A new equilibrated residual method: improving accuracy and efficiency of flux-free error estimates

Núria PARÉS and Pedro DÍEZ

Laboratori de Càlcul Numèric (LaCàN)
Universitat Politècnica de Catalunya (Barcelona)
http://www-lacan.upc.edu

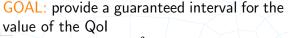
The finite element method is a basic tool in engineering design and since engineering decisions are based on approximations of the solution, it is crucial to certify the quality of the results.

> GOAL: provide a guaranteed interval for the value of the Qol

$$\ell^{\mathcal{O}}(u) = \int_{\Gamma} \sigma_{VM}(u) d\Gamma$$

$$\ell^{\mathcal{O}}(u) \in [L^-, L^+]$$

The finite element method is a basic tool in engineering design and since engineering decisions are based on approximations of the solution, it is crucial to certify the quality of the results.



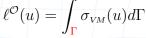
$$\ell^{\mathcal{O}}(u) = \int_{\Gamma} \sigma_{VM}(u) d\Gamma$$

- 1. compute $\ell^{\mathcal{O}}(u_h)$
- 2. define $\ell^{\mathcal{O}}(e) = \ell^{\mathcal{O}}(u) \ell^{\mathcal{O}}(u_h)$
- 3. bound $s^- \leq \ell^{\mathcal{O}}(e) \leq s^+$

$$\ell^{\mathcal{O}}(u) \in [\ell^{\mathcal{O}}(u_h) + s^-, \ell^{\mathcal{O}}(u_h) + s^+]$$

The finite element method is a basic tool in engineering design and since engineering decisions are based on approximations of the solution, it is crucial to certify the quality of the results.

> GOAL: provide a guaranteed interval for the value of the Qol



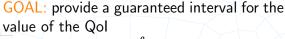
HOW?

- 1. compute $\ell^{\mathcal{O}}(u_h)$
- 2. define $\ell^{\mathcal{O}}(e) = \ell^{\mathcal{O}}(u) \ell^{\mathcal{O}}(u_h)$
- 3. bound $s^{-} < \ell^{O}(e) < s^{+}$

 $\ell^{\mathcal{O}}(u) \in [\ell^{\mathcal{O}}(u_h) + s^-, \ell^{\mathcal{O}}(u_h) + s^+]$

We need a posteriori GUARANTEED/STRICT error bounds.

The finite element method is a basic tool in engineering design and since engineering decisions are based on approximations of the solution, it is crucial to certify the quality of the results.



$$\ell^{\mathcal{O}}(u) = \int_{\Gamma} \sigma_{VM}(u) d\Gamma$$

HOW?

- 1. compute $\ell^{\mathcal{O}}(u_h)$
- 2. define $\ell^{\mathcal{O}}(e) = \ell^{\mathcal{O}}(u) \ell^{\mathcal{O}}(u_h)$
- 3. bound $s^- \leq \ell^{\mathcal{O}}(e) \leq s^+$

$$\ell^{\mathcal{O}}(u) \in [\ell^{\mathcal{O}}(u_h) + s^-, \ell^{\mathcal{O}}(u_h) + s^+]$$

We need a posteriori GUARANTEED/STRICT error bounds. They also have to be ACCURATE and CHEAP

Guaranteed, accurate and efficient bounds

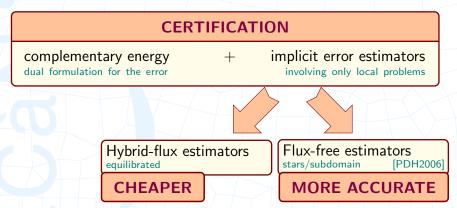
CERTIFICATION

complementary energy dual formulation for the error

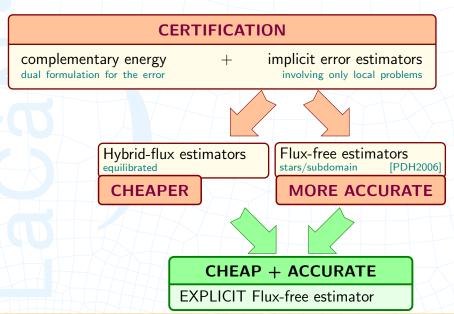
implicit error estimators involving only local problems

