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hores d’estudi i la seva amistat.

Tampoc no voldria oblidar-me dels companys d’Urgell amb quihe compartit les

primeres classes i molt bons moments i dels companys del grupde recerca LaC̀aN

per les llargues estones compartides, en especial a l’Antonio Rodŕıguez, al Pep, a la
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Chapter 1

Introduction

1.1 Motivation

Computational methods are today an inherent process in engineering design. Nu-

merical simulation of physical phenomena allows to reduce the cost of product de-

velopment at the same time that assessing the quality of the final product, providing

faster, flexible and inexpensive alternative to experiments.

The systems under consideration are usually modelled usinga set of partial

differential equations (mathematical model) which are then discretized and solved

using numerical methods. However, no matter how sophisticated or how appropriate

the mathematical model can be for characterizing the physical phenomena and how

accurate the numerical methods involved in the discretization and approximation

process might be, all computational results will be in error. Therefore, before using

any numerical simulation in a decision making process, one has to decide whether

the computational results are reliable or not: are we solving the right model? and

are we solving the model right?

Validation and verification are thus crucial in order to use computer simulations

as reliable tools for engineering design. Validation accounts for the modelling error,

that is, the assessment of the error introduced by approximating the physical prob-

lem by a mathematical model, while verification accounts forthe error introduced

by solving the continuum models using numerical approximations.

Engineering applications typically consist in studying a physical phenomena in

order to predict certain quantities relevant to the analysis such as averages of the

1



2 Introduction

solution, flow rates, velocities or shear stress at a given critical point in the domain.

It is frequent to study if a design meets the security requirements or to study how

to modify a design in order to improve its performance requirements, which are the

quantities of analysis. To approximate these quantities, numerical approximations

of the physical phenomena are used. Therefore, the accuracyof the numerical re-

sults is given by its capacity to provide reliable quantitative information about the

quantities of interest also called outputs. Obtaining an approximated solution with

a global prescribed accuracy is not the main goal but rather the control of the error

in the output, which represents the relevant engineering quantity.

In this context, the validation and verification techniquesmust be capable of en-

suring that the quantities predicted by the mathematical model agree with the quan-

tities obtained in experimental results and also that the discretized mathematical

model is solved with sufficient precision so that the error inthe predicted quantities

meet the accuracy requirements. Moreover, in the case wherethe error in the output

is too large, it has to provide information on how to modify the mathematical model

or the discretization procedure in order to be able to achieve the desired accuracy.

1.2 Objectives of the thesis

This thesis is focused on the verification of numerical results, that is, in the evalua-

tion of the errors introduced in the discretization processof transforming the math-

ematical model into a numerical problem. The goal is to control and assess the

discretization error, which is the difference between the exact solution of the math-

ematical model,u, and the solution of its discretized approximation,uH . Valida-

tion, that is assessing the difference between the exact solution of the mathematical

model and the physical phenomenon under consideration is out of the scope of this

thesis. In particular, special interest is paid in the assessment of the discretization

error not only in a global norm but in a particular quantity ofinterest.

The quantities of interest are typically functionals of thefield variablesu, ℓO(u).

These field variables are approximated using numerical schemes, such as the finite

element method, yielding an approximated solutionuH , which in turn yields the ap-

proximation of the quantity of interestℓO(uH). The goal is then to be able to assess
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the error in this approximationℓO(u) − ℓO(uH) to decide if the current approxima-

tion is accurate enough, and, if not, to be able to provide quantitative information

on how to improve the approximationuH to achieve the desired accuracy.

Usually, the assessment of the error is achieved using a hierarchy of numerical

approximations. The first discretization or “working” coarse mesh provides the

approximated solutionuH and the approximated outputℓO(uH) with a relatively

low effort. The second discretization or “reference” fine mesh produces an approx-

imation uh and an outputℓO(uh) for which it is assumed that|ℓO(u) − ℓO(uh)|
is negligible with respect to|ℓO(u) − ℓO(uH)|, at least in the asymptotic range of

convergence. The reference discretization serves to assess the error in the output

associated with the coarse discretization since it is assumed thatℓO(u)− ℓO(uH) ≈
ℓO(uh) − ℓO(uH). Obviously, the “reference” mesh calculations are too expensive,

or impossible, to be performed. However, it is possible to obtain bounds forℓO(uh),

with an extra cost similar to the output calculation on the “working” mesh, using the

approximationuH . One would expect that if the “reference” mesh isfine enough,

the bounds forℓO(uh) would also hold forℓO(u). Although a priori error estimates

techniques might be used to have information on the asymptotic range of conver-

gence ofuh, one can not answer the question: are the bounds forℓO(uh) still valid

when assessing the exact outputℓO(u)?

The final goal of the thesis is to obtain bounds forℓO(u), using only the coarse

mesh approximationuH , which are uniformly valid, that is, they are valid regardless

of the size of the underlying coarse discretization. The proposed techniques provide

a certificate of precision for a predicted output with a cost that does not overwhelm

the cost of computation ofuH . With each approximationℓO(uH) boundssl andsu

are provided guaranteeing thatℓO(u) ∈ [ℓO(uH) + sl, ℓ
O(uH) + su]. Furthermore,

the procedure also provides local information on the contributions to the error in the

outputℓO(u)− ℓO(uH) which might be used in adaptive methods to drive a solution

to an arbitrary precision.

Note that, although attention is not paid to the error introduced from the choice

of a mathematical model, the bounds for the output can also beused to invalidate

models in the cases where the experimental data does not fit the predicted intervals

of approximation of the outputℓO(u).
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The aforementioned goal of obtaining strict bounds for outputs of interest de-

pending on the exact weak solution of a set of partial differential equations is prob-

ably one of the most important open problems in error verification. Since the 1990s

significant advances toward obtaining bounds for quantities of interest have been

made but it still remains a great deal of work to be done.

Having in mind this “so-ambitious” goal, attention has beenfocused on several

partial goals, the solution of which provides concrete advances toward the resolution

of the main problem.

First of all the problem has been simplified to obtaining bounds for linear-

functional outputs, thus leaving aside the treatment of non-linear outputs. Only a

particular quadratic-functional output has been considered, the evaluation of theJ-

integral in linear fracture mechanics see (Chapter 5). In this scenario the following

partial goals are considered:

⊲ Obtaining bounds for linear-functional outputs depending on the solu-

tion of self-adjoint coercive boundary value problems (thermal model

problem and elasticity): bounds for quantities of interest for self-adjoint

coercive problems may be obtained using techniques providing upper bounds

for the error measured in the energy norm. Moreover, these bounds may

be enhanced if also techniques providing lower bounds for the error mea-

sured in the energy norm are available. Many implicit a-posteriori residual

type error estimators provide upper bounds for the energy norm of the error,

thus, the first goal is to develop simple and inexpensive techniques toobtain

sharp lower bounds from the available information (finite element approxi-

mation and upper bound estimate). This work is detailed in (D́ıez, Paŕes and

Huerta 2003) and also in Section 3.3.

⊲ Obtaining a methodology providing sharp upper and lower bounds for

linear-functional outputs and being competent for 3D applications: as

mentioned before, obtaining bounds for a quantity of interest rely on obtain-

ing bounds for the energy. Although there are many availabletechniques to

obtain upper bounds for the energy, either they provide bounds which are not

really accurate or they rely on equilibration techniques which are complex to

implement, specially in 3D applications. Thus, in order to be able to consider
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complex practical applications in three dimensions one caneither obtain too

pessimistic bounds or must spend an immense amount of effortin the imple-

mentation of equilibrating techniques. Thus, the second goal is todevelop an

estimation technique providing accurate estimates and being simple to imple-

ment. This work is detailed in (Parés, D́ıez and Huerta 2005) and in Chapter

4.

⊲ Obtaining strict bounds for linear-functional outputs in elasticity: most

residual type error estimators introduce a reference or finemesh in order to

derive upper bounds for linear-functional outputs. This yields to the loss of

the upper bound property with respect to the exact output,ℓO(u), but still

returns an upper bound with respect to the reference output,ℓO(uh). In the

asymptotic range of convergence, the reference solution will approach the

exact solution and the upper bounds forℓO(uh) are hoped to provide also an

upper bound forℓO(u). However, given a working mesh, it is crucial to be

able to assess the error with respect to the exact solution and not with re-

spect to a reference solution. Sauer-Budge, Bonet, Huerta andPeraire (2004)

and Sauer-Budge and Peraire (2004) derive strict bounds for linear-functional

outputs for scalar model problems. An extension to the elasticity equations is

presented in (Parés, Bonet, Huerta and Peraire 2005) and in Chapter 5.

⊲ Obtaining a general framework to derive sharp bounds for linear-functio-

nal outputs in nonself-adjoint model problems:finally, the idea of enhanc-

ing the bounds for the output by means of obtaining lower bounds for the error

measured in the energy norm, appearing when dealing with self-adjoint prob-

lems, has been extended for nonself-adjoint model problems. The goal is to

be able to obtain accurate bounds for linear-functional outputs in convection-

dominated convection-diffusion-reaction model problems. Here only the gen-

eral framework to obtain the bounds is presented (Chapter 2).The applica-

tion of these techniques to numerical examples has only beentested for one

dimensional model problems and is now being tested in a two dimensional

setting.
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1.3 Overview

The thesis is divided in three main parts (three-layer presentation): the exposition,

the appendices referring to the exposition and finally the three main contributions

of the thesis enclosed in form of published or accepted papers.

The exposition part aims at presenting the contributions ofthis thesis in a clear

and concise manner providing the main ideas and core concepts. The full details of

the deduction and implementation of the methodologies are appended either in the

appendices A, B and C, which support the exposition part, or inthe final papers.

The exposition part is divided in 5 chapters: Chapters 2 present a general frame-

work to obtain sharp bounds for outputs of interest depending on solutions of mathe-

matical problems dealing with both self-adjoint and nonself-adjoint operators. The

most important concept in this chapter is the relation between bounding outputs

of interest and bounding energy norms. It is sufficient to obtain upper and lower

bounds for the errors measured in the energy norm to be able torecover sharp

bounds for the output. Thus, Chapter 3 is concerned with obtaining upper and lower

bounds for the energy norm. It presents the main ingredientspresent in any implicit

residual type a posteriori error estimation technique which allows to compute upper

and lower bounds for the energy norm of the error.

Chapters 4 and 5 (and its correspondent appendices B and C) present a brief

description of the methods detailed in the papers (Parés, D́ıez and Huerta 2005) and

(Paŕes, Bonet, Huerta and Peraire 2005) respectively. Finally Chapter 6 presents the

conclusions and future developments.

The three appended papers at the end of the thesis correspondto the references

Dı́ez et al. (2003), Parés, D́ıez and Huerta (2005) and Parés, Bonet, Huerta and

Peraire (2005) respectively. Throughout the thesis these papers are cited using the

corresponding reference.



Chapter 2

Bounds for linear outputs of interest
for a general variational problem

The goal of many finite element computations is to determine aspecific quantity

ℓO(u), such as the prediction of system characteristics in engineering design. Since

the quantity of interest depends on the unknown solutionu it is not possible in

general to know the value of the output, and the finite elementsolution is used

to approximate it, that is,ℓO(u) is approximated byℓO(uH). In this context, the

classical assessment of the energy norm of the error in the field solutionu does not

provide any information on the accuracy of the approximation of the output which

is the aim of goal oriented error estimation techniques.

This chapter presents a general framework aimed at obtaining both upper and

lower bounds for the error in the quantity of interest. Thus,if s := ℓO(u)− ℓO(uH)

is the error in the quantity of interest, scalar quantitiessl andsu will be computed

satisfying

sl ≤ s ≤ su.

An immediate consequence of these error bounds for the output is that upper and

lower bounds may be obtained for the quantity of interest itself, namely

ℓO(uH) + sl ≤ ℓO(u) ≤ ℓO(uH) + su.

In order to develop a general framework to obtain bounds fors, it is convenient to

regard the quantity of interest as a bounded, linear functional ℓO(·) acting on the

spaceV of admissible functions for the problem at hand. In this case, the error in

the quantity of interest may be written in the forms = ℓO(u) − ℓO(uH) = ℓO(e)

7



8 Chapter 2. Output bounds

wheree = u − uH is the error in the finite element approximation ofu. The treat-

ment of non-linear outputs is considered by Larsson, Hansboand Runesson (2002)

and Sarrate, Peraire and Patera (1999) and also by Xuan, Parés and Peraire (2005)

where bounds for a particular output, theJ-integral, are found without introducing

a linearization of the output.

A notable feature of the presented theory is that it is possible to obtain upper and

lower bounds fors using techniques developed for estimating the error in the global

energy norm for self-adjoint model problems. These techniques are not discussed in

this chapter which is primarily concerned with establishing the general framework

for assessing the error in quantities of interest. A survey of techniques to estimate

the error in the global energy norm for self-adjoint model problems can be found in

the book by Ainsworth and Oden (2000). Moreover, Chapters 4 and 5 describe and

discuss two new error estimation procedures yielding bounds for the error measured

in the energy norm.

This chapter is structured as follows: first, the model problem is presented. Then

upper and lower bounds for the error in the outputs are derived for both self-adjoint

and nonself-adjoint coercive model problems. The theory presented here is a survey

of the most popular techniques to obtain bounds for output quantities from energy

norm estimates. However, for nonself-adjoint model problems a novelty is intro-

duced. Although the presented approach only introduces a slightly modification on

the existing theory, it allows to enhance the bounds for the output sidestepping the

degradation of the bounds appearing in some problems.

2.1 Model problem

Consider a general variational problem: findu ∈ V such that

a(u, v) = ℓ(v) ∀v ∈ V, (2.1)

whereV is a Hilbert space, the functionalℓ ∈ V ′ is a continuous linear functional

over V, anda : V × V → R is a continuous, coercive bilinear form not nec-

essarily symmetric. For ease of exposition the Dirichlet boundary conditions are

taken to be homogeneous, in which case the solution and test space coincide. Non-
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homogeneous Dirichlet conditions may be dealt with in an analogous fashion (see

Paŕes, Bonet, Huerta and Peraire 2005).

The Lax-Milgram Theorem guarantees both existence and uniqueness of the

solution to (2.1) (see Brenner and Scott 1994). The exact solution is approximated

by the finite element solutionuH lying in a finite dimensional subspaceVH ⊂
V. The finite element solution also known as Ritz-Galerkin approximation is the

solution of equation (2.1) withV replaced byVH , namely

a(uH , v) = ℓ(v) ∀v ∈ VH . (2.2)

The errore = u − uH belongs to the spaceV and satisfies the residual equation

a(e, v) = ℓ(v) − a(uH , v) =: RP(v) ∀v ∈ V, (2.3)

whereRP(·) is the residue associated to the finite element solutionuH . Moreover,

the standard orthogonality condition for the error in the Galerkin projection holds

a(e, v) = 0 ∀v ∈ VH . (2.4)

2.1.1 Operator decomposition

The bilinear forma(·, ·) can be split into its symmetric,as(v, w) = as(w, v), and

antisymmetric (or skew-symmetric),ass(v, w) = −ass(w, v), contributions

as(v, w) =
1

2
(a(v, w) + a(w, v)) , ass(v, w) =

1

2
(a(v, w) − a(w, v)) , (2.5)

namely

a(v, w) = as(v, w) + ass(v, w). (2.6)

Sinceas(·, ·) is a continuous, coercive, symmetric bilinear form, it defines an

inner product and the associated norm‖v‖s =
√

as(v, v). This immediately implies

that both the Cauchy-Schwarz inequality

|as(v, w)| ≤ ‖v‖s‖w‖s, (2.7)

and the parallelogram identity

as(v, w) =
1

4
‖v + w‖2

s −
1

4
‖v − w‖2

s , (2.8)
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hold for the scalar productas(·, ·). Additionally, denoting by‖v‖ =
√

a(v, v)

the energy norm of a function inV, from the definition of the symmetric operator,

‖v‖s = ‖v‖. Thus, equations (2.7) and (2.8) are still valid when the symmetric

norms,‖·‖s, are replaced by the energy norm,‖·‖. In fact, from now on, instead of

the symmetric norm‖·‖s the energy norm‖·‖ is used, that is, the norm associated

with the symmetric bilinear formas(·, ·) is taken to be directly the energy norm,‖·‖.

Obviously, if the bilinear forma(·, ·) is symmetric it coincides with its symme-

tric contribution,a(v, w) = as(v, w), andass(v, w) = 0 ∀v, w ∈ V.

Symmetric bilinear formsa(·, ·) derive from self-adjoint model problems which

are named after symmetric model problems (though slightly abuse of language)

referring to the associated bilinear form being symmetric.Similarly, nonsymmetric

bilinear forms derive from nonself-adjoint model problemsnamed after nonsym-

metric model problems.

2.2 Energy reformulation

Attention is usually centered in bounding the error in the finite element approxi-

mation of a quantity of interests = ℓO(e) whereℓO ∈ V ′ is a bounded continuous

linear functional overV (see for instance Paraschivoiu, Peraire and Patera 1997, Ma-

day, Patera and Peraire 1999, Prudhomme and Oden 1999, Oden and Prudhomme

2001, Patera and Peraire 2003). These strategies introducea dual (or adjoint) prob-

lem with respect to the selected output. The weak form of the dual problem reads:

find ψ ∈ V verifying

a(v, ψ) = ℓO(v) ∀v ∈ V. (2.9)

The finite element approximation of the dual problem isψH ∈ VH such that

a(v, ψH) = ℓO(v) ∀v ∈ VH , (2.10)

and the error in the finite element approximation or dual error is ε = ψ − ψH ∈ V
solution of the dual residual problem

a(v, ε) = ℓO(v) − a(v, ψH) =: RD(v) ∀v ∈ V, (2.11)
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RD(·) being the dual weak residue associated to the finite element approximation

ψH .

The definition of the dual problem (2.9) along with the aid of the Galerkin or-

thogonality property (2.4) allows to rewrite the error in the output of interest as

s = ℓO(e) = a(e, ψ) = a(e, ψ − ψH) = a(e, ε). (2.12)

If a(·, ·) is a symmetric bilinear form, then the parallelogram identity (2.8) yields

to the well known alternative representation for the output

s = a(e, ε) = as(e, ε) =
1

4
‖κe +

1

κ
ε‖2 − 1

4
‖κe − 1

κ
ε‖2, (2.13)

whereκ ∈ R is a nonzero arbitrary scalar parameter (see Babuška and Miller 1984,

Prudhomme and Oden 1999, Ainsworth and Oden 2000, and Theorem A.2.1 of the

present thesis).

Equation (2.13) allows to compute the error in the outputs simply computing the

energy norm of linear combinations of the primal and dual errorse andε. Moreover,

it reduces the problem of bounding the error in the output to the derivation of upper

and lower bounds for the energy norm of the linear combinationsκe± 1
κ
ε. Indeed, if

‖κe± 1
κ
ε‖UB and‖κe± 1

κ
ε‖LB are upper and lower bounds of‖κe± 1

κ
ε‖ respectively,

namely

‖κe ± 1

κ
ε‖LB ≤ ‖κe ± 1

κ
ε‖ ≤ ‖κe ± 1

κ
ε‖UB,

the error in the output is readily bounded as

1

4
‖κe +

1

κ
ε‖2

LB − 1

4
‖κe− 1

κ
ε‖2

UB ≤ s ≤ 1

4
‖κe +

1

κ
ε‖2

UB − 1

4
‖κe− 1

κ
ε‖2

LB. (2.14)

Unfortunately, this result is no longer valid for nonsymmetric bilinear forms.

In fact, for a general bilinear form containing nonself-adjoint terms, the idea of

developing upper and lower bounds fors from energy norm estimates must be in

some sense extended, since there is no natural energy norm inwhich to measure the

error. Is there any reason to suspect that bounds fors can be obtained for a general

model problem using only available techniques for estimating the error measured in

the energy norm of solutions of symmetric model problems?

