B0

(
Kh u∗ − (κm)2Mh u∗ + τκ

h κ2(κm)2Mh u∗ − fh + τκ
h κ2fh

)
,

and the minimization of the fourth order polynomial F (κ m) which allows to compute the
approximation of κ∗[τh] is done by using the technique detailed in [28].

As will be seen in the numerical examples, the second option yields a fairly good approximation
of the exact solution of the one-dimensional non-linear optimization problem (21). The practical and
straightforward algorithm to estimate the dispersion error using this second option is summarized in
the box shown in figure 3.

Remark 3. Note that the second step of the previous procedure requires to compute the coefficients c 0,
c2, c4 and c6 associated to the residual rGLS. These coefficients depend on the stabilization parameter
τκ
h which in turn depends on a user prescribed direction θ which will be denoted in the following by

θh. In the case that uH is computed using the standard Galerkin method, it is not natural to define a
direction θh. However, information of the prevalent wave direction of the exact solution can be used
if available. If uH is computed using the GLS method with wave direction θ, the estimates may be
computed using θh = θ or again, if information of the exact solution is available, this parameter may
be set to adjust the prevalent wave direction of the exact solution. The choice of this parameter will be
further discussed in the numerical examples.

3.5. Enhanced solution u∗ by post-processing uH

The quality of the estimate κ∗ depends on the quality of the approximation u ∗ of um
H [h] ∈ Uh

(respectively um
H [h, τh]). The idea proposed here is to build up an inexpensive approximation using
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0.- Compute a finite element approximation uH of the Helmholtz problem
(either using the Galerkin method or a stabilized method).

1.- Compute an approximation u∗ by post-processing uH (see section 3.5).
2.- Compute the real coefficients c0 = a′

0a2 + a′
2a0, c2 = a′

0a4 + a′
2a2 + a′

4a0, c4 =
a′

2a4 + a′
4a2, c6 = a′

4a4 where

a0 = B0(Khu∗ − fh), a2 = B0(−Mhu∗ + τκ
h fh) and a4 = τκ

h B0Mhu∗.

3.- Compute the roots of the polynomial

c0 + 2c2κ̄ + 3c4κ̄
2 + 4c6κ̄

3.

4.- Set κ∗[τκ
h ] to be the value of

√
κ̄ nearer to κ and compute the a posteriori error estimate

for the wave number as
E∗[τκ

h ] = κ − κ∗[τκ
h ].

Figure 3. Practical and straightforward algorithm to estimate the dispersion error

a postprocessing technique standard in error estimation analysis [32, 12] and likely having all its
features. The post-processing technique starts from the finite element solution u H ∈ UH and computes
an approximation u∗ of um

H [h] in Uh.
Reference [28] presents a procedure to compute u ∗ following the work by Calderón and Dı́ez [11].

For each element of the H-mesh, Ωn, the patch of elements surrounding Ωn is considered and its
denoted by ωn. In this patch, the values of uH at the nodes of the H-mesh are used as input data and a
polynomial is fitted using a constrained least squares technique. That is, in a two dimensional setting,
for a given polynomial degree q, a complex valued polynomial field

p(x) =
∑

k+l≤q

pklx
kyl

is determined from the following constrained least squares problem

min
pkl∈C

∑
xj∈ωn

∣∣∣uj
H − p(xj)

∣∣∣2
restricted to p(xj) = uj

H for xj ∈ Ωn,

where | · | denotes the modulus of a complex number. Note that the real and imaginary parts of p(x)
can be computed separately. The real part of p(x) (and analogously its imaginary part) may be found
solving the real-valued constrained optimization

min
�(pkl)∈R

∑
xj∈ωn

∣∣∣(uj
H) −(p(xj))

∣∣∣2
restricted to (p(xj)) = (uj

H) for xj ∈ Ωn.

Once the polynomial is obtained in ωn it is evaluated to find the nodal values of u� in the nodes of
the h-mesh lying in element Ωn of the H-mesh. This approach allows recovering the curvatures of the
solution coinciding with uH at the nodes where it is computed.

This simple and straightforward strategy provides fairly good results. However, this approach does
not use specific information about the differential operator or the exact solution. The use of analytical
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14 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

information on the natural solutions of the differential operator yields an alternative approach to
compute u∗.

The approach to compute u∗ also requires solving a local constrained least squares problem for each
element Ωn. Instead of using a polynomial representation for u ∗|ωn

an exponential fitting is used. This
is a natural choice because the exact solution of the 2D homogeneous Helmholtz equation is an infinite
sum of plane waves of the form Aeik·x, where k = κ[cos(θ), sin(θ)].

Thus, in each patch ωn, uH is approximated by an exponential field of the form

A(x)eip(x),

where A(x) and p(x) are polynomial fields representing the amplitude and wave direction. The fields
A(x) and p(x) are determined by a constrained least squares criterion and hence, they are taken as
those minimizing

min
∑

xj∈ωn

∣∣∣uj
H − A(xj)eip(xj)

∣∣∣2
restricted to A(xj)eip(xj) = uj

H for xj ∈ Ωn.

Using a standard technique to linearize the exponential least squares fitting transforms the previous
problem into an equivalent linear constrained least squares problem

min
∑

xj∈ωn

∣∣∣ln(uj
H) − ln

(
A(xj)eip(xj)

)∣∣∣2
restricted to ln

(
A(xj)eip(xj)

)
= ln(uj

H) for xj ∈ Ωn.

Splitting the real and imaginary part of the previous problem yields a simple strategy to compute
ln(A(x)) and p(x) independently using a restricted least squares fitting, namely:

min
∑

xj∈ωn

∣∣∣ln(|uj
H |) − ln(A(xj))

∣∣∣2
restricted to ln(A(xj)) = ln(|uj

H |) for xj ∈ Ωn,

and

min
∑

xj∈ωn

∣∣∣arg(uj
H) − p(xj)

∣∣∣2
restricted to p(xj) = arg(uj

H) for xj ∈ Ωn,

where arg(·) denotes the argument of a complex number and a polynomial fitting of ln(A(x)) and
p(x) is considered.

The only intricate part of this strategy involves the input data, arg(u j
H), of the least squares problem

for p(x). The non-unique arguments associated to the data u j
H have to be carefully selected so that the

polynomial fitting yields proper results.

4. NUMERICAL EXAMPLES

The strategy to assess the error in the wave number presented in the previous sections is validated in
four numerical examples. The performance of the estimates of the dispersion error is shown both for
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ESTIMATION OF THE DISPERSION ERROR FOR THE HELMHOLTZ EQUATION 15

Galerkin and GLS approximations. Moreover, the influence of the post-processing technique yielding
u∗ in the resulting effectivity is also discussed.

The finite element approximations are computed using triangular and quadrilateral meshes of linear
(resp. bilinear) elements, p = 1. Different definitions of the stabilization parameter τ H are used to
compute the GLS approximations depending on the underlying topology of the mesh. In particular, for
structured and unstructured quadrilateral meshes the following definition of the parameter, designed to
minimize the dispersion error of plane wave in the direction θ on cartesian meshes, is used [18, 19]:

τH =
1
κ2

(
1 − 6

(κh)2

(
1 − cos(κh cos θ)
2 + cos(κh cos θ)

+
1 − cos(κh sin θ)
2 + cos(κh sin θ)

))
.

For triangular meshes, the definition derived for hexagonal meshes, namely,

τH =
1
κ2

(
1 − 8

(κh)2
3 − f(κh, θ)
3 + f(κh, θ)

)
, (26)

where f(κh, θ) = cos(κh cos θ) + 2 cos(κh cos θ/2) cos(
√

3κh sin θ/2) is used because it provides
good results also for unstructured meshes.

For non-uniform meshes, the stabilization parameter is not constant over the whole mesh. In each
element Ωn a different stabilization parameter is used depending on its characteristic element size h n.
This characteristic element size is taken as the smallest side of the element both for quadrilateral and
triangular meshes.

As mentioned in section 2.3 the parameter τH depends on a user-prescribed direction θ. The
influence of the selection of this direction in the reduction of the dispersion error is studied in the
following examples.

4.1. Example 1: 1D strip

The first example models a plane wave propagating in the x-direction in a two dimensional rectangular
domain, with length L = 1 and width V =

√
3/8, see figure 4. The boundary conditions are specified

in order to yield the exact solution u(x, y) = eiκx: Dirichlet on the left hand side, Robin on the right
hand side and Neumann homogeneous on the upper and lower sides to maintain the one-dimensional
character of the solution. That is, the data entering in equation (2) are ū = 1 on x = 0, Mu = iκu on
x = 1 and g = 0 on y = 0 and y =

√
3/8. The performance of the Galerkin and GLS finite element

solutions is studied for κ = 8π. Due to the 1D character of the problem, the stabilization angle used in
all the GLS computations (both for the coarse and fine meshes) is set to 0, that is, θ = θh = 0. Note
that the solution of the problem is independent of the width of the domain V and the value

√
3/8 has

been selected in order to accommodate an hexagonal triangular mesh.
First the influence of the selection of the finite reference mesh associated to Vh is studied. If the

finite element mesh Vh is sufficiently fine, one expects that um
H ≈ um

H [h, τh] ≈ um
H [h] and therefore

κH ≈ κH [h, τh] ≈ κH [h]. If the finite element mesh Vh is not fine enough, one should apply a
correction factor to κH [h] to account for the finite size h of the reference mesh and recover a good
approximation of κH , see [28]. This correction factor is not necessary for the estimate κH [h, τh]. That
is when the reference problem is also stabilized.

A uniform coarse mesh of 24 × 2 quadrilateral elements is used both for the Galerkin and the GLS
method. The dispersion error associated with the Galerkin approximation can be assessed using the
a-priori estimate of the wave number given by (12)

Epri = κ − κpri = κ − 1
H

arccos
(

1 − (κH)2/3
1 + (κH)2/6

)
,
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16 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

          
L=1

absorbantprescribed 
pressure

purely reflecting

         
V

Figure 4. Example 1; 1D strip: problem setup.

which in this case is taken as the actual error in the wave number due to the one dimensional character
of the solution (up to the pollution errors introduced by the Robin boundary conditions). Note that
the GLS solution is, for this particular mesh and problem, dispersion free. Thus, the Robin boundary
conditions are the unique perturbation producing errors in the approximations of κ.

The different a posteriori estimates of the dispersion error are computed using a series of successively
nested reference meshes, both triangular and quadrilateral. For the quadrilateral meshes, refinement is
performed only in the x-direction and thus maintaining two rows of elements on all the reference
meshes, due to the one-dimensional character of the solution: for h = H/2 each quadrilateral in the
coarse mesh is divided into two new ones yielding a mesh of 48 × 2 elements, for h = H/4, each
quadrilateral element is divided into 4 new ones yielding a mesh of 96 × 2 elements...

The first columns of the table I show the truth estimates of the dispersion error E[h] := κ − κ H [h]
and E[h, τh] := κ − κH [h, τh] where the numerical wave numbers κH [h] and κH [h, τh] are
computed solving the nonlinear problems (16) and (20) respectively, and cf = n2

r/(n2
r − 1) stands

for the correction factor applied to κH [h] where nr = H/h. Note that these truth estimates are
computationally unaffordable in real applications, because they involve many resolutions of the
problem in the reference mesh. They are computed in academic problems to see the effectivity of
the proposed practical estimates. As can be seen, both the estimates cfE[h] and E[h, τh] assessing the
dispersion error of the Galerkin approximation are in very good agreement with the a-priori estimate.
It is worth noting that the estimate E[h, τh] yields very good results even for the case h = H/2 being
less sensitive than cfE[h] to the choice of the reference mesh size.

The last columns in table I, correspond to the practical estimates obtained from the recovered
solution u∗. In this case u∗ is computed using the exponential fitting. Four different estimates are
computed. The first one is the estimate proposed by [28], E ∗ := κ − κ∗, associated to the assessed
wave number obtained from (18) and enhanced by its multiplicative factor. The other three options
correspond to the three approximations of κ∗[τh] detailed in section 3.3. Recall that Option 1 results
from numerically solving the non-linear one dimensional problem and, since this approximation only
depends on an end-user relative tolerance set to 10−12, it is assumed to be exact, that is E∗[τh] :=
κ − κ∗[τh]. Option 2 is associated with κ∗[τκ

h ] yielding the estimate E∗[τκ
h ] := κ − κ∗[τκ

h ], and
Option 3 is the most crude approximation of κ∗[τh] since it considers that all the terms in the residual
associated to the GLS formulation are constant with respect to the wave number. It is worth nothing
that all estimates produce similar and sharp approximations to the dispersion error for all the values of
the reference mesh size h.

