3) LABORATORI DE CÀLCUL NUMÈRIC UNI

A new equilibrated residual method: improving accuracy and efficiency of flux-free error estimates in two and three dimensions

Núria PARÉS and Pedro DÍEZ

Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.edu

A new equilibrated residual method (ADMOS 2017) - June 2017 - 1/21

Guaranteed accurate and efficient bounds

The finite element method is a basic tool in engineering design and is crucial to certify the quality of the results.

A lot of work has been done to provide certificates of the approximate solution, i.e. obtain guaranteed bounds in which the exact solution lies (either in energy norm or in Qol).

$$\mathsf{GOAL}:$$
 $|||e||| \leq \eta$ or $s^- \leq \ell^\mathcal{O}(e) \leq s^+$

The desired qualities of a posteriori estimators are:

- CERTIFICATION: they should provide guaranteed/strict bounds
- ACCURACY: they should be accurate (good effectivities)
- COST: they should be cheap (involve small local problems)

LABORATORI DE CÀLCUL NUMÈRIC

Guaranteed accurate and efficient bounds

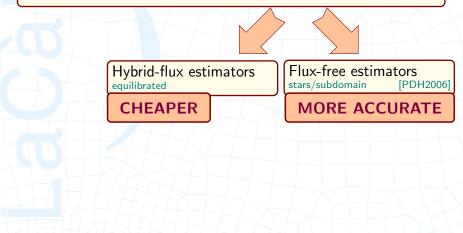
CERTIFICATION

complementary energy dual formulation for the error implicit error estimators involving only local problems

Guaranteed accurate and efficient bounds

CERTIFICATION

complementary energy dual formulation for the error implicit error estimators involving only local problems

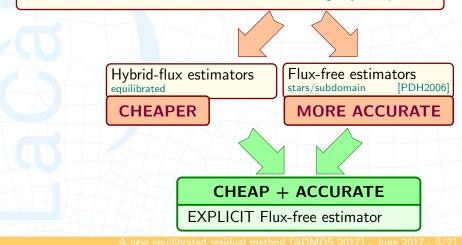


LABORATORI DE CÀLCUL NUMÈRIC

Guaranteed accurate and efficient bounds

CERTIFICATION

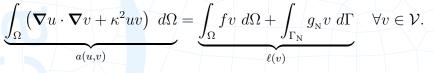
complementary energy dual formulation for the error implicit error estimators involving only local problems



Model problem

 $\begin{array}{rll} \mbox{Reaction-diffusion equation:} & -\Delta u + \kappa^2 u = f & \mbox{in } \Omega, \\ & u = u_{\rm D} & \mbox{on } \Gamma_{\rm D}, \\ & \boldsymbol{\nabla} u \cdot \boldsymbol{n} = g_{\rm N} & \mbox{on } \Gamma_{\rm N}. \end{array}$

Weak form: find $u \in \mathcal{U}$ such that



Finite element approximation: find $u_h \in \mathcal{U}^h$ such that

$$a(u_h, v) = \ell(v)$$
 for all $v \in \mathcal{V}^h$.

triangular mesh + linear elements

Error equations: find $e = u - u_h \in \mathcal{V}$ such that

$$a(e,v) = \ell(v) - a(u_h,v) = R(v)$$
 for all $v \in \mathcal{V}$

A new equilibrated residual method (ADMOS 2017) <u>- June 2017 - 4/2</u>

The complementary energy approach allows to overestimate |||e|||approach introduced by Fraeijs de Veubeke in 1964

$$a(e,v) = \int_{\Omega} \left(\nabla e \cdot \nabla v + \kappa^2 ev \right) d\Omega = R(v) \quad \text{for all } v \in \mathcal{V}$$
$$\int_{\Omega} \left(\begin{array}{c} \mathbf{q} \cdot \nabla v + \kappa^2 rv \right) d\Omega = R(v) \quad \text{for all } v \in \mathcal{V} \\ \text{new error unknowns} \end{array}$$

The complementary energy approach allows to overestimate |||e|||approach introduced by Fraeijs de Veubeke in 1964

$$a(e,v) = \int_{\Omega} \left(\nabla e \cdot \nabla v + \kappa^2 ev \right) d\Omega = R(v) \quad \text{for all } v \in \mathcal{V}$$
$$\int_{\Omega} \left(\begin{array}{c} \boldsymbol{q} \cdot \nabla v + \kappa^2 rv \right) d\Omega = R(v) \quad \text{for all } v \in \mathcal{V} \\ \kappa \quad \kappa \quad \kappa \quad \text{new error unknowns} \end{array}$$