involving only local problems

Guaranteed, accurate and efficient bounds



Guaranteed, accurate and efficient bounds



Weak form: find $u \in \mathcal{U}$ such that

$$\underbrace{\int_{\Omega} \left(\nabla u \cdot \nabla v + \kappa^2 u v \right) \ d\Omega}_{a(u,v)} = \underbrace{\int_{\Omega} f v \ d\Omega + \int_{\Gamma_{\mathcal{N}}} g_{\mathcal{N}} v \ d\Gamma}_{\ell(v)} \quad \forall v \in \mathcal{V}.$$

Finite element approximation: find $u_h \in \mathcal{U}^h$ such that

$$a(u_h, v) = \ell(v)$$
 for all $v \in \mathcal{V}^h$.

triangular mesh + linear elements

Error equations: find $e = u - u_h \in \mathcal{V}$ such that

$$a(e,v) = \ell(v) - a(u_h,v) = R(v)$$
 for all $v \in \mathcal{V}$.

The complementary energy approach allows to overestimate ||e||approach introduced by Fraeijs de Veubeke in 1964

$$a(e,v) = \int_{\Omega} \left(\nabla e \cdot \nabla v + \kappa^2 e v \right) d\Omega = R(v) \qquad \text{for all } v \in \mathcal{V}$$

$$\int_{\Omega} \left(\begin{array}{c} \boldsymbol{q} \cdot \nabla v + \kappa^2 r v \right) d\Omega = R(v) \qquad \text{for all } v \in \mathcal{V} \\ & \qquad \qquad \text{new error unknowns} \end{array} \right)$$

The complementary energy approach allows to overestimate |||e|||approach introduced by Fraeijs de Veubeke in 1964

$$a(e,v) = \int_{\Omega} \left(\nabla e \cdot \nabla v + \kappa^2 e v \right) d\Omega = R(v) \qquad \text{for all } v \in \mathcal{V}$$

$$\int_{\Omega} \left(\begin{array}{c} \boldsymbol{q} \cdot \nabla v + \kappa^2 r v \right) d\Omega = R(v) \qquad \text{for all } v \in \mathcal{V} \end{array} \right.$$
 new error unknowns

Dual formulation:

Any pair of dual estimates (q, r) such that

$$\int_{\Omega} \left(\mathbf{q} \cdot \nabla v + \kappa^2 \mathbf{r} v \right) d\Omega = R(v) \qquad \text{for all } v \in \mathcal{V}$$

provide an upper bound for the energy norm of the error

$$|||e|||^2 = \int_{\Omega} (\nabla e \cdot \nabla e + \kappa^2 e^2) d\Omega \le \int_{\Omega} (\mathbf{q} \cdot \mathbf{q} + \kappa^2 \mathbf{r}^2) d\Omega$$

Global problem: find q and r

s.t.
$$\int_{\Omega} \left(\mathbf{q} \cdot \nabla v + \kappa^2 \mathbf{r} v \right) d\Omega = R(v)$$

 $\text{s.t.} \int_{\Omega} \left({\color{red} {\boldsymbol q} \cdot \boldsymbol \nabla v + \kappa^2 r v} \right) d\Omega = R(v) \qquad \text{TOO EXPENSIVE}$ minimizing the upper bound $\int_{\Omega} \left({\color{red} {\boldsymbol q} \cdot \boldsymbol q + \kappa^2 r^2} \right) d\Omega$

Global problem: find q and r

s.t.
$$\int_{\Omega} \left(\mathbf{q} \cdot \nabla v + \kappa^2 \mathbf{r} v \right) d\Omega = R(v)$$

TOO EXPENSIVE

s.t. $\int_{\Omega} \left(\mathbf{q} \cdot \nabla v + \kappa^2 \mathbf{r} v \right) d\Omega = R(v)$ TOO minimizing the upper bound $\int_{\Omega} \left(\mathbf{q} \cdot \mathbf{q} + \kappa^2 \mathbf{r}^2 \right) d\Omega$