As expected, the truth estimates provide almost exact values for the dispersion error, fully coinciding
with the a priori estimate. The effect of correcting the estimate with factor cf or considering a stabilized
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Galerkin Epri = 1.02211

Option 1 Option 2 Option 3
h E[h] cfE[h] E[h, τh] cfE∗ E∗[τh] E∗[τκ

h ]
H/2 0.76790 1.02387 1.02211 1.01428 1.01469 1.01486 1.03682
H/4 0.95869 1.02261 1.02211 1.01428 1.01469 1.01486 1.03682
H/8 1.00627 1.02224 1.02211 1.01227 1.01232 1.01232 1.01368
H/16 1.01815 1.02214 1.02211 1.01214 1.01215 1.01215 1.01249
H/32 1.02112 1.02212 1.02211 1.01210 1.01210 1.01210 1.01218
H/64 1.02186 1.02211 1.02211 1.01208 1.01208 1.01208 1.01210

Table I. Example 1: Assessment of the dispersion error for a uniform coarse quadrilateral mesh (24× 2 elements)
an successively refined reference meshes for the Galerkin approximations of the solution. The truth error estimates
(left) are computed using the fully nonlinear solution yielding to E[h] and E[h, τh]. The exponential post-
processed solution (right) u∗ obtained from uH and then different options are used to recover the wave number

κ∗ associated to u∗ only for the Galerkin approximation.

reference problem are equivalent.
Following these results, in the remainder of the numerical examples, the parameter h is set to

h = H/4 (refining only in the x-direction for this example and uniformly refining the elements in
the following examples) and the wave number is approximated using Option 2 which provides really
good approximations. Hence, in the following the notation E ∗ is used to denote the estimate E∗[τκ

h ]
(both for the Galerkin and GLS method). A subindex is added to the notation E ∗ to specify the type
of recovery used to compute u∗, namely E∗

pol ans E∗
exp for the polynomial and exponential fittings

respectively. Finally, the estimate E∗ is compared with the truth estimate E[h, τh] which is considered
as the one providing the most accurate-but not computable approximation of the dispersion error, and
it is denoted by E.

Table II and figures 5 and 6 present the estimates corresponding to a sequence of uniformly refined
meshes. Two series of meshes are used: one of structured quadrilaterals and one of triangular elements
following an hexagonal pattern. The two fitting strategies (polynomial and exponential) are compared.

Note that the dispersion error associated with the GLS solution is almost negligible for the
truth estimates. The Robin boundary conditions are the unique perturbation producing errors in the
approximations of κ for the practical estimates.

Figure 5 shows the convergence of the estimates for the dispersion error of the Galerkin
approximation using cartesian quadrilateral meshes. The convergence rate of all the estimates is 2
in the number of points of the mesh, matching the a priori expected convergence rate for the dispersion
error, since, for a fix value of κ, E = κ − κH = O(H2) which is equivalent to O((nnp)2) since
the elements are not refined in the y-direction, see equation (13). However it can be observed that
the exponential fitting provides estimates which are in better agreement with the a-priori or reference
estimates.

Finally, figure 6 shows the convergence of the bounds for both the Galerkin and GLS approximations
using either quadrilateral or hexagonal triangular meshes. The reduction of the dispersion error using
the stabilized GLS formulation becomes apparent both for quadrilateral and hexagonal meshes. This
important reduction is due to the fact that the stabilization parameters that have been used are
particularly designed to eliminate the spurious dispersion of the exact solution e iκx for the particular
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18 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

Galerkin GLS/FE
nnp Epri E E∗

pol E∗
exp E E∗

pol E∗
exp

75 1.02211 1.02211 1.23174 1.01293 -4.1·10 −8 0.23026 -0.00626
99 0.60404 0.60404 0.71868 0.59251 -5.1·10 −8 0.12522 -0.00134
123 0.39584 0.39584 0.46304 0.38942 5.1·10 −8 0.07167 -0.00035
147 0.27851 0.27851 0.32051 0.27525 4.1·10 −8 0.04401 -0.00011

Galerkin GLS/FE
nnp Epri E E∗

pol E∗
exp E E∗

pol E∗
exp

172 0.79686 0.79782 0.58502 0.78168 2.6·10 −8 -0.22714 -0.00542
293 0.47022 0.46319 0.36999 0.45619 2.9·10 −8 -0.09656 -0.00229
446 0.30565 0.30074 0.25304 0.29794 5.4·10 −8 -0.04915 -0.00116
631 0.21365 0.21040 0.18306 0.20935 3.6·10 −8 -0.02829 -0.00066

Table II. Example 1: Convergence of the estimates of the dispersion error through a uniform mesh refinement
using cartesian quadrilateral meshes (top) and hexagonal triangular meshes (bottom).
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Figure 5. Example 1: Convergence of the estimates of the dispersion error of the Galerkin approximations through
a uniform mesh refinement using cartesian quadrilateral meshes.

quadrilateral and hexagonal meshes at hand. It is also clear that the exponential fitting, in this example,
captures more precisely the shape of the solution and thus yields better estimates for the dispersion
error.

Although extremely simple, this example demonstrates that the proposed methodology is able to
assess the dispersion error in both for Galerkin and GLS formulations. The estimate clearly detects
that GLS method reduces the dispersion. As it is shown in the next examples, the same tools are also
useful in more involved situations.
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Figure 6. Example 1: Convergence of the dispersion error both for the Galerkin and GLS approximations in a
series of uniformly refined meshes: quadrilateral meshes (left) and hexagonal triangular meshes (right).

4.2. Example 2: Plane Wave in Square Domain

We consider the unit square Ω =]0, 1[×]0, 1[ with inhomogeneous Robin boundary conditions specified
on all the boundaries of the square so that the exact solution is u = e iκ(cos αx+sin αy). That is, the
solution is a plane wave propagating in the direction of angle α, as illustrated in figure 7. The model
parameters are κ = 8 and α = π/8 and the analytical solution associated with these parameters is
depicted in figure 7.

α

Figure 7. Example 2: Problem setup (left) and solution for α = π/8 (right).

The performance of the estimates is studied for three different structured uniform quadrilateral
meshes (8×8, 16×16 and 32×32 elements). In order to estimate the dispersion error associated with the
Galerkin approximation, the stabilization parameters involved in the computation of E := E[h, τ h] and
E∗ := E∗[τκ

h ] in equations (20) and (24) are computed using the predefined direction θ h = α = π/8.
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20 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

The results are shown in table III where η∗
pol := E∗

pol/E and η∗
exp := E∗

exp/E is the effectivity index
of the estimates with respect to the reference value E (truth estimates). Again, the exponential fitting
provides better estimates to the dispersion error yielding very good effectivity indices near to one. The
rate of convergence of the estimates with respect to the number of nodes in the mesh is 1, matching the
a priori expected convergence rate for the dispersion error, since E = κ− κ H = O(H2) which, in this
case, is equivalent to O(nnp) because the uniform refinement is done in both the x and y directions.

Galerkin
nnp E E∗

pol E∗
exp η∗

pol η∗
exp

81 0.24912 0.41670 0.23725 1.6727 0.9524
289 0.06330 0.09033 0.06328 1.4271 0.9998
1089 0.01563 0.01943 0.01593 1.2434 1.0197

Table III. Example 2: Assessment of the dispersion error of the Galerkin method for uniformly refined structured
quadrilateral meshes.

The same study is done for the GLS approximations of the problem using the same meshes. Although
the exact solution is a plane wave, since the cartesian meshes are not aligned with the wave direction
α = π/8, none of the possible choices for the stabilization direction θ yields a nodally exact solution.
Table IV shows the dispersion error of the GLS method for three different stabilization parameters
θ = 0, θ = π/8 and θ = π/4. In all the computations the error estimates are performed using the
same value of θ for the reference h−mesh, that is θh = θ. The GLS method substantially reduces de
dispersion error even for the non-optimal parameters θ = 0 and θ = π/4. The error estimate E ∗

exp are
properly approximating the truth error E in the all cases. For θ = π/8 the dispersion error so small
that the resulting effectivity is not as sharp as for the choices producing longer errors.

GLS/FE
θ = 0 θ = π/8 θ = π/4

nnp E E∗
exp E E∗

exp E E∗
exp

81 -7.45·10−2 -7.17·10−2 6.82·10−4 3.40·10−4 7.71·10−2 7.34·10−2

289 -1.99·10−2 -1.93·10−2 -4.43·10−4 3.80·10−5 1.91·10−2 1.95·10−2

1089 -5.02·10−3 -4.87·10−3 -1.84·10−4 1.68·10−6 4.66·10−3 4.88·10−3

Table IV. Example 2: Assessment of the dispersion error of the GLS method for uniformly refined structured
quadrilateral meshes. The GLS approximations are computed using different stabilization directions θ.

Figure 8 graphically displays the information shown in the tables in tables III and IV. As can be
seen, the estimates (depicted on the right of the figure) are in very good agreement with the reference
mesh computations (depicted on the left of the figure). As mentioned before, the GLS method always
performs better than the Galerkin method but there is a qualitative leap of accuracy when the optimal
parameter θ = π/8 is used.

Finally, figure 9 shows the influence of the stabilization direction θ used to compute the GLS finite
element approximation in the dispersion error. The study is done varying θ in the range [0, π/2]. As
expected, the optimal performance is reached when the wave direction of the GLS method coincides
with the angle of the exact solution, θ = α = π/8. In any case, if no information of the exact
solution is at hand and thus, an arbitrary choice of θ is considered, the GLS method provides
an important reduction of the dispersion error when compared to the Galerkin approximation: the
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Figure 8. Example 2: Performance of the estimates of the dispersion error for the Galerkin method and the GLS
method for a plane wave associated with α = π/8 using a reference mesh (left) and the exponential fitting (right).

The GLS approximations are computed using different stabilization parameters.

estimated dispersion error is reduced from E ∗
exp = 0.06328 to E∗

exp ≈ 0.02 in the worst case.
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Figure 9. Example 2: Influence of the selection of the stabilization angle θ in the dispersion error of the GLS
approximation for the mesh with 269 nodes. The estimates are computed both using θ = α.

4.3. Example 3: Scattering from Submarine-Shaped Obstacle

The acoustic scattering from an acoustically hard obstacle is studied. The geometry is a submarine-like
object parametrized by the distances l = 3, L = 60 and D = 6, see figure 10. The incident wave

Copyright c© 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2009; 00:1–1
Prepared using nmeauth.cls



22 L.M. STEFFENS, N. PARÉS AND P. DÍEZ

is characterized by its wave number κ = π/3 and an angle of incidence α = 5π/4. The original
problem is an unbounded Helmholtz problem which is reduced to an interior problem over a bounded
computational domain with a circular boundary of radius R = 36. In the fictitious boundary, second-
order Bayliss-Gunzberger-Turkel (BGT) [7, 13] absorbing boundary conditions are applied.

   

  
  L

D

  
   
  2l

l

  
  R

α

Figure 10. Example 3: Geometry of the fictitious bounded domain to study the scattering from a submarine-shaped
obstacle problem (top) and a mesh of 2567 nodes (bottom).

The solution of the acoustic scattering problem is decomposed into u = u r + ui, where ur and ui

are the so-called reflected and incident waves respectively. For a given wave number κ and incident
wave direction α, the incident wave is ui = eiκ(cos αx+sinαy), and the reflected wave ur is the solution
of the Helmholtz equation (1) with f = 0 (because −Δu i − κui = 0). Neumann boundary conditions
are applied on the boundary of the obstacle

∇ur · n = −∇ui · n,

(g = 0 in (2b)), and first order Bayliss-Gunzberger-Turkel (BGT) non-reflecting boundary conditions
are applied to the fictitious boundary

∇ur · n = Mur = −iκur +
ζ

2
ur

in (2c). Here, ζ is the curvature of the surface of the scatterer, which for the particular case of a circular
boundary of radius R is ζ = 1/R.

In this example, the dispersion error committed in the approximation of the reflected solution u r is
studied. The total approximated scattered field u is computed from u r adding the known incident field
ui. Figures 11 and 12 show the approximations obtained using the Galerkin method with a triangular
mesh of 10026 nodes.

The behavior of the estimates of the dispersion error is analyzed for different unstructured triangular
meshes both for the Galerkin and SUPG approximations of the reflected solution u r. The triangular
meshes are obtained from the initial mesh (see figure 10) using a uniform refinement, that is, a new
mesh is obtained from a previous mesh by refining each triangle into 4 new triangles.

Table V shows the results associated to the Galerkin approximation. In this case, the stabilization
parameters involved in the computation of the truth estimate E and the practical estimate E ∗ are
computed using the predefined direction θh = α = 5π/4. Both the estimates obtained using
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Figure 11. Example 3: Real part of the approximated solutions of the scattering problem for α = 5π/4 and
κL = 62.83: scattered wave (top) and total wave (bottom). Approximations computed using the Galerkin method

and a mesh of 10026 nodes.

a polynomial and an exponential fitting provide fairly good approximations to the truth value E.
However, the exponential approach provides better effectivities, closer to one. Moreover the expected
rate of convergence of the estimates of the dispersion error is obtained in all the cases.