With the aid of the symmetric part of the bilinear forma(·, ·), a symmetric anal-

ogous of the dual residual problem (2.11) can be defined as: find εs ∈ V verifying

as(v, εs) = RD(v) ∀v ∈ V. (2.15)
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Then, replacingv = e first in equation (2.11) and then in equation (2.15) and using

the Cauchy-Schwarz inequality (2.7), it follows that

|s| = |a(e, ε)| = |RD(e)| = |as(e, εs)| ≤ ‖e‖‖εs‖.

Moreover, if the symmetric analogous of the primal residualproblem (2.3) is intro-

duced: findes ∈ V such that

as(es, v) = RP(v) ∀v ∈ V, (2.16)

taking v = e first in equation (2.3) and then in equation (2.16), it follows that

‖e‖2 = RP(e) = as(es, e) and then a routine application of the Cauchy-Schwartz

inequality yields‖e‖ ≤ ‖es‖. Hence

|s| ≤ ‖es‖‖εs‖ =⇒ −‖es‖‖εs‖ ≤ s ≤ ‖es‖‖εs‖. (2.17)

Consequently, it is possible to obtain computable bounds fors in terms of upper

bounds for the energy norm of solutions of symmetric boundary value problems. If

‖es‖UB and‖εs‖UB are upper bounds for the energy norm ofes andεs respectively,

namely

‖es‖ ≤ ‖es‖UB, ‖εs‖ ≤ ‖εs‖UB,

the output of the error is readily bounded as

−‖es‖UB‖εs‖UB ≤ s ≤ ‖es‖UB‖εs‖UB. (2.18)

Note that since bothes andεs are solutions of symmetric boundary value problems,

the upper bounds‖es‖UB and‖εs‖UB may be computed using standard a posteriori

error estimation techniques producing upper bounds for theenergy norm.

The repeated use of the Cauchy-Schwarz inequality to deduce the bounds given

in equation (2.18) generally produces rather pessimistic bounds. In the symmetric

case the use of the Cauchy-Schwarz inequality can be sidestepped taking advantage

of the parallelogram identity. However, the parallelogramidentity is no longer valid

for nonsymmetric bilinear formsa(·, ·) and other techniques have to be used in order

to refine the bounds.

The rest of this chapter investigates to what extent estimates for the energy norm

may be used to find accurate bounds for outputs of interest depending on solutions
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of nonself-adjoint problems. First the bounds for the symmetric model problem

are revised. Then, bounds for nonsymmetric model problems found in the earlier

literature are presented and finally, an improvement of the bounds is introduced

which allows to obtain sharp bounds for the error in the output. Here only a brief

account of how the bounds are derived is provided. A completededuction of the

proposed bounds can be found in Appendix A.

2.2.1 Bounds for self-adjoint model problems

If the bilinear forma(·, ·) is symmetric,as(v, w) = a(v, w), as seen in the previous

section, an exact representation of the quantity of interest s = ℓO(e) can be deduced

using the parallelogram identity, namely

s =
1

4
‖κe +

1

κ
ε‖2 − 1

4
‖κe − 1

κ
ε‖2. (2.19)

This representation allows to compute bounds fors from upper and lower bounds

for the energy norm of the linear combinations of the primal and dual errorsκe± 1
κ
ε,

see equation (2.14).

The upper bounds for the energy norms‖κe ± 1
κ
ε‖ are usually computed using

implicit residual type error estimators. Most of these techniques provide estimates

ê andε̂ (see Lemma 3.2.1) verifying

‖κe ± 1

κ
ε‖ ≤ ‖κê ± 1

κ
ε̂‖.

These estimates,̂e andε̂, are discontinuous approximations of the error fieldse and

ε respectively. In order to obtain lower bounds for the energynorm ‖κe ± 1
κ
ε‖,

the discontinuous estimateŝe and ε̂ may be post-processed to obtain continuous

approximations of the error fieldse andε and thus, continuous approximations of

κe ± 1
κ
ε denoted byξ± (see Section 3.3.2).

The lower bounds for the energy norm of the linear combinations of the primal

and dual problems,‖κe ± 1
κ
ε‖LB, may be then recovered fromξ± using the dual

characterization of the energy norm. Indeed, the energy norm of ‖κe± 1
κ
ε‖ may be

characterized (Oden and Prudhomme 1999, Theorem 4.3) usingduality as

‖κe ± 1

κ
ε‖2 = sup

v∈V

R±(v)2

‖v‖2
, (2.20)
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where the residueR± ∈ V ′ is defined as

R±(v) = κRP(v) ± 1

κ
RD(v). (2.21)

As a consequence of (2.20), any continuous approximation ofκe ± 1
κ
ε, ξ± ∈ V,

provides the lower bound

‖κe ± 1

κ
ε‖2 ≥ R±(ξ±)2

‖ξ±‖2
,

where the previous inequality holds as an equality forξ± = κe ± 1
κ
ε. Therefore,

accurate lower bounds for‖κe± 1
κ
ε‖ may be derived from good continuous approx-

imations,ξ± ∈ V, of κe ± 1
κ
ε.

Once the upper and lower bounds for the quantities‖κe± 1
κ
ε‖ are computed, the

upper and lower bounds fors, su andsl respectively, are recovered using equation

(2.14), namely

sl =
1

4

R+(ξ+)2

‖ξ+‖2
− 1

4
‖κê− 1

κ
ε̂‖2 and su =

1

4
‖κê+

1

κ
ε̂‖2 − 1

4

R−(ξ−)2

‖ξ−‖2
, (2.22)

see (A.13).

The procedure to obtain bounds fors depending on the solution of a symmetric

model problem is summarized in Figure 2.1.

2.2.2 Bounds for nonself-adjoint model problems

If the bilinear forma(·, ·) is nonsymmetric, the exact representation of the quantity

of interests = a(e, ε) still holds. However, the parallelogram identity is no longer

valid for a(·, ·) and therefore it is not possible to find an analogous of equation

(2.19) which allows to find accurate bounds fors.

Bounds for the outputs may be deduced, as shown in (2.18), from

−‖es‖‖εs‖ ≤ s ≤ ‖es‖‖εs‖. (2.23)

However, since these bounds are deduced using the Cauchy-Schwartz inequality,

the resulting bounds are not usually sharp. Paraschivoiu etal. (1997) avoid the use

of the Cauchy-Schwartz inequality reformulating the outputs as the solution of a
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1.- Compute the upper bound estimatesê andε̂ s.t.

‖κe ± 1

κ
ε‖ ≤ ‖κê ± 1

κ
ε̂‖.

2.- Compute continuous approximationsξ± of κe± 1
κ
ε post-processing the

estimateŝe andε̂.

3.- Computeκ =
√

‖ε̂‖/‖ê‖ and the quantitiessu andsl as

sl =
1

4

R+(ξ+)2

‖ξ+‖2
− 1

4
‖κê − 1

κ
ε̂‖2, su =

1

4
‖κê +

1

κ
ε̂‖2 − 1

4

R−(ξ−)2

‖ξ−‖2
.

Then
sl ≤ s ≤ su

are the bounds for the output.

Figure 2.1: Main steps of the strategy used to obtain bounds for an outputs depend-
ing on the solution of a symmetric boundary value problem.

minimization problem and making use of the saddle point theory. The proposed

bounds are

−1

4
‖κes − 1

κ
εs‖2 ≤ s ≤ 1

4
‖κes +

1

κ
εs‖2, (2.24)

whereκ ∈ R is again a nonzero arbitrary scalar parameter (see Remark A.1.1).

The parameterκ is selected so that the bounds are optimized. The same value

of κ minimizes the upper bound and maximizes the lower bound and is given by

κ =
√
‖εs‖/‖es‖. For the optimal parameterκ, the resulting bounds are

1

2
as(es, εs) − 1

2
‖es‖‖εs‖ ≤ s ≤ 1

2
as(es, εs) +

1

2
‖es‖‖εs‖,

improving the bounds given in (2.23) since|as(es, εs)| ≤ ‖es‖‖εs‖.

Equation (2.24) indicates that in order to bound the output of the errors it is

sufficient to obtain upper bounds of the energy norm of the errorsκes± 1
κ
εs. Indeed,

if ‖κes ± 1
κ
εs‖UB are upper bounds of‖κes ± 1

κ
εs‖, then the error in the output is

readily bounded by

−1

4
‖κes − 1

κ
εs‖2

UB ≤ s ≤ 1

4
‖κes +

1

κ
εs‖2

UB. (2.25)
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It is worth noting the similarity of these bounds with the bounds given in equation

(2.14) for symmetric model problems. The primal and dual errors appearing in

(2.14) are replaced by its associated symmetric errors whereas the lower bounds of

the energy norms are taken to be zero.

The error estimation procedure presented by Paraschivoiu et al. (1997) produces

the bounds given in equation (2.25). The sharpness of these bounds is strongly de-

pendent on the characteristics of the problem at hand and thedesired final accuracy.

In some cases, the provided bounds are too pessimistic (for instance, for convection-

dominated convection-diffusion problems, one can choose an output for which the

error in the output is practically zero and the obtained bounds using equation (2.25)

degenerate as the convection parameter increases).

Motivated by this non-desired behavior of the resulting bounds, the deduction of

the bounds proposed by Paraschivoiu et al. (1997) has been carefully examined (see

Appendix A). The net result is the introduction of a relatively straightforward mod-

ification which allows to enhance the initial bounds provided by equation (2.25).

Enhancement of the bounds for the output

The bounds given in equation (2.25) are computed using implicit residual type error

estimators. Most of these techniques provide discontinuous estimateŝes and ε̂s

(Lemma 3.2.1) verifying

‖κes ± 1

κ
εs‖ ≤ ‖κês ± 1

κ
ε̂s‖

yielding the bounds for the output

−1

4
‖κês − 1

κ
ε̂s‖2 ≤ s ≤ 1

4
‖κês +

1

κ
ε̂s‖2.

In order to enhance the bounds, continuous approximations,ξ± ∈ V, of κe± 1
κ
ε

may be computed, for instance post-processingκês ± 1
κ
ε̂s. However, when dealing

with nonsymmetric model problems it is not sufficient to havethese approximations

ξ± to enhance the bounds. Once the continuous approximationsξ± are computed,

the error estimation procedure must be applied to the following symmetric problem

as(ξs±, v) = a(v, ξ±) ∀v ∈ V,
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in order to compute the discontinuous estimateξ̂s± such that‖ξs±‖ ≤ ‖ξ̂s±‖ (The-

orem A.2.2).

The final upper and lower boundssu andsl are, respectively, (A.24)

sl =
1

4

(2κRP(ξ+) − as(κês − 1
κ
ε̂s, ξ̂s+))2

‖ξ̂s+‖2
− 1

4
‖κês − 1

κ
ε̂s‖2,

su =
1

4
‖κês +

1

κ
ε̂s‖2 − 1

4

(2κRP(ξ−) − as(κês + 1
κ
ε̂s, ξ̂s−))2

‖ξ̂s−‖2
.

(2.26)

Moreover, if the bilinear forma(·, ·) is symmetric, the bounds obtained for the sym-

metric model problem given in equation (2.22) are recovered.

Remark2.2.1. In fact, su andsl are upper and lower bounds fors if the estimates

ês, ε̂s andξ̂s± verify

as(ês, v) = as(es, v), as(ε̂s, v) = as(εs, v) ∀v ∈ V

and

as(ξ̂s±, κês ± 1

κ
ε̂s) = as(ξs±, κês ± 1

κ
ε̂s),

see Appendix A, equations (A.19) and (A.23).

It is worth emphasizing, however, that most implicit residual type estimation

techniques yield estimateŝes, ε̂s andξ̂s± verifying the previous conditions. In fact,

the first conditions are sufficient conditions to proof that‖es‖ ≤ ‖ês‖ and‖εs‖ ≤
‖ε̂s‖, see Lemma 3.2.1.

The procedure is summarized in Figure 2.2. Note that the maindifference be-

tween bounds for symmetric and nonsymmetric model problemsis that in the non-

symmetric case it is not sufficient to be able to obtain a continuous approximation

of κe ± 1
κ
ε, a new estimate depending on the continuous approximation must be

evaluated. However, a careful examination of the procedure, shows that there is

another added difficulty in the computation of the bounds. Isit easy to compute

good continuous approximations ofκe ± 1
κ
ε from the available approximations of

es andεs? If the resulting bounds are to be sharp, the selection of thecontinuous

approximations must be exercised carefully.
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1.- Compute the upper bound estimatesês andε̂s s.t.

‖κes ± 1

κ
εs‖ ≤ ‖κês ± 1

κ
ε̂s‖.

2.- Compute continuous approximationsξ± of κe± 1
κ
ε post-processing the

estimateŝes andε̂s.

3.- Compute the upper bound estimateξ̂s± s.t.

‖ξs±‖ ≤ ‖ξ̂s±‖.

4.- Computeκ =
√

‖ε̂s‖/‖ês‖ and the quantitiessu andsl as

sl =
1

4

(2κRP(ξ+) − as(κês − 1
κ
ε̂s, ξ̂s+))2

‖ξ̂s+‖2
− 1

4
‖κês − 1

κ
ε̂s‖2,

su =
1

4
‖κês +

1

κ
ε̂s‖2 − 1

4

(2κRP(ξ−) − as(κês + 1
κ
ε̂s, ξ̂s−))2

‖ξ̂s−‖2
.

Then
sl ≤ s ≤ su

are the bounds for the output.

Figure 2.2: Main steps of the strategy used to obtain bounds for an outputs depend-
ing on the solution of a nonsymmetric boundary value problem.

2.3 Summary

Obtaining bounds for quantities of interest is crucial in applications. Babǔska and

Miller (1984) proposed the use of the parallelogram identity in symmetric coercive

model problems to obtain output bounds from upper and lower bounds measured

in the energy norm. Lower bounds for the energy norm are computed using a

simple post-processing technique. This has been extensively studied by Babǔska,

Strouboulis and Gangaraj (1999), Strouboulis, Babuška and Gangaraj (2000), Prud-

homme, Oden, Westermann, Bass and Botkin (2003) and Dı́ez et al. (2003).

Paraschivoiu et al. (1997) present a general framework to obtain bounds for

the output of nonsymmetric coercive problems from upper bounds for the energy
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norm. In this chapter, the same techniques have been used to sharpen the bounds.

A slightly modification is introduced which allows to obtainmore accurate bounds.

The idea is analogous to the enhancement of the bounds in the symmetric model

problem using post-processing techniques to obtain continuous approximations of

the error field.

At this point, it is clear that techniques to obtain bounds for the outputs may

be developed from estimates of the error in the global energynorm of solutions of

symmetric model problems.
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Chapter 3

Bounds for the energy norm of
solutions of self-adjoint model
problems

The computation of bounds for linear outputs of interest canbe accomplished in-

voking any error estimation procedure which allows to compute upper and lower

bounds for the energy norm of the error in the finite element approximation of a

self-adjointor symmetriccoercive variational problem.

This chapter is intended to provide the main ingredients present in any implicit

residual type a posteriori error estimation technique which allows to compute upper

and lower bounds for the energy norm of the error. In order to develop a general

framework where the new techniques presented in this thesiscan be appropriately

defined, the main characteristics of the equilibrated residual method are described

to introduce a common notation for the estimates. The choiceof the equilibrated

residual method as the representative to introduce the mainnotation is not casual.

In addition to be one of the chief methods currently available to find upper bounds

for the error measured in the energy norm, it is closely related with the two new

estimates developed in Chapters 4 and 5. The estimation procedure introduced in

Chapter 4 circumvents the need of flux-equilibration and results in a simple imple-

mentation that uses standard resources available in finite element codes, in contrast

to the cumbersome implementation of the equilibrated residual method specially for

3D applications. The estimation procedure introduced in Chapter 5 currently entails

the computation of equilibrated fluxes although it would be possible to use the ideas

21
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introduced in Chapter 4 to side-step the computation of the equilibrated fluxes.

The chapter is structured as follows: after introducing themodel problem, the

derivation of upper bounds for the error measured in the energy norm is considered.

In particular, the main steps of the equilibrated residual method are summarized.

Then, the derivation of lower bounds is considered focusingprimarily on the post-

processing techniques recently developed . Finally, attention is paid to some practi-

cal implementation issues. The discussion of the derivation of upper bounds is valid

as long as the local problems are solved exactly, which is of course infeasible. The

approximation of the local problems over a reduced finite dimensional space and its

consequences is discussed.

3.1 Model problem

Consider a general symmetric variational problem given in weak form as: findz ∈
V such that

a(z, v) = R∗(v) ∀v ∈ V, (3.1)

whereR∗(·) ∈ V ′ is a continuous linear functional overV anda(·, ·) is a continuous

coercivesymmetricbilinear form.

The solution space is defined asV = {v ∈ [H1(Ω)]nsd , v|ΓD = 0}, wherensd is

the number of spatial dimensions,H1 is the standard Sobolev space of square inte-

grable functions and first derivatives, and the boundaryΓ = ∂Ω is divided into two

complementary disjoint partsΓD andΓN, where essential and Neumann boundary

conditions are imposed respectively.

To fix ideas, consider the scalar diffusion-reaction equation. The bilinear form

and the r.h.s. term for this problem are of the form

a(w, v) =

∫

Ω

ν∇w ·∇v +µwv dΩ, R∗(v) =

∫

Ω

f ∗v dΩ+

∫

ΓN

g∗
Nv dΓ−a(zH , v),

for a strictly positive real coefficientν ∈ L∞(Ω), a nonnegative real coefficient

µ ∈ L∞(Ω), and wheref ∗ ∈ H−1(Ω), g∗
N ∈ H− 1

2 (∂Ω) andzH ∈ VH . Similarly,

the bilinear form and the r.h.s. term for the elasticity problem are of the form

a(w,v) =

∫

Ω

σ(w) : ε(v) dΩ, R∗(v) =

∫

Ω

f ∗ ·v dΩ +

∫

ΓN

g∗ ·v dΓ− a(zH ,v),
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wheref ∗ ∈ [H−1(Ω)]2, g∗ ∈ [H− 1

2 (∂Ω)]2 is the imposed traction distribution and

zH ∈ VH .

It is clear that any linear combination of the primal and dualerrors, αe +

βε, α, β ∈ R is the solution of problem (3.1) withR∗(v) = αRP(v) + βRD(v).

In particular, the choiceα = κ, β = ± 1
κ

is used to obtain the required upper and

lower bounds for‖κe ± 1
κ
ε‖.

3.2 Upper bounds for the energy

The need of obtaining reliable upper bounds of the energy norm of the error mo-

tivates the use of implicit residual error estimators, which are currently the only

type of estimators ensuring bounds for the error entailing only local computations.

The underlying idea in any implicit estimate is to decomposethe global residual

problem (3.1) into a series of local independent boundary value problems posed on

small subdomains. This leads to the twofold classification of the implicit estimates:

the element residual methods and the subdomain residual methods depending on

whether the local problems are posed over a single element orover a small patch of

elements respectively.

In the present thesis the element residual methods providing upper bounds for

the energy norm of the error are also named as equilibrated residual methods since

they require the computation of boundary fluxes (or tractions) which are in equilib-

rium with the interior residual loads in each element of the mesh. The subdomain

residual methods, on the other hand, are also named asflux-freeresidual methods as

opposed to the equilibrated methods since they do not require a direct computation

of equilibrated fluxes.

The structure of this section is as follows: first, the basic property whereby

upper bounds for the energy norm may be derived is summarized. The property is a

sufficient condition for an estimate to provide an upper bound for the error measured

in the energy norm and does not depend on the method used to compute the esti-

mate. In fact, this property is used to prove the upper bound property of either the

estimate obtained using an equilibrated residual method and the flux-free estimate

introduced in Chapter 4. Once this key property is introduced, the main features of
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the equilibrated residual method are detailed emphasizingthe characteristics which

are needed to introduce the estimation procedure presentedin Chapter 5.