Dual formulation: Any pair of dual estimates (q, r) such that

$$\left(\boldsymbol{q} \cdot \boldsymbol{\nabla} v + \kappa^2 \boldsymbol{r} v \right) d\Omega = R(v)$$
 for all $v \in \mathcal{V}$

provide an upper bound for the energy norm of the error

$$\|\|e\|\|^{2} = \int_{\Omega} (\nabla e \cdot \nabla e + \kappa^{2} e^{2}) d\Omega \leq \int_{\Omega} (\mathbf{q} \cdot \mathbf{q} + \kappa^{2} r^{2}) d\Omega$$

complementary

A new equilibrated residual method (ADMOS 2017) - June 2017 - 5/2

Optimal choice: $(\boldsymbol{q}, r) = (\boldsymbol{\nabla} e, e)$

$$\left\| \left\| e \right\| \right\|^{2} = \int_{\Omega} \left(\boldsymbol{q} \cdot \boldsymbol{q} + \kappa^{2} r^{2} \right) d\Omega$$

Very accurate but expensive:

compute piecewise polynomial (\boldsymbol{q},r) solving a GLOBAL problem

Accurate but cheaper:

compute piecewise polynomial (q, r) solving LOCAL problems

Global problem \implies domain decomposition! $\int_{\Omega} \left(\boldsymbol{q} \cdot \boldsymbol{\nabla} v + \kappa^2 \boldsymbol{r} v \right) d\Omega = R(v)$

A new equilibrated residual method (ADMOS 2017) - June 2017 - 6/2

Optimal choice: $(\boldsymbol{q},r) = (\boldsymbol{\nabla} e, e)$

$$\left\| \left\| e \right\| \right\|^{2} = \int_{\Omega} \left(\boldsymbol{q} \cdot \boldsymbol{q} + \kappa^{2} r^{2} \right) d\Omega$$

Very accurate but expensive:

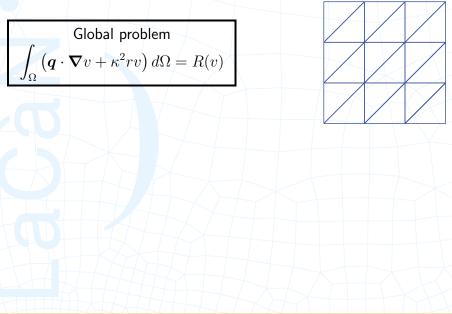
compute piecewise polynomial (\boldsymbol{q},r) solving a GLOBAL problem

Accurate but cheaper:

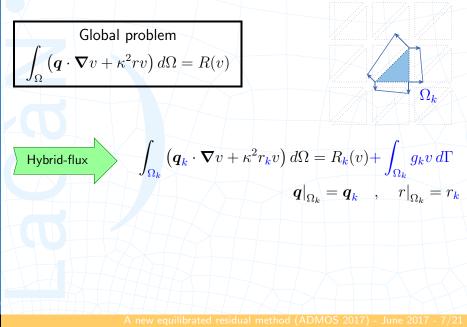
compute piecewise polynomial (q, r) solving LOCAL problems

Global problem \implies domain decomposition! $\int_{\Omega} \left(\boldsymbol{q} \cdot \boldsymbol{\nabla} v + \kappa^2 \boldsymbol{r} v \right) d\Omega = R(v) \qquad \qquad \text{Hybrid-flux / Flux-free}$

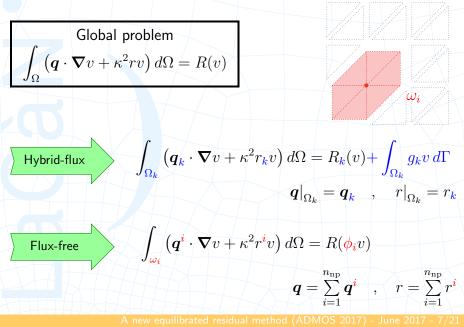
A new equilibrated residual method (ADMOS 2017) - June 2017 - 6/2