SPLIT THE GLOBAL PROBLEM INTO LOCAL PROBLEMS

Global problem: find q and r

s.t.
$$\int_{\Omega} \left(\mathbf{q} \cdot \nabla v + \kappa^2 r v \right) d\Omega = R(v)$$

TOO EXPENSIVE

s.t. $\int_{\Omega} \left(\mathbf{q} \cdot \nabla v + \kappa^2 \mathbf{r} v \right) d\Omega = R(v)$ TOO minimizing the upper bound $\int_{\Omega} \left(\mathbf{q} \cdot \mathbf{q} + \kappa^2 r^2 \right) d\Omega$

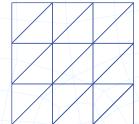
SPLIT THE GLOBAL PROBLEM INTO LOCAL PROBLEMS

Hybrid-flux estimators

Flux-free estimators

Global problem

$$\int_{\Omega} \left(\boldsymbol{q} \cdot \boldsymbol{\nabla} v + \kappa^2 r v \right) d\Omega = R(v)$$



Global problem

$$\int_{\Omega} \left(\boldsymbol{q} \cdot \boldsymbol{\nabla} v + \kappa^2 r v \right) d\Omega = R(v)$$

Hybrid-flux

$$\begin{split} &\int_{\Omega_k} \left(\boldsymbol{q}_k \cdot \boldsymbol{\nabla} v + \kappa^2 r_k v \right) d\Omega = R_k(v) + \int_{\Omega_k} g_k v \, d\Gamma \\ &\text{single element} & \quad \boldsymbol{q}|_{\Omega_k} = \boldsymbol{q}_k \quad , \quad r|_{\Omega_k} = r_k \end{split}$$

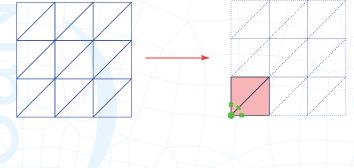
Global problem

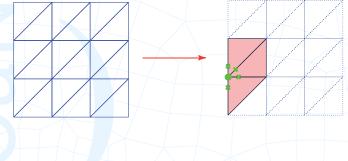
$$\int_{\Omega} \left(\boldsymbol{q} \cdot \boldsymbol{\nabla} v + \kappa^2 r v \right) d\Omega = R(v)$$

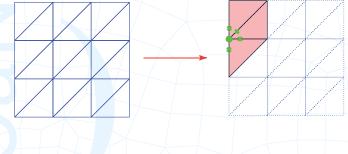
$$\begin{split} &\int_{\Omega_k} \left(\boldsymbol{q}_k \cdot \boldsymbol{\nabla} v + \kappa^2 r_k v \right) d\Omega = R_k(v) + \int_{\Omega_k} g_k v \, d\Gamma \\ &\text{single element} \qquad \boldsymbol{q}|_{\Omega_k} = \boldsymbol{q}_k \quad , \quad r|_{\Omega_k} = r_k \end{split}$$

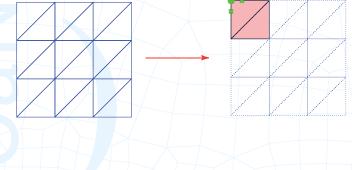
$$\int_{\boldsymbol{\omega_i}} \left(\boldsymbol{q^i} \cdot \boldsymbol{\nabla} v + \kappa^2 r^i v \right) d\Omega = R(\boldsymbol{\phi_i} v)$$

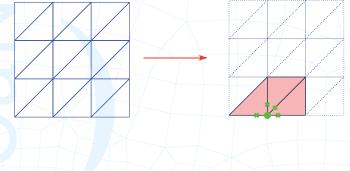
patch of elements
$$oldsymbol{q} = \sum\limits_{i=1}^{n_{
m np}} oldsymbol{q}^i \quad , \quad r = \sum\limits_{i=1}^{n_{
m np}} r^i$$