Galerkin
nnp E E∗

pol E∗
exp η∗

pol η∗
exp

2567 0.69064 0.55271 0.67186 0.8003 0.9728
10026 0.19509 0.15604 0.20538 0.7998 1.0527
39620 0.04829 0.02959 0.05003 0.6128 1.0360

Table V. Example 3: Assessment of the dispersion error committed by the Galerkin method for uniformly refined
unstructured triangular meshes.

Table VI shows the results obtained by the GLS approximations. Three different stabilized
approximations are computed associated with the stabilization directions θ = 0, θ = π/12 and
θ = π/6. The corresponding estimates are computed using the same values of θ in the reference
mesh, θh = θ.
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Figure 12. Example 3: Imaginary part of the approximated solutions of the scattering problem for α = 5π/4 and
κL = 62.83 computed using the Galerkin method and a mesh of 10026 nodes: scattered wave (left) and total

wave (right).

GLS/FE
θ = 0 θ = π/12 θ = π/6

nnp E∗
pol E∗

exp E∗
pol E∗

exp E∗
pol E∗

exp

2567 1.31·10−2 4.357·10−3 1.37·10−2 4.89·10−3 1.42·10−2 5.42·10−3

10026 4.77·10−3 1.771·10−3 4.80·10−3 1.79·10−3 4.83·10−3 1.81·10−3

39620 2.84·10−3 1.866·10−4 2.85·10−3 1.89·10−4 2.85·10−3 1.89·10−4

Table VI. Example 3: Assessment of the dispersion error of the GLS method for uniformly refined unstructured
triangular meshes. The GLS approximations are shown for different stabilization directions θ.

As expected, the use of stabilized formulations reduces considerably the dispersion error. In this case,
the three tested stabilization directions provide similar results. Moreover, the exponential fitting which
provides really good estimates for the Galerkin solution, yields really low estimates of the dispersion
error of the stabilized approximations indicating that, in this example, the dispersion error is nearly
negligible when using a GLS approach.

4.4. Example 4: 2D acoustic car cavity

This example studies the noise transmission inside a two-dimensional section of the cabin of a car
which is excited by vibrations of the front panel and damped by Robin boundary conditions. This
example is frequently used as a benchmark problem in error assessment for interior acoustic problems
[10, 31, 18]. The geometry of the cabin is shown in figure 13. The size of the domain is characterized
by the maximum horizontal and vertical lengths, Lx = 2.7 m and Ly = 1.1 m, respectively. The
source term entering in equation (1) is f = 0, and as mentioned in Remark 1, for interior acoustic
wave propagation problems, the Neumann and Robin boundary conditions entering in equation (2) are
of the form g = −iρcκv̄n and Mu = −iρcκAnu, where in this case the material parameters are
c = 340 m/s standing for the speed of sound of the medium and ρ = 1.225 kg/m 3 standing for the
mass density. The vibrating front panel is excited with a unit normal velocity v̄ n = 1 m/s whereas
the roof is considered to be an absorbent panel with associated admittance A n = 1/2000 m.(Pa.s)−1.
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The rest of the boundary is assumed to be perfectly reflecting and thus v̄ n = 0 m/s. Finally, a wave

vibrating
panel

absorbant panel

Figure 13. Example 4: Description of the two-dimensional section of the cabin of a car and its associated boundary
conditions.

number of κ ≈ 9.7 has been considered in the computations (equivalent to a frequency of 525 Hz).
In this problem, the exponential fitting presented above yields bad estimates, worse than the standard

polynomial fitting. This is due to the fact that the solution is extremely complex, without a predominant
direction. At many points of the domain, the solution can be expressed as a sum of several plane waves
with similar amplitudes. Thus, the exponential fitting fails to properly approximate the local behavior
of the modified solution in the vicinity of these points. Actually, the exponential recovery in these zones
introduces unrealistic discontinuities resulting in bad estimates. In the following, this phenomenon is
described in detail, as well as the proposed remedy.

It is well known that the exact solution of the 2D homogeneous Helmholtz equation can be expressed
as an infinite sum of plane waves traveling in different directions. In the previous examples, the
solutions were either a single plane wave traveling in a predefined direction (see examples 1 and 2)
or had a prevalent plane wave direction, although the prevalent wave direction may vary from different
zones of the domain (see the scattered solution of example 3). The sound transmission inside a car
cabin is a more complex phenomenon and the solution does not present clear prevalent directions but
is a combination of different plane waves with similar amplitudes (see figure 14).

Even if the exact solution has no prevalent directions, one can consider an exponential representation
of the exact solution of the problem

u(x) = r(x)eiθ(x),

where r(x) and θ(x) are the real-valued functions providing the modulus and angle of u respectively.
In the cases where the solution does not have a prevalent direction two phenomena may appear: on one
hand the angle distribution θ(x) may present discontinuities coinciding with areas where the modulus
vanishes, and, on the other hand, the modulus distribution r(x) may present a highly non-linear and
non-smooth behavior in some regions.

To illustrate these phenomena, the modulus and angle distributions of three simple solutions are
shown in figure 15. First, the solution u = 2eκix + eκiy is considered. Note that, in this case, the plane
wave traveling in the x-direction, eκix, prevails over the wave traveling in the y-direction, eκiy . As
can be seen in figure 15, the standard representation of the angle distribution θ(x) is a discontinuous
function, which can be easily post-processed to recover a continuous angle distribution. Moreover,
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Figure 14. Example 4: Solution of the noise transmission problem inside the cabin of a car obtained with an
overkill mesh of 20160 nodes: real part of u (top) and imaginary part of u (bottom).

the modulus does not present large variations over small regions. In this case, the exponential fitting
described in section 3.5 provides accurate approximations of u. The second example, u = e κix + eκiy,
shows that if the solution is obtained combining two plane waves of the same amplitude, and thus it
does not have any prevalent direction, angle discontinuities appear in some predefined straight lines.
As the number of plane waves that comprise the solution u increases, see for instance the third example
u = eκix+eκiy+e−κiy , the modulus and angle distributions may present areas with a highly non-linear
and non-smooth behavior. Note that, although the angle distribution only presents point or removable
discontinuities at nine points of the domain, obtaining a globally smooth angle distribution from the
standard angle representation is not a trivial task. Figure 16 shows, the behavior of the modulus and
angle distribution associated to the acoustic pressure inside the car cabin. As can bee seen, its not easy
to clearly identify the regions where the angle distribution is discontinuous.

The exponential fitting technique is based on finding a proper local polynomial representation for
the modulus and angle distributions. Thus, in regions where either the angle is discontinuous or the
modulus presents large oscillations, the exponential representation yields poor results. In this work,
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Figure 15. Example 4: Behavior of the modulus and angle distributions, θ(x) and r(x) respectively, for three
simple solutions in the unit square. From top to bottom: u = 2eκix + eκiy, u = eκix + eκiy and u =
eκix + eκiy + e−κiy for κ = 9.7. For each solution, the modulus distribution (left) and two views of the angle
distributions (middle left, middle right) are shown. When possible, equivalent angle distributions only containing
non-removable discontinuities – where the discontinuities associated to a 2π angle jump have been smoothed –

are shown (right).
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Figure 16. Example 4: Modulus (left) and angle (middle and right) distribution of the acoustic pressure inside the
car cabin. The areas where the modulus is nearly zero are highlighted in the plot in the middle to see the areas

where the angle distribution may present discontinuities.

a simple workaround is proposed: first, the smoothing technique identifies the elements near the
angle discontinuities or near the regions where the modulus has a non-smooth behavior. Then, the
exponential fitting is applied only to the non-selected elements while a polynomial fitting is applied
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to the problematic elements. The estimates obtained with this combined approach are denoted in the
following by Ê∗

exp.
Estimates of the dispersion error for the Galerkin approximations of the solution are computed for

two different triangular meshes of 568 and 2122 nodes respectively. The results are shown in table VII.
As can be seen, both the polynomial and the combined estimates provide fairly good approximations
to the truth value E. However, using an exponential representation, where possible, allows obtaining
effectivities closer to one.

Galerkin
nnp E E∗

pol Ê∗
exp η∗

pol η∗
exp

568 0.15001 0.08231 0.12960 0.5486 0.8639
1092 0.07506 0.06694 0.07389 0.8918 0.9845

Table VII. Example 4: Assessment of the dispersion error of the Galerkin method for unstructured triangular
meshes.

Figure 17 shows the elements that have been selected in the combined approach to apply the
polynomial smoothing technique instead of the exponential one. Note that these regions are in good
agreement with those highlighted in figure 16.

Figure 17. Example 4: Two unstructured triangular mesh where the red elements corresponding to solution fitting
polynomial.

The reduction in the dispersion error obtained by using stabilization techniques is shown in table
VIII. This table also shows the influence of the selection of the stabilization parameter. As can be seen
the results of the GLS approximations with the three stabilization parameters are nearly identical for
the two meshes, and provide significant improvement over the Galerkin method.

5. Conclusions

This paper introduces an error assessment technique for the numerical wave number κ H of the
Helmholtz problem, both for standard Galerkin and stabilized formulations. The strategy introduced
in [28], which determines the numerical wave number κH as the one that better accommodates the
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GLS/FE
nnp E E∗

pol Ê∗
exp

θ = 0
568 0.03792 0.02267 0.03563
1092 0.00577 0.00653 0.00644

θ = π/12
568 0.03808 0.02281 0.03583
1092 0.00583 0.00658 0.00651

θ = π/6
568 0.03824 0.02294 0.03601
1092 0.00589 0.00663 0.00656

Table VIII. Example 4: Assessment of the dispersion error of the GLS method for an unstructured triangular mesh.
The GLS approximations are shown for different stabilization directions θ.

numerical solution uH in a modified problem, has been extended to deal with stabilized formulations.
The numerical solution uH and the reference modified problem are computed using stabilized methods
to obtain both more accurate approximations of the solution and sharper estimates of the dispersion
error.

The proposed strategy requires obtaining an inexpensive approximation of the modified problem,
using post-processing techniques. Thus, the associated numerical wave number is readily recovered
using a closed expression. A new improved recovery technique is developed to take advantage of the
nature of the solutions of wave problems. The standard polynomial least squares techniques is replaced
by an exponential fitting yielding much sharper results in most applications. However, both the error
estimates computed using a polynomial and exponential fitting provide reasonable approximations of
the true errors.

The estimates of the dispersion error reaffirm that using stabilized approximations substantially
improves the performance of finite-element computations of time-harmonic acoustics at high wave
numbers. The sensitivity of the choice of the stabilization parameter for the GLS method has been
studied concluding that the change in the orientation of the stabilization parameter has little effect on
the results of non-academic problems or when considering non-structured meshes.
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8. P. Bouillard. Admissible fields and error estimation for acoustic FEA with low wave numbers. Comput. Struct., 73(1-
5):227–237, 1999.

9. P. Bouillard. Influence of the pollution on the admissible field error estimation for fe solutions of the Helmholtz equation.
Internat. J. Numer. Methods Engrg., 45(7):783–800, 1999.

10. P. Bouillard and F. Ihlenburg. Error estimation and adaptivity for the finite element method in acoustics: 2D and 3D
applications. Comput. Methods Appl. Mech. Engrg., 176(1):147–163, 1999.

11. G. Calderón and P. Dı́ez. Análisis de diferentes estimadores de error de postproceso para adaptatividad orientada al
resultado. Rev. Internac. Métod. Numér. Cálc. Diseñ. Ingr., 22(2):193–213, 2006.
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Abstract This paper introduces a new goal-oriented adap-
tive technique based on a simple and effective post-process
of the finite element approximations. The goal-oriented char-
acter of the estimate is achieved by analyzing both the di-
rect problem and an auxiliary problem, denoted as adjoint
or dual, which is related to the quantity of interest. Thus,
the error estimation technique proposed in this paper would
fall into the category of recovery-type and explicit residual a
posteriori error estimates. The procedure is valid for general
linear quantities of interest and it is also extend to non-linear
ones. The numerical examples demonstrate the efficiency of
the proposed approach and discuss: 1) different error rep-
resentations, 2) assessment of the dispersion error, and 3)
different remeshing criteria.

1 INTRODUCTION

One of the major problems in acoustic simulations, and in
particular in problems governed by the Helmholtz equation,
is that the Galerkin method requires too fine meshes. This is
computationally unaffordable and undermines the practical
utility of the method. Often the rule of the thumb, which pre-
scribes the minimal discretization per wavelength, is used.
However, it is widely known that this rule is not sufficient to
obtain reliable results for large wave numbers due to disper-
sion and pollution errors [1–5]. Furthermore, non-uniform
meshes are required to resolve singularities or large gradi-
ents in the solution. This suggests using adaptivity to con-
trol accuracy and obtain optimalmeshes refining at the right
locations.