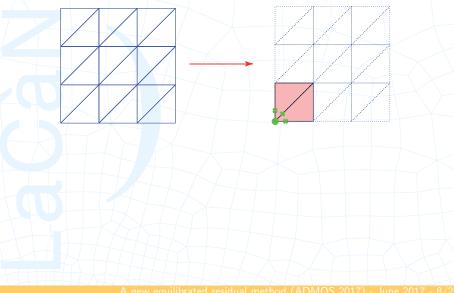


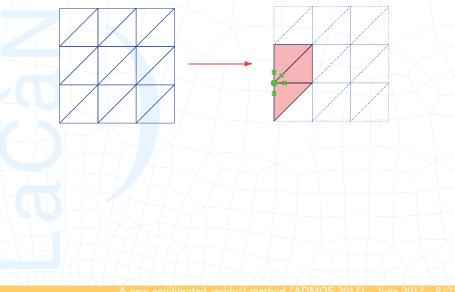
A new equilibrated residual method (ADMOS 2017) - June 2017 - 7/21

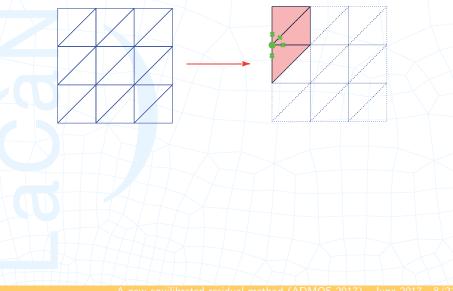


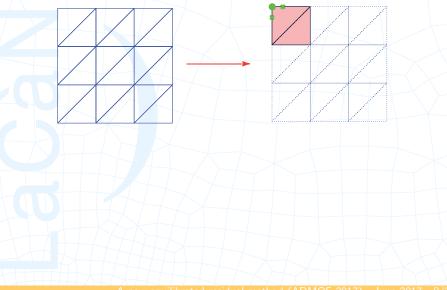
LABORATORI DE CÀLCUL NUMÈRIC

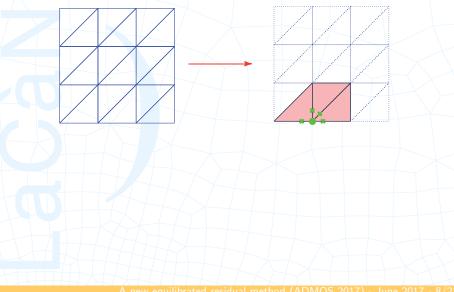


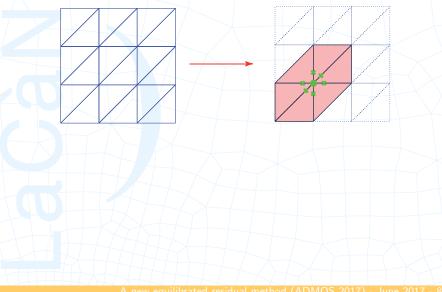




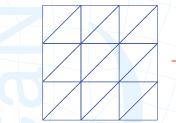






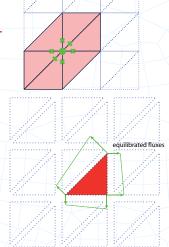


STEP 1: loop in nodes to compute the equilibrated tractions g_k



STEP 2: loop in elements to compute the dual fluxes

 $(oldsymbol{q}_k,r_k)$ at each element Ω_k independently

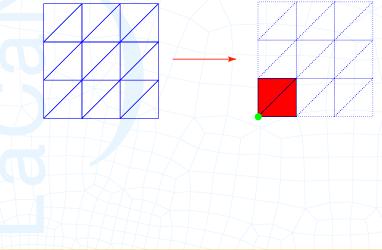


A new equilibrated residual method (ADMOS 2017) - June 2017 - 8/2

CFN

STEP 1: loop in nodes to compute the dual fluxes in the stars

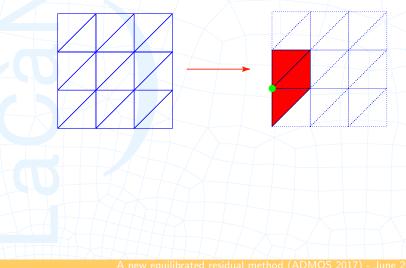
 $(oldsymbol{q}^i,r^i)$ in ω_i (patch of elements)