3.2.1 Sufficient condition for the upper bound property

The following result summarizes a sufficient condition for an estimate to yield an

upper bound for the error measured in the energy norm.

Lemma 3.2.1.Any estimatêz ∈ W of the functionz ∈ V verifying the weak error

equation

a(ẑ, v) = a(z, v) = R∗(v) ∀v ∈ V, (3.2)

whereW is a suitable interpolation space for the estimateẑ, is such that its norm

is an upper bound of the energy norm ofz, that is

‖z‖ ≤ ‖ẑ‖.

Proof. Using equation (3.2) withv = z, the energy norm ofz may be rewritten as

‖z‖2 = a(z, z) = R∗(z) = a(ẑ, z).

Then, the upper bound property follows applying the Cauchy-Schwarz inequality,

namely

‖z‖2 = a(ẑ, z) ≤ ‖ẑ‖‖z‖.

In principle, one may try to find an estimate inV, and considerW = V. Un-

fortunately, if ẑ ∈ V verifies equation (3.2), then necessarilyẑ = z. Consequently,

a space larger thanV is required to be able to find an estimateẑ with an affordable

computational effort.

The interpolation spaceW is in most cases taken to be thebrokenspace, that is,

the space obtained fromV relaxing both the Dirichlet boundary conditions and the

continuity of the functions across the edges of the mesh. It is worth noting that in

this case the estimatêz ∈ W is not uniquely determined by (3.2). Thus, different

estimation techniques will provide different estimatesẑ living in the broken space

and verifying equation (3.2).
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3.2.2 The equilibrated residual method

The derivation of equilibrated fluxes or tractions on the element boundaries goes

back to the work of Ladev̀eze (Ladev̀eze 1977, Ladev̀eze and Leguillon 1983) and

the works developed by Kelly (1984), Bank and Weiser (1985), Ainsworth and Oden

(1992) and Ainsworth and Oden (1993). The literature on the computation of equili-

brated fluxes or tractions is copious but there are two works worth to be highlighted.

The first work by Ladev̀eze and Maunder (1996) provides a geometrical interpreta-

tion of the computation of equilibrated tractions whereby acomparison of different

equilibration procedures is done; in particular, the geometrical interpretation allows

to relate the works of Ladevèze and Leguillon (1983), Bank and Weiser (1985)

and Ainsworth and Oden (1992) amongst others. The second work is the book by

Ainsworth and Oden (2000). Chapter 6 provides a clear and simple exposition of

the method and the computation of the equilibrated tractions.

Here, the main features common to all the equilibrated residual methods are

exposed, but a detailed explanation may be found in Ainsworth and Oden (2000).

First, a domain decomposition strategy is used to transformthe global residual prob-

lem (3.1) into a sequence of uncoupled local boundary value problems posed over

the elements of the underlying mesh. The local boundary value problems being of

Neumann type ensures the upper bound property, but care mustbe exercised in the

choice of the data for the boundary conditions (imposed tractions) to ensure that the

local problems are solvable. Then, the local problems are solved independently to

obtain the upper bound for the energy norm.

Domain decomposition

Let TH = {Ωk}nelk=1 be the partition of the computational domainΩ associated with

the finite element interpolation spaceVH , whereΩk denotes a generic element of

the mesh. Let alsoΓH be the set of all edges in the mesh andΛ =
nel∏
k=1

[H− 1

2 (∂Ωk)]
nsd

the space of integrable tractions inΓH . The setΓH is divided into two complemen-

tary disjoints sets, the boundary edges and the set of all interior edges of the mesh

denoted byΓI. For each edgeγ ∈ ΓH a unit normal direction,nγ, is assigned

such that, ifγ is a boundary edge,nγ coincides with the outward unit normal toΓ.
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Similarly, given an elementΩk and an edge of this elementγ ∈ ∂Ωk, the outward

normal to the element associated toγ is denoted bynγ
k. Then,τk is defined as

τk|γ = n
γ
k · nγ, that is:

τk|γ = n
γ
k · nγ =





1 if n
γ
k = nγ

−1 if n
γ
k = −nγ.

Note that ifγ = ∂Ωk ∩ ∂Ωl, thenτk|γ + τl|γ = 0.

The broken spacêV is introduced by relaxing inV both the Dirichlet homoge-

neous boundary conditions and the continuity of the functions across the edges of

ΓH , that is,

V̂ = {v̂ ∈ [L2 (Ω)]nsd , v̂|Ωk
∈ [H1(Ωk)]

nsd ∀Ωk ∈ Ω}.

Given a function in the broken spacev̂ ∈ V̂, the jump of̂v across the mesh edges

is defined as

Jv̂K|γ =





v̂|Ωk
τk|γ + v̂|Ωl

τl|γ , if γ = ∂Ωk ∩ ∂Ωl ∈ ΓI

v̂, if γ ∈ Γ,

where the sign of the jump depends on the arbitrary choice of the edge normals.

Note that ifv̂ is a continuous function verifying the Dirichlet homogeneous bound-

ary conditions,̂v ∈ V, thenJv̂K = 0 in ΓI ∪ ΓD. Then, given a broken function

v̂ ∈ V̂, the continuity at inter-elemental edges and Dirichlet homogeneous boundary

conditions inΓD can be enforced weakly through the bilinear formb : V̂ × Λ → R

b(v̂, λ) =
∑

γ∈ΓI∪ΓD

∫

γ

λJv̂K dΓ =

nel∑

k=1

∫

∂Ωk\ΓN

τkλ v̂|Ωk
dΓ,

by imposingb(v̂, λ) = 0 for all λ ∈ Λ. Therefore, the space of test functionsV can

be recovered as

V = {v̂ ∈ V̂ , b(v̂, λ) = 0 ∀λ ∈ Λ}.

The goal is now to obtain an estimateẑ ∈ V̂ verifying equation (3.2) involving

only the solution of local problems posed on the elements of the mesh. Let̂z ∈ V̂
be the solution of the residual problem

a(ẑ, v̂) = R∗(v̂) + b(v̂, λ) ∀v̂ ∈ V̂ , (3.3)
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for a given functionλ ∈ Λ , where the bilinear forma(·, ·) and the residueR∗(·) are

generalized to acceptbrokenfunctions in its arguments; that is, forv̂, ŵ ∈ V̂

a(ŵ, v̂) =

nel∑

k=1

ak(ŵ, v̂), R∗(v̂) =

nel∑

k=1

R∗
k(v̂),

whereak(·, ·) and R∗
k(·) are the restrictions of the bilinear forma(·, ·) and the

residueR∗(·) to the elementΩk.

In particular, sinceV ⊂ V̂, equation (3.3) is valid for anyv ∈ V, namely

a(ẑ, v) = R∗(v) + b(v, λ) ∀v ∈ V,

and since for anyv ∈ V, b(v, λ) = 0 ∀λ ∈ Λ, the previous equation is equivalent

to the condition posed by equation (3.2). Therefore the energy norm of the estimate

ẑ ∈ V̂ computed from equation (3.3) provides an upper bound for‖z‖.

Clearly, from the definition of the broken spaceV̂, the equation for the estimate

(3.3) decomposes into independent local problems posed on the elements of the

mesh: findẑk ∈ Vk such that

ak(ẑ
k, v) = R∗

k(v) + bk(v, λ) ∀v ∈ Vk, (3.4)

whereVk is the restriction of the test spaceV to the elementΩk and wherebk(·, ·) is

the local counterpart of the continuity formb(·, ·), namely

bk(v, λ) =

∫

∂Ωk\ΓN

τkλv dΓ.

It is worth noting that the additional termsbk(v, λ) in equation (3.4) for the element

Ωk are additional Neumann boundary conditions on the edges of the element (unless

an edge belongs toΓN). Thus, the functionλ corresponds to additional Neumann

boundary conditions applied on the edges of the mesh. This motivates thatλ is

named after equilibrated tractions.

The estimatêz is then obtained from the local estimatesẑk extending them toΩ

by setting the values outsideΩk to zero and defininĝz =
nel∑
k=1

ẑk. In fact, the upper

bound may be computed as

‖z‖2 ≤ ‖ẑ‖2 =

nel∑

k=1

‖ẑk‖2
k,

where the local energy norm‖·‖k is defined as‖v‖2
k = ak(v, v).
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Choice of the equilibrated tractionsλ ∈ Λ

In the definition of the local estimateŝzk, equation (3.4), it is tacitly assumed that

the local problems admit a solution. However, since the local problems are subject

to pure Neumann boundary conditions (unless the elementΩk abuts the Dirichlet

boundaryΓD) in general a solution to these problems will not exist. Thisis due to

the fact that in general the local bilinear formak(·, ·) has a nontrivial kernel. For

instance, in the scalar diffusion equation if the termµ appearing in the bilinear form

vanishesµ = 0, the kernel ofak(·, ·) are the constant functions. This means that

unless the local r.h.s.,R∗
k(·)+bk(·, λ), satisfies appropriate compatibility conditions,

the problem will fail to possess solution, which will be the general case. For the

scalar diffusion equation these compatibility conditionswill reduce to ensure that

R∗
k(1) + bk(1, λ) = 0, where1 stands for the unitary function in the elementΩk.

For an arbitrary choice of the functionλ ∈ Λ the compatibility conditions will

not be necessarily verified leading to unsolvable local problems. Thus, the function

λ ∈ Λ has to be properly chosen so that the associated local problems are solvable.

The local problems given in equation (3.4) will be solvable as long asR∗
k(v) +

bk(v, λ) = 0 for all the functionsv in the kernel of the local bilinear formak(·, ·)
(see Paŕes, D́ıez and Huerta 2005, Theorem 5), that is, the compatibility condition

reads

R∗
k(v) + bk(v, λ) = 0 ∀v ∈ ker ak.

The different equilibration techniques differ in the choice of the equilibrated trac-

tionsλ ∈ Λ satisfying the compatibility condition.

In Chapter 5 the approach proposed by Ladevèze and Leguillon (1983) is used.

Sinceker(ak) ⊂ VH
k , whereVH

k is the restriction of the interpolation spaceVH to

the elementΩk, the compatibility conditions may be ensured choosing equilibrated

tractions verifying

R∗
k(v) + bk(v, λ) = 0 ∀v ∈ VH

k ,

for all the elements of the mesh. These conditions may be rewritten in a compact

form as: choseλ verifying

R∗(v̂H) + b(v̂H , λ) = 0 ∀v̂H ∈ V̂H , (3.5)
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where V̂H =
nel∏
k=1

VH
k is obtained fromVH relaxing both the Dirichlet boundary

conditions and the continuity across the edges of the mesh.

Equation (3.5) leads to a system of equations which do not uniquely determine

λ. Moreover, the equations are coupled in the sense that the value of the flux or

tractions in an edge is determined using the two neighboringelements containing it.

Fortunately, the computation of the equilibrated fluxesλ does not require a global

computation but it can be evaluated solving local problems on patches of elements.

More precisely, for each node of the mesh, a local computation is required involving

the elements containing this node.

The procedure to obtain the upper bounds for the energy norm of z is summa-

rized in the box in Figure 3.1.

1.- Computeλ ∈ Λ s.t.

b(v̂, λ) = R∗(v̂) ∀v̂ ∈ V̂H .

2.- For each elementΩk, computêzk ∈ Vk s.t.

ak(ẑ
k, v) = R∗

k(v) − bk(v, λ) ∀v ∈ Vk.

3.- Consider̂z ∈ V̂ s.t. ẑ|Ωk
= ẑk. Then

‖z‖2 ≤ ‖ẑ‖2 =

nel∑

k=1

‖ẑk‖2
k.

Figure 3.1: Main steps of the strategy used to obtain upper bounds for the energy
norm of the solution of a symmetric boundary value problem.

3.3 Lower bounds for the energy

The growing interest in the computation of accurate bounds for quantities of interest

has been accompanied by a surge of interest in the recovery oflower bounds for the

energy norm of the error.
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Although implicit residual type error estimation techniques providing lower

bounds for the error measured in the energy norm as the ones presented by D́ıez,

Egozcue and Huerta (1998) and Huerta and Dı́ez (2000) may be used to obtain

lower bounds for the energy norm, recently it has been proposed to obtain lower

bounds using post-processing techniques (Babuška et al. 1999, Strouboulis et al.

2000, Prudhomme et al. 2003, Dı́ez et al. 2003). In any goal-oriented algorithm

yielding bounds for the outputs, upper bounds for the energy norm of the error

have to be computed. The idea is then to take advantage of the available upper

bound estimates and with a simple post-process obtain lowerbounds for the energy

norm.

In any case, the derivation of the lower bounds for the energynorm is based in

the following key property detailed by Dı́ez et al. (2003, Theorem 2).

3.3.1 Sufficient condition for the lower bound property

Lemma 3.3.1. Any continuous estimateξ ∈ V provides a parametric family of

lower bounds for‖z‖
2λR∗(ξ) − λ

2‖ξ‖2 ≤ ‖z‖2, (3.6)

depending onλ ∈ R. The natural choiceλ = 1, and the optimal choice forλ

maximizing the lower bound,λ = R∗(ξ)
‖ξ‖

, yield the bounds

2R∗(ξ) − ‖ξ‖2 ≤ R∗(ξ)2

‖ξ‖2
≤ ‖z‖2. (3.7)

Moreover, the previous bounds are optimal wheneverξ = z.

Proof. Sinceξ ∈ V, it is possible to replacev by ξ in the residual equation forz

(3.1). That is

a(z, ξ) = R∗(ξ). (3.8)

Then, using equation (3.8), inequality (3.6) is proved considering the following

algebraic manipulation:

0 ≤ ‖z − λξ‖2 = ‖z‖2 + λ
2‖ξ‖2 − 2λa(z, ξ) = ‖z‖2 + λ

2‖ξ‖2 − 2λR∗(ξ).

Finally, the optimality of the bounds forξ = z is proven noting that equation (3.1)

with v = z yields toR∗(z) = ‖z‖2. Therefore, the bounds given in equation (3.7)

are both optimal and equal to‖z‖2.
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Remark3.3.1. Given a continuous functionξ ∈ V, the lower bound obtained in

Lemma 3.3.1 by choosing the optimal parameterλ may be also derived from the

dual characterization of the energy norm. Indeed, the energy norm of the function

z may be computed as (Oden and Prudhomme 1999, Theorem 4.3)

‖z‖ = sup
ξ∈V

|R∗(ξ)|
‖ξ‖ ,

and therefore,∀ξ ∈ V
|R∗(ξ)|
‖ξ‖ ≤ ‖z‖,

which is equivalent to the optimal lower bound provided by Lemma 3.3.1.

3.3.2 Lower bounds by post-processing

Implicit residual type error estimates providing lower bounds for the energy norm

as the ones presented by Dı́ez et al. (1998) and Huerta and Dı́ez (2000) provide

estimatesz ∈ V ⊂ V solution of the optimization problem

‖z‖2 = sup
ξ∈V

2R∗(ξ) − ‖ξ‖2 ≤ sup
ξ∈V

2R∗(ξ) − ‖ξ‖2 = ‖z‖2. (3.9)

Unfortunately, the natural choiceV = VH yields to the trivial solutionz = 0. Con-

sequently, a larger space thanVH is required. Thus, care must be exercised in the

choice ofV since the expense of the error estimation procedure must be lower than

the cost of directly computing a new approximation of the original problem. The

interpolation spaceV is chosen so that the optimization problem (3.9) decomposes

into local independent residual problems posed either in elements or in patches of

elements, so that the computation ofz entails only local computations. It is worth

noting that sinceV ⊂ V, the estimatez is acontinuousapproximation of the func-

tion z.

However, in goal-oriented error estimation techniques, upper bounds for the

energy norm must also be computed and the idea is to use the upper bound estimates

to compute lower bounds for the energy. Assume thatẑ ∈ W is an upper bound

estimate verifying equation (3.2) and thus yielding an upper bound of the energy

norm of z, that is,‖z‖ ≤ ‖ẑ‖. As mentioned before, if̂z ∈ V then necessarily

ẑ = z and there is no need to compute a lower bound for the energy norm of the
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error since the exact value is available. Obviously,ẑ will only be in V for very

particular problems and in generalẑ /∈ V. Therefore the approximation̂z can not

be directly taken to be the continuous function used to find a lower bound for the

error. The idea is then to construct a smoothing operator fromW toV, S : W → V,

and considerξ = S(ẑ) and the associated lower bound

R∗(S(ẑ))2

‖S(ẑ)‖2
≤ ‖z‖2.

Evidently, the accuracy of the lower bound is directly related to the choice of the

smoothing operator. D́ıez et al. (2003) and Prudhomme et al. (2003) study the

choice of the smoothing operator for the thermic model problem in order to obtain

good continuous approximations of the error, and thus yieldaccurate bounds.

The procedure to obtain lower bounds for the energy norm ofz using a post-

processing techniques is summarized in the box in Table 3.2.

1.- Define a smoothing operatorS : W → V

2.- Consider the continuous functionξ = S(ẑ).

3.- Recover the lower bound for‖z‖ as

|R∗(ξ)|
‖ξ‖ ≤ ‖z‖.

Figure 3.2: Main steps of the strategy used to obtain lower bounds for the energy
norm of the solution of a symmetric boundary value problem.

In order to define a smoothing operator which yield a good approximation of

the functionz, Lemma 3.3.1 introduced by Dı́ez et al. (2003) plays a key role. The

chief purpose of the definition of the smoothing operator is to obtain an accurate

lower bound for‖z‖. Consequently, the goal would be to determine a smoothing

operator optimizing the lower bound, namely

sup
S

R∗(S(ẑ))2

‖S(ẑ)‖2
≤ ‖z‖2.

Obviously, the optimal smoothing operator would lead toS(ẑ) = z. However, one

could consider a less ambitious goal and consider a parametric family of operators
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Spar to determine the optimal smoothing operator in this subspace, which obviously

would also provide a lower bound for‖z‖

sup
S∈Spar

R∗(S(ẑ))2

‖S(ẑ)‖2
≤ sup

S

R∗(S(ẑ))2

‖S(ẑ)‖2
≤ ‖z‖2.

At this point is when Lemma 3.3.1 comes in handy. The problem of determining the

smoothing operator inSpar optimizing the boundR
∗(S(ẑ))2

‖S(ẑ)‖2 yields to a complex non-

linear system. However, Lemma 3.3.1 suggests the alternative to optimize the natu-

ral lower bound2R∗(S(ξ))−‖S(ξ)‖2 instead of the optimal lower boundR
∗(S(ẑ))2

‖S(ẑ)‖2 .

It is worth noting that the alternative optimization procedure,

sup
S∈Spar

2R∗(S(ξ)) − ‖S(ξ)‖2 ≤ ‖z‖2,

although still non-linear, depends quadratically onS(ξ).

The procedure to obtain the bounds consists of, first, determining the optimal

smoothing operator̄S(·) solution of

S̄(·) = arg sup
S∈Spar

2R∗(S(ξ)) − ‖S(ξ)‖2.

Then, given the continuous functionξ = S̄(ẑ), the best computable lower bound

for ‖z‖ is computed, namely

R∗(S̄(ẑ))2

∥∥S̄(ẑ)
∥∥2 ≤ ‖z‖2.