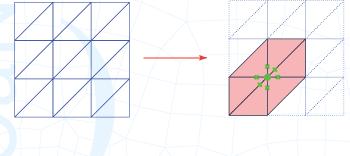


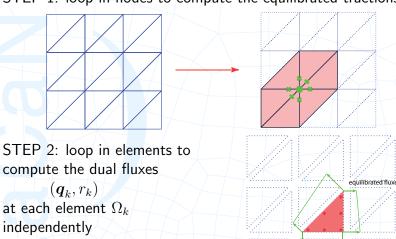


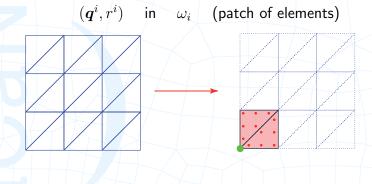


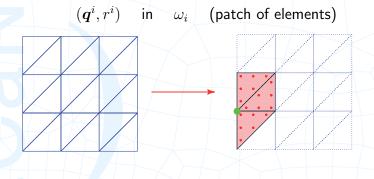


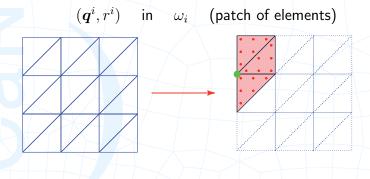


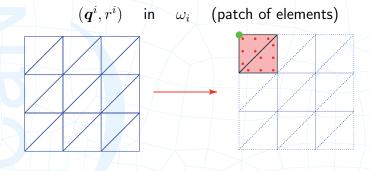


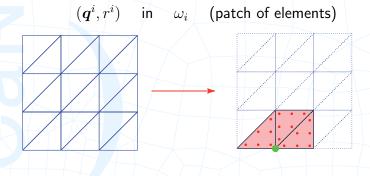


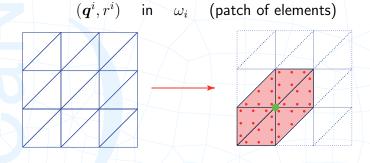




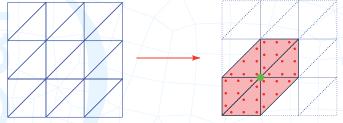






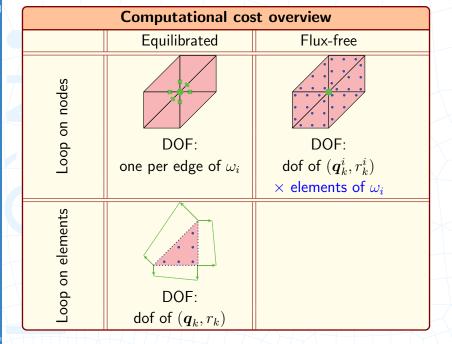


STEP 1: loop in nodes to compute the dual fluxes in the stars

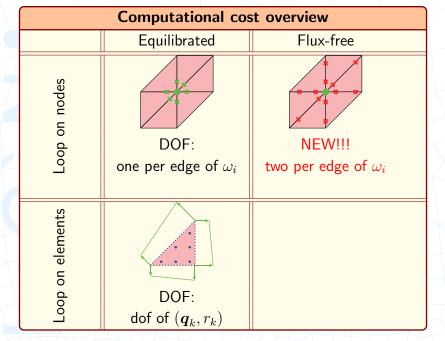


STEP 2: add all the local contributions and compute the norm

$$oldsymbol{q} = \sum\limits_{i=1}^{n_{ ext{np}}} oldsymbol{q}^i \quad , \quad r = \sum\limits_{i=1}^{n_{ ext{np}}} r^i$$



Computational cost overview		
	Equilibrated	Flux-free
Loop on nodes	DOF: one per edge of ω_i	DOF: dof of $(m{q}_k^i, r_k^i)$ $ imes$ elements of ω_i
Loop on elements	DOF: dof of (q_k, r_k)	higher costbetter accuracy



New guaranteed, accurate and cheap error estimate (EE)