Lindaura Maria Steffens · Núria Parés · Pedro Dı́ez
Laboratori de Càlcul Numèric
Departament de Matemàtica Aplicada III
Universitat Politècnica de Catalunya, Barcelona, Spain
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The basic scheme of the adaptive procedure is: first, es-
timate the discretization error; second, develop the strategy
associated with the h-adaptive refinement, which determines
the elements to be refined; and finally, generate a new mesh.
Obviously, the most important ingredient in any adaptive
procedure is a reliable error estimation procedure.
Goal-oriented adaptivity is related with controlling the

error in a given quantity of interest, and optimal refinement
techniques should only refine the areas affecting this quan-
tity. Moreover, error assessment for the quantity of interest
provides both the global error quantity and the local contri-
butions to the error in the quantity of interest in each ele-
ment. These local quantities are used to design the adaptive
procedure.
While some progress has been done in assessing the glo-

bal accuracy of finite element approximations for the Hel-
mholtz equation [6–10], there exist very few literature con-
cerning a posteriori goal-oriented error estimation for the
Helmholtz equation [11–14]. For instance, [12] provides a
strategy to compute asymptotic bounds for linear and non-
linear quantities of interest based on the equilibrated resid-
ual method. Another example is [13] which proposes a goal-
oriented adaptive technique for modeling the external hu-
man auditory system by the boundary element method.
The remainder of the paper is structured as follows: sec-

tion 2 introduces the description of the problem to the solved.
Section 3 presents a general framework for assessing the er-
ror in general linear and non-linear quantities of interest.
Different representations for the linear contribution to the
output are introduced in section 4. Section 5 is devoted to
obtain error estimates for general outputs using the different
error representations given in section 4. The adaptive strat-
egy is introduced in the section 6, where local indicators and
several strategies of refinement are defined. Finally, in sec-
tion 7 the proposed procedure for goal-oriented adaptivity
is tested in some numerical examples. The relation between



2

the different error representations and the dispersion error of
the direct and adjoint problems is also discussed.

2 PROBLEM STATEMENT

The propagation of acoustic waves is governed by the wave
equation describing the evolution of the acoustic pressure p
as a function of the position x and time t. The harmonic as-
sumption states that for a given angular frequencyω , p(x,t)=
u(x)eiωt , where the new unknown u(x) is the complex am-
plitude of the acoustic pressure. For an interior spatial do-
main Ω , u(x) is the solution of the Helmholtz equation

−Δu−κ2u= f in Ω , (1)

taking the acoustic wave number κ = ω/c where c is the
speed of sound. Equation (1) is complemented with the fol-
lowing boundary conditions

u= uD on ΓD, (2a)
∇u ·n= g on ΓN , (2b)
∇u ·n= mu+ β on ΓR, (2c)

where ΓD, ΓN and ΓR are a disjoint partition of the boundary
where Dirichlet, Neumann and Robin boundary conditions
are applied respectively. The outward unit normal is denoted
by n and uD, f ,g,m and β are the prescribed data, which are
assumed to be sufficiently smooth.
The boundary value problem defined by equations (1)

and (2) is readily expressed in its weak form introducing the
solution and test spacesU := {u∈H 1(Ω),u|ΓD = uD} and
V := {v ∈ H 1(Ω),v|ΓD = 0}. HereH 1(Ω) is the standard
Sobolev space of complex-valued square integrable func-
tions with square integrable first derivatives. The weak form
of the problem then reads: find u ∈ U such that

a(u,v) = �(v) ∀v ∈ V ,

where the sesquilinear form a(·, ·) and antilinear functional
�(·) are defined as

a(u,v) :=
∫

Ω
∇u ·∇v̄dΩ −

∫
Ω

κ2uv̄dΩ −
∫

ΓR
muv̄dΓ ,

�(v) :=
∫

Ω
f v̄ dΩ +

∫
ΓN
gv̄dΓ +

∫
ΓR

β v̄ dΓ , (3)

and the symbol ·̄ denotes the complex conjugate.
The finite element approximation of u is found by first

discretizing the domain Ω into triangular or quadrilateral
elementsΩk, k= 1, . . . ,nel, nel being the number of elements
in the mesh. This mesh has an associated characteristic mesh
size H and induces the discrete functional spaces UH ⊂ U
and VH ⊂ V . The finite element approximation uH ∈ UH is
then such that

a(uH ,v) = �(v) ∀v ∈ VH .

3 ERROR ASSESSMENT FOR GENERAL
(NONLINEAR) QUANTITIES OF INTEREST

A posteriori error estimation techniques aim at assessing
the error committed in the approximation of u, e := u−uH ,
where e ∈ V is the solution of the primal residual problem

a(e,v) = �(v)−a(uH,v) =: RP(v) ∀v ∈ V , (4)

RP(·) standing for the weak residual associated to the finite
element approximation uH .
When applied to classical problems (in which a(·, ·) is

coercive) a first step in a posteriori assessment is estimating
the error measured in the energy norm, that is obtaining a
good approximation of e and computing a(e,e). However,
in acoustic problems, since the Helmholtz equation is not
elliptic, the form ||v||2 = a(v,v) does not define a squared
norm. There is no natural energy norm to measure the error.
Additionally, assessing the error measured in some func-

tional norm is not sufficient for many applications. In prac-
tice, the finite element user is interested in specific mag-
nitudes extracted from the global solution by some post-
process. These magnitudes are referred as quantities of in-
terest or functional outputs. Goal-oriented error assessment
strategies aim at estimating the error committed in these
quantities and possibly providing bounds for it.
The quantities of interest considered here are nonlinear

functional outputs of the solution, J(u), and the aim is to as-
sess the error committed when approximating these quanti-
ties using the finite element approximation. Specifically, the
goal is to assess and control the quantity

J(u)− J(uH).

For the purposes of this paper, it is convenient to make
the linear, quadratic and higher order terms contributions of
J(u) more explicit. To this end, J(u) is expanded introduc-
ing the Gateaux first and second derivatives of J(·) at uH ,
namely

J(uH+ v) = J(uH)+ �O(v)+Q(v,v)+W (v), (5)

where �O(v) = [DvJ](uH) · (v) and 2Q(v1,v2) = [D2vJ](uH) ·
(v1,v2), see [12,15]. Note that �O :H 1(Ω) → C and Q :
H 1(Ω)×H 1(Ω) → C are the linear and bilinear contri-
butions of J(·), respectively, and that the functionalW con-
tains the higher order terms. In the case of a linear output,
notice thatQ = W = 0.
Using this decomposition and taking into account that

u= uH+e, the error in the quantity of interest may be rewrit-
ten as

J(u)−J(uH)= J(uH+e)−J(uH)= �O(e)+Q(e,e)+W (e).
(6)
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Thus, it is clear that in order to estimate the error in the quan-
tity of interest, it is sufficient to estimate the linear, quadratic
and higher-order terms separately, �O(e),Q(e,e) andW (e)
respectively.
RequiringQ andW to beL 2-continuous, which in this

particular case is equivalent to |Q(v)| ≤ c1‖v‖20 and |Q(v)| ≤
c2‖v‖30 where ‖ · ‖0 denotes the L 2-norm, shows that the
quadratic and higher-order contributions to the error,Q(e,e)
andW (e), converge asO(H 4) andO(H6) respectively,whe-
reas the linear term �O(e) converges quadratically – recall
that the finite element method for a regular problem con-
verges quadratically in the L 2-norm. Thus, for sufficiently
small H the linear term provides a good inside to the error
in the output since the other terms are negligible.
The following sections are devoted to describe the error

assessment techniques to estimate J(e) (linear and higher or-
der contributions) and to provide local error estimators able
to effectively drive the adaptive procedures.

4 ERROR REPRESENTATION OF A LINEARIZED
OUTPUT AND ADJOINT PROBLEM

This section presents alternative representations for the lin-
ear contribution to the error in the output �O(e). This al-
ternative representations do not directly yield computable
expressions for the estimates of the output because they de-
pend on the exact errors on the primal and adjoint problems.
However, estimates may be easily recovered using existing
techniques providing approximations for the errors, as de-
scribed in the following section.
The quantities of interest considered here are such that

their linear part is expressed as

�O(v) =
∫

Ω
fOvdΩ +

∫
ΓN
gOvdΓ +

∫
ΓR

β OvdΓ , (7)

where fO , gO and β O are given functions characterizing the
linearized quantity of interest. Note that �O(v) has the same
structure as �(v), see equation (3), excepting the conjugate
in its argument. Thus, �O is a linear functional whereas � is
a anti-linear functional.
Most existing techniques to estimate the error in a quan-

tity of interest introduce an alternative representation for
�O(e). In practice, different error representations are used
to properly estimate �O(e). These error representations re-
quire introducing an auxiliary problem, denoted as adjoint
or dual problem which reads: find ψ ∈ V such that

a(v,ψ) = �O(v) ∀v ∈ V , (8)

which is equivalent to determine the adjoint solution ψ ver-
ifying the Helmholtz equation

−Δψ −κ2ψ = f̄O in Ω ,

complemented with the boundary conditions

ψ = 0 on ΓD, (9a)

∇ψ ·n= ḡO on ΓN , (9b)

∇ψ ·n= m̄ψ + β̄ O on ΓR. (9c)

In order to assess the error in the quantity of interest the
adjoint solutionψ is approximated numerically by ψH ∈ VH
such that

a(v,ψH) = �O(v) ∀v ∈ VH ,

introducing the adjoint error ε := ψ −ψH solution of the
adjoint residual problem

a(v,ε) = �O(v)−a(v,ψH) =: RD(v) ∀v ∈ VH , (10)

whereRD(·) is the weak adjoint residual associated withψH .
The adjoint problem is introduced such that the follow-

ing error representation holds:

�O(e) = a(e,ψ) = a(e,ε)

where the Galerkin orthogonality of the adjoint approxima-
tion ψH is used in the last equality. In turn, this error repre-
sentation allows assessing the error in terms of the residuals
of the direct and adjoint problems, namely

�O(e) = a(e,ε) = RP(ε) = RD(e). (11)

These representations are obtained substituting v = ε in (4)
and v= e in (10) respectively.

5 RECOVERY TYPE: ERROR ESTIMATES FOR
LINEAR AND NONLINEAR OUTPUTS

A posteriori assessment of quantities of interest relies on ob-
taining a good approximation of J(u)− J(uH). This trans-
lates in finding a new enhanced solution u∗, based on the
information at hand, that is uH , and such that u∗ approx-
imates the actual solution u much better than uH . Thus, a
computable error estimate is readily obtained

e≈ e∗ = u∗ −uH

yielding also the corresponding estimate for the quantity of
interest

J(u)− J(uH) ≈ �O(e∗)+Q(e∗,e∗)+W (e∗). (12)

This approximation of the error in the quantity of interest is
obtained from equation (6) substituting the actual error e by
its approximation e∗.
Thus, the key issue in any error estimation technique

is to produce a properly enhanced solution u ∗ (or in some
cases obtaining an enhanced approximation of the gradient
of the solution q∗ ≈ ∇u suffices). The strategies producing
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the enhanced solution u∗ (or q∗ respectively) are classified
into two categories: recovery type estimators and implicit
residual type estimators. Recovery techniques, based on the
ideas of Zienkiewicz and Zhu [16–18], are often preferred
by practitioners because they are robust and simple to use.
On the other hand, a posteriori implicit residual-type esti-
mators have a sounder mathematical basis and produce esti-
mates that are upper or lower bounds of the error [19–23].At
first glance on could think that, once the enhanced solutions
u∗ or q∗ are obtained either using recovery or residual-type
error estimators, estimates for the error in the quantity of
interest may be directly obtained using equation (12). How-
ever, as mentioned in section (4), this representation does
not provide sound results. This is because inserting the en-
hanced error e∗ (or its gradient q∗) in the functionals �O(·),
Q(·, ·) and W (·) may not yield accurate results even when
the enhanced approximation u∗ provides a reasonable ap-
proximation of u in terms of energy. In practice, since the
most-contributing term to the error in the quantity of inter-
est is the linear term, alternative representations are used for
this term, as the ones described in section (4), whereas no
additional effort is done in the higher-order terms.
The linear term �O(e) may be assessed by any of the

following strategies:

1. Compute the primal enhanced solution u∗ to obtain e∗ =
u∗ − uH and evaluate �O(e∗). This option is readily dis-
carded as announced previously

2. Compute the primal enhanced solution u∗ to obtain e∗
and evaluate RD(e∗).

3. Compute the adjoint enhanced solutionψ ∗ to obtain ε∗ =
ψ∗ −ψH and evaluate RP(ε∗).

4. Compute both the primal and enhanced errors e ∗ and ε∗

and evaluate a(e∗,ε∗).