3.3.3 Optimization of the lower bounds

The purpose of this section is to briefly outline the main characteristics of three

strategies to enhance the choice of the smoothing operatorS(·) introduced by D́ıez

et al. (2003) and Parés, D́ıez and Huerta (2005). Here it is assumed that the initial

discontinuous function̂z belongs to the broken spacêV, that is, ẑ is continuous

inside the elements of the mesh and only presents discontinuities on edges of the

mesh. Thus, the goal is to construct a smoothing operatorS : V̂ → V. All three

strategies start from the smoothing operatorSave(·) which averages the discontinu-

ities of a function across interelement edges, see Figure 3.3, and introduce different

alternatives to improve the continuous approximations ofz.
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Save

Figure 3.3: Smoothing operatorSave(·) acting on a discontinuous function

Interior enhancement

The averaging smoothing operatorSave(·) acts on a function of the broken space

modifying its values on the edges of the mesh to flatten the discontinuities across the

edges. However, it is worth noting that the values at the nodes inside each element

remain unchanged. Moreover, since the only restriction of the smoothing operator

is to provide a continuous function, the values at the interior nodes in each element

may be set arbitrarily since they do not affect to the continuity of the function. The

goal is then to consider the optimal values of the continuousfunction inside each

element.

Let Vbub
k be the subspace ofVk consisting of functions vanishing on the bound-

aries of the elementΩk (bubble functions, see Figure 3.4), and considerVbub =
nel⊕
k=1

Vbub
k . Then, the continuous approximation ofz is selected to be of the form

Save(ẑ) + zbub, wherezbub ∈ Vbub is found solving the optimization problem

zbub = arg sup
v∈Vbub

2R∗(Save(ẑ) + v) − ‖Save(ẑ) + v‖2.

Since the functions of the bubble spaceVbub vanish on the edges of each element

the previous optimization problem decouples into local independent problems posed

over each element of the mesh: findzk
bub ∈ Vbub

k such that

ak(z
k
bub, v) = R∗

k(v) − ak(Save(ẑ), v) ∀v ∈ Vbub
k ,

andzbub is then computed adding the local contributionszbub =
nel∑
k=1

zk
bub. Using this



Chapter 3. Energy norm bounds 35

Figure 3.4: Examples of bubble functions in an element. Functions inVbub
k .

approach, the smoothing operatorSint(·) consists on first averaging the values of

the function on the edges of the elements to recover a continuous function and then

modify its values inside its element, that is,Sint(ẑ) = Save(ẑ) + zbub.

Constant fitting

In order to obtain an estimatêz verifying the condition given in equation (3.2), and

thus yielding an upper bound for the energy norm, the estimate ẑ is computed solv-

ing local Neumann boundary value subproblems. The boundaryconditions being

of Neumann type means that, in general, the solution to the local problems is not

unique. For instance, in the scalar diffusion equation if the termµ appearing in the

bilinear form vanishesµ = 0, the local estimates are defined up to a constant, and

in the mechanical setting, the local estimates are defined upto rigid body motions

(translations and rotations). Although the value of the upper bound does not depend

on the particular choice of the local estimates, this choiceaffects drastically to the

lower bounds. To fix ideas, consider the scalar diffusion equation with no reaction

term (µ = 0). Then, the local estimates computed using an equilibratedresidual

method,ẑk solution of (3.4), are determined up to a constant, that is,ẑk may be

replaced bŷzk + ck whereck stands for a constant function on the elementΩk. The

local norm of the estimates remains unchanged‖ẑk + ck‖ = ‖ẑk‖ and therefore the

associated global upper bound does not depend on the choice for the constantsck.

However, in order to recover a good approximation ofz from averaging the global

estimateẑ =
nel∑
k=1

ẑk + ck, the local constants can not be set arbitrarily. The work
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presented by D́ıez et al. (2003) allows to optimally fit the local constants precluding

the main drawback of the post-processing techniques.

The idea is really simple. Let{χ1, χ2, . . . , χnel} be the space of piecewise con-

stant functions (see Figure 3.5). Then, the global estimateprovided by the equili-

brated residual method iŝz +
nel∑
k=1

ckχk, ẑ being the global estimate computed from

particular solutions of the local equations (3.4) andck ∈ R. This estimate could

be used to compute a continuous approximation ofz using the smoothing operator

described in the previous section, yielding the lower bound

R∗(Sint(ẑ +
nel∑
k=1

ckχk))2

∥∥∥Sint(ẑ +
nel∑
k=1

ckχk)
∥∥∥

2
≤ ‖z‖2.

In order to fit the local constants, the following optimization procedure is considered

sup
ck∈R

2R∗(Sint(ẑ +

nel∑

k=1

ckχk)) − ‖Sint(ẑ +

nel∑

k=1

ckχk)‖2.

In this case, the optimization with respect to the constantsck, yields to a global

linearnel × nel system of equations (see Dı́ez et al. 2003).

Figure 3.5: Local piecewise constant functions in an element, χk.

Global enhancement

Once the smoothing operator and thus the continuous approximationξ are deter-

mined, the lower bound can be improved using a global computation in the coarse

mesh. Note that if instead of using the approximationξ in the expressionR
∗(ξ)2

‖ξ‖2

one considersξ + ξH , ξH ∈ VH , then due to the Galerkin orthogonality, the only
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difference in the expression is the replacement of the norm‖ξ‖2 by ‖ξ + ξH‖2 in

the denominator.

Thus, one can compute the best enhancementξH maximizing the norm of‖ξ +

ξH‖2, that is

ξH = arg max
vH∈VH

‖ξ + vH‖2.

Hence,ξH ∈ VH is found solving the weak problem

a(ξH , v) = −a(ξ, v) ∀v ∈ VH . (3.10)

In this case,‖ξ+ξH‖2 = ‖ξ‖2−‖ξH‖2, and thus the final lower bounds are obtained

as
R∗(ξ)2

‖ξ‖2 − ‖ξH‖2
≤ ‖z‖2.

This global enhancement in the coarse mesh coincides with the proposed pollu-

tion assessment of the error proposed by Huerta and Dı́ez (2000). Obviously, since

ξ is computed from̂z which is obtained by performing only local computations, it

does not account for pollution errors. The unestimated partof error,z − ξ, which

includes the pollution effects, is denoted as global error and is the solution of the

weak problem

a(z − ξ, v) = R∗(v) ∀v ∈ V. (3.11)

Huerta and D́ıez (2000) assess the pollution error solving the equation for the global

error (3.11) in the coarse mesh. This approach leads to the same enhancementξH

given in equation (3.10).

3.4 Implementation issues

3.4.1 Remarks on the derivation of upper bounds for the energy

The equilibrated residual method presented in Section 3.2.2 requires the true solu-

tion of the local problems (3.4) in order to obtain upper bounds for‖z‖. Of course,

it is infeasible to require the exact solution of these problems sinceVk is an infinite

dimensional space. In practice, the local problems are approximated using a finite

dimensional subspace ofVk. This leads to the loss of the upper bound property
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with respect to the energy norm of the exact solution of problem (3.1),z, that is,

the estimatêz does not necessarily provide an upper bound for‖z‖, it is possible to

obtain an estimatêz such that‖ẑ‖ ≤ ‖z‖.

However, in this case, the obtained bounds are still strict with respect to the

energy norm of the reference solutionzh, where the reference solutionzh is the

projection ofz into the finite dimensional subspace ofV used to solve the local

problems.

Let Vh be the reference interpolation space obtained fromVH either using anh

or p refinement and consider the broken reference interpolationspace,̂Vh, obtained

from Vh relaxing both the Dirichlet boundary conditions and the continuity of the

functions along the edges of the reference mesh. The local residual problems given

by equation (3.4) are approximated by the weak problems: findẑk
h ∈ Vh

k such that

ak(ẑ
k
h, v) = R∗

k(v) + bk(v, λ) ∀v ∈ Vh
k , (3.12)

whereVh
k is the restriction of the reference spaceVh to the elementΩk, and in this

case, the global estimatêzh obtained adding the local estimatesẑh =
nel∑
k=1

ẑk
h is the

solution of the weak problem:

a(ẑh, v) = R∗(v) + b(v, λ) ∀v ∈ V̂h. (3.13)

An immediate consequence of equation (3.13) is that the energy norm of ẑh is an

upper bound of the energy norm of the reference solutionzh, as asserted above.

Indeed, letzh ∈ Vh be the projection ofz into Vh solution of the weak problem

a(zh, v) = R∗(v) ∀v ∈ Vh. (3.14)

Since for any continuous functionv ∈ Vh b(v, λ) = 0, replacingv = zh in equation

(3.13) yields

a(ẑh, zh) = R∗(zh),

and the upper bound property follows from a routine application of the Cauchy-

Schwarz inequality

‖zh‖2 = R∗(zh) = a(ẑh, zh) ≤ ‖ẑh‖‖zh‖.
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Nonetheless, since the energy norm of the reference solution zh underestimates the

norm ofz, ‖zh‖ ≤ ‖z‖, it is not possible, in general, to guarantee that‖ẑh‖ provides

an upper bound for‖z‖.

Actually, the loss of the upper bound property comes from thefact that in each

element‖ẑk
h‖ underestimates the norm of the local estimatesẑk, that is,‖ẑk

h‖ ≤
‖ẑk‖. Thus, although,‖z‖2 ≤ ‖ẑ‖2 =

nel∑
k=1

‖ẑk‖2
k, it can not be guaranteed that

‖z‖2 ≤ ‖ẑh‖2 =

nel∑

k=1

‖ẑk
h‖2

k.

Chapter 5 presents an alternative to the approximation of thelocal problems

(3.4) using a finite dimensional subspace, which allows to obtain strict upper bounds

of the energy norm ofz. The outline of the method is as follows: upper bounds for

the energy norm‖z‖ may be obtained from an estimatêz ∈ V̂ computed from

the local estimateŝzk obtained solving the local problems given in equation (3.4)

yielding

‖z‖2 ≤ ‖ẑ‖2 =

nel∑

k=1

‖ẑk‖2
k.

If the local problems are solved using a finite dimensional subspace, that is, if in-

stead of̂zk ∈ Vk one computeŝzk
h ∈ Vh

k verifying equation (3.12) then one has that

‖ẑk
h‖k ≤ ‖ẑk‖k although‖ẑk

h‖k asymptotically approaches‖ẑk‖k. In order to ob-

tain strict bounds for the energy norm, instead of approximating the local problems

(3.12) using a submesh, the local problems are approximatedusing the complemen-

tary energy approach. The idea is instead of approximation the primal variableŝzk,

the approximation is done in the dual variables (fluxes or stresses). The procedure

provides for each element scalar quantitiesνk such that‖ẑk‖2
k ≤ νk, and therefore

the strict upper bound for the squared energy norm is found as

‖z‖2 ≤ ‖ẑ‖2 =

nel∑

k=1

‖ẑk‖2
k ≤

nel∑

k=1

νk.

3.4.2 Remarks on the derivation of lower bounds for the energy

Standard a posteriori implicit error estimators, as the equilibrated residual method,

provide upper bounds for the energy norm which are only strict upper bounds in the
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asymptotic range since the local problems are usually approximated using a finite

dimensional space. An estimateẑh is obtained overestimating the energy norm of

the reference solution,‖zh‖ ≤ ‖ẑh‖, but there is no guarantee thatẑh provides

an upper bound for the exact solutionz. In fact, in some numerical examples it

happens that‖ẑh‖ ≤ ‖z‖. Moreover, ifξ ∈ V is a good continuous approximation

of z providing a sharp lower bound for the energy norm ofz, even the upper bound

for ‖zh‖ may be smaller than the lower bound for‖z‖, that is

‖ẑh‖ ≤ |R∗(ξ)|
‖ξ‖ .

This result is somewhat incoherent and unsatisfactory especially when the upper

and lower bounds for the energy norm are combined to assess anoutputs of interest.

A consistent approach is to consider directly the goal of bounding the energy

norm of the reference solution and state that these bounds are, in the asymptotic

range, bounds for the norm of the exact solution. In this case, the lower bounds

with respect to the norm of the reference solution may be found from Lemma 3.3.1

noting that if the continuous approximationξ belongs to the reference interpolation

spaceVh, then the lower bounds hold not only for the exact solutionz but also

for the reference solutionzh. That is, any continuous functionξh ∈ Vh provides a

parametric family of lower bounds for‖zh‖ and‖z‖ at the same time,

2λR∗(ξh) − λ2‖ξh‖2 ≤ ‖zh‖2 ≤ ‖z‖2.

Obviously, the particular bounds

2R∗(ξh) − ‖ξh‖2 ≤ R∗(ξh)
2

‖ξh‖2
≤ ‖zh‖2

also hold.

In some cases it may be of use to consider the nodal projectionof a function in

V onto the reference spaceVh, πh : V → Vh. Given a continuous approximation

ξ ∈ V of z, πhξ ∈ Vh provides an approximation ofzh and thus, a lower bound for

the energy norm of the reference solution.

Regardless of the lower bounds being strict with respect to the energy norm of

the exact or reference error, obtaining lower bounds for theenergy norm is important

in goal-oriented error estimation techniques.
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Continuous approximations of the error fields are used in goal-oriented error

estimation techniques to enhance the bounds for the outputs given in equations

(2.22) and (2.26) for a symmetric and nonsymmetric model problem respectively. In

these expressions for the bounds, if the continuous approximationsξ± of κe± 1
κ
ε are

taken to be zero, one would still get bounds for the error in the outputs. Moreover,

although the accuracy of the bounds will worsen, the rate of convergence will be

the same. In fact, for regular problems where the finite element method has linear

convergence, the bounds converge quadratically. In this case, although the initial

bound gapsu − sl is large, with few effort it can be reduced to the desired tolerance

using adaptive algorithms.

However, there are two important cases where the choice of the approximation

functionξ± is not a moot point. First, one can consider problems where the primal

and dual errors are large, but nearly orthogonal, and thus, the output is nearly zero,

s = a(e, ε) ≈ 0. In this case, the use ofξ± = 0 leads to expressions for the bounds

which do not take into account the orthogonality between theerrors but the product

of its norms yielding poor bounds. Another important case where the choice of

ξ± must be taken into consideration is for problems with reallyslow convergence.

In this case, the reduction of the bound gap is costly, and thus it is important to

start with good approximation of the bound gap. This appearsfor instance in the

computation of outputs of interest in fracture mechanics where the convergence of

the finite element method is slow (see Section (5.4.2)).
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Chapter 4

Subdomain-basedflux-free a
posteriori error estimator

Paŕes, D́ıez and Huerta (2005) present a new subdomain-based flux-free error esti-

mation technique to compute upper and lower bounds for linear-functional outputs

of solutions of symmetric coercive model problems (such as the diffusion-reaction

equation and the elasticity equations). The quantities of interest (functional outputs)

are recovered combining upper and lower bounds of the energynorm for both the

original problem (primal) and dual problem (associated with the selected functional

output) using the technique detailed in Chapter 2.

The need of obtaining reliable and cost effective upper and lower bounds of the

error measured in the energy norm has motivated the use of residual error estima-

tors. Classical residual type estimators, which provide upper bounds for the energy

norm of the error, require flux-equilibration procedures toproperly set boundary

conditions for local problems, see for instance, Ladevèze and Leguillon (1983) and

Ainsworth and Oden (2000). Flux-equilibration is preformed by a non trivial algo-

rithm, strongly dependent on the element type. Moreover, this procedure requires

a data structure that is not natural in a standard finite element code; for instance,

edges sides must be ordered and classified accounting for their nodes (improper

order) and the elements they belong to.

The idea of using flux-free estimates, based on the partition-of-the-unity concept

and using local subdomains different than elements, was first introduced by Babǔska

and Rheinboldt (1978a). Although their presented approach did not provide one-

sided bounds of the error measured in the energy norm, it was the first to introduce

43
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the basic property of subdomain error estimates: the decomposition of the residual

into local contributions using the partition-of-the-unity property. Afterwards, Cars-

tensen and Funken (1999/00), Machiels, Maday and Patera (2000), Morin, Nochetto

and Siebert (2003) and Prudhomme, Nobile, Chamoin and Oden (2004) developed

different flux-free estimates providing upper bounds for the energy norm of the error

for solutions of the diffusion-reaction equation.

The main advantage of the flux-free approach is the simplicity of its implemen-

tation. Obviously, this has special relevance in 3D problems. Boundary conditions

of local problems are trivial and the usual data structure ofa finite element code

is directly employed. Recently, Choi and Paraschivoiu (2004)compared flux-free

estimates with standardhybrid-fluxestimates in terms of both sharpness (effectivity)

and computational efficiency. The main conclusion of this investigation is that, in

most of test cases, the hybrid-flux estimates are more accurate while the overall

computational cost is lower for flux-free estimates.

Paŕes, D́ıez and Huerta (2005) introduce a new flux-free error estimator improv-

ing the effectivity of previous approaches and with furtherimplementation simplifi-

cations. The present chapter provides a brief description of this method. The idea is

not to provide a complete description of the method, but rather to present the method

in the same notation introduced in Chapter 3 so that the relation between the dif-

ferent estimation techniques becomes more apparent. Afterintroducing the model

problem, the methodology to obtain upper and lower bounds for the energy norm is

presented. Although Parés, D́ıez and Huerta (2005) provide bounds for linear out-

puts, here, for clarity of exposition, only energy norm estimates are considered. The

reader is referred to Chapter 2 to obtain bounds for the outputfrom bounds for the

energy norm. The new estimation technique is then compared with the one proposed

by Carstensen and Funken (1999/00), Machiels et al. (2000), Morin et al. (2003) and

Prudhomme et al. (2004). It is shown that the newly developedtechnique computes

sharper bounds. The chapter concludes with the discussion of some computational

aspects and the presentation of a numerical example.
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4.1 Model problem

Consider a general symmetric coercive variational problem given in weak form as:

find z ∈ V such that

a(z, v) = R∗(v) ∀v ∈ V, (4.1)

where the residueR∗(·) is a linear functional orthogonal to the finite element space

VH , that is,R∗(vH) = 0 ∀vH ∈ VH . Note that this problem includes both the

primal and dual residual problems. Indeed, takingR∗(v) = RP(v), equation (4.1)

leads to the equation for the primal error (2.3) and thus,z = e. Similarly, R∗(v) =

RD(v) would lead to the dual residual problem of equation (2.11), that is,z = ε. In

fact, any linear combination of the primal and dual errors,αe + βε, α, β ∈ R, is

the solution of a generalized problem withR∗(v) = αRP(v) + βRD(v). This is the

reason whyz will be often denoted as the error function.

4.2 Upper bound for the energy

In order to find upper bounds for the energy norm‖z‖, some notation must be

introduced. Letxi, i = 1 . . .nnp denote the set of vertices of the finite mesh andφi

denote the corresponding first-order Lagrange shape functions which are character-

ized byφi(xj) = δij and by being a partition of unity, that is

nnp∑

i=1

φi(x) = 1 ∀x ∈ Ω. (4.2)

The support of the nodal functionφi, is denoted byωi and it is called the star cen-

tered in, or associated with, nodexi. It consists of the patch of elements containing

vertexxi.

The method is formulated starting with the residual equation (4.1). The under-

lying idea is to replace the global problem characterizing the exact solutionz, by a

sequence of independent problems posed on the stars. The basis functions,φi, may

by utilized in this purpose. With the aid of the partition of unity property (4.2) and

the linearity of the residue,R∗(·), it follows thatR∗(·) may be decomposed into the



46 Chapter 4.Flux-freeerror estimates

φ

Figure 4.1: Representation of two stars centered in a nodexi, ωi (left) and repre-
sentation of a shape functionφi.

form

R∗(v) = R∗(

nnp∑

i=1

φiv) =

nnp∑

i=1

R∗(φiv), (4.3)

for everyv ∈ V, and hence the global residual equation (4.1) may be rewritten as

a(z, v) =

nnp∑

i=1

R∗(φiv) ∀v ∈ V.

An immediate consequence of this decomposition is that the error functionz may be

decomposed intoz =
nnp∑
i=1

zi, wherezi ∈ V are the solutions of the global problems

a(zi, v) = R∗(φiv) ∀v ∈ V, (4.4)

and hence, the energy norm ofz can be recovered as

‖z‖ = ‖
nnp∑

i=1

zi‖. (4.5)

Of course, it is infeasible to solve for the exact solution ofevery global problem

(4.4) which have the same complexity as the original one (4.1).