A new equilibrated residual method (ADMOS 2017) - June 2017 - 9/21

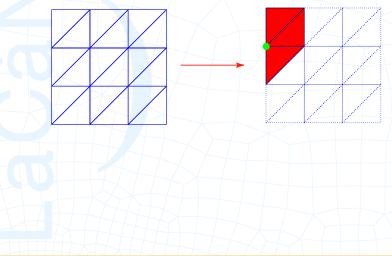
STEP 1: loop in nodes to compute the dual fluxes in the stars

 $(oldsymbol{q}^i,r^i)$ in ω_i (patch of elements)



STEP 1: loop in nodes to compute the dual fluxes in the stars

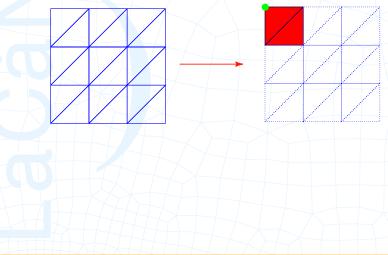
 $(oldsymbol{q}^i,r^i)$ in ω_i (patch of elements)



A new equilibrated residual method (ADMOS 2017) - June 2017 - 9/21

STEP 1: loop in nodes to compute the dual fluxes in the stars

 $(oldsymbol{q}^i,r^i)$ in ω_i (patch of elements)



A new equilibrated residual method (ADMOS 2017) - June 2017 - 9/21

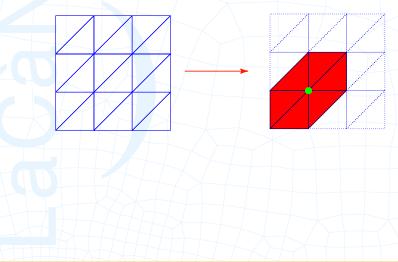
STEP 1: loop in nodes to compute the dual fluxes in the stars

 $(oldsymbol{q}^i,r^i)$ in ω_i (patch of elements)

LABORATORI DE CÀLCUL NUMÈRIC

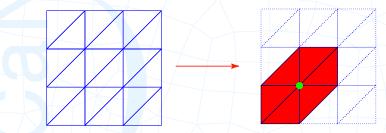
STEP 1: loop in nodes to compute the dual fluxes in the stars

 $(oldsymbol{q}^i,r^i)$ in ω_i (patch of elements)



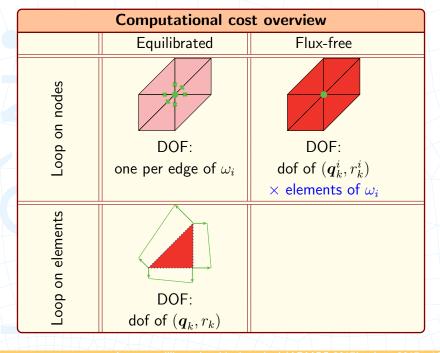
STEP 1: loop in nodes to compute the dual fluxes in the stars

 $(oldsymbol{q}^i,r^i)$ in ω_i (patch of elements)

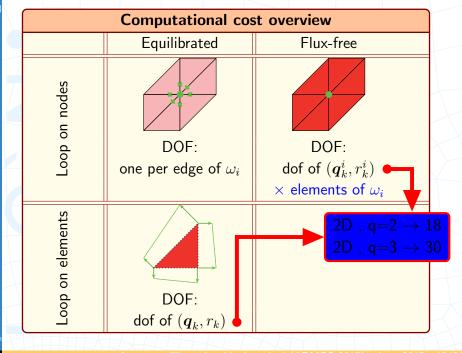


STEP 2: add all the local contributions and compute the norm

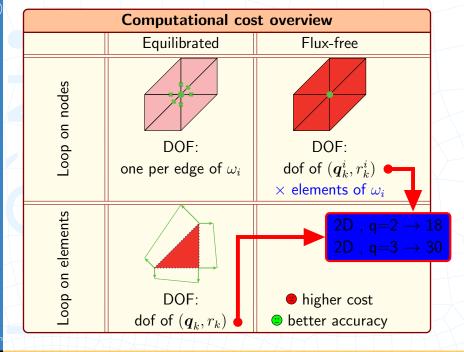
$$oldsymbol{q} = \sum_{i=1}^{n_{ ext{np}}} oldsymbol{q}^i \quad, \quad r = \sum_{i=1}^{n_{ ext{np}}} r^i$$



A new equilibrated residual method (ADMOS 2017) - June 2017 - 10/2



A new equilibrated residual method (ADMOS 2017) - June 2017 - 10/2



A new equilibrated residual method (ADMOS 2017) - June 2017 - 10/2

New guaranteed, accurate and cheap error estimate (EE)