In this work, the strategies presented in [24,25] are used
to recover the enhanced solutions u∗ and ψ∗ from uH and
ψH respectively. A simple and inexpensive post-processing
technique is used to recover the approximations u ∗ andψ∗ of
u andψ in a finer referencemesh of associated characteristic
mesh size h << H. Thus, u∗ ∈ Uh and ψ∗ ∈ Vh, where Uh
and Vh are the discrete functional spaces associated to the
finer reference mesh, UH ⊂ Uh ⊂ U and VH ⊂ Vh ⊂ V .
As mentioned before, for sufficiently refinedmeshes, the

error in the quantity of interest is controlled by the linear
term, since the quadratic and higher-order contributions con-
verge faster to zero, see section (3). For this, the proposed
approach is to make use of the available estimate e∗ to ob-
tain a simple and inexpensive estimate of the non-linear con-
tributions. Namely, the quadratic and higher-order contribu-
tions to the error in the output, Q(e,e) and W (e) respec-
tively, are assessed using the reconstruction of the primal
error e∗ used to assess the linear part of the error, namely

Q(e,e) ≈ Q(e∗,e∗) and W (e) ≈ W (e∗).

6 LOCAL INDICATORS AND ADAPTIVITY
CRITERIA

Adaptive mesh refinement is nowadays an essential tool to
obtain high-fidelity simulations at the lesser cost. The main
ingredients of the proposed adaptive procedure are: the h-
refinement, that is, the new meshes are obtained by subdi-
viding the elements of the mesh; optimal indicators, the re-
finement is organized with the aim of achieving equal error
in each element of new mesh; iterative process, the target in
each step of refinement is to reduce the global error until the
calculated error drops below the tolerance specified by the
user.
Additionally, assessing the error measured in some func-

tional norm is not sufficient for many applications. In prac-
tice, the finite element user is interested in specific mag-
nitudes extracted from the global solution by some post-
process. These magnitudes are referred as quantities of in-
terest or functional outputs. Goal-oriented error assessment
strategies aim at estimating the error committed in these
quantities and possibly providing bounds for it.
This requires obtaining local error indicators allowing to

decide the elements to bemarked for refinement – those with
larger contribution to the total error. In order to determine
the contribution of every element to the total error, spatial
error distributions of the estimates are derived decomposing
the global estimates into a sum of local contributions in each
element of the mesh induced by UH .
The estimates for the error in the quantity of interest are

of the form

J(u)− J(uH) ≈ �O(e∗)+Q(e∗,e∗)+W (e∗),

where the linear term �O(e∗) is replaced by either a(e∗,ε∗),
RP(ε∗) or RD(e∗), depending on the selected representation
of the linear term. Since the linear term is the driving term
of the error in the quantity of interest, in this work, the adap-
tive procedure is chosen to be driven by �O(e∗). That is, the
global estimate for the linear term �O is decomposed into
a sum of local contributions in each element. These local
quantities are used to design the adaptive procedure.

6.1 Local Indicators

The natural restriction to every element Ω k of the integral
forms a(·, ·), �(·) and �O(·) yield the elementary contribu-
tions denoted by ak(·, ·), �k(·) and �O

k (·) such that

a(u,v) =
nel
∑
k=1
ak(u,v), �(v) =

nel
∑
k=1

�k(v), �O(v) =
nel
∑
k=1

�O
k (v).

Similarly, the primal and adjoint residuals are decom-
posed as

RP(v) =
nel
∑
k=1
RPk (v) , RD(v) =

nel
∑
k=1
RDk (v),
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whereRPk (·) := �k(·)−ak(uH , ·) andRDk (·) := �O
k (·)−ak(·,ψH).

Hence, the error representations for the linear contribu-
tion of the error in the quantity of interest given in equation
(11) are associated to the elementary error distributions

�O(e) =
nel
∑
k=1

�O
k (e) =

nel
∑
k=1
ak(e,ε) =

nel
∑
k=1
RPk (ε) =

nel
∑
k=1
RDk (e).

It is worth mentioning that, while the global error quanti-
ties are equal in all the representations, the local quantities
�O
k (e), ak(e,ε), RPk (ε) and RDk (e) represent different elemen-
tary contributions to the error and, besides, they are not nec-
essarily positive nor even real numbers.
From the four possible representations of the linear con-

tribution of the error �O(e), in this work only the two expres-
sions involving the primal and adjoint residuals are used,
thus yielding the global estimates

ηε := RP(ε∗) and ηe := RD(e∗), (13)

and its associated local error indicators η ε
k := RPk (ε

∗) and
ηek := R

D
k (e∗), such that

ηε :=
nel
∑
k=1

ηε
k and ηe :=

nel
∑
k=1

ηek . (14)

Remark 1 The local elemental contributions η ε
k andη ek are

the natural decomposition of the estimates η ε and η e to the
elements. However, the computation of the local contribu-
tions ηε

k and η ek requires the computation of local integral
forms. This can be done either by storing the elemental con-
tributions to the system matrices and vectors or by recom-
puting these contributions in an elementary loop. A cheaper
and more natural to implement alternative is to decompose
the estimates ηε and η e into nodal contributions. This is
because it uses the finite element nature of the estimates η ε

and η e. In practice, the estimates e∗ and ε∗ are computed in
a finer reference mesh associated with the space Vh, namely
e∗ = ∑ j e∗jφh, j and ε∗ = ∑ j ε∗j φh, j , where φh, j are the shape
functions associated with the nodes of the reference mesh,
xh, j. Thus, a natural decomposition of the estimates η ε and
ηe into nodal contributions on the reference mesh holds

ηε = ∑
j

ε∗j RP(φh, j) =:∑
j

ηε
xh, j

and

ηe = ∑
j
e∗jRD(φh, j) =: ∑

j=1
ηexh, j .

Note that ηε
xh, j and η exh, j are readily computed multiplying

the j-th components of the finite element vectors associated
to ε∗ and RP(·) and e∗ and RD(·) respectively.
Then, the local elemental contributions associated to the el-
ement Ωk of the coarse mesh are computed from a weighted

average of the local nodal contributions η ε
xh, j and η exh, j as-

sociated to the nodes xh, j belonging to Ωk. To be specific

ηε = ∑
j

ηε
xh, j =

nel
∑
k=1

∑
xh, j∈Ωk

σh, jηε
xh, j =:

nel
∑
k=1

η̂ε
k , (15)

and

ηe = ∑
j

ηexh, j =
nel
∑
k=1

∑
xh, j∈Ωk

σh, jηexh, j =:
nel
∑
k=1

η̂ek , (16)

where σh, j is the inverse of the number of elements in the
coarse mesh to which a particular node xh, j belongs. For a
detailed description, see [26].

A simple adaptive strategy is employed, using the local
indicators ηε

k or ηek produced during the calculation of the
estimate for the output, to drive the non-linear output to a
prescribed precision. That is, the algorithm ends if
nel
∑
k=1

η�
k +Q(e∗,e∗)+W (e∗) < Δtol,

where η�
k stands for any of the following local contributions

ηε
k , ηek , η̂ε

k or η̂ek , Δtol is a user-prescribed desired final ac-
curacy, and at each level of refinement, the elements marked
for refinement are those with larger values of the local linear
contribution η�

k .

6.2 Remeshing criterion

In acoustic problems, the local contributions are not neces-
sarily positive and in fact, in contrast to what occurs in ther-
mal or elasticity problems, they can be complex numbers.
To select the elements with larger local contributions, the
modulus of the values η �

k is considered, and the elements
selected to be refined are the ones verifying

|η�
k | ≥

nel
∑
k=1

|η�
k |

nel
. (17)

Note that this marking algorithm aims at obtaining elements
with equal local error contribution.However, this is not equiv-
alent to obtaining a uniform spatial error distribution, since
the elements with larger area are penalized. In order to ob-
tain a uniform spatial error distribution, the local contribu-
tions are weighted by the element area yielding the follow-
ing marking criterion: the elements to be subdivided are the
ones verifying

|η�
k |
Ak

≥

nel
∑
k=1

|η�
k |

AΩ
, (18)

where Ak is the area of the elementΩk and AΩ is the area of
the whole domainΩ . Note that expressions (17) and (18) are
equivalent in uniform meshes where all the elements have
the same area since in this case Ak = AΩ /nel is constant.
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7 NUMERICAL EXAMPLES

The performance of the estimates and error indicators de-
scribed above is illustrated in three numerical examples. The
quantities of interest are expressed as linear and quadratic
functionals of the solution u. In particular, three different
engineering outputs are considered. The first output is the
integral of the solution over a subdomainΩ O ⊂ Ω

J1(u) =
∫

ΩO
udΩ , (19)

that is, the data entering in (7) are gO = β O = 0 and fO =
1 in ΩO and fO = 0 elsewhere. Since the output depends
linearly on u, �O

1 (v) = J1(v) andQ1(v,v) = W1(v) = 0 in (5).
Note that eventuallyΩ O can beΩ to compute an average of
the solution over the whole domain.
The second output is the average of the squared modulus

of the solution over a boundary strip Γ O ⊂ ΓN ∪ΓR

J2(u) =
1
lΓ O

∫
Γ O
uūdΓ (20)

where lΓ O is the length of the boundary strip. Since this out-
put depends quadratically on u,W2(v) = 0 and the linear and
quadratic contributions are

�O
2 (v) =

1
lΓ O

∫
Γ O

(uHv̄+ ūHv)dΓ , Q2(v,v) = J2(v).

Indeed, appealing to (5)

J2(uH + v) =
1
lΓ O

∫
Γ O

(uH + v)(uH+ v)dΓ

=
1
lΓ O

∫
Γ O

(uHūH +uHv+ vūH+ vv) dΓ

= J2(uH)+
1
lΓ O

∫
Γ O

(uHv̄+ ūHv)dΓ + J2(v).

It is worth noting that the error estimation procedure de-
scribed above can not be directly applied to this output as it
stands since the linear functional �O

2 (·) can not be expressed
in the form of (7). A simple workaround to overcome this
limitation is adopted noting that �O

2 (v) is a real number co-
inciding with

�O
2 (v) = 2ℜe

(
1
lΓ O

∫
Γ O
ūHvdΓ

)
.

The adjoint problem is then defined with respect to the aux-
iliary linear functional

∫
Γ O ūHvdΓ /lΓ O which corresponds

to fO = 0, β O = ūH/lΓ O onΓ O ∩ΓR and zero elsewhere and
gO = ūH/lΓ O on Γ O ∩ΓN and zero elsewhere.
The third output is the normalized squaredL 2-norm of

the solution over a regionΩ O

J3(u) =
1
AΩO

∫
ΩO
uūdΩ (21)

where AΩO stands for the area of the subdomainΩ O . Again,
since the output is quadratic,W3(v) = 0 and

�O
3 (v) =

1
AΩO

∫
ΩO

(uHv̄+ ūHv)dΩ , Q3(v,v) = J3(v).

The derivation is analogous to the one provided for J 2(·)
except for the integrals being placed over a subdomain of
Ω instead of its boundary. As in the second output, the ad-
joint problem is defined with respect to the modified func-
tional

∫
ΩO ūHvdΩ/AΩO , for which the data entering in (7)

are gO = β O = 0 and fO = ūH/AΩO in ΩO and fO = 0
elsewhere.

Remark 2 The second and third outputs J2(u) and J3(u)
are real quantities since they only involve the squared mod-
ulus of the solution. In particular, all the involved function-
als, are real functions of a single complex variable, that is,
for instance �O

2 : C → R. As mentioned above, in this case,
the adjoint problem is defined with respect to an auxiliary
non-real linear functional output. The original linear func-
tional (and all the required estimates and local indicators) is
recovered from this auxiliary functional taking the real part
and multiplying by a factor two.

When reporting the numerical results, η ε
pol = RP(ε∗pol),

ηε
exp = RP(ε∗exp), ηepol = RD(e∗pol) and ηeexp = RD(e∗exp) de-
note the estimates of the linear contribution to the error in
the quantity of interest η := �O(e) obtained by using the
post-processing strategy described in [24,25]. The subinde-
ces exp and pol indicate the kind of approximation used in
the least squares fitting: either polynomial both for the real
and imaginary part of the solution or a complex-exponential
fitting (polynomial fitting for the logarithm of the modulus
and for the angle). In order to see how well the estimators
perform, the value of the true error J(u)−J(uH) or �O(e) are
required, but the analytical solutions of the considered prob-
lems are not available. An accurate value for the true error
is obtained by making use of a sufficiently accurate approx-
imation uh of u in a finer reference mesh, that is, the esti-
mates are compared with the reference values J(uh)−J(uH)
and ηh := �O(eh) respectively.
Note that this reference value can also be recovered from

a faithful representation of the adjoint problemψ h since ηh=
�O(eh) =RP(ψh) =RP(εh). In the examples, the approxima-
tions u∗ and ψ∗ used to recover the estimates of the errors
e∗ = u∗ − uH and ε∗ = ψ∗ −ψH and its corresponding es-
timates for the output η e = RD(e∗) and ηε = RP(ε∗), are
also computed using the same reference mesh. Noting that
ηh = RD(eh) = RP(εh) reveals that the quality of the esti-
mates depends on the quality of the approximations e ∗ ≈ eh
and ε∗ ≈ εh. The accuracy of these approximations is closely
related to the so-called pollution or dispersion error. Since
the approximations u∗ and ψ∗ are constructed using a con-
strained least-squares technique, the estimates for the error
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e∗ and ε∗ vanish at the nodes of the coarse mesh, yield-
ing crude approximations if the solutions presents large dis-
persion errors. In the examples, the influence of the disper-
sion error in the estimates for the quantity of interest is ana-
lyzed using the estimates for the dispersion error introduced
in [24,25]. These estimates are denoted by E e and Eε for
the primal and adjoint problems respectively. A detailed de-
scription of the computation of these estimates is given in
[25].