However, note that the functionφiv appearing on the r.h.s. of equation (4.4) is

supported onωi, thus,R∗(φiv) is also supported onωi, that isR∗(φiv) = R∗(φi v|ωi),

wherev|ωi ∈ V(ωi). The local spaceV(ωi) will be denoted in the following byVωi,

and the local bilinear form associated with this space, which is the restriction of the

bilinear forma(·, ·) to the starωi, is denoted byaωi : Vωi × Vωi → R.

The subdomain residual problem is an approximation of the global problem

(4.4) and consists of findinĝzi ∈ Vωi such that

aωi(ẑi, v) = R∗(φiv) ∀v ∈ Vωi . (4.6)
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Formally the functionŝzi are not defined in the whole domainΩ but only in the star

ωi. However, they can be naturally extended toΩ by setting the values outsideωi to

zero leading to a function which is generally discontinuousacross the boundary of

the starVωi , that is,ẑi ∈ V̂, whereV̂ is the broken space introduced fromV relaxing

the continuity of the functions across the edges of the mesh.

Motivated by equation (4.5), the global error estimateẑ is obtained adding the

local estimatorŝz =
nnp∑
i=1

ẑi and the upper bound for the energy norm is directly the

norm of ẑ, that is,

‖z‖ ≤ ‖ẑ‖ = ‖
nnp∑

i=1

ẑi‖.

Paŕes, D́ıez and Huerta (2005, Section 4.1) discuss the solvability of local prob-

lems (4.6). These local problems admit a solution if and onlyif the following com-

patibility condition holds

R∗(φiv) = 0 ∀v ∈ ker aωi ,

where

ker aωi = {v ∈ Vωi , aωi(v, w) = 0 ∀w ∈ Vωi},

see Paŕes, D́ıez and Huerta (2005, Theorem 5).

The solvability of the local variational problems depend onthe verification of the

compatibility condition for the functions in the kernel of the local bilinear operator

aωi(·, ·). Thus, it depends on the model problem at hand.

The solvability in many cases (scalar diffusion-reaction equation, elasticity equa-

tions with higher-order elements,. . .) follows from the orthogonality of the residue

R∗(·) to the finite element spaceVH . However, local problems (4.6) are not solv-

able in all the cases. In those cases, Parés, D́ıez and Huerta (2005, Section 3.2)

introduce a modification of the local residual problems (4.6) ensuring solvability

and maintaining the upper bound property. The modified localequations are

aωi(ẑi, v) = R∗(φi(v −πHv)) ∀v ∈ Vωi , (4.7)

whereπH denote the nodal projection of a function inV onto the finite element

spaceVH , that is, for every vertexxi of the finite element mesh,πH : V −→ VH is

such thatπH(v)(xi) = v(xi).
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In this case, the compatibility condition reads

R∗(φi(v −πHv)) = 0 ∀v ∈ ker aωi ,

which always holds sinceker aωi ⊂ VH . Indeed, ifv ∈ ker aωi, v ∈ VH , then

v − πHv = 0. Therefore the modified equation for the local estimates always

admits a solution.

The global estimatêz =
nnp∑
i=1

ẑi ∈ V̂ defined adding the local estimatesẑi, solu-

tion of either the residual problem (4.6) or (4.7), verifies the hypothesis of Lemma

(3.2.1) and therefore, its energy norm provides an upper bound for‖z‖ (Paŕes, D́ıez

and Huerta 2005, Lemma 7).

Appendix B and Parés, D́ıez and Huerta (2005, Section 5) present a compari-

son of this new estimate with the estimates introduced by Carstensen and Funken

(1999/00), Morin et al. (2003), Machiels et al. (2000) and Prudhomme et al. (2004)

emphasizing the novelties of the presented approach.

4.3 Lower bound for the energy

The upper bound of the energy norm of the functionz, ‖ẑ‖, is associated with

the estimatêz ∈ V̂ of the functionz itself. The upper bound property is intrinsi-

cally related with the broken (discontinuous) nature ofẑ. On the contrary, a lower

bound estimate is easily recovered from a continuous estimate of the functionz, see

Lemma 3.3.1. Thus, oncêz is obtained, a continuous estimate,ξ ∈ V, is computed

from ẑ. Two different alternatives may be considered to computeξ from ẑ. First,

the strategy presented in detail by Dı́ez et al. (2003) and outlined in Section 3.3.2

which is valid for any discontinuous estimateẑ (discontinuous across inter-element

edges or faces) can be readily implemented. Second, the weighting strategy, where

the continuous estimate is obtained from

ξ =

nnp∑

i=1

φiẑi. (4.8)

This approach uses the fact that the local estimatesẑi are continuous in each star.

The discontinuities of̂zi on the boundary of each starωi are smoothed by multi-
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plying by φi, which vanishes along the boundary ofωi. Consequently, this is the

natural choice for the estimatêz presented in this chapter.

Moreover, in order to improve the quality of the estimate, any of the enhance-

ments presented in Section 3.3.3 can be implemented.

4.4 Computational aspects

The subdomain-based flux-free residual method described above requires the true

solution of the local problems (4.6) or (4.7). Of course, it is infeasible to require the

exact solution of these problems sinceVωi is an infinite dimensional space. In prac-

tice, the subdomain residual problems are approximated using a finite dimensional

subspace ofVωi . This leads to the loss of the upper bound property with respect to

the exact norm of the solution,‖z‖, but the bounds are still strict with respect to

the energy norm of a reference solution. Strict upper boundsfor the energy norm

of the exact weak solutionz using flux-free estimates could be obtained extending

the ideas presented in Chapter 5. Instead of approximating the local problems (4.6)

or (4.7) using a finite dimensional subspace, the complementary energy approach

could be used to transform the local problems into computable feasibility problems

without losing the upper bound property. The derivation of strict upper bounds for

the energy norm of the error using flux-free estimates has notbeen yet exploited.

LetVh be a reference interpolation space obtained fromVH either using anh or

p refinement. Then, the subdomain residual problems given by equations (4.6) or

(4.7) are approximated by: find̂zi
h ∈ Vh

ωi such that

aωi(ẑi
h, v) = R∗(φiv) or aωi(ẑi

h, v) = R∗(φi(v −πHv)) ∀v ∈ Vh
ωi , (4.9)

whereVh
ωi = Vh(ωi) is the restriction of the reference space to the star. This leads

to the estimatêzh =
nnp∑
i=1

ẑi
h verifying

‖zh‖ ≤ ‖ẑh‖,

wherezh is the reference solution, that is, the projection of the solution z into the

reference spaceVh (see equation (3.14)).
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When a reference mesh is used to compute an upper bound for‖z‖, that is,

whenever an estimatêzh ∈ Vh is computed such that‖zh‖ ≤ ‖ẑh‖, the upper bound

property does not necessarily hold for‖z‖. In fact, if a lower bound is computed

from ẑh using the weighting strategy (see equation (4.8)), it may occur that the lower

bound is larger than the upper bound due to the fact that the continuous estimateξ

does not belong toVh but in alarger subspace ofV. In these cases, the projection

of ξ into Vh, πh(ξ), can be taken as a continuous approximation ofzh (see Section

3.4.2), that is, the continuous estimate could be obtained from

ξ = πh
( nnp∑

i=1

φiẑi
h

)
.

Paŕes, D́ıez and Huerta (2005, Section 7) comment some implementation is-

sues which drastically simplify the implementation of flux-free estimates. The final

algorithm results in a simple implementation specially for3D applications.

4.5 Numerical examples

In this section, the behavior of the new estimate presented above is analyzed for a

mechanical problem. A square thin plate with two holes proposed by Paraschivoiu

et al. (1997) is considered. This is a plane-stress linear elastic problem loaded with

a horizontal unit tension along the vertical edgesΓ0, see Figure 4.2. Note that the

solution of this problem,u, has corner singularities due to the interior rectangular

cut-outs. Due to symmetry, only one fourth of the domain is analyzed. Values for

Young’s modulus and Poisson ratio are set to 1 and 0.3, respectively. Two meshes

are considered, a coarse uniform mesh with 70 nodes and a finerone with 985 nodes,

adapted heuristically. Upper and lower bounds for the energy norm of the reference

error‖eh‖ (Eu and El respectively) are computed for both cases and the results are

summarized in Table 4.1. The quality of the error estimates is measured with the

index

ρ :=
estimated error norm
reference error norm

− 1.

Index ρ is the usual effectivity index minus one. The accuracy of an error esti-

mate is given by the absolute value ofρ and the sign indicates if the estimate is an
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Figure 4.2: Thin plate model problem and meshes with 140 d.o.f. (center) and 1970
d.o.f.(right)

overestimation (positiveρ) or an underestimation (negativeρ) of the true error. For

instance,ρ = 2% indicates that the estimated error is larger than the reference error

with a factor 1.02 andρ = −3% means that the reference error is underestimated

by a factor 0.97. The effectivity index of the upper bound estimate is similar for the

Table 4.1: Upper and lower bounds for‖eh‖
d.o.f. ‖eh‖ ‖eh‖

‖uh‖
ρ(Eu) ρ(El)

140 0.146 12.8% 17.9% -68.7%
1970 0.040 3.44% 17.1% -70.1%

two meshes, and close to 1.17 (ρ ≈ 17%). The lower bound effectivities are not

as sharp, they are close to 0.3 (ρ ≈ −70%). Spatial distributions of error Eu are

displayed in Figures 4.3 and 4.4 for the uniform and adapted meshes, respectively.

It is worth noting that the error distributions for Eu are in good agreement with

the reference error. The bad behavior of the local effectivity index in the first mesh,

see Figure 4.3, is due to the fact that practically all the error is concentrated in a

few relevant elements. The histogram in Figure 4.4 is narrowbecause the number

of elements in the zones where the error is relevant is much higher for the second

mesh.

Finally, Figure 4.5 shows a comparison between the proposedupper bound es-

timate, Eu, the flux-free techniques proposed by Machiels et al. (2000), Eσ
u , and

by Carstensen and Funken (1999/00) and Morin et al. (2003), Eφ
u , and a hybrid-

flux upper bound estimate, Ehf
u , see (Ladev̀eze and Leguillon 1983, Ainsworth and

Oden 2000). The estimates presented by Machiels et al. (2000),Carstensen and
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Figure 4.3: Spatial distribution of the reference error (top left), estimate Eu (top
right), and local distribution of the effectivity indices(ρ + 1)% (bottom) for the
mesh with 140 d.o.f.

Funken (1999/00) and by Morin et al. (2003) are also comparedwith the proposed

approach in Appendix B and in (Parés, D́ıez and Huerta 2005, Section 5).

The upper bound estimates are computed for a series of adapted triangular

meshes. As expected all of them converge. Moreover, this is an example in which

the hybrid-flux bound is sharper than the previously published flux-free upper bound

estimates. In (Choi and Paraschivoiu 2004) the majority of the examples behave

similarly. However, as already discussed the proposed flux-free bound is almost as

sharp as the hybrid-flux one.
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Figure 4.4: Spatial distribution of the reference error (top left), estimate Eu (top
right), and local distribution of the effectivity indices(ρ + 1)% (bottom) for the
mesh with 1970 d.o.f.
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Chapter 5

Strict bounds for the energy norm of
weak solutions to the elasticity
equations

Paŕes, Bonet, Huerta and Peraire (2005) present a method to compute upper and

lower bounds for linear-functional outputs of the exact solutions of two dimensional

elasticity equations. The method can be regarded as a generalization of the well

known complementary energy principle. The desired output is cast as the supremum

of a quadratic-linear convex functional over an infinite dimensional domain. Using

duality the computation of an upper bound for the output of interest is reduced to

a feasibility problem for the complementary, or dual, problem. In order to make

the problem tractable, from a computational perspective, two additional relaxations

that preserve the bounding property are introduced. First,the domain is triangulated

and a domain decomposition strategy is used to generate a sequence of indepen-

dent problems to be solved over each triangle. The Lagrange multipliers enforcing

continuity are approximated using piecewise linear functions over the edges of the

triangulation. Second, the solution of the adjoint problemis approximated over the

triangulation using a standard Galerkin finite element approach. A lower bound

for the output of interest is computed by repeating the process for the negative of

the output. Reversing the sign of the computed upper bound forthe negative of

the output yields a lower bound for the actual output. The method can be easily

generalized to three dimensions. However, a constructive proof for the existence of

feasible solutions for the outputs of interest is only givenin two dimensions. The

55
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computed bound gap is found to converge optimally, that is, at the same rate as

the finite element approximation. An attractive feature of the proposed approach

is that it allows to generate a data set that can be used to certify and document the

computed bounds. Using this data set and a simple algorithm,the correctness of the

computed bounds can be established without recourse to the original code used to

compute them.

The present chapter provides a brief description of the method presented by

Paŕes, Bonet, Huerta and Peraire (2005). The idea is not to provide a complete

description of the method, but rather to present the method in the same notation

introduced in Chapter 3. After introducing the model problem, the methodology to

obtain strict upper bounds for the energy norm of weak solutions of the elasticity

equations is presented. Although Parés, Bonet, Huerta and Peraire (2005) provide

strict bounds for linear outputs, here, for clarity of exposition, only energy norm

estimates are considered. The reader is referred to Chapter 2to obtain bounds for

the output from bounds for the energy norm. Finally, the estimation procedure is

used in two numerical examples: two mechanical test where the outputs vary from

the average of the displacements in a part of the boundary to theJ-integral (which

is a non-linear output of the displacements).

5.1 Model problem

Consider the generalized elasticity problem with Neumann and homogeneous Dirich-

let boundary conditions written in weak form as: findz ∈ V such that

a(z,v) = R∗(v) ∀v ∈ V , (5.1)

whereV = {v ∈ [H1(Ω)]2, v|ΓD = 0} acts both as the space of admissible

displacement fields and the space of test functions. The linear forcing functional

R∗ ∈ V
′

R∗(v) =

∫

Ω

f ∗ · v dΩ +

∫

ΓN

g∗ · v dΓ − a(zH ,v), (5.2)

contains both the internal forces per unit volumef ∗ ∈ [H−1(Ω)]2 and the Neumann

boundary tractionsg∗ ∈ [H− 1

2 (ΓN)]2 anda : V×V → R is the symmetric coercive
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bilinear form given by

a(w,v) =

∫

Ω

σ(w) : ε(v) dΩ.

Here,ε(v) is the second order deformation tensor, which is defined as the symme-

tric part of the gradient tensor∇v, that is,ε(v) = 1
2
(∇v+(∇v)T). The stress tensor

σ(v), is related to the deformation tensor through a linear constitutive relation of

the form,σ(v) = C : ε(v), whereC is the fourth-order elasticity tensor.

5.2 Strict upper bound for the energy

This section addresses the problem of computing upper bounds for the energy norm

of the weak solutionz. Our point of departure are the local residual problems (3.4)

introduced in Chapter 2: find̂zk ∈ Vk such that

ak(ẑ
k,v) = R∗

k(v) + bk(v,λ) ∀v ∈ Vk, (5.3)

whereλ are the equilibrated local tractions ensuring the solvability of the local

problems. The upper bound for the squared energy norm ofz is recovered from

these local estimates as

‖z‖2 ≤
nel∑

k=1

‖ẑk‖2
k.

The local problems (5.3), although local, can not be solved exactly becauseVk

is an infinite dimensional space. Moreover, if we replaceVk with a finite dimen-

sional subspace, the upper bound property is lost as shown inSection 3.4.1.

Since the local norms‖ẑk‖2
k can not be computed exactly, one faces the problem

of finding computable upper bounds for these quantities, that is, find νk ∈ R such

that

‖ẑk‖2
k ≤ νk.

This would lead to the global upper bound

‖z‖2 ≤
nel∑

k=1

‖ẑk‖2
k ≤

nel∑

k=1

νk.

The upper boundsνk are computed using a standard duality argument which

transforms the problem of finding the solution of equation (5.3) over the infinite
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dimensional spaceVk to a problem of finding a feasible solution in an appropriate

finite dimensional space. Instead of approximating the primal variables (displace-

ments)̂zk over a finite dimensional space, which yields to a loss of the upper bound

property, the approximation is done in the dual variables (stresses)σ(ẑk), which

allows to obtain the desired result.

Let Sk denote the space of componentwise square-integrable stress fields inΩk,

that is,Sk contains all the second-order tensors withσij ∈ L2 (Ωk) ∀i, j. Then,

S
eq
k denotes the subset ofSk which contains all the equilibrated stress fields with

respect toR∗ andλ, that is,σ̂k ∈ S
eq
k verifies

∫

Ωk

σ̂k : ε(v) dΩ = R∗
k(v) + bk(v,λ) ∀v ∈ Vk. (5.4)

The stress fields inSeq
k are usually referred to as being statically admissible. In

addition, the complementary energy of a stress fieldσk ∈ Sk is defined as

|||σk|||2k =

∫

Ωk

σk : C
−1 : σk dΩ.

Paŕes, Bonet, Huerta and Peraire (2005, Lemma 1) provide the key to obtaining

the local upper boundsνk. It is sufficient to compute a statically admissible stress

field σ̂k ∈ S
eq
k , and then evaluate its complementary energy. This follows from the

fact that for any admissible stress fieldσ̂k ∈ S
eq
k

‖ẑk‖2
k ≤ |||σ̂k|||2k.

Moreover Paŕes, Bonet, Huerta and Peraire (2005) show that one can chose the

statically admissible stress field to be piecewise polynomial and provide a construc-

tive proof of the existence of a piecewise polynomial equilibrated stress fields. The

only requirement is that the forcing dataf ∗, g∗ andλ, and the displacement field

zH have to be piecewise polynomial functions.

The key point is to divide each element into three or four triangles (depending

on the initial element being a triangular or a quadrilateralelement respectively) and

then consider the statically admissible stress field to be polynomial in each subtri-

angle (see Figure 5.1). The degree of the local polynomial fields in each subtriangle

depends on the degrees of the forcing dataf ∗, g∗ andλ and the displacement field

zH . For instance, iff ∗ is a constant distribution of internal forces in the elementΩk,
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σ 1

σ 3
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Figure 5.1: Local subdivision of an elementΩk into subtriangles.

g∗ andλ are linear tractions imposed on the edges of the element andzH is a linear

displacement field inΩk, then, it is sufficient to consider the statically admissible

stress field̂σk to be a linear polynomial in each subtriangle conforming theelement.

The reader is referred to (Parés, Bonet, Huerta and Peraire 2005, Appendix A) for a

detailed construction of the statically admissible stressfield.

The procedure to obtain strict upper bounds for the energy norm of z is summa-

rized in the box in Table 5.2.

1.- Computeλ ∈ Λ s.t.

b(v̂,λ) = R∗(v̂) ∀v̂ ∈ V̂
H

.

2.- For each elementΩk, computeσ̂k ∈ Vk s.t.
∫

Ωk

σ̂k : ε(v) dΩ = R∗
k(v) + bk(v,λ) ∀v ∈ Vk.

3.- Compute the upper bound as

‖z‖2 ≤
nel∑

k=1

|||σ̂k|||2k.

Figure 5.2: Main steps of the strategy used to obtain strict upper bounds for the
energy norm of the solution of a symmetric boundary value problem.

Let S denote the space of componentwise square-integrable stress fields inΩ,

that is,S contains all the second-order tensors withσij ∈ L2 (Ωk) ∀i, j, with the
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associated complementary energy

|||σ|||2 =

∫

Ω

σ : C
−1 : σ dΩ.