Goal: decompose the global problem into stars ω_i

$$\left(\boldsymbol{q} \cdot \boldsymbol{\nabla} v + \kappa^2 \boldsymbol{r} v \right) d\Omega = R(v) \quad \forall v \in \mathcal{V}$$

minimizing the global complementary energy

.ocal problems:
$$m{q} = \sum_{i=1}^{n_{
m np}} m{q}^i$$
 , $m{r} = \sum_{i=1}^{n_{
m np}} m{r}^i$

$$\int_{\omega_i} \left(\boldsymbol{q}^i \cdot \boldsymbol{\nabla} v + \kappa^2 r^i v \right) d\Omega = R(\phi_i v) \quad \forall v \in \mathcal{V}(\omega)$$

minimizing the local complementary energy

$$\int \left(\boldsymbol{q}^{i} \cdot \boldsymbol{q}^{i} + \kappa^{2} (r^{i})^{2} \right) d\Omega$$

A new equilibrated residual method (ADMOS 2017) - June 2017 - 11,

New guaranteed, accurate and cheap error estimate (EE) Goal: decompose the global problem into stars ω_i $\int_{\Omega} (\boldsymbol{q} \cdot \boldsymbol{\nabla} v + \kappa^2 r v) \, d\Omega = R(v) \quad \forall v \in \mathcal{V}$

minimizing the global complementary energy

$$\int_{\Omega} \left(\boldsymbol{q} \cdot \boldsymbol{q} + \kappa^2 \boldsymbol{r}^2 \right) d\Omega$$

KEY POINT Find a closed EXPLICIT solution for q^i and r^i

Local problems: $\boldsymbol{q} = \sum_{i=1}^{n_{\mathrm{np}}} \boldsymbol{q}^i$, $r = \sum_{i=1}^{n_{\mathrm{np}}} r^i$

$$\int_{\omega_i} \left(\boldsymbol{q}^i \cdot \boldsymbol{\nabla} v + \kappa^2 r^i v \right) d\Omega = R(\phi_i v) \quad \forall v \in \mathcal{V}(\omega_i)$$

 $\int_{\omega_i} \left(\boldsymbol{q}^i \cdot \boldsymbol{q}^i + \kappa^2 (r^i)^2 \right) d\Omega$

minimizing the local complementary energy

A new equilibrated residual method (ADMOS 2017) - June 2017

. Ю

New guaranteed, accurate and cheap EE

From star ω_i to elements $\Omega_k \subset \omega_i$

$$\int_{\mathcal{W}} \left(\boldsymbol{q}^i \cdot \boldsymbol{\nabla} v + \kappa^2 \boldsymbol{\lambda} v \right) d\Omega = R(\phi_i v)$$

A new equilibrated residual method (ADMOS 2017) - June 2017 - 12/

New guaranteed, accurate and cheap EE

From star ω_i to elements $\Omega_k \subset \omega_i$

$$\boldsymbol{q}^i \cdot \boldsymbol{\nabla} v d\Omega = R(\phi_i v)$$

The explicit solution is found introducing the linear tractions on the edges of the star $\{g^i_{\gamma_{[m]}}\}$

 $\gamma_{[6]}$

 $\gamma_{\scriptscriptstyle [1]}$

 $\gamma_{\scriptscriptstyle [5]}$

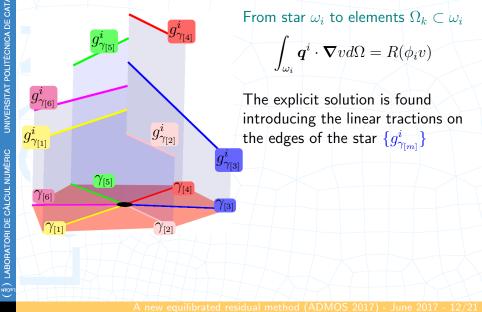
[4]