7.1 Square with obstacle

The first example is the scattering of a plane wave by a rigid
obstacle introduced in [12]. The incident wave travels in the
negative y-direction inside a square domain which contains
a rigid body, see figure 1.

Γ O

ΓN

ΓR

Ω

0.050.05
0.1

0.2

0.20.3

0.40.4

0.4

0.4

0.5

ui

Fig. 1 Example 1: Description of the geometry and boundary condi-
tions for the plane wave scattering by a rigid body.

The solution of the problem is composed of a prescribed
incident wave plus a scattered wave, u = ur + ui, where ur
and ui are the so-called reflected and incident waves respec-
tively. The incident wave is of the form ui = eiκ(cosαx+sinαy),
where κ is the wave number and α = π/2 is the incident
wave direction. To reproduce the scattering nature of the
problem, no essential boundary conditions are imposed and
it is assumed that there are no sources in the domain, f = 0
in equation (1), and that the rigid obstacle is perfectly re-
flecting. This is, ∇u ·n= 0 or, in terms of the incident wave,
∇ur ·n=−∇ui ·n onΓN . On the exterior boundary,Robin ab-
sorbing boundary conditions are applied. Thus, the reflected
wave ur is the solution of the Helmholtz equation (1) for

f = 0 and ΓD = /0 and where the data entering in (2) are
g= −∇ui ·n, m= −ik and β = 0.
To demonstrate the dependence of the results on the wave

number, two values of the wave number are considered: κ =
π and κ = 3π . Both the reflected and total waves obtained
for this problem in a mesh of 9825 nodes are shown in figure
2.

Fig. 2 Example 1: Real part (top), imaginary part (middle top) and
modulus of the scattered solution ur (middle bottom), that is, ℜe(ur),
ℑm(ur) and |ur|, and modulus of the total solution |u| (bottom) for
κ = π (left) and κ = 3π (right), computed using the Galerkin method
and a mesh of 9852 nodes.

For this problem, two different quantities are considered:
the average of the reflected solution over the whole domain,
that is J1(ur) forΩ O = Ω , which is a linear quantity of inter-
est, and the average of the squared modulus of the reflected
solution over the boundary stripΓ O depicted in figure 1, that
is, J2(ur), which depends quadratically on ur.
The behavior of the estimates for the linear quantity of

interest J1(ur) is first analyzed for a uniform mesh refine-
ment in a series of unstructured triangular meshes for the
value κ = π . Three triangular meshes are considered, start-
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ing from an initial mesh of 636 nodes and obtaining the sub-
sequent meshes by refining each triangle into four new ones,
see figure 3.

Fig. 3 Example 1: Initial mesh of 636 nodes and subdivision of each
triangle into four new ones for the uniform mesh refinement.

The finite element approximation of the adjoint solution
computed at the final mesh of the refinement procedure of
9825 nodes is shown in figure 4.

Fig. 4 Example 1: Real part (left), imaginary part (middle) and mod-
ulus (right) of the adjoint solution associated to the first quantity of
interest J1(ur) for κ = π computed using the Galerkin method and a
mesh of 9852 nodes.

Table 1 shows the estimates obtained for the error in the
quantity of interest J1(ur). Since the quantity of interest is
linear, in this case, the estimates coincide with those for the
linear term. Thus, the estimates given by the different error
representations (13) are compared with the reference value
ηh. For each coarse mesh, the reference value is obtained by
computing and approximation uh of u in a finer mesh (each
element of the coarse mesh is subdivided into 16 new ones
which corresponds to h = H/4). Also the table shows the
estimates for the dispersion error for the primal and adjoint
problem Ee and Eε respectively.
As can be seen, the estimates for the error in the quan-

tity of interest underestimate the reference value both for the
polynomial and exponential fitting. However, as reported in
[25] the exponential fitting provides better results, although
in this example the improvement is not that substantial when
compared to the reference value. The estimates for the dis-
persion error are also shown in the table. Looking at the dis-
persion errors provided by the exponential fitting, the disper-
sion for the primal problem ranges from a 28% for the first
mesh to a 5% for the final mesh and for the adjoint prob-
lem are below 0.3% in all the meshes. Although the dis-
persion is larger in the primal problem, for both problems

number of nodes
636 2445 9852

κhmax = 0.18 κhmax = 0.09 κhmax = 0.05
ηh 5.06e-4 + 7.90e-4i 2.04e-4 + 3.09e-4i 8.14e-5 + 1.22e-4i

ηε
pol 2.78e-4 + 5.41e-4i 1.03e-4 + 1.79e-4i 3.93e-5 + 6.23e-5i

ηε
exp 3.49e-4 + 5.68e-4i 1.12e-4 + 1.85e-4i 4.00e-5 + 6.22e-5i

ηepol 2.32e-4 + 4.44e-4i 9.76e-5 + 1.68e-4i 3.82e-5 + 6.02e-5i
ηeexp 2.72e-4 + 5.31e-4i 1.02e-4 + 1.77e-4i 3.92e-5 + 6.21e-5i
Eε
pol -3.17e-2 -3.25e-3 7.93e-4
Eε
exp -9.33e-3 1.84e-3 -3.43e-4
Eepol -1.34e+0 -4.08e-1 -1.26e-1
Eeexp -8.95e-1 -3.15e-1 -1.50e-1

Table 1 Example 1: Estimates for the error in the linear quantity of
interest J1(ur) = �O

1 (ur). The table shows the reference value for the
error in the quantity of interest ηh along with its different estimates.
Also, the estimated dispersion error associated to the primal and adjoint
problems are given, namely Eε

pol and E
e
exp.

the ratio κhmax << 1, in fact in average, κhave = 0.08,0.04
and 0.02. This explains that, although the dispersion error is
significantly smaller in the adjoint problem, the difference
between quality of the representations η ε with respect to η e
are only slightly better. Indeed, since all the meshes properly
satisfy the rule of thumb, the dispersion error is negligible in
front of the errors appearing from the singular nature of the
solution. The main source of error for this problem is not
the dispersion error, and thus, even though the dispersion is
smaller in the adjoint problem, the estimate ε ∗ does not pro-
vide a much better approximation of εh than e∗ is of eh. In
fact, it is worth noting that most of the estimated dispersion
errors are negative, yielding to finite element solutions with
associated numerical wave number larger wave number than
κ , opposing the predicted behavior given by a-priori esti-
mates. This phenomena only appears when dispersion is not
relevant for the problem at hand. When dispersion errors are
important, the finite element method behaves as predicted
by the a-priori estimates providing approximations with as-
sociated numerical wave number smaller than κ .

Figure 5 shows the local elementary contributions to the
error in the quantity of interest for the initial mesh of 636
nodes. Both the local contributions of the reference values
ηε
h and ηeh and its estimates (obtained using the polyno-
mial and the exponential fitting) computed using the rep-
resentations given in Remark 1, equations (15) and (16), are
shown. Note that even though the global error quantities η ε

h
and ηeh are equal, they represent different elementary con-
tributions to the error. The spatial distribution of the esti-
mates is in good agreement with the reference ones: they
properly detect the elements with larger contributions to the
error even though the obtained elemental contributions un-
derestimate its reference value. The local contributions ob-
tained using the natural restriction of the global estimates
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to the elements given in equation (14) are also shown in
figure 6 for η ε

h , ηε
pol and ηε

exp. Again, although the global
values coincide with those computed distributing the nodal
contributions over the elements, the obtained local distribu-
tions is not the same. As can be seen, the use of the easier
and cheaper to compute local contributions described in re-
mark 1 provides fairly good approximations to the natural
restriction of the global quantities to the elements, yielding
a nearly equivalent distribution of elements to be refined in
the adaptive procedure. In this example, the natural decom-
position yields higher values of the modulus of the elemen-
tary contributions |ηk| since the local distribution presents
larger positive and negative contributions ηk in neighboring
elements. The averaging involved in the nodal-to-element
representation, smoothes out this larger values yielding a
more uniform distribution. Henceforth in this example, all
the local contributions shown in the numerical examples are
computed using the nodal-to-element representation instead
of the natural representation.

0.5

1

1.5

2

2.5

3

3.5

x 10−5

Fig. 5 Example 1: Local maps of the error in the linear quantity of in-
terest J1(ur). The distributions on the top are obtained using the repre-
sentation ηε , that is, ηε

h (left), η
ε
pol (middle) and ηε

exp (right) are shown.
The distributions on the bottom correspond to ηe, that is, η eh (left), η

e
pol

(middle) and ηeexp (right) are shown.
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Fig. 6 Example 1: Local maps of the error in the linear quantity of in-
terest J1(ur) computed using the restrictions of the integrals over the
elements (14). The distributions on the top are obtained using the in-
tegral representation ηε , that is, ηε

h (left), ηε
pol (middle) and ηε

exp are
shown.

Figure 7 shows the elements with larger values of the
estimates weighted by its area, |η�

k |/Ak. In particular, the
elements marked for refinement if 1%, 5%, 10% and 25%
of the total elements are refined are shown respectively. Al-
though the estimates underestimate the reference value for
the error, they provide good information to guide the adap-
tive procedures.

Fig. 7 Example 1: Elements marked for refinement if 1% (red), 5%
(red+blue), 10% (red+blue+green) and 25% (red+blue+green+yellow)
of the total elements are refined. The elements are selected using the
local maps of the error in the linear quantity of interest J1(ur) given in
figure 5, namely: ηε

h (top-left), ηε
pol (top-middle), ηε

exp (top-right), ηeh
(bottom-left), ηepol (bottom-middle) and ηeexp (bottom-right).

The convergence of the estimates is shown in figure 8.
Two refinement strategies are implemented: first, the meshes
are uniformly refined whereby each triangle is subdivided
into four sub-triangles at each step and second, the meshes
are adaptively refined using the criterion given in equation
(18). The singular nature of the solution yields an order of
convergence for the uniform mesh refinement of O(H 4/3)
for the quantity of interest, which is equivalent toO((nnp)2/3)
where nnp denotes the number of nodes of the mesh, in-
stead of the standard convergence rate of O(H 4) obtained
for regular solutions. As expected, the use of an adaptive
refinement strategy leads to a faster reduction of the error
in the quantity of interest than if a uniform refinement is
used. Again it can be seen that, in this example, all the esti-
mates provide similar results providing an underestimation
of the reference values. For comparison, the adaptive algo-
rithm guided by the reference errors η e

h and ηε
h are also run.

Comparing the convergence curves obtained for these two
local indicators and the ones produced by the estimates, it
can be seen that the estimates perform optimally since they
lead to even slightly better convergence ratios than the ref-
erence errors.
The series of adapted meshes produced by the local in-

dicator associated to η ε
exp = RP(ε∗exp) subdividing at each

remeshing step the elements satisfying the criterion given by
equation (18) are shown in figure 9. The adaptive procedure
is started from the initial mesh shown in figure 3 and pro-
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Fig. 8 Example 1: Performance of the estimators for the error in the
quantity of interest J1(ur) with a uniform and an adaptive refinement
strategies. The estimates are compared with the reference values.

duces six new adapted meshes. The meshes obtained using
the other local error indicators are virtually identical and are
therefore not shown. Since the quantity of interest is the non-

Fig. 9 Example 1: Sequence of adapted meshes obtained using the lo-
cal error indicators provided by the estimate ηε

exp with 857, 1579, 3229,
5870, 9226 and 13852 nodes respectively, for the quantity of interest
J1(ur).

weighted average of the solution over the whole domain, the
meshes are refined in the areas where the primal solution
presents larger errors, that is, at the neighborhood of the ob-
stacle where the singularities occur.
The performance of the estimates is also studied for the

non-linear quantity of interest J2(ur). Figure 10 shows the
finite element approximation of the adjoint solution com-
puted using a finite element mesh of 9825 nodes for the two
wave numbers κ = π and κ = 3π . Recall that, the adjoint
solution associated with a non-linear output is defined us-
ing its linear approximation, and in this case, the r.h.s. of
the adjoint problem (8) is given by the auxiliary linear func-
tional

∫
Γ O ūHvdΓ /lΓ O . Thus, the adjoint solution varies for

each finite element approximation uH and the adjoint so-
lution shown in figure 10 only corresponds to the adjoint
problem associated to the finite element approximation uH
computed using the mesh of 9825 nodes.