The local admissible stress fieldsσ̂k ∈ Sk are not defined in the whole domain but

only in the elementΩk. However they can be naturally extended toΩ setting the

values outsideΩk to zero. Then, the upper bound for squared the energy norm ofz

given by

‖z‖2 ≤
nel∑

k=1

|||σ̂k|||2k,

may be computed also from the global stress fieldσ̂ =
nel∑
k=1

σ̂k ∈ S as

‖z‖ ≤ |||σ̂|||.

It is worth noting that the global stress field̂σ belongs to the space of globally

admissible stress fields

S
eq = {σ ∈ S ,

∫

Ω

σ : ε(v) dΩ = R∗(v) ∀v ∈ V}.

5.2.1 Sufficient condition for the upper bound property

The following result summarize a sufficient condition for a global stress field to

yield an upper bound for the error measured in the energy norm. In fact, the theorem

states that every stress field globally admissible providesan upper bound for‖z‖.

Lemma 5.2.1.Any stress field̂σ ∈ S
eq, that is, any stress field̂σ ∈ S verifying the

weak error equation
∫

Ω

σ̂ : ε(v) dΩ = a(z,v) = R∗(v) ∀v ∈ V , (5.5)

is such that its complementary norm is an upper bound of the energy norm ofz,

that is

‖z‖ ≤ |||σ̂|||.

Proof. Using equation (5.5) withv = z, the energy norm ofz may be rewritten as

‖z‖2 = a(z,z) = R∗(z) =

∫

Ω

σ̂ : ε(z) dΩ.
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Then, a simple algebraic manipulation yields to

0 ≤
∫

Ω

(σ̂ − σ(z)) : C
−1 : (σ̂ − σ(z)) dΩ

= |||σ̂|||2 + ‖z‖2 − 2

∫

Ω

σ̂ : ε(z) dΩ = |||σ̂|||2 − ‖z‖2,

and the lemma is proved.

5.3 Certification

An attractive feature of the proposed approach is that the piecewise polynomial

equilibrated stress-like fields, which are computed as partof the bound process,

can be used as certificates to guarantee the correctness of the computed bounds. It

turns out that given a stress field it is easy to check whether this field corresponds

to a valid certificate, and in the affirmative case it is straightforward to determine

the value of the output that it can certify. In particular, the stress fields need to

satisfy continuity of normal tractions,σ · n, across elements, and membership of

an appropriate space.

The idea of a certificate that is computed simultaneously with the solution has

many attractive features. In particular, a certificate consisting of the data set nec-

essary to describe the piecewise polynomial stress-like fields could be used to doc-

ument the computed results. Exercising the certificate doesnot require access to

the code used to compute it and can be done with a simple algorithm which does

not require solving any system of equations. A very important point is that, if a

certificate meets all the necessary conditions, which in turn are easy to verify, then

there is no need to certify the code used to compute it. In practice, the size of

these certificates depends on the required level of certainty. As expected, we shall

find that high levels of certainty, i.e. small bound gaps, will often require longer

certificates (larger data sets) than those required to certify less sharp claims.

In the case of computing strict upper bounds for the energy norm of z, the

certification procedure is summarized in Figure 5.3.
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Figure 5.3: Summary of the certification procedure to obtainstrict upper bounds for
‖z‖.

5.4 Numerical examples

The presented method is illustrated with three numerical examples: a square plate

with two interior rectangular cut-outs, the solution of which, has corner singular-

ities, and two plates with cracks. The outputs of interest are displacements and

reaction forces integrated over parts of the boundary in thefirst example, and the

value of theJ-integral at the crack tips in the second and third example.

The coarse mesh problems are solved using triangular linearfinite elements,

the hybrid fluxes are interpolated linearly over each edge ofthe mesh and the local

equilibrated stress fields are taken to be piecewise linear in each triangle of the

mesh. Three estimates of the error in the outputs are considered: the upper and

lower bounds (su andsl, respectively) and their average,s = (su + sl)/2. This

yields to the four estimates of the outputℓO(u) itself: the upper and lower bounds

(ℓO(uH) + su andℓO(uH) + sl, respectively), their average (ℓO(uH) + s), and also

the output given by the finite element approximation itself,ℓO(uH).

In both examples, since the analytical solution is not known, the quality of the

different estimates for the outputℓO(u) is measured in terms of the relative half

bound gap,ρG, which is defined as half of the difference between the upper and
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lower bounds for the output, divided by the average estimate

ρG =
1

2

(ℓO(uH) + su) − (ℓO(uH) + sl)

|ℓO(uH) + s| =
1

2

su − sl

|ℓO(uH) + s| ≥ 0.

5.4.1 Square plate

A square thin plate with two rectangular holes is considered. Normal tractions are

applied on the left and right sides of the plate (Paraschivoiu et al. 1997, Peraire

and Patera 1997). Since the problem is symmetric, only one fourth of the plate is

considered, as shown in Figure 5.4.

0.5 0.5

0.3

0.5

0.2

x1

x2

Γ

Γ0

1

Figure 5.4: Model problem (left) and initial mesh (right)

Two outputs of interest are considered: the integral of the normal displacement

over the boundaryΓ0, and the integrated normal component of the traction inΓ1,

that is,

ℓO0 (v) =

∫

Γ0

v · n dΓ, ℓO1 (v) =

∫

Γ1

n · σ(v) · n dΓ. (5.6)

Remark5.4.1. The dual residue associated with the first output is already in the form

of equation (5.2) withg∗ = n|Γ0
andg∗ = 0 elsewhere,f ∗ = 0 in Ω andzH = ψH ,

whereψH is the finite element approximation of the dual problem (2.10) associated

with the outputℓO0 (·), that is

RD(v) =

∫

Γ0

v · n dΓ − a(ψH , v).
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The residue associated with the second output, however, does not have the same

form. In order to transform this residue into the form (5.2) considered here, an

auxiliary functionχ is introduced. This functionχ, is such thatχ = 1 on Γ1 and

vanishes at all the other vertical boundaries. Then, ifn1 = n|Γ1
,

ℓO1 (u) =

∫

Γ1

n · σ(u) · n dΓ = a(u, χn1) =: ℓ̃O1 (u),

and instead of working with the functionalℓO1 (·), ℓ̃O1 (·) is considered. This is much

easier since it corresponds tog∗ = 0 on ΓN, f ∗ = 0 in Ω andzH = ψH − χn1 in

equation (5.2) where nowψH denotes the finite element approximation of the dual

problem associated with the outputℓ̃O1 (·). That is,

RD(v) = ℓ̃O1 (u) − a(v,ψH) = a(v,ψH − χn1) = a(ψH − χn1,v),

due to the symmetry of the bilinear forma(·, ·).
Figure 5.5 and Tables 5.1 and 5.2 show the bounds obtained in this example.

A nested sequence of meshes is considered. The initial mesh (hini) is shown in

displacement average
h ℓO(uH) ℓO(uH) + s− ℓO(uH) + s+ ℓO(uH) + s ρG

hini .4060 .3794 .5297 .4546 .1654
1/2hini .4163 .4061 .4706 .4384 .0736
1/4hini .4207 .4172 .4423 .4298 .0292
1/8hini .4224 .4213 .4309 .4261 .0113

Table 5.1: Bounds and relative bound gap in a series of uniformly refinedh-meshes
for ℓO0 (u)

reaction average
h ℓO(uH) ℓO(uH) + s− ℓO(uH) + s+ ℓO(uH) + s ρG

hini -.3199 -.3696 -.2621 -.3158 .1702
1/2hini -.3203 -.3438 -.2982 -.3210 .0710
1/4hini -.3211 -.3318 -.3133 -.3225 .0286
1/8hini -.3217 -.3265 -.3189 -.3227 .0118

Table 5.2: Bounds and relative bound gap in a series of uniformly refinedh-meshes
for ℓO1 (u)

Figure 5.4, and the refined meshes are obtained, as in the firstexample, dividing
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each element into4 new ones. The functionχ required inℓ̃O1 (·), is defined on the

initial mesh by setting all the nodal values equal to zero except for those nodes on

Γ1 which are given a value of unity.
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Figure 5.5: Bounds convergence for a uniformh-refinement (up) and for the dis-
placement outputℓO0 (u) (left) and for the reaction outputℓO1 (u) (right)

This example shows that the bounds behave well even for problems with singu-

larities. However, it is also observed that the convergencerate for the bounds, the

finite element approximation and the bound average, is no longerO(h2), although

it is still faster than linear.

For the reaction output,ℓO1 (u), an adaptive procedure has been employed start-

ing with the mesh shown in Figure 5.4 where the bound gap∆ini is 0.1075, and two

target bound gaps have been considered∆tol = 1
2
∆ini and∆tol = 1

10
∆ini.

In order to achieve∆tol = 1
2
∆ini four new meshes are generated, where the

bound gap for the last mesh is∆f = 0.0471. The resulting sequence of meshes
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Figure 5.6: Sequence of adapted meshes for the outputℓO1 (u) with desired final gap
∆tol = 1

2
∆ini with nel = 108, 165, 280, 405 and538

can be seen in Figure 5.6, where the local elementary contributions to the global

bound gap are plotted in each element of the mesh. As can be seen not only the

zone where the output is measured (Γ1) is refined, but also the corners where the

solution is singular.

The values of the bounds for the adaptive procedure with the desired final gap

∆tol = 1
10

∆ini are shown in Table 5.3.

nel ∆ sl su

108 .10749 -.36957 -.26208
222 .18215 -.38940 -.20725
433 .12171 -.36880 -.24709
811 .07199 -.35089 -.27891
1387 .03755 -.33750 -.29995
1966 .02428 -.33392 -.30964
2532 .01574 -.32922 -.31348
3069 .01172 -.32826 -.31654
3564 .00834 -.32627 -.31793

Table 5.3: Bounds in a series of adaptivelyh-refined meshes both forℓO1 (u) with
desired final gap∆tol = 1

10
∆ini
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5.4.2 J-integral

Here two plates with cracks are considered: the first plate with two edge cracks and

the second plate with an inclined crack both subjected to a uniformly distributed

tensile stress as shown in Figure 5.7. Both plates are assumedto be in plane strain

and the value of the tensile force acting on the two ends of theplates isp = 1. The

non-dimensionalized Young’s modulus is 1.0 and the Poisson’s ratio is 0.3. In the

first example, due to the symmetry of the problem only one quarter of the plate is

considered for the finite element analysis.
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Figure 5.7: J-integral: double edge-cracked plate subjected to a uniform tensile
stress (left) and plate with an inclined crack subjected to auniform tensile stress
(right)

In both examples the output of interest is the value of theJ-integral which pro-

vides the energy release of the cracks. TheJ-integral is not a linear functional of

the displacements, and thus the strategies presented in Chapter 2 do not directly

provide bounds for this output. Xuan, Lee, Patera and Peraire (2004) present a

method for computing upper and lower bounds for the value of theJ-integral in two
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dimensional linear fracture mechanics using a posteriori error estimates measuring

the energy norm of a reference solution. Here, the same technique has been applied

using the energy norm estimate described in this chapter. This allows to find strict

bounds for theJ-integral instead of bounds which are only strict with respect to a

reference solution.

The obtention of the bounds proposed by Xuan et al. (2004) reformulates the

J-integral as a bounded quadratic functional of the displacement and expands this

quadratic functional into computable quantities plus additional linear and quadratic

terms in the error. The linear terms are bounded using the strategy presented in this

chapter along with the methodology introduced in Chapter 2 and the quadratic term

is bounded with the energy norm of the error scaled by a suitable chosen continuity

constant, which can be determined a priori. A detailed deduction of the bounds may

be found in (Xuan et al. 2004) and in Appendix C.
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d l

Figure 5.8: Crack geometry showing coordinate axes and theJ-integral contour and
domain of integration.

If one considers the geometry shown in Figure 5.8, theJ-integral of the dis-

placement fieldu can be computed as

J(u) =

∫

Ωχ

(
(∇χ)T · σ(u)

∂u

∂x1

− σ(u) : ε(u)

2

∂χ

∂x1

)
dΩ,

where the weighting functionχ is any function inH1(Ωχ) that is equal to one at

the crack tip and vanishes onΓ. HereΓ denotes any path beginning at the bottom

crack face and ending at the top crack face. Note thatJ(u) is a bounded quadratic

functional ofu.
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In the plate with two edge cracks, a 5 by 5 square area centeredon the crack tip

is taken as the support,Ωχ, of the weighting functionχ, whereas in the plate with

an inclined crack the supportΩχ is a 3 by 3 square area centered on the crack tip

(see Figure 5.9).
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Figure 5.9: Support of weighting functionχ for the evaluation of theJ-integral for
the first example (left) and for the second example (right).

Four estimates of theJ-integral are considered: the upper and lower bounds (J+

andJ−, respectively), their averageJave = (J+ + J−)/2, and also the output given

by the finite element approximation, denoted byJH = J(uH).

In the first example (plate with two edge cracks) an adaptive procedure has been

used to reach a relative bound gap(J+ − J−)/(2Jave) of 5% and2%. Table 5.4

shows the results for the outputJH , the computed upper and lower bounds,J±, for

J , and the relative bound gap for some of the steps of the adaptive procedure.

nel 416 525 759 1368 2962 10622 43733
JH 17.4156 18.5208 19.1307 19.3498 19.4601 19.5196 19.5369
J− -27.7619 -2.7875 10.1176 15.1668 17.3981 18.6596 19.1712
J+ 86.0779 49.2769 31.5315 24.9273 22.0868 20.5178 19.9343
Jave 29.158 23.245 20.825 20.047 19.742 19.589 19.553

J+−J−

2Jave 1.952 1.110 0.514 0.243 0.119 0.047 0.0195

Table 5.4: Bound results for the plate with two edge cracks

Also the first three meshes of the adaptive procedure and the final mesh for the

5% relative bound gap are shown in Figure 5.10. It is worth noting that due to the
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(a) (b) (c) (d)

Figure 5.10: Finite element meshes: (a) coarse meshnel = 416, (b) nel = 525, (c)
nel = 759 and (d) final mesh for a relative bound gap of5%, nel = 10622.

slow convergence of the finite element solution for the problem at hand it is crucial

to use adaptive strategies to yield accurate bounds for the output of interestJ(u).

As in the example of the plate with two edge cracks, an adaptive procedure has

been used to reach the desired relative bound gap(J+ − J−)/(2Jave) for the plate

with an inclined crack. Table 5.5 shows the results for the outputJH , the computed

upper and lower bounds,J±, for J(u), and the relative bound gap for some of the

steps of the adaptive procedure. Also the first four meshes ofthe adaptive procedure

and the final mesh are shown in Figure 5.11. As in the previous example due to the

slow convergence of the finite element solution for the problem at hand it is crucial

to use adaptive strategies to yield accurate bounds for the output of interestJ(u).

nel 164 302 632 1291 3231 8534 20217 41139
JH 4.601 5.528 6.043 6.261 6.405 6.469 6.492 6.501
J− -32.079 -13.879 -4.130 0.961 3.958 5.273 5.829 6.079
J+ 57.319 32.443 19.627 13.281 9.577 7.944 7.273 6.981
Jave 12.620 9.282 7.746 7.121 6.766 6.609 6.551 6.530

J+−J−

2Jave 3.542 2.495 1.533 0.865 0.415 0.202 0.110 0.069

Table 5.5: Bound results for the plate with an inclined cracks
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(a) (b) (c) (d) (e)

Figure 5.11: Finite element meshes: (a) coarse meshnel = 164, (b) nel = 302, (c)
nel = 632, (d) nel = 1291 and (e) final meshnel = 41139.

The convergence of the obtained bounds for the outputJ(u) are also illustrated

in Figure 5.12 where the behavior of the upper and lower boundsJ± and the bounds

averageJave = (J+ + J−)/2 is shown.
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Chapter 6

Conclusions

The main contributions of this thesis are described in four items, all addressed to

obtaining accurate bounds for outputs of interest.

The first contribution is a general framework to obtain upperand lower bounds

for linear functional outputs of interest for both self-adjoint and nonself-adjoint

operators. In the context of self-adjoint operators, the presentation shows a unified

description of the two main existing strategies to obtain bounds for outputs from

energy norm estimates (the “parallelogram identity based”and the “optimization-

Lagrangian based”). For nonself-adjoint operators an enhancement of the existing

bounds is proposed. Improving the effectivity in this case is necessary because

existing error estimation strategies fail on obtaining sharp estimates if the skew-

symmetric part is relevant.

Second, a simple postprocessing strategy has been presented to recover lower

bounds for the energy norm from standard residual estimatesproducing upper bounds

for the energy norm. The main idea is to smooth out the discontinuities of the upper

bound estimate and obtain a continuous approximation to theerror. This continuous

approximation allows to recover a lower bound for the energy. For the pure diffu-

sion problem (without reaction term), the discontinuous estimates yielding upper

bounds for the energy are determined up to a local (element byelement) constant.

Although these constants do not affect the value of the upperbound, the choice

of the constants results in very different smoothed continuous approximations, and

therefore in lower bounds with very different accuracies. The presented strategy

shows how to chose the local constants in order to maximize the lower bounds. Nu-

73
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merical experiments demonstrate that the proposed strategy furnishes sharp lower

estimates, of better quality than the original upper ones. The presented strategy may

be used in the framework of error estimation for outputs of interest.

Third, a new subdomain-based flux-free error estimation technique is intro-

duced. The implementation is much simpler compared to hybrid-flux estimation

techniques because there is no need of using a flux equilibration algorithm. More-

over, the accuracy of the results (sharpness of the upper bounds) is drastically im-

proved compared to other flux-free estimation techniques. In fact, it is at least com-

parable to hybrid-flux techniques. The resulting estimatesyield guaranteed (and

sharp) upper bounds of the energy norm of the reference error. A simple and pain-

less postprocessing yields lower bounds of the energy norm of the error with a little

extra computational cost. The distribution of the local contributions to the error are

also accurately estimated, both for the energy norm of the error and for the error

measured using some functional output. These estimates aretherefore well suited

to guide goal-oriented adaptive procedures.

Finally, a method to compute bounds for linear-functional outputs of weak so-

lutions to the linear elasticity equations is presented. A distinctive feature of this

method is that the computed bounds are strict with respect tothe output of the exact

solution, not with respect to some referencetruth mesh. We believe this feature is

of clear interest in real engineering practice. Numerical experiments show that the

computed bounds are sharp and exhibit the proper converge. The method has been

presented for the two dimensional elasticity equations, but the extension to three di-

mensions should not present additional difficulties. The major computational cost,

additional to a standard finite element solution, is the solution of an adjoint problem

for each output considered. The rest of the operations are local and result in a small

computational overhead. The assumptions used in the presented approach restrict

the applicability to problems with piecewise polynomialforcing functions(body

forces, source terms ...) and with polygonal domains. Future work will focus on

relaxing these constraints.
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6.1 Future developments

The topics and methodologies analyzed in this thesis leave open research lines that

are worthy to be studied in the next future.

First, future research should investigate extending the method to obtain strict

bounds for outputs in elasticity (Parés, Bonet, Huerta and Peraire 2005) to non-

polynomial forcing and non-polygonal domains, since many applications contain

non-polynomial forcing and curved boundaries.

Also the new “flux-free” subdomain-residual error estimation technique (Parés,

Dı́ez and Huerta 2005) must be further investigated as an approach precluding the

computation of equilibrated tractions. The presented method only provides bounds

with respect to an enriched mesh and it would be interesting to obtain exact bounds

with this methodology, independently of the underlying discretization of the do-

main.

Future research is needed to improve the effectiveness of the bounds obtained

when dealing with nonsymmetric operators (such as the convection-diffusion-reaction

equation). The enhancement of the bounds presented in Chapter 2 has been tested

for a 1D convection-diffusion model problem yielding to much sharper bounds. Al-

though for 1D model problems the upper bound estimation techniques provide the

exact value of the energy norm of the errors, the previous bounds (non-enhanced)

were not capable to capture the value of the output, resulting in a sequence of upper

and lower bounds for the output degenerating as the convection parameter increase.