Local problems: find q^i and r^i such that

$$\int_{\omega_i} (\boldsymbol{q}^i \cdot \nabla v + \kappa^2 r^i v) d\Omega = R(\phi_i v) \quad \forall v \in \mathcal{V}(\omega_i)$$

minimizing the local complementary energy

$$\int_{\omega_i} \left(\boldsymbol{q}^i \cdot \boldsymbol{q}^i + \kappa^2 (r^i)^2 \right) d\Omega$$

New guaranteed, accurate and cheap error estimate (EE)

Local problems: find q^i such that

$$\int_{\omega_i} \mathbf{q}^i \cdot \nabla v d\Omega = R(\phi_i v) \quad \forall v \in \mathcal{V}(\omega_i)$$

minimizing the local complementary energy

$$\int_{\omega_i} oldsymbol{q}^i \cdot oldsymbol{q}^i d\Omega$$

New guaranteed, accurate and cheap error estimate (EE)

Local problems: find q^i such that

$$\int_{\omega_i} \mathbf{q}^i \cdot \nabla v d\Omega = R(\phi_i v) \quad \forall v \in \mathcal{V}(\omega_i)$$

minimizing the local complementary energy

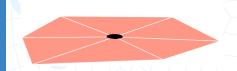
$$\int_{\Omega^i} oldsymbol{q^i} \cdot oldsymbol{q^i} d\Omega$$

KEY POINT

Find a closed EXPLICIT solution for q^i

From star ω_i to elements $\Omega_k \subset \omega_i$

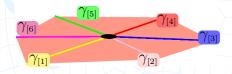
$$\int_{\omega_i} \mathbf{q}^i \cdot \nabla v d\Omega = R(\phi_i v)$$

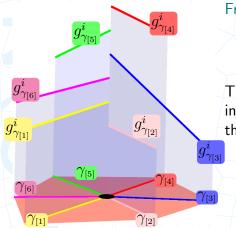


From star ω_i to elements $\Omega_k \subset \omega_i$

$$\int_{\omega_i} \mathbf{q}^i \cdot \nabla v d\Omega = R(\phi_i v)$$

The explicit solution is found introducing the linear tractions on the edges of the star $\{g_{\gamma_{[m]}}^i\}$

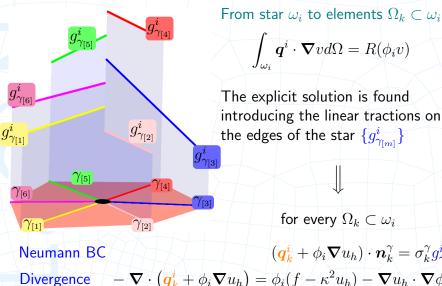




From star ω_i to elements $\Omega_k \subset \omega_i$

$$\int_{\omega_i} \mathbf{q}^i \cdot \nabla v d\Omega = R(\phi_i v)$$

The explicit solution is found introducing the linear tractions on the edges of the star $\{g_{\gamma_{[m]}}^i\}$



$$\int \boldsymbol{q}^i \cdot \boldsymbol{\nabla} v d\Omega = R(\phi_i v)$$

The explicit solution is found introducing the linear tractions on the edges of the star $\{g_{\gamma_{[m]}}^i\}$

for every $\Omega_k \subset \omega_i$

$$(oldsymbol{q}_k^i + \phi_i oldsymbol{
abla} u_h) \cdot oldsymbol{n}_k^{\gamma} = \sigma_k^{\gamma} g_{\gamma}^i$$

 $-\boldsymbol{\nabla}\cdot\left(\boldsymbol{q}_{k}^{i}+\phi_{i}\boldsymbol{\nabla}u_{h}\right)=\phi_{i}(f-\kappa^{2}u_{h})-\boldsymbol{\nabla}u_{h}\cdot\boldsymbol{\nabla}\phi_{i}$

Strong form of the elementary problems:

$$-\nabla \cdot (\mathbf{q}_k^i + \phi_i \nabla u_h) = \phi_i (f - \kappa^2 u_h) - \nabla u_h \cdot \nabla \phi_i$$
 in Ω_k

$$m{q}_k^i \cdot m{n}_k^\gamma = \sigma_k^\gamma g_\gamma^i - \phi_i m{
abla} u_h \cdot m{n}_k^\gamma := \; m{\mathcal{R}}_{|\gamma} \qquad \qquad ext{on } \partial \Omega_k$$