Fig. 10 Example 1: Real part (left), imaginary part (middle) and mod-
ulus (right) of the adjoint solution associated to the second quantity of
interest J2(ur) for the two parameters κ = π on the figures on the top
and κ = 3π on the bottom figures computed using the Galerkin method
and a mesh of 9852 nodes. The adjoint problem is defined with respect
to the auxiliary functional

∫
Γ O ūHvdΓ /lΓ O .

In order to illustrate the influence of the different terms
contributing to the error in the quantity of interest, the linear
and quadratic contributions to the error along with the ”full”
error are shown separately for the parameter κ = π . As pre-
dicted by the theory, the total error is guided by the linear
contribution, whereas the quadratic contribution is negligi-
ble since it converges faster to zero. As occurs with the first
quantity of interest J1(ur), the rate of convergence of these
two terms are not the expected since the solution is sin-
gular: the finite element approximation has a convergence
rate of O(H2/3) and therefore the linear and quadratic con-
tributions to the output converge as O(H 4/3) and O(H8/3)
respectively, as can be appreciated in the obtained results.
The same behavior is observed when the reference values
are substituted by its estimates.
Neglecting the higher order terms yields the following

approximation of the reference value of the quantity of in-
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nnp �O
2 (eh) Q2(eh,eh) J2(uh)− J2(uH )

636 1.6572e-3 3.5279e-5 1.6925e-3
2445 6.8740e-4 5.7170e-6 6.9311e-4
9582 2.7799e-4 9.1190e-7 2.7891e-4

Table 2 Example 1: Influence of the linear and quadratic terms to the
total error in the nonlinear quantity of interest J2(ur) for κ = π .

terest

J2(uh) = J2(uH)+ �O
2 (eh)+Q2(eh,eh)

≈ �O
2 (uH)+ �O

2 (eh) = �O
2 (uH)

(
1+

�O
2 (eh)

�O
2 (uH)

)
.

Thus, the relative error ρh := �O(eh)/�O(uH) provides a good
inside of the error in the quantity of interest. Table 3 shows
the values of the reference relative error and its correspond-
ing estimates ρε

exp = ηε
exp/�O

2 (uH) and ρ eexp = ηeexp/�O
2 (uH)

alongwith the estimates for the relative dispersion error ρ Eε
pol=

Eε
pol/κ and ρEepol = E

e
pol/κ both for κ = π and for κ = 3π .

κ = π
nnp ρh ρε

exp ρeexp ρEε
exp ρEeexp

636 0.0411 0.0210 0.0189 -0.0247 -0.2849
2445 0.0170 0.0084 0.0080 -0.0089 -0.1003
9582 0.0069 0.0034 0.0033 -0.0039 -0.0479

κ = 3π
nnp ρh ρε

exp ρeexp ρEε
exp ρEeexp

636 0.1647 0.0584 0.0436 -0.0077 -0.0368
2445 0.0840 0.0387 0.0364 -0.0028 -0.0090
9582 0.0359 0.0167 0.0164 -0.0012 -0.0041

Table 3 Example 1: Estimates for the error in the linear term �O2 (eh)
relative to �O (uH )) and relative dispersion error for the primal and ad-
joint problem for a uniformly refined set of meshes.

The results are very similar to those obtained for the first
quantity of interest. The two representations for the linear
part of the quantity of interest η ε

exp and ηeexp corresponding
to the relative values ρ ε

exp and ρ eexp. The errors are larger
for κ = 3π but the estimates behave similarly: the represen-
tation using the recovered adjoint error ε ∗ is slightly bet-
ter than the representation using the recovered primal error
e∗ both underestimating the reference error. Also, since the
values of κhave remains below 0.25 for all the meshes, the
dispersion error is very small when compared to the errors
due to the singular behavior of the solution. Note that in-
creasing κ yields smaller negative dispersion errors since
for larger κ’s the numerical wave number underestimates
the true value yielding positive dispersion errors.
The convergence of the estimates for a uniform and an

adaptive procedure using the criterion given in equation (18)
are shown in figure 11 starting with the finite element mesh
shown in figure 3. As in the results for the first quantity of
interest, the adaptive refinement leads to a faster reduction

of the error and it can be seen that the local indicators associ-
ated to the estimates behave properly since the convergence
curves of the estimates are in very good agreement with the
reference ones. Only the estimates for the exponential fit-
ting are shown since the polynomial fitting provide similar
but slightly worst results. Comparing the results for the two
different wave numbers reveals that for κ = 3π there is a
short range where the solution is in its pre-asymptotic stage
[7,27]. Note that the curves associated to the uniform refine-
ments converge with a slightly smaller rate than the asymp-
totic one (0.5 instead of 23 ).
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Fig. 11 Example 1: Convergence of the relative error for the quantity
of interest J2 for κ = π (left) and κ = 3π (right) for uniform and adap-
tive processes in the reference solution compared with the enhanced
solutions.

Figures 12 and 13 show the meshes produced by the
adaptive procedure associated to the estimateη ε

exp. The adap-
tive procedure refines the neighborhood of the obstacle but
also refines around the boundary strip where the solution is
evaluated to compute the quantity of interest. Additionally,
for κ = 3π , the procedure also refines the zones where the
solution has a larger oscillatory behavior faraway from the
obstacle.

Fig. 12 Example 1: Sequence of adapted meshes with 834, 1384, 2619,
4781, 7709 and 13212 nodes, respectively. The adaptive process is
driven by representation ηε

exp, corresponding to the linear contribution
�O
2 (·) for κ = π .
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Fig. 13 Example 1: Sequence of adapted meshes with 846, 1486, 2649,
4277, 6457 and 9718 nodes. The adaptive process is driven by rep-
resentation ηε

exp, corresponding to the linear contribution �O2 (·) for
κ = 3π .

7.2 Expansion chamber

The second example is a two-dimensional model of an ex-
pansion chamber with a perforated outlet pipe as shown in
Figure 14. The source term entering in equation (1) is f = 0,

prescribed
velocity
vn = 0.1m/s

ΩO absorbant

Fig. 14 Example 2: Description of the geometry and boundary condi-
tions for the expansion chamber.

and the Neumann and Robin boundary conditions entering
in equations (2b) and (2c) are of the form g= −iρκcv n and
∇u · n = iκu, respectively, where in this case the material
parameters are c= 340m/s standing for the speed of sound
of the medium and ρ = 1.225kg/m3 standing for the mass
density. An acoustic excitation is imposed at the inlet of the
chamber, associated to a velocity vn = 0.1m/s, whereas the
chamber is assumed to be perfectly reflecting at the outlet,
that is, Robin boundary conditions are applied to the out-
let of the chamber. The rest of the boundary is assumed to
be perfectly reflecting corresponding to vn = 0m/s. In the
computations, a wave number of κ = 2π f/c≈ 12.936, cor-
responding to a frequency of 700Hz, has been considered.
The quantity of interest is the normalized L 2-norm of

the squared modulus of the solution over a region surround-
ing the outlet of the pipe, see the subdomain Ω O shown in
figure 14, namely J3(u). Figures 26 and 27 show the Galerkin
approximations of the primal and adjoint problems for a
mesh of 1859 nodes respectively. Recall that the adjoint
problem is defined using the auxiliary linear functional∫

ΩO ūHvdΩ/AΩO . Along with the finite element approxi-

mations, the reference solutions obtained by refining each
element into 64 new ones and the reference errors are shown.
The dispersion error for this mesh is one of the main sources

ℜe(uH )

ℜe(uh)

ℜe(eh)

ℑm(uH )

ℑm(uh)

ℑm(eh)

Fig. 15 Example 2: Galerkin finite element approximation of the pri-
mal problem for a mesh of 1859 nodes (top). The middle figures are the
Galerkin approximation for a mesh obtained dividing each element into
64 new ones. The reference error with respect to this mesh is shown in
the bottom.

ℜe(ψH )

ℜe(ψh)

ℜe(εh)

ℑm(ψH )

ℑm(ψh)

ℑm(εh)

Fig. 16 Example 2: Galerkin finite element approximation of the ad-
joint problem for a mesh of 1859 nodes (top). The middle figures are
the Galerkin approximation for a mesh obtained dividing each element
into 64 new ones. The reference error with respect to this mesh is
shown in the bottom.

of errors both for the primal and adjoint problem, as can be
appreciated by the globally oscillating behavior of the er-
rors.
Table 4 shows the estimates obtained for the quantity of

interest J3(u) using three uniformly refined meshes, start-
ing from the mesh shown in figure 17. As can be seen the
estimates computed using the two proposed representations
an exponential fitting are in very good agreement with the
reference values, where the reference mesh is obtained from
the finite element mesh subdividing each element into 16
new ones. Also, the errors for the quantity of interest are
shown, highlighting the linear term contribution. As can be
seen, the linear term provides a very good inside to the to-
tal error since the quadratic term converges rapidly to zero.
Since the dispersion error is an important source of error for
this problem, the dispersion error is closely associated to the
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behavior of the representations η ε and ηe. For the two first
meshes, the dispersion error is smaller for the adjoint prob-
lem which causes the representation η ε to be more accurate
than ηe. Conversely, for the third mesh, the dispersion er-
ror is smaller for the primal problem and the representation
which uses the enhanced primal error e∗, ηe, provide more
accurate results. Thus, the dispersion error can be used to
chose the error representation from which to obtain the ap-
proximation for the output.

Fig. 17 Example 2: Initial mesh for the uniform and adaptive proce-
dures of 494 nodes.

number of nodes
494 1859 7193

J(uh) 2.2067e+3 2.2588e+3 2.2763e+3
J(uH ) 1.8796e+3 2.1128e+3 2.2067e+3

J(uH ) + ηε +Q(e∗ ,e∗) 2.1548e+3 2.1967e+3 2.2611e+3
J(uH ) + ηe +Q(e∗ ,e∗) 2.1082e+3 2.1961e+3 2.2622e+3

J(uh) - J(uH ) 3.2701e+2 1.4603e+2 6.9648e+1
ηε +Q(e∗ ,e∗) 2.7511e+2 8.3916e+1 5.4420e+1
ηe +Q(e∗ ,e∗) 2.2854e+2 8.3293e+1 5.5533e+1

ηε 2.7276e+2 8.3709e+1 5.4406e+1
ηe 2.2619e+2 8.3087e+1 5.5518e+1
Eε 2.4556e-1 6.8103e-2 1.5967e-2
Ee 2.6351e-1 6.8293e-2 1.5780e-2

Table 4 Example 2: Estimates for the non-linear quantity of interest
J3(u) and for the its error, including the linear contribution to the quan-
tity of interest and the dispersion errors for the primal and adjoint prob-
lems. The meshes are obtained by refining each element into 16 new
ones.

These results can also be appreciated in figure 18 where
the estimates for the quantity of interest are depicted along
with the finite element approximation and the reference value
J3(uh). Although the estimates underestimate the true error
J3(u), they provide a much better approximation to the quan-
tity of interest than J3(uH) with very few effort.
The behavior of the estimate η ε and its suitability for

guiding an adaptive refinement algorithm is illustrated by
applying different adaptive procedures. Starting from the
mesh given in figure 17 the following six strategies are im-
plemented to refine the elements at each step.
• Strategy 1: the elements to be refined are the ones veri-
fying criterion (17).

• Strategy 2: the elements to be refined are the ones veri-
fying criterion (18).

• Strategy 3: at each step, 10% of the elements are refined,
those with larger contributions |η ε

k |.
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Fig. 18 Example 2: Behavior for the estimates for the quantity of in-
terest J3(u) with respect to a uniform mesh refinement.

• Strategy 4: at each step, 10% of the elements are refined,
those with larger contributions |η ε

k |/Ak.
• Strategy 5: the smallest number of elements such that
the sum of the contributions |η ε

k | toward the global error
∑nelk=1|ηε

k | from these elements exceeds 25% of its value.
• Strategy 6: all elements on which the local error estimate
|ηε
k | exceeds 50% of the largest local error estimate are

refined at each step.

The results are shown in figure 19.

10
3

10
4

10
−1

10
0

10
1

10
2

 

 

number of nodes

er
ro
ri
n
Q
oI
-η

ε

uniform
Strategy 1
Strategy 2
Strategy 3
Strategy 4
Strategy 5
Strategy 6

Fig. 19 Example 2: Convergence of the error in the quantity of inter-
est for the different adaptive strategies using the local error indicators
associated to ηε .