The new approach allows to practically capture the exact value of the output. How-

ever, the particularity of the 1D model problem simplified the problem and the 2D

implementation requires adopting new strategies.

Also, the derivation of strict bounds should be extended to different classes of

problems. For instance, the Stokes equation and transient problems are worthy to

be considered.

Finally, taken into account nonlinear functional outputs is also a promising re-

search line.
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Appendix A

Bounds for linear outputs of interest
for a general variational problem

Chapter 2 presents a general framework to obtain bounds for linear functional out-

put of solutions of coercive model problems. This appendix provides a detailed

deduction of these bounds.

The method is based on obtaining an exact representation ofs = ℓO(e), different

from s = a(e, ε), see equation (2.12), which allows to easily recover boundsfor s.

This representation yields a systematic approach to calculate bounds for outputs of

interest which are characterized by bounded linear functionals. Moreover, whenever

a(·, ·) is symmetric, it coincides with the alternative expressionfor s recovered from

the parallelogram identity, equation (2.13).

This appendix is structured as follows: first, the outputs is regarded as the so-

lution of an optimization problem allowing to deduce boundsfor the output. Then,

the derivation of bounds for symmetric model problem is revised and finally, bounds

for the nonsymmetric model problem are deduced in an analogous way.

A.1 Energy reformulation

This section aims at finding an exact representation of the error in the output,s, al-

lowing to compute bounds fors from available techniques for estimating the energy

norm of the error in the finite element approximation of symmetric model problems.

The derivation of the alternative expression fors involves the following steps:

A–1
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first, the output is regarded as the solution of a constrainedminimization problem.

Second, the constrained minimization is rewritten by meansof a Lagrangian leading

to an unconstrained minimization problem, and finally, the optimal Lagrange multi-

pliers lead to the exact representation ofs in terms of an unconstrained minimization

problem.

A.1.1 Minimization reformulation

Consider the energy-like functionalΨ : V → R defined by

Ψ(v) = as(v, v) − RP(v).

This functional has two essential properties. First, it is coercive onV. Indeed, since

a(·, ·) is a coercive bilinear form,

as(v, v) = a(v, v) ≥ c|v|2 ∀v ∈ V,

where|·| is the norm of the Hilbert spaceV. Second, it reduces to zero whenv = e

using equation (2.3) and the fact thatas(e, e) = a(e, e).

The energy-like functionalΨ(·) allows to write the output as the minimum of

the constrained minimization problem

±s = min
v∈V

±ℓO(v) + κ2Ψ(v)

s.t. a(v, ϕ) = RP(ϕ) ∀ϕ ∈ V,

for any arbitrary scalar parameterκ ∈ R. Indeed, the constraint forces the solution

to bee and the objective function forv = e is±s sinceΨ(e) = 0. The signs± have

been introduced in order to be able to recover both the upper and lower bounds at

the same time (the+ sign will lead to the lower bound,sl, whereas the− sign will

allow us to recover the upper bound,su).

Now, introducing the quadratic-linear LagrangianL±(v, ϕ) given by

L±(v, ϕ) = ±ℓO(v) + κ2Ψ(v) + RP(ϕ) − a(v, ϕ),

the previous problem is equivalent to the unconstrained minimization

±s = min
v∈V

max
ϕ∈V

L±(v, ϕ). (A.1)
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A.1.2 Lagrange multiplier

The saddle point(v̄, ϕ̄±) of the minimization problem (A.1) is found imposing that

the variations ofL±(v, ϕ) with respect tov ∈ V andϕ ∈ V must vanish, leading to

v̄ = e and to the following weak problem for̄ϕ± ∈ V

a(v, ϕ̄±) = ±ℓO(v) + κ2(2as(e, v) − RP(v)) ∀v ∈ V. (A.2)

Indeed, sinceL±(v, ϕ) = ±ℓO(v) + κ2(as(v, v) − RP(v)) + RP(ϕ) − a(v, ϕ), im-

posing that the variations with respect toϕ ∈ V must vanish leads to the condition:

find v̄ ∈ V such that

RP(ϕ) − a(v̄, ϕ) = 0 ∀ϕ ∈ V,

which coincides with the residual problem for the primal error e, equation (2.3),

and thus̄v = e. Similarly, imposing that the variations with respect tov ∈ V must

vanish leads to the condition

±ℓO(v) + κ2(2as(v̄, v) − RP(v)) − a(v, ϕ̄±) = 0 ∀v ∈ V,

which yields to the weak problem (A.2) replacingv̄ for e.

Now, using the definition of the symmetric bilinear formas(·, ·), equation (2.5),

and the residual equation (2.3), the equation determiningϕ̄± can be rewritten as

a(v, ϕ̄±) = ±ℓO(v)+κ2(a(e, v)+a(v, e)−RP(v)) = ±ℓO(v)+κ2a(v, e) ∀v ∈ V.

Henceϕ̄± = ±ψ +κ2e, whereψ ∈ V is the solution of the dual or adjoint problem,

see (2.9). Moreover, replacingψ by the sum of its finite element approximationψH

and the associated dual errorε, that is,ψ = ψH + ε, the Lagrange multiplier̄ϕ± can

be rewritten as̄ϕ± = ±ψH + κ(κe ± 1
κ
ε).

Finally, substituting the exact Lagrange multiplierϕ̄± into equation (A.1) one

obtains the exact representation for the output

±s = min
v∈V

L±(v,±ψH + κ(κe ± 1

κ
ε)). (A.3)

With the aid of the Galerkin orthogonality of the primal residual with respect to the

finite element spaceVH and regrouping terms, the previous representation of the

outputs may be rewritten as

±s = min
v∈V

L̃±(v, κe ± 1

κ
ε), (A.4)
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where

L̃±(v, ϕ) = κ2as(v, v) − κR∓(v) + κ(RP(ϕ) − a(v, ϕ)),

R∓(·) being the residue defined in equation (2.21).

Indeed, givenϕ ∈ V,

L±(v,±ψH + κϕ) = ±ℓO(v) + κ2Ψ(v) + RP(±ψH + κϕ) − a(v,±ψH + κϕ)

= ±ℓO(v) + κ2Ψ(v) + κRP(ϕ) ∓ a(v, ψH) − κa(v, ϕ)

= κ2Ψ(v) ± (ℓO(v) − a(v, ψH)) + κ(RP(ϕ) − a(v, ϕ))

= κ2Ψ(v) ± RD(v) + κ(RP(ϕ) − a(v, ϕ))

= κ2as(v, v) − κ(kRP(v) ∓ 1

κ
RD(v)) + κ(RP(ϕ) − a(v, ϕ))

= κ2as(v, v) − κR∓(v) + κ(RP(ϕ) − a(v, ϕ)) = L̃±(v, ϕ),

from where,

min
v∈V

L±(v,±ψH + κϕ) = min
v∈V

L̃±(v, ϕ) ∀ϕ ∈ V.

In particularϕ = κe ± 1
κ
ε leads to the equivalence between (A.3) and (A.4).

In fact, the equivalent exact representation of the error holds

±s = min
v∈V

max
ϕ∈V

L̃±(v, ϕ), (A.5)

where now the saddle point is(v̄, ϕ̄±) = (e, κe ± 1
κ
ε). This exact representation of

the error in the quantity of interest is the starting point ofthe derivation of the upper

and lower bounds fors.

A.1.3 Strong duality

From equation (A.5) lower bounds for the output±s may be deduced using strong

duality of convex minimization and the saddle point property of the Lagrange mul-

tipliers as

±s = min
v∈V

max
ϕ∈V

L̃±(v, ϕ) = max
ϕ∈V

min
v∈V

L̃±(v, ϕ) ≥ min
v∈V

L̃±(v, ϕ) ∀ϕ ∈ V. (A.6)

These bounds actually hold as an equality forϕ = ϕ̄± = κe ± 1
κ
ε as shown in

equation (A.4), recovering the exact representation for the output±s.
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RemarkA.1.1. If ϕ is taken to be0, the resulting bounds are

±s ≥ min
v∈V

L̃±(v, 0) = min
v∈V

κ2as(v, v) − κR∓(v). (A.7)

The saddle point of the previous minimization problem isv̄ ∈ V verifying the

following residual equation

as(v̄, v) =
1

2κ
R∓(v) =

1

2κ

(
κRP(v) ∓ 1

κ
RD(v)

)
∀v ∈ V.

Thereforev̄ = 1
2κ

(
κes ∓ 1

κ
εs

)
wherees andεs are the symmetric primal and dual

errors defined in equations (2.16) and (2.15) respectively.Moreover the value of the

Lagrangian forv = v̄ is

L̃±(v̄, 0) = κ2as(v̄, v̄) − κR∓(v̄) = −κ2as(v̄, v̄) = −1

4
‖κes ∓ 1

κ
εs‖2.

The positive part of the inequality (A.7) yields the lower bounds ≥ −1
4
‖κes− 1

κ
εs‖2,

whereas the negative part of the inequality yields−s ≥ −1
4
‖κes + 1

κ
εs‖2. Thus,

multiplying this last inequality by minus 1, the final boundsfor the output are

−1

4
‖κes − 1

κ
εs‖2 ≤ s ≤ 1

4
‖κes +

1

κ
εs‖2. (A.8)

The strategy proposed by Paraschivoiu et al. (1997) yields to the previous bounds.

The idea to enhance these bounds is simply the introduction of a non-zero approxi-

mationϕ of the errorsκe± 1
κ
ε. The resulting bounds are at least of the same quality

as the original ones (A.8).

A.2 Bounds for the error in the quantity of interest

This section is devoted to find an analogous of equation (2.14) providing bounds for

s, which are valid regardless of the bilinear forma(·, ·) being symmetric or not.

The bounds fors are found starting with continuous approximationsξ+ and

ξ− ∈ V of the errorsκe + 1
κ
ε andκe − 1

κ
ε respectively. The characterization (A.6)

of the output yields the bounds fors

min
v∈V

L̃+(v, ξ+) ≤ s ≤ −min
v∈V

L̃−(v, ξ−). (A.9)
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However, in order to be able to sharpen the bounds, two arbitrary scalar parameters

λ± ∈ R are introduced as a scaling factor for the approximationsξ±, that is, instead

of the approximationsξ±, λ±ξ± are considered. The bounds associated to these

new approximations are

min
v∈V

L̃+(v, λ+ξ+) ≤ s ≤ −min
v∈V

L̃−(v, λ−ξ−). (A.10)

Note that these bounds depend on the parametersλ±. Thus, they may be optimized

to obtain sharper bounds resulting in

sl = max
λ+∈R

min
v∈V

L̃+(v, λ+ξ+) ≤ s ≤ −max
λ−∈R

min
v∈V

L̃−(v, λ−ξ−) = su. (A.11)

Moreover, the bounds are optimal (they recover the outputs) if the continuous ap-

proximationsξ± coincide with the errorsκe ± 1
κ
ε.

The rest of the section is devoted to give the explicit expression for the bounds.

First the symmetric model problem is considered to illustrate the procedure and to

show that the derived bounds are equivalent to the bounds derived from the parallel-

ogram identity (2.14). Then, the procedure is illustrated for a general nonsymmetric

model problem.

A.2.1 Bounds for self-adjoint model problems

In this section the bilinear forma(·, ·) is assumed to be symmetric,as(v, w) =

a(v, w). Let ξ± be continuous approximations ofκe ± 1
κ
ε and consider the bounds

given by equation (A.11). The explicit expressions of the upper and lower bounds

for s, su andsl respectively, are found solving the minimization problemsappearing

in (A.11) with respect tov ∈ V and then, the bounds are optimized with respect

to λ± ∈ R. The following theorem gives the expression of the optimal upper and

lower bounds given the approximationsξ± of κe ± 1
κ
ε.

Theorem A.2.1. Let ξ+ andξ− ∈ V be two continuous functions. Then, the quan-

tities sl andsu given by

sl =
1

4

R+(ξ+)2

‖ξ+‖2
− 1

4
‖κe − 1

κ
ε‖2, su =

1

4
‖κe +

1

κ
ε‖2 − 1

4

R−(ξ−)2

‖ξ−‖2
,
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are a lower and an upper bound for the outputs respectively, that is

sl ≤ s ≤ su.

Moreover, the choiceξ± = κe ± 1
κ
ε, leads to the optimal bounds

s = sl = su =
1

4
‖κe +

1

κ
ε‖2 − 1

4
‖κe − 1

κ
ε‖2.

Proof. Givenξ± ∈ V, from equation (A.10)

±s ≥ min
v∈V

L̃±(v, λ±ξ±),

whereλ± are two arbitrary scalar parameters. In particular,±s ≥ L̃±(v̄±, λ±ξ±),

wherev̄± are the saddle points of the minimization of the Lagrangian,that is,v̄± =

arg min
v∈V

L̃±(v, λ±ξ±).

Imposing that the variations of̃L±(v, λ±ξ±) with respect tov ∈ V must vanish,

the following weak problem for̄v± ∈ V is obtained

as(v̄±, v) =
1

2κ
R∓(v) +

λ±

2κ
a(v, ξ±) ∀v ∈ V. (A.12)

Now, the symmetry ofa(·, ·) involves that for anyv ∈ V

R∓(v) = κRP(v) ∓ 1

κ
RD(v) = a(κe ∓ 1

κ
ε, v), a(v, ξ±) = a(ξ±, v),

and the residual equation forv̄±, equation (A.12), transforms into

a(v̄±, v) =
1

2κ

(
a(κe ∓ 1

κ
ε, v) + λ±a(ξ±, v)

)
∀v ∈ V,

leading tov̄± = 1
2κ

(κe ∓ 1
κ
ε + λ±ξ±). Moreover,L̃±(v̄±, λ±ξ±) may be rewritten

using equation (A.12) withv = v̄± and rearranging the r.h.s. as

L̃±(v̄±, λ±ξ±) = κλ±RP(ξ±) − κ2a(v̄±, v̄±).

Now, replacinḡv± by 1
2κ

(κe ∓ 1
κ
ε + λ±ξ±) in the previous equation it follows that

L̃±(v̄±, λ±ξ±) = κλ±RP(ξ±) − 1

4
‖κe ∓ 1

κ
ε + λ±ξ±‖2

= κλ±RP(ξ±) − 1

4
‖κe ∓ 1

κ
ε‖2 − 1

4
(λ±)2‖ξ±‖2 − λ±

2
a(κe ∓ 1

κ
ε, ξ±)

= −1

4
‖κe ∓ 1

κ
ε‖2 − 1

4
(λ±)2‖ξ±‖2 +

λ±

2

(
κRP(ξ±) ± 1

κ
RD(ξ±)

)

= −1

4
‖κe ∓ 1

κ
ε‖2 − 1

4
(λ±)2‖ξ±‖2 +

λ±

2
R±(ξ±).
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Optimal parameter determination:The optimal value forλ±, that is, the value of

the parameter which optimizes the bounds is

λ± =
R±(ξ±)

‖ξ±‖2
,

provided that‖ξ±‖ is nonzero. If‖ξ±‖ vanishes, the obtained bounds are the same

as if ξ± = 0 and the selection of the parameterλ± is a moot point. For the optimal

selection of the parameterλ±, the bounds are given by

±s ≥ 1

4

R±(ξ±)2

‖ξ±‖2
− 1

4
‖κe ∓ 1

κ
ε‖2.

The positive part of the previous equation leads to

s ≥ 1

4

R+(ξ+)2

‖ξ+‖2
− 1

4
‖κe − 1

κ
ε‖2 = sl

whereas the negative part multiplying the inequality by−1 lead to,

s ≤ 1

4
‖κe +

1

κ
ε‖2 − 1

4

R−(ξ−)2

‖ξ−‖2
= su.

Thus, the first part of the proof is concluded.

The optimality of the bounds for the choiceξ± = κe± 1
κ
ε follows directly from

equation (A.4) and since forξ± = κe ± 1
κ
ε, R±(ξ±) = ‖κe ± 1

κ
ε‖2 = ‖ξ±‖2, both

the upper and lower bounds lead to the parallelogram identity

sl = su =
1

4
‖κe +

1

κ
ε‖2 − 1

4
‖κe − 1

κ
ε‖2 = s.

Practical computation of the bounds for self-adjoint modelproblems

Theorem A.2.1 states that in order to find bounds for the output s, it is sufficient

to obtain continuous approximationsξ± of κe± 1
κ
ε and determine the energy norm

‖κe ± 1
κ
ε‖. However, these bounds are of limited use as they stand in several as-

pects. First, they require knowledge of the exact error of the primal and dual prob-

lems. Second, for arbitrary choices of the functionsξ± ∈ V not taking into account

that they must be approximations ofκe ± 1
κ
ε, they will produce rather pessimistic
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bounds. Fortunately, using standard a posteriori error estimation techniques, both

shortcomings can be removed easily.

Standard a posteriori error estimation techniques allow tofind estimateŝe andε̂

providing upper bounds for the energy norms‖κe ± 1
κ
ε‖ (see Lemma 3.2.1)

‖κe ± 1

κ
ε‖ ≤ ‖κê ± 1

κ
ε̂‖

and moreover using simple post-processing techniques, continuous approximations

of the errors may be obtained from̂e andε̂, thus providing the approximationsξ±

(see Section 3.3.2). The bounds are then recovered as

1

4

R+(ξ+)2

‖ξ+‖2
− 1

4
‖κê − 1

κ
ε̂‖2 ≤ s ≤ 1

4
‖κê +

1

κ
ε̂‖2 − 1

4

R−(ξ−)2

‖ξ−‖2
. (A.13)

RemarkA.2.1. The proposed bounds for the symmetric problem are equivalent to

the bounds given in equation (2.14). The difference betweenthe two characteriza-

tion of the bounds, is that in equation (2.14) the lower bounds ‖κe ± 1
κ
ε‖2

LB have

been replaced by the quantities
R±(ξ±)2

‖ξ±‖2
,

using the dual characterization of the energy norm. Indeed,the energy norm of

‖κe ± 1
κ
ε‖2 may be characterized using duality as

‖κe ± 1

κ
ε‖2 = sup

v∈V

R±(v)2

‖v‖2
≥ R±(ξ±)2

‖ξ±‖2
∀ξ± ∈ V.

From Theorem A.2.1 one can deduce that in order to find upper and lower

bounds for the error in the output it is sufficient to find upperbounds for the energy

norm of the linear combinationsκe ± 1
κ
ε and set

−‖κe − 1

κ
ε‖2

UB ≤ s ≤ 1

4
‖κe +

1

κ
ε‖2

UB.

Also to improve these bounds, continuous approximations,ξ±, of κe ± 1
κ
ε may be

used. These continuous approximations provide in fact, using the dual definition of

the energy norm, lower bounds for the quantities‖κe ± 1
κ
ε‖. The derivation of the

upper bounds for‖κe+ 1
κ
ε‖ and the continuous approximationsξ± of κe+ 1

κ
ε using

a posteriori error estimation techniques is further discussed in Chapter 3.
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A.2.2 Bounds for nonself-adjoint model problems

As in the symmetric case, the bounds for the error in the output s are derived from

(A.11). However, in this case, the saddle pointv̄± can not be directly computed

from e, ε andξ± but its computed from symmetric approximations of the errors and

ξ±. Once these approximations are introduced, the bounds are readily found as in

the symmetric model problem with no additional difficulties.

Theorem A.2.2. Let ξ+ and ξ− ∈ V be two continuous functions, andes, εs and

ξs± ∈ V be the solution of the global problems

as(es, v) = RP(v), as(εs, v) = RD(v) and as(ξs±, v) = a(v, ξ±)∀v ∈ V. (A.14)

Then, the quantitiessu andsl given by

sl =
1

4

(2κRP(ξ+) − R−(ξs+))2

‖ξs+‖2
− 1

4
‖κes − 1

κ
εs‖2,

su =
1

4
‖κes +

1

κ
εs‖2 − 1

4

(2κRP(ξ−) − R+(ξs−))2

‖ξs−‖2
,

are a lower and an upper for the outputs respectively, that is

sl ≤ s ≤ su.