Strong form of the elementary problems:

$$egin{aligned} -oldsymbol{
abla}\cdotig(oldsymbol{q}_k^i+\phi_ioldsymbol{
abla}u_hig)&=\phi_i(\ f-\kappa^2u_h\)-oldsymbol{
abla}u_h\cdotoldsymbol{
abla}\phi_i \ \ oldsymbol{q}_k^i\cdotoldsymbol{n}_k^\gamma&=\sigma_k^\gamma g_{\gamma}^i-\phi_ioldsymbol{
abla}u_h\cdotoldsymbol{n}_k^\gamma&=\mathcal{R}_{|\gamma} \end{aligned} \qquad ext{on }\partial\Omega_k$$

Explicit solution: $oldsymbol{q}_k^i = oldsymbol{q}_k^{iL} + oldsymbol{q}_k^{iC}$ as long as

$$\int_{\Omega_k} \left[\phi_i \left(f - \kappa^2 u_h \right) - \nabla u_h \cdot \nabla \phi_i \right] d\Omega + \sum_{\gamma \subset \partial \Omega_k} \int_{\gamma} \sigma_k^{\gamma} g_{\gamma}^i d\Gamma = 0,$$

Details can be found in

N. Parés, P. Díez, A new equilibrated residual method improving accuracy and efficiency of flux-free error estimates, CMAME, Volume 313, Pages 785-816 (2017)

Strong form of the elementary problems:

$$-\nabla \cdot (\mathbf{q}_k^i + \phi_i \nabla u_h) = \phi_i (f - \kappa^2 u_h) - \nabla u_h \cdot \nabla \phi_i \quad \text{in } \Omega_k$$

$$oldsymbol{q}_k^i \cdot oldsymbol{n}_k^\gamma = \sigma_k^\gamma g_\gamma^i - \phi_i oldsymbol{
abla} u_h \cdot oldsymbol{n}_k^\gamma := oldsymbol{\mathcal{R}}_{|\gamma|}$$

on $\partial\Omega_k$

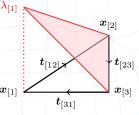
Explicit solution of the elementary problems: $oldsymbol{q}_k^i = oldsymbol{q}_k^{iL} + oldsymbol{q}_k^{iC}$

$$oldsymbol{q}_k^i = oldsymbol{q}_k^{iL} + oldsymbol{q}_k^{iC}$$

$$m{q}_k^{iL} = rac{1}{2|\Omega_k|} \sum_{n=1}^3 \sum_{\substack{m=1 \ m
eq n}} \ell_{[m]} \left. R \right|_{\gamma_{[m]}} \!\! (m{x}_{[n]}) \left. m{t}_{[mn]} \lambda_{[n]} \right|^{m{\lambda}_{[1]}}$$

$$oldsymbol{q}_k^{iC} = rac{1}{3}\sum_{n=1}^3\sum_{m=2}^3 \lambda_{[n]}\lambda_{[n]}oldsymbol{t}_{[nm]}oldsymbol{t}_{[nm]}oldsymbol{t}_{[nm]} \hspace{0.1cm}oldsymbol{
abla}_{vQ}$$

m > n



Strong form of the elementary problems:

m > n

Explicit solution of the elementary problems:
$$\begin{aligned} \boldsymbol{q}_k^{iL} &= \frac{1}{2|\Omega_k|} \sum_{n=1}^3 \sum_{\substack{m=1\\ m \neq n}} \ell_{[m]} R|_{\gamma_{[m]}}(\boldsymbol{x}_{[n]}) \boldsymbol{t}_{[mn]} \lambda_{[n]} \end{aligned} \quad \begin{matrix} \boldsymbol{\lambda}_{[1]} \\ \boldsymbol{k}_{[2]} \\ \boldsymbol{k}_{[2]} \\ \boldsymbol{k}_{[n]} \\ \boldsymbol{k}_{[n]$$