Strategy four produces the best results, with those ob-
tained using strategies three and five running a close second
and third. The indicators based on strategies one and two
produce noticeably poorer accuracy since they over refine
the meshes at each step. Note that in the initial steps the
behavior is similar to a uniform refinement. Penalizing the
elements with smaller area provides an improvement of the
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accuracy as can be seen comparing strategies one and two
and strategies three and four. Note also that strategies three
and four yield to similar accuracies, but at the initial steps,
strategy three yield poorer results since it produces nearly
uniformly refined meshes. Thus, analogous strategies to five
and six could be develop taking into account for the area of
the elements. From the graph it is clear that using a crite-
rion that controls the ratio of elements to be refined (pre-
venting the possibility of a uniform refinement) produces
optimal adapted meshes, that is, meshes with the least num-
ber of elements for a prescribed given accuracy. Increasing
the percentages in strategies three, four and six or decreas-
ing it in the sixth, increases the number of elements to be
refined producing not so optimal meshes. Hence a compro-
mise between number of adaptive steps and accuracy is re-
quired. Finally, strategy six does not provide very good re-
sults in problems where the error is substantially larger in
some parts of the domain. As can be seen in the figure, the
ratio of convergence of this strategy is better than the ratio of
a uniform refinement, but provides poorer results than other
strategies. Note also that very few elements are refined in
each iteration.
The intermediate meshes with precision closer to the one

obtained in the second iteration of the uniform refinement
procedure are shown in figure 20 for the six strategies. The
second iteration of the uniform refinement provides a mesh
of 7193 nodes and achieves a precision of η ε = 54.41.

Fig. 20 Example 2: Intermediate meshes of the adaptive procedures
for the six different strategies: third step of strategy 1 (top-left) with
3047 nodes and ηε = 79.11, third step of strategy 2 (top-right) with
3976 nodes and ηε = 92.71, fifth step of strategy 3 (middle-left) with
2892 nodes and ηε = 56.77, second step of strategy 4 (middle-right)
with 810 nodes with ηε = 66.62, third step of strategy 5 (bottom-left)
with 2050 nodes and ηε = 63.86 and fifth step of strategy 6 (bottom-
right) with 1005 nodes and ηε = 52.56.

It can be observed that the meshes produced using strate-
gies one and two tend to exhibit a more uniform refinement
compared with those obtained using strategy four, which
accounts for the poorer accuracy of the resulting approxi-
mation. Also, from the intermediate meshes, it can be ob-
served that, as mentioned before, although strategies four,
three and five achieve similar results for the final mesh, at
the intermediate steps, joining the control of the elements to
be refined along with penalizing the elements with smaller

area, namely, strategy four, provides the best results. This
is clearly appreciated in the intermediate meshes, where the
mesh produced by strategy four is clearly more adapted to
the features of the solution that all the other strategies. Adding
the area factor to strategies five and six would produce simi-
lar results, although in the case of strategy 6 also a control on
the minimal elements to be refined would be also advisable.
It is worth mentioning, also, that strategies one and two can
be adapted to control the elements to be refined by introduc-
ing a constant factor into criterions (17) and (18) as follows:

|ηε
k | ≥C

nel
∑
k=1

|ηε
k |/nel and |ηε

k |/Ak ≥C
nel
∑
k=1

|ηε
k |/AΩ . A value

ofC = 1 corresponds to strategies one and two respectively.
Note that, however, increasing the value of C does not en-
sure that the set of elements to be refined is a non-empty set
(for instance if a uniform mesh with uniform distribution of
the error is obtained).
The final mesh of 10200 nodes obtained using strategy

four is shown in figure 21. Strategies three and four pro-
duce meshes with similar accuracy but with a more diffuse
or uniform refinement. The predicted quantity of interest
for this final mesh is J(u) ≈ 2319.1 associated to the er-
rors ηε = 0.051528 andQ(e∗,e∗) = 0.0000375. Again, the
quadratic contribution to the error is negligible in front of
the linear contribution.

Fig. 21 Example 2: Final mesh obtained using the adaptive procedure
described in strategy four with 10200 nodes.

Finally, figure 22 shows the local elementary contribu-
tions of ηε to the error in the quantity of interest for the
initial mesh and figure 23 shows the elements marked to be
refined for each of the proposed adaptive strategies, reaf-
firming the behavior observed in the convergence curves and
the intermediate meshes.

5 10 15 20 25 30 35

Fig. 22 Example 2: Local maps of the error in the linear term contri-
bution to the quantity of interest J3(u) using the representation ηε .
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Fig. 23 Example 2: Elements to be refined in the first step highlighted
for the six different strategies (from top-left to bottom-right): strategy
1 (top-left) with 303 elements, strategy 2 (top-right) with 316 ele-
ments, strategy 3 (middle-left) with 87 elements, strategy 4 (middle-
right) with 87 elements, strategy 5 (bottom-left) with 183 elements and
strategy 6 (bottom-right) with 14 elements.

7.3 Car cavity

This example studies the noise transmission inside a two-
dimensional section of the cabin of a car which is excited by
vibrations of the front panel and damped by Robin boundary
conditions. This example is frequently used as a benchmark
problem in error assessment for interior acoustic problems
[9,28,29]. The geometry of the cabin is shown in figure 24.
The size of the domain is characterized by the maximum
horizontal and vertical lengths, Lx = 2.7m and Ly = 1.1m,
respectively. The source term entering in equation (1) is f =
0, and the Neumann and Robin boundary conditions enter-
ing in equations (2b) and (2c) are of the form g= −iρcκv n
andmu=−iρcκAnu, where in this case the material param-
eters are c = 340m/s and ρ = 1.225kg/m3. The vibrating
front panel is excited with a unit normal velocity vn = 1m/s
whereas the roof is considered to be an absorbent panel with
associated admittance An = 1/2000m.(Pa.s)−1. The normal
boundary velocity is set to be zero at the other sides, vn =
0m/s. Finally, a wave number of κ ≈ 9.7, equivalent to a
frequency of 525 Hz, has been considered in the computa-
tions.

 

vibrating
panel

absorbant panel

Γ O

Fig. 24 Example 3: Description of the two-dimensional section of the
cabin of a car and its associated boundary conditions.

The output of interest is the average of the squared mod-
ulus of the solution over the boundary stripΓ O shown in fig-
ure 24, namely J2(u). The initial mesh used for this example
is shown in figure 25. Figures 26 and 27 show the Galerkin

Fig. 25 Example 3: Initial mesh for the adaptive procedure with 568
nodes.

approximations of the primal and adjoint problems for the
initial mesh along with the finite element approximations
computed in a reference mesh obtained by refining each el-
ement into 256 new ones. The figures also show the approx-
imation of the true errors obtained by subtracting the two
finite element approximations. The dispersion errors asso-

ℜe(uH )

ℜe(uh)

ℜe(eh)

ℑm(uH )

ℑm(uh)

ℑm(eh)

Fig. 26 Example 3: Galerkin finite element approximation of the pri-
mal problem for the initial mesh of 568 nodes (top). The middle figures
are the Galerkin approximation for a mesh obtained dividing each ele-
ment into 256 new ones. The reference error with respect to this mesh
is shown in the bottom.

ciated to the primal and adjoint problems are E ε = 0.075 and
Ee = 0.130, respectively. Thus, the adjoint problem presents
smaller dispersion errors and it is expected that in this mesh,
the estimate ηε provides better approximations to the error
in the quantity of interest than η e.
The mesh is adaptively refined using the refinement al-

gorithm named after strategy 4 in the previous example. The
adaptive procedure is guided by the indicators provided by
ηε . However, in each step, the estimate η e is also computed
to compare the results.
The initial mesh of 568 elements provides the approx-

imation of the quantity of interest J2(uH) = 27093.7 while
the error estimation procedures described in this work pro-
vide the estimates for the error in the quantity of interest
ηε = 32461.3, η e = 31966.4 andQ(e∗,e∗) = 5.6.
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ℜe(ψH )

ℜe(ψh)

ℜe(εh)

ℑm(ψH )

ℑm(ψh)

ℑm(εh)

Fig. 27 Example 3: Galerkin finite element approximation of the ad-
joint problem for a mesh of 568 nodes (top). The middle figures are the
Galerkin approximation for a mesh obtained dividing each element into
64 new ones. The reference error with respect to this mesh is shown in
the bottom.

Thus, the estimates for the quantity of interest in the first
mesh are J2(u) ≈ 59560.6 and 59065.8 for the two differ-
ent representations, respectively. The reference value for the
quantity of interest J2(uh) = 65821.7 confirming that, since
the dispersion error is smaller in the adjoint problem, the
estimate provided by η ε is better than the one provided by
ηe, although since the underestimation is quite large in both
cases, both estimates produce similar accuracy of the es-
timates. It can also be seen that even for the initial mesh,
the contribution of the quadratic term to the quantity of in-
terest is negligible in front of the linear contribution. After
remeshing, the final mesh provides the approximation for
the quantity of interest J2(uH) = 67076.3 and the estimates
J2(u) ≈ 69089.6 and 69098.1 provided by η ε and ηe re-
spectively. Note that in this case, since the estimates for the
dispersion errors are E ε = 0.00358 and Ee = 0.00487, the
second estimates is expected to be more reliable.
The convergence of the estimates is shown in figure 28.

As can be seen, both representations for the quantity of in-
terest provide similar results improving the accuracy of the
finite element approximation with very little computational
effort (they only involve an inexpensive post-processing of
the finite element solutions).
Figure 29 shows the intermediate and final adaptively re-

fined meshes. As can be seen, the adaptive procedure refines
the corners where the solution presents larger singularities
and also the front part of the mesh which is the region most
affecting the quantity of interest. This is confirmed by the
fact that the mesh beside the seat is only refined in a reen-
trant corner where the solution is singular.
The same example is considered in [9] and [30] where

mesh adaptivity aiming at reducing global measures of the
error are considered. Although the examples shown therein
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Fig. 28 Example 3: Behavior of the estimates for the nonlinear quan-
tity of interest J2(u) (top) and convergence of the linear contributions
to the error (bottom). c

refer to lower wave numbers, a close comparison with the
results obtained with the goal-oriented strategy presented in
this work reveals that our technique properly resolves the
singularities of the primal problem (refining the regions of
the domain where the primal error is larger) while refining,
at the same time, the areas relevant for the quantity of inter-
est.

Fig. 29 Example 3: Intermediate and final meshes obtained using the
adaptive process associated to strategy 4. Iteration fourth (left) with
3235 nodes and final with 23380 nodes.

8 CONCLUSIONS

A simple and effective strategy for guiding goal-oriented
adaptive procedures has been presented, based on the post-
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processing techniques introduced in [24,25]. Two different
representations of the error in the quantities of interest have
been studied which provide similar results. It has been shown
that the accuracy of these representations, which involve the
post-processing of either the primal or adjoint finite ele-
ment approximations, is related to the dispersion error of
the corresponding problems. The adaptive procedure is valid
both linear and non-linear quantities of interest. The non-
linear case is solved using a linear approximation and ne-
glecting quadratic terms. In all the analyzed examples the
linear part of the quantity of interest is the leading term,
since the higher order contribution converge faster to zero.
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1. Ihlenburg, F., Babuška, I.: Dispersion analysis and error estimation
of Galerkin fininite element methods for the Helmohltz equation.
Internat. J. Numer. Methods Engrg. 38, 3745–3774 (1995a)
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27. Babuška, I., Ihlenburg, F., Strouboulis, T., Gangaraj, K.: A pos-
terori error estimation for finite element solutions of Helmholtz’
Part II: Estimation of the pollution error. Internat. J. Numer. Meth-
ods Engrg. 40, 3883–3900 (1997)

28. Suleau, S., Deraemaeker, A., Bouillard, P.: Dispersion and pollu-
tion of meshless solutions for the Helmholtz equation. Comput.
Methods Appl. Mech. Engrg. 190, 639–657 (2000)

29. Harari, I., Magoules̀, F.: Numerical investigations of stabilized fi-
nite element computations for acoustics. Wave Motion 39, 339–
349 (2004)

30. Bausys R., H.P., Wiberg, N.E.: Postprocessing techniques and h-
adaptive finite element-eigenproblem analysis. Comput. Struct.
79, 2039–2052 (2001)




	f01_tapaLMSinici_1.pdf
	f02_full_blau_a4.pdf
	f03_tapa_thesis_interior_LMS.pdf
	f04_full_blanc.pdf
	f05_thesis_LMS.pdf
	f07_TapaPaperA_a4_LMS_1.pdf
	f08_full_blau_a4.pdf
	f08_paperA_a4_LMS_1.pdf
	f09_TapaPaperB_a4_LMS_1.pdf
	f10_full_blau_a4.pdf
	f11_paperB_a4_LMS.pdf
	f12_TapaPaperC_a4_LMS.pdf
	f13_full_blau_a4.pdf
	f13_paperC_a4_LMS_1.pdf
	f17_de full_blanc.pdf