 $\gamma_{\scriptscriptstyle [2]}$

A new equilibrated residual method (ADMOS 2017) - June 2017 - 12/21

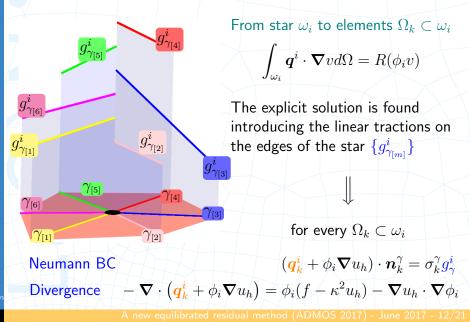
LABORATORI DE CÀLCUL NUMÈRIC

New guaranteed, accurate and cheap EE



LABORATORI DE CÀLCUL NUMÈRIC

New guaranteed, accurate and cheap EE



New guaranteed, accurate and cheap EE

Strong form of the elementary problems:

$$\boldsymbol{\nabla} \cdot \left(\boldsymbol{q}_{k}^{i} + \phi_{i} \boldsymbol{\nabla} u_{h} \right) = \phi_{i} (f - \kappa^{2} u_{h}) - \boldsymbol{\nabla} u_{h} \cdot \boldsymbol{\nabla} \phi_{i} \quad \text{in } \Omega_{k}$$

 $oldsymbol{q}_k^i \cdot oldsymbol{n}_k^\gamma = \sigma_k^\gamma g_\gamma^i - \phi_i oldsymbol{
abla} u_h \cdot oldsymbol{n}_k^\gamma := oldsymbol{\mathcal{R}}_{|\gamma}$ on $\partial \Omega_k$

ASSUMPTION: for simplicity of presentation we assume that

- f is piecewise linear and
- $g_{\rm N}$ is piecewise constant

otherwise we need to introduce data oscillation terms

New guaranteed, accurate and cheap EE

Strong form of the elementary problems:

$$\boldsymbol{\nabla} \cdot \left(\boldsymbol{q}_{k}^{i} + \phi_{i} \boldsymbol{\nabla} u_{h} \right) = \phi_{i} (f - \kappa^{2} u_{h}) - \boldsymbol{\nabla} u_{h} \cdot \boldsymbol{\nabla} \phi_{i} \quad \text{in } \Omega_{k}$$

$$oldsymbol{q}_k^i \cdot oldsymbol{n}_k^\gamma = \sigma_k^\gamma g_\gamma^i - \phi_i oldsymbol{
abla} u_h \cdot oldsymbol{n}_k^\gamma := ~ \mathcal{R}_{|\gamma}$$
 on $\partial \Omega_k$

Explicit solution: $egin{array}{c} oldsymbol{q}_k^i = oldsymbol{q}_k^{iL} + oldsymbol{q}_k^{iC} \end{bmatrix}$ as long as

$$\int_{\Omega_k} \left[\phi_i \left(f - \kappa^2 u_h \right) - \nabla u_h \cdot \nabla \phi_i \right] \, d\Omega + \sum_{\gamma \subset \partial \Omega_k} \int_{\gamma} \sigma_k^{\gamma} g_{\gamma}^i \, d\Gamma = 0,$$

Details can be found in

N. Parés, P. Díez, A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates, CMAME, Volume 313, Pages 785-816 (2017)

A new equilibrated residual method (ADMOS 2017) - June 2017 - 13/2

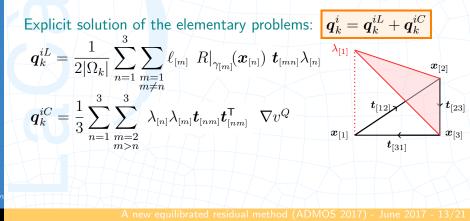
LABORATORI DE CÀLCUL NUMÈRIC

NBO

New guaranteed, accurate and cheap EE

Strong form of the elementary problems:

$$\boldsymbol{\nabla} \cdot \left(\boldsymbol{q}_{k}^{i} + \phi_{i} \boldsymbol{\nabla} u_{h} \right) = \phi_{i} (f - \kappa^{2} u_{h}) - \boldsymbol{\nabla} u_{h} \cdot \boldsymbol{\nabla} \phi_{i} \quad \text{in } \Omega_{k}$$