 q_k^{iL} imposes the tractions on the element

 q_k^{iC} is traction free

Strong form of the elementary problems:

$$\begin{aligned} -\boldsymbol{\nabla} \cdot \left(\boldsymbol{q}_k^i + \phi_i \boldsymbol{\nabla} u_h \right) &= \phi_i (\boldsymbol{f} - \kappa^2 u_h) - \boldsymbol{\nabla} u_h \cdot \boldsymbol{\nabla} \phi_i & \text{in } \Omega_k \\ \boldsymbol{q}_k^i \cdot \boldsymbol{n}_k^{\gamma} &= \sigma_k^{\gamma} g_{\gamma}^i - \phi_i \boldsymbol{\nabla} u_h \cdot \boldsymbol{n}_k^{\gamma} := \ \mathcal{R}_{|\gamma} & \text{on } \partial \Omega_k \end{aligned}$$

Explicit solution of the elementary problems:
$$\begin{aligned} \boldsymbol{q}_k^i &= \boldsymbol{q}_k^{iL} + \boldsymbol{q}_k^{iC} \\ \boldsymbol{q}_k^{iL} &= \frac{1}{2|\Omega_k|} \sum_{n=1}^3 \sum_{\substack{m=1\\m\neq n}}^{\infty} \ell_{[m]} \ R|_{\gamma_{[m]}}(\boldsymbol{x}_{[n]}) \ \boldsymbol{t}_{[mn]} \lambda_{[n]} \end{aligned} \qquad \begin{matrix} \lambda_{[1]} \\ \boldsymbol{t}_{[23]} \\ \boldsymbol{x}_{[2]} \end{matrix}$$

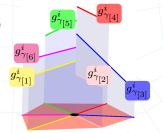
$$\boldsymbol{q}_k^{iC} &= \frac{1}{3} \sum_{n=1}^3 \sum_{\substack{m=2\\m>n}}^{3} \lambda_{[n]} \lambda_{[m]} \boldsymbol{t}_{[nm]} \boldsymbol{t}_{[nm]}^\mathsf{T} \nabla v^Q$$

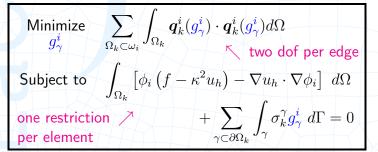
$$v^Q &= \frac{3}{8} \phi_i F + \frac{1}{8} (4F_{[1]} \lambda_{[1]} - F_{[2]} \lambda_{[3]} - F_{[3]} \lambda_{[2]})$$

$$\boldsymbol{q}_k^{iC} \text{ imposes the divergence condition}$$

LOCAL QUADRATIC CONSTRAINED **OPTIMIZATION PROBLEM:**

find $\{g_{\gamma_{[m]}}^i\}$ solution of

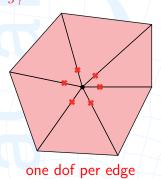




Hybrid-flux vs. Explicit Flux-free

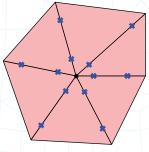
Hybrid-flux/equilibrated

$$\operatorname{Min}_{\boldsymbol{g_{\gamma}}} g_{\gamma} - [[\boldsymbol{\nabla} u_h \cdot n]]_{\text{ave}}$$



Explicit Flux-free

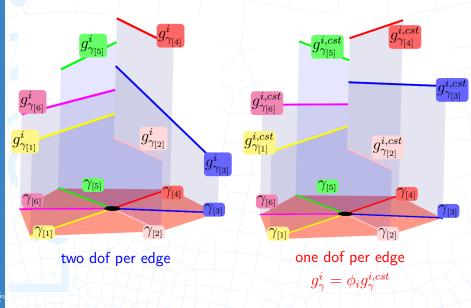
$$\min_{\boldsymbol{g}_{\gamma}^{i}} \ \sum_{\Omega_{k} \subset \omega_{i}} \int_{\Omega_{k}} \boldsymbol{q}_{k}^{i}(\boldsymbol{g}_{\gamma}^{i}) \cdot \boldsymbol{q}_{k}^{i}(\boldsymbol{g}_{\gamma}^{i}) d\Omega$$



two dof per edge

+ one restriction per element in both cases

Constant Explicit Flux-free



Uniformly forced square domain

$$-\Delta u=1$$
 in $[-1,1]^2$ with homogeneous Dirichlet BC

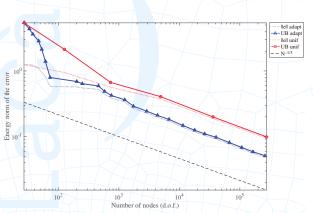
$$u(x,y) = \frac{1-x^2}{2} - \frac{16}{\pi^3} \sum_{\substack{k=1 \ \text{odd}}}^{+\infty} \frac{\sin(k\pi(1+x)/2)(\sinh(k\pi(1+y)/2) + \sinh(k\pi(1-y)/2))}{k^3 \sinh(k\pi)}$$

	EQUILIBRATED	FLUX-FREE			$\rho = e _{ub}/ e \approx 1$		
ı		explicit					
ı	$ ho^{ m eq}$	$ ho^q$	ho	$ ho^{ m st}$	$\ e\ $	$n_{ m el}$	
	1.20880	1.01545	1.09131	1.00036	0.34331271	8	
	1.48894	1.03831	1.05288	1.04611	0.27603795	32	
ı	1.51749	1.03889	1.04621	1.04314	0.15288301	128	
L	1.52104	1.03938	1.04470	1.04088	0.07856757	512	
ı	1.51898	1.03962	1.04429	1.03948	0.03955958	2048	
X	1.51641	1.03974	1.04420	1.03862	0.01980831	8192	
L	1.51453	1.03982	1.04419	1.03813	0.00990510	32768	

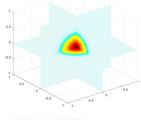
3D diffusion problem with data oscillation

$$-\Delta u = f \quad \text{ in } [-1,1]^3 \quad \text{with Dirichlet BC}$$

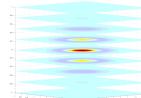
$$u(x,y,z) = e^{-20(x^2+y^2+z^2)}$$



Exact solution

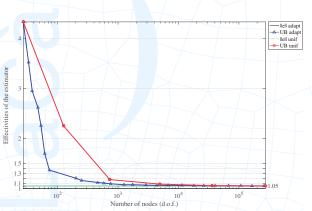


Source term

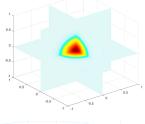


3D diffusion problem with data oscillation

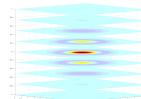
$$-\Delta u = f$$
 in $[-1,1]^3$ with Dirichlet BC
$$u(x,y,z) = e^{-20(x^2+y^2+z^2)}$$



Exact solution



Source term



3D diffusion problem with data oscillation

$$\begin{aligned} \|\|e\|\|^2 & \leq \sum_{k=1}^{n_{\mathrm{el}}} \left(& \|\boldsymbol{q}\|_{[\mathcal{L}^2(\Omega_k)]^3} & + & \frac{h_k}{\pi} \|f - \Pi^1 f\|_{\mathcal{L}^2(\Omega_k)} \\ & \text{dual error} & \text{data oscillation} \end{aligned} \right)^2$$

Conclusions

- We have developed a new technique to compute guaranteed upper bounds for the energy norm of the error (which can also be used to compute bounds for QoI)
- The proposed strategy may be seen as either:
 - (1) an improved *cheap* version of the flux-free estimate
 - (2) a new more acurate hybrid-flux equilibrated EE
- Alleviating the cost of the flux-free approach does not introduce a significant difference on accuracy
- The new equilibrated tractions yield sharper bounds than the original ones

A new equilibrated residual method: improving accuracy and efficiency of flux-free error estimates in two and three dimensions

Núria PARÉS and Pedro DÍEZ

Laboratori de Càlcul Numèric (LaCàN)
Universitat Politècnica de Catalunya (Barcelona)
http://www-lacan.upc.edu