LABORATORI DE CÀLCUL NUMÈRIC

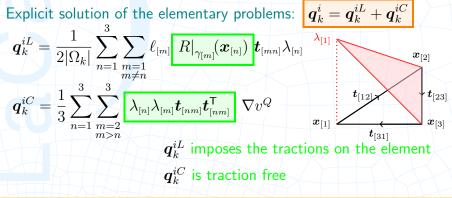
NBO

New guaranteed, accurate and cheap EE

Strong form of the elementary problems:

$$\boldsymbol{\nabla} \cdot \left(\boldsymbol{q}_{k}^{i} + \phi_{i} \boldsymbol{\nabla} u_{h} \right) = \phi_{i} (f - \kappa^{2} u_{h}) - \boldsymbol{\nabla} u_{h} \cdot \boldsymbol{\nabla} \phi_{i} \quad \text{in } \Omega_{k}$$

$$oldsymbol{q}_k^i \cdot oldsymbol{n}_k^\gamma = \sigma_k^\gamma g_\gamma^i - \phi_i oldsymbol{
abla} u_h \cdot oldsymbol{n}_k^\gamma := oldsymbol{\mathcal{R}}_{|\gamma|}$$
 on $\partial \Omega_k$



LABORATORI DE CÀLCUL NUMÈRIC

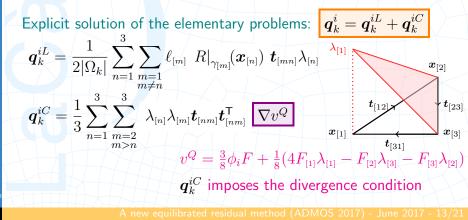
CFN.

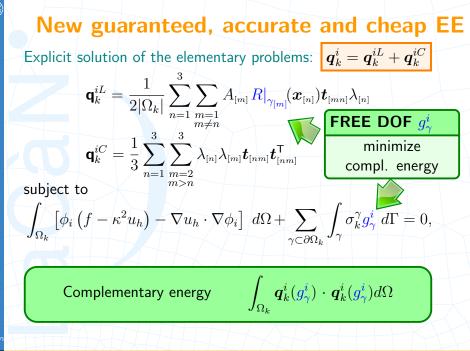
New guaranteed, accurate and cheap EE

Strong form of the elementary problems:

$$\nabla \cdot \left(\boldsymbol{q}_{k}^{i} + \phi_{i} \nabla u_{h} \right) = \phi_{i} \left(\begin{array}{c} f - \kappa^{2} u_{h} \end{array} \right) - \nabla u_{h} \cdot \nabla \phi_{i} \quad \text{in } \Omega_{k}$$

$$\begin{array}{c} F \\ \boldsymbol{q}_{k}^{i} \cdot \boldsymbol{n}_{k}^{\gamma} = \sigma_{k}^{\gamma} g_{\gamma}^{i} - \phi_{i} \nabla u_{h} \cdot \boldsymbol{n}_{k}^{\gamma} := \mathcal{R}_{|\gamma} \quad \text{on } \partial \Omega_{k} \end{array}$$





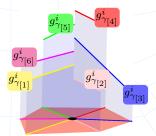
A new equilibrated residual method (ADMOS 2017) - June 2017 - 14/

ABORATORI DE CÀLCUL NUMÈRIC

New guaranteed, accurate and cheap EE

LOCAL QUADRATIC CONSTRAINED OPTIMIZATION PROBLEM:

find $\{g^i_{\gamma_{[m]}}\}$ solution of



Hybrid-flux vs. Explicit Flux-free **Explicit Flux-free** $\begin{array}{ll} \mbox{Minimize} & \sum_{\Omega_k \subset \omega_i} \int_{\Omega_k} {\pmb{q}}_k^i({\pmb{g}}_\gamma^i) \cdot {\pmb{q}}_k^i({\pmb{g}}_\gamma^i) d\Omega \end{array}$ two dof per edge Hybrid-flux / equilibrated Minimize $g_{\gamma} - [[\nabla u_h \cdot n]]_{ave}$ one dof per edge g_{γ}

.

UNIVERSITAT POLITÈCNICA DE CATALUNYA

LABORATORI DE CÀLCUL NUMÈRIC

CFN

A new equilibrated residual method (ADMOS 2017) - June 2017 - 16/2

Hybrid-flux vs. Explicit Flux-free **Explicit Flux-free** $\begin{array}{ll} \mbox{Minimize} & \sum_{\Omega_k \subset \omega_i} \int_{\Omega_k} {\bm q}^i_k({\bm g}^i_{\gamma}) \cdot {\bm q}^i_k({\bm g}^i_{\gamma}) d\Omega \end{array}$ two dof per edge s.t. $\int_{\Omega_k} \left[\phi_i \left(f - \kappa^2 u_h \right) - \nabla u_h \cdot \nabla \phi_i \right] \ d\Omega + \sum_{\gamma \in \partial \Omega_k} \int_{\gamma} \sigma_k^{\gamma} g_{\gamma}^i \ d\Gamma = 0$ ϕ_i 3 -Hybrid-flux / equilibrated -1-Minimize $g_{\gamma} - [[\nabla u_h \cdot n]]_{ave}$ one dof per edge g_{γ} s.t. $\int_{\Omega_k} \left[\psi_i \left(f - \kappa^2 u_h \right) - \nabla u_h \cdot \nabla \psi_i \right] \, d\Omega + \sum_{\gamma \subset \partial \Omega_k} \int_{\gamma} \sigma_k^{\gamma} g_{\gamma} \psi_i \, d\Gamma = 0$

A new equilibrated residual method (ADMOS 2017) - June 2017 - 16/2

ABOR

2D example

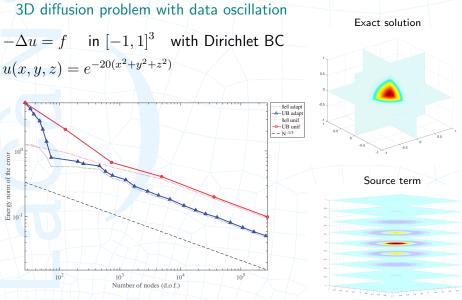
Uniformly forced square domain

 $-\Delta u = 1$ in $[-1,1]^2$ with homogeneous Dirichlet BC

$$u(x,y) = \frac{1-x^2}{2} - \frac{16}{\pi^3} \sum_{\substack{k=1\\\text{odd}}}^{+\infty} \frac{\sin(k\pi(1+x)/2)(\sinh(k\pi(1+y)/2) + \sinh(k\pi(1-y)/2))}{k^3\sinh(k\pi)}$$

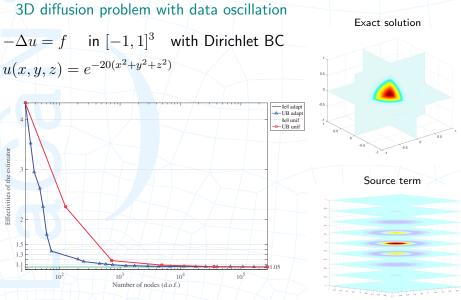
ρ	= e	$ _{ub}/ e \approx 1$	FLUX-FREE			EQUILIBRATED	Í
ċ				explicit			
	$n_{ m el}$		$ ho^{ m st}$	ρ	$ ho^q$	$ ho^{ m eq}$	
	8	0.34331271	1.00036	1.09131	1.01545	1.20880	
	32	0.27603795	1.04611	1.05288	1.03831	1.48894	
	128	0.15288301	1.04314	1.04621	1.03889	1.51749	l
	512	0.07856757	1.04088	1.04470	1.03938	1.52104	
	2048	0.03955958	1.03948	1.04429	1.03962	1.51898	
	8192	0.01980831	1.03862	1.04420	1.03974	1.51641	1
	32768	0.00990510	1.03813	1.04419	1.03982	1.51453	

3D example



A new equilibrated residual method (ADMOS 2017) - June 2017 - 18/2

3D example



3D diffusion problem with data oscillation

$$\left\| \| e \| \right\|^{2} \leq \sum_{k=1}^{n_{\text{el}}} \left(\left\| \| q \|_{[\mathcal{L}^{2}(\Omega_{k})]^{3}} + \frac{h_{k}}{\pi} \| f - \Pi^{1} f \|_{\mathcal{L}^{2}(\Omega_{k})} \right)^{2} \right)^{2}$$
dual error
data oscillation

Conclusions

- We have developed a new technique to compute guaranteed upper bounds for the energy norm of the error (which can also be used to compute bounds for Qol)
- The proposed strategy may be seen as either:
 (1) an improved *cheap* version of the flux-free estimate
 (2) a new more *efficient* hybrid-flux equilibrated EE
- Alleviating the cost of the flux-free approach does not introduce a significant difference on accuracy
- The new equilibrated tractions yield sharper bounds than the original ones

A new equilibrated residual method: improving accuracy and efficiency of flux-free error estimates in two and three dimensions

Núria PARÉS and Pedro DÍEZ

Laboratori de Càlcul Numèric (LaCàN) Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.edu

A new equilibrated residual method (ADMOS 2017) - June 2017 - 21/21