Moreover, the choiceξ± = κe ± 1
κ
ε, lead to optimal bounds, that is,s = sl = su.

Proof. The proof is analogous to the proof of Theorem A.2.1. The onlydifference

is that now, since the bilinear form appearing in the Lagrangian L̃±(·, ·) is nota(·, ·)
but as(·, ·), in order to find the bounds the auxiliary functionses, εs andξs± ∈ V
have to be introduced.

As in the symmetric case, givenξ± ∈ V, the bounds are recovered from equation

(A.10) yielding

±s ≥ min
v∈V

L̃±(v, λ±ξ±),

and hence,±s ≥ L̃±(v̄±, λ±ξ±), for v̄± = arg min
v∈V

L̃±(v, λ±ξ±).

The weak problem for the saddle pointv̄± ∈ V is found imposing that the

variations ofL̃±(v, λ±ξ±) with respect tov ∈ V must vanish leading to

as(v̄±, v) =
1

2κ
R∓(v) +

λ±

2κ
a(v, ξ±) ∀v ∈ V, (A.15)
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This residual problem may be rewritten taking into account that

R∓(v) = κRP(v) ∓ 1

κ
RD(v) = as(κes ∓ 1

κ
εs, v),

and the definition of the symmetric functionξs± (equation (A.14)) as

as(v̄±, v) =
1

2κ
as(κes ∓ 1

κ
εs, v) +

λ±

2κ
as(ξs±, v) ∀v ∈ V,

yielding v̄± =
1

2κ
(κes∓ 1

κ
εs +λ±ξs±). Then,L̃±(v̄±, λ±ξ±) may be rewritten after

rearranging terms as

L̃±(v̄±, ϕ̃±) = −1

4
‖κes ∓ 1

κ
εs‖2 − 1

4
(λ±)2‖ξs±‖2 +

λ±

2
(2RP(ξ±) − R∓(ξs±)).

Indeed

L̃±(v̄±, λ±ξ±) = κ2as(v̄±, v̄±) − κR∓(v̄±) + κ(RP(λ±ξ±) − a(v̄±, λ±ξ±))

= κ2as(v̄±, v̄±) − 2κ2as(v̄±, v̄±) + κRP(λ±ξ±)

= κRP(λ±ξ±) − κ2as(v̄±, v̄±) = κλ±RP(ξ±) − 1

4
‖κes ∓ 1

κ
εs + λ±ξs±‖2

= κλ±RP(ξ±) − 1

4
‖κes ∓ 1

κ
εs‖2 − (λ±)2

4
‖ξs±‖2 − λ±

2
as(κes ∓ 1

κ
εs, ξs±)

= −1

4
‖κes ∓ 1

κ
εs‖2 − (λ±)2

4
‖ξs±‖2 +

λ±

2
(2RP(ξ±) − as(κes ∓ 1

κ
εs, ξs±))

= −1

4
‖κes ∓ 1

κ
εs‖2 − (λ±)2

4
‖ξs±‖2 +

λ±

2
(2RP(ξ±) − R∓(ξs±)).

Optimal parameter determination:The optimal value forλ± is

λ± =
2RP(ξ±) − R∓(ξs±)

‖ξs±‖2
,

leading to the bounds

±s ≥ 1

4

(2κRP(ξ±) − R∓(ξs±))2

‖ξs±‖2
− 1

4
‖κes ∓ 1

κ
εs‖2. (A.16)

Now taking the positive part of the previous equation leads to

s ≥ 1

4

(2κRP(ξ+) − R−(ξs+))2

‖ξs+‖2
− 1

4
‖κes − 1

κ
εs‖2 = sl, (A.17)
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and taking the negative part and multiplying the inequalityby−1,

s ≤ 1

4
‖κes +

1

κ
εs‖2 − 1

4

(2κRP(ξ−) − R+(ξs−))2

‖ξs−‖2
= su, (A.18)

and the first part of the proof is concluded.

Finally, the optimality of the bounds for the choiceξ± = κe± 1
κ
ε follows directly

from equation (A.4).

Practical computation of the bounds for nonself-adjoint model problems

Theorem A.2.2 states that it is possible to obtain bounds fors given continuous

approximationsξ± of κe ± 1
κ
ε just computing the symmetric functionses, εs and

ξs±. Obviously, it is not possible in general to compute these functions exactly.

As in the symmetric case, the energy norms‖κes + 1
κ
εs‖ may be replaced by an

upper bound using techniques for estimating the energy normof symmetric model

problems. Thus, the only added difficulty between the boundsin the symmetric and

nonsymmetric problems is the dependence of the bounds on thesymmetric function

ξs±. Fortunately, the same techniques to obtain upper bounds for the energy norm

of solutions of symmetric model problems applied toξs±, allow to replace the terms

containingξs± by approximations which still maintain the upper and lower bound

property.

Let ês andε̂s ∈ V̂ be two estimates verifying

as(ês, v) = RP(v), as(ε̂s, v) = RD(v) ∀v ∈ V (A.19)

whereV̂ is thebrokenspace obtained fromV relaxing both the Dirichlet boundary

conditions and the continuity of the functions across the edges of the mesh. The

broken space is the most usual interpolation space for the estimates (see Chapter 3).

It is worth noting that most residual implicit type error estimation techniques yield

estimates verifying the previous condition.

From (A.19) it is easily shown that̂es andε̂s provide upper bounds for the energy

norm ofκes ± 1
κ
εs,

‖κes ± 1

κ
εs‖ ≤ ‖κês ± 1

κ
ε̂s‖,

see Lemma 3.2.1. Thus the bounds

±s ≥ 1

4

(2κRP(ξ±) − R∓(ξs±))2

‖ξs±‖2
− 1

4
‖κes ∓ 1

κ
εs‖2
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may be replaced by

±s ≥ 1

4

(2κRP(ξ±) − R∓(ξs±))2

‖ξs±‖2
− 1

4
‖κês ∓ 1

κ
ε̂s‖2. (A.20)

Moreover, considerξ± to be a continuous approximation ofκe ± 1
κ
ε obtained

post-processing the estimatesês and ε̂s. Using again an estimation technique, one

would computêξs± ∈ V̂ such that

as(ξ̂s±, v) = as(ξs±, v) = a(v, ξ±) ∀v ∈ V, (A.21)

yielding an upper bound for the energy norm ofξs±, ‖ξs±‖ ≤ ‖ξ̂s±‖. Thus, the

term‖ξs±‖ in the bounds given by equation (A.20) may be replaced by‖ξ̂s±‖ still

maintaining the bounding property, namely

±s ≥ 1

4

(2κRP(ξ±) − R∓(ξs±))2

‖ξ̂s±‖2
− 1

4
‖κês ∓ 1

κ
ε̂s‖2. (A.22)

Note that still remains an uncomputable term in the bound expressionsR∓(ξs±).

This term may be computed also using the estimatesês, ε̂s andξ̂s±. The computation

of this term is described in the following.

From the definitions of̂es, ε̂s, sinceξs± ∈ V

R∓(ξs±) = κas(ês, ξs±) ∓ 1

κ
as(ε̂s, ξs±) = as(κês ∓ 1

κ
ε̂s, ξs±),

however, sincêes andε̂s are generally discontinuous functions (ês, ε̂s /∈ V), equation

(A.21) may not be used to replaceξs± by ξ̂s± in the previous equality.

However, the particular form of the residual problem (A.21)allows to compute

an estimatêξs± ∈ V̂ for which equation (A.21) holds not only for anyv ∈ V but

for anyv ∈ V̂. Indeed, consider the local problems obtained restrictingthe global

problem into an elementΩk ⊂ Ω: find ξ̂s±
k ∈ Vk

as
k(ξ̂

s±
k , v) = ak(v, ξ±) ∀v ∈ Vk.

These local problems do not have solvability problems, thatis, there is no need to

equilibrate the local problems, and thusξ̂s± =
nel∑
k=1

ξ̂s±
k verifies

as(ξ̂s±, v) = as(ξs±, v) = a(v, ξ±) ∀v ∈ V̂ .
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In particular forv = κês ∓ 1
κ
ε̂s, yields

R∓(ξs±) = as(κês ∓ 1

κ
ε̂s, ξs±) = as(κês ∓ 1

κ
ε̂s, ξ̂s±), (A.23)

and the bounds for the output may be computed as

±s ≥ 1

4

(2κRP(ξ±) − as(κês ∓ 1
κ
ε̂s, ξ̂s±))2

‖ξ̂s±‖2
− 1

4
‖κês ∓ 1

κ
ε̂s‖2, (A.24)

as mentioned in (2.26).

A summary of the practical computation of the bounds for the output in a non-

symmetric model problem is given in Figure A.1.

Quality of the bounds using only upper bounds for the energy

From Theorem A.2.2 (takingξ± = 0) one can deduce that in order to find upper

and lower bounds for the error in the output it is sufficient tofind upper bounds for

the energy norm of the linear combinationsκes ± 1
κ
εs and set

−‖κes − 1

κ
εs‖2

UB ≤ s ≤ 1

4
‖κes +

1

κ
εs‖2

UB,

thus recovering the strategy proposed by Paraschivoiu et al. (1997).

The quality of these bounds depends on two factors: first, thequantities‖κes ±
1
κ
εs‖2 are replaced by an upper bound of them, and therefore the sharpness of the

bounds is controlled by the accuracy of the upper bound errorestimation techniques.

Second, the bounds do not take into account the terms

1

4

(2κRP(ξ±) − R∓(ξs±))2

‖ξs±‖2
, (A.25)

for ξ± = κe ± 1
κ
ε. Is these terms are large compared to the value of the outputs,

then the quality of the proposed bounds will be poor.

The unestimated contribution (A.25) to the outputs, can be rewritten with an

algebraic manipulations as

‖κe − 1

2

(
κes ∓ 1

κ
εs

)
‖2,

taking into account that forξ± = κe ± 1
κ
ε, ξs± = 2

(
κe − 1

2

(
κes ∓ 1

κ
εs

))
. That is,

in fact

±s = ‖κe − 1

2

(
κes ∓ 1

κ
εs

)
‖2 − 1

4
‖κes ∓ 1

κ
εs‖2.
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1.- Compute the upper bound estimatesês andε̂s s.t.

as(ês, v) = RP(v), as(ε̂s, v) = RD(v) ∀v ∈ V,

yielding

‖κes ± 1

κ
εs‖ ≤ ‖κês ± 1

κ
ε̂s‖.

2.- Compute continuous approximationsξ± of κe± 1
κ
ε post-processing the

estimateŝes andε̂s.

3.- Compute the upper bound estimatesξ̂s± s.t.

as(ξ̂s±, v) = as(v, ξs±) = a(v, ξ±) ∀v ∈ V̂

yielding
‖ξs±‖ ≤ ‖ξ̂s±‖,

and

as(κês ∓ 1

κ
ε̂s, ξs±) = as(κês ∓ 1

κ
ε̂s, ξ̂s±).

4.- Computeκ =
√

‖ε̂s‖/‖ês‖ and the quantitiessu andsl as

sl =
1

4

(2κRP(ξ+) − as(κês − 1
κ
ε̂s, ξ̂s+))2

‖ξ̂s+‖2
− 1

4
‖κês − 1

κ
ε̂s‖2,

su =
1

4
‖κês +

1

κ
ε̂s‖2 − 1

4

(2κRP(ξ−) − as(κês + 1
κ
ε̂s, ξ̂s−))2

‖ξ̂s−‖2
.

Then
sl ≤ s ≤ su

are the bounds for the output.

Figure A.1: Main steps of the strategy used to obtain bounds for an outputs de-
pending on the solution of a nonsymmetric boundary value problem.
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Appendix B

Comparison between
subdomain-basedflux-free residual
methods

The subdomain residual method was first devised by Babuška and Rheinboldt (1978a)

(see also Babǔska and Rheinboldt 1978b, Babǔska and Rheinboldt 1979). The pre-

sented approach proposes to solve the subdomain residual problems: findηi ∈ V0
ωi

such that

aωi(ηi, v) = R∗(v) ∀v ∈ V0
ωi ,

whereV0
ωi is the local test space in the starωi with Dirichlet homogeneous boundary

conditions, and recover the global error estimatorη by summing the norm contribu-

tions from the subdomains

η =

(
nnp∑

i=1

‖ηi‖2

) 1

2

.

This approach leads to an estimateη that is no strict upper or lower bound for the

energy norm of the error but however provides two-sided bounds for the error, that

is, there exist two constantsC1 and C2 depending only on the regularity of the

elements of the mesh such that

C1η ≤ ‖z‖ ≤ C2η.

Carstensen and Funken (1999/00), Morin et al. (2003), Machiels et al. (2000)

and Prudhomme et al. (2004) developed similar subdomain residual error estimation

B–1
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techniques leading to upper bounds for the energy norm of theerror in the context of

scalar model problems. They present two-sided bounds leading to estimatesη ∈ R

verifying

Cη ≤ ‖z‖ ≤ η,

whereC is a constant depending only on the regularity of the mesh.

This appendix presents a unified approach of the techniques presented by Cars-

tensen and Funken (1999/00), Morin et al. (2003), Machiels et al. (2000) and Prud-

homme et al. (2004) allowing to easily compare these techniques with the approach

presented in Chapter 4. The rationale is to decompose the bilinear forma(·, ·) in a

sum of local contributions associated with each star. That is, weighted local bilinear

formsawi(·, ·) are introduced such that

a(w, v) =

nnp∑

i=1

awi(w, v). (B.1)

The weighted bilinear formsawi(·, ·) obviously depend on the problem at hand,

but they can be defined in a general way introducing non-negative local integrable

weights, supported inωi, verifying the partition of the unity property, that is, wi ∈
L2(ωi) such that

nnp∑

i=1

wi = 1 and wi(x) ≥ 0 ∀x ∈ ωi.

Then, the weighted bilinear formsawi(·, ·) are obtained replacing the integrals ap-

pearing ina(·, ·) by weighted integrals associated with the weights wi. For instance,

for the diffusion-reaction model problem, one would obtain

awi(w, v) =

∫

Ω

wi(ν∇w · ∇v + µwv) dΩ,

whereas for the mechanical problem,

awi(w,v) =

∫

Ω

wiσ(w) : ε(v) dΩ.

Note that the weights wi account for the overlapping of the stars.

Once the bilinear form is decomposed into local contributions, the local esti-

matesηi ∈ Vωi are computed solving the local equations

awi(ηi, v) = RP(φiv) ∀v ∈ Vωi . (B.2)
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The global error estimatorη is obtained by summing the weighted norms of the

local estimatesηi

η =
( nnp∑

i=1

‖ηi‖2
wi

) 1

2 ≥ ‖z‖, (B.3)

where the local norm‖·‖2
wi is the norm induced by the local weighted scalar product

awi(·, ·), that is‖v‖2
wi = awi(v, v).

RemarkB.0.1. Carstensen and Funken (1999/00), Morin et al. (2003), Machiels

et al. (2000) and Prudhomme et al. (2004) are only concerned with the scalar (ther-

mal) problem, however, the estimateη can be easily extended to the mechanical

problem using the modification of the residue appearing in the r.h.s. of equation

(B.3) as presented in (4.7).

The upper bound property,‖z‖ ≤ η, is proved in Paŕes, D́ıez and Huerta (2005,

Theorem 12). The repeated use of the Cauchy-Schwarz inequality in the proof of

the upper bound property suggests that the obtained upper bound is not as sharp as

the upper bound associated with the estimateẑ defined from the local estimateŝzi

solution of (4.6). Theorem B.0.2 provides a comparison between the two estimates,

but in order to prove the theorem, the following lemma, whichis a particular case

of the Chevyshev sum inequality, must be introduced.

Lemma B.0.1. Let 〈·, ·〉 be a scalar product with associated norm| · | acting on a

spaceV , then givenm functions inV , ai ∈ V , it holds that

|
m∑

i=1

ai|2 ≤ m
m∑

i=1

|ai|2.

Proof. Note that the previous inequality is equivalent to see that

m
m∑

i=1

|ai|2 − |
m∑

i=1

ai|2 ≥ 0 ∀ai ∈ V.

The proof consists in showing that

m

m∑

i=1

|ai|2 − |
m∑

i=1

ai|2 =
m∑

i=1

m∑

j=i+1

|ai − aj|2 ≥ 0, (B.4)

and this is done by induction.
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Let m = 2, then2(a2
1 + a2

2)− (a1 + a2)
2 = (a1 − a2)

2, and the base case holds.

Assume now that equation (B.4) holds form. The goal is to prove that equation

(B.4) is also true form + 1, that is

(m + 1)
m+1∑

i=1

|ai|2 − |
m+1∑

i=1

ai|2 =
m+1∑

i=1

m+1∑

j=i+1

|ai − aj|2,

which follows doing a little bit of algebra. The terms appearing in the r.h.s. of the

previous equation may be rewritten as

(m + 1)
m+1∑

i=1

|ai|2 = m
m∑

i=1

|ai|2 +
m∑

i=1

|ai|2 + (m + 1)|am+1|2,

|
m+1∑

i=1

ai|2 = |
m∑

i=1

ai|2 + |am+1|2 + 2〈
m∑

i=1

ai, am+1〉.

Thus, denoting byL = (m + 1)
m+1∑
i=1

|ai|2 − |
m+1∑
i=1

ai|2 and using the induction hy-

pothesis

L = m
m∑

i=1

|ai|2 − |
m∑

i=1

ai|2 +
m∑

i=1

|ai|2 + m|am+1|2 − 2
m∑

i=1

〈ai, am+1〉

=
m∑

i=1

m∑

j=i+1

|ai − aj|2 +
m∑

i=1

|ai|2 + m|am+1|2 − 2
m∑

i=1

〈ai, am+1〉

=
m∑

i=1

m∑

j=i+1

|ai − aj|2 +
m∑

i=1

(|ai|2 + |am+1|2 − 2〈ai, am+1〉)

=
m∑

i=1

m∑

j=i+1

|ai − aj|2 +
m∑

i=1

|am+1 − ai|2 =
m+1∑

i=1

m+1∑

j=i+1

|ai − aj|2,

which concludes the proof.

Theorem B.0.2. Let ẑ =
nnp∑
i=1

ẑi denote the error estimate obtained from the local

estimateŝzi solution of the local problems given in equation(4.6)andη denote the

estimate given in equation(B.3), then there exist a constantC depending only on

the regularity of the mesh such that

‖ẑ‖ ≤ Cη.
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Proof. LetN be the set of vertices in the mesh. It is possible to partitionN into the

union of disjoint subsetsN1,N2, . . . such that any pair of nodal basis functions in

the same subsetNr have nonoverlapping supports. Specifically, the conditionthat

will be required is

∀i, j ∈ Nr : i 6= j =⇒ int ωi ∩ int ωj is empty.

It is easy to see that such a partitioning exists since one cansimply choose each of

the setsNr to consist of a single vertex. The smallest possible number of subsets is

denoted byν and referred as the overlap index for the partition. The overlap index

for a regular family of partitions may be bounded by a constant depending only on

the regularity of the elements in the family. LetN be a minimal partition, that is,

N = {Nr}r=1...ν .

Then, with the aid of Lemma B.0.1

‖ẑ‖2 = ‖
nnp∑

i=1

ẑi‖2 = ‖
∑

i∈N

ẑi‖2 = ‖
ν∑

r=1

∑

i∈Nr

ẑi‖2 ≤ ν
ν∑

r=1

‖
∑

i∈Nr

ẑi‖2 = ν
ν∑

r=1

∑

i∈Nr

‖ẑi‖2,

where the last equality follows from the fact that the stars involved in Nr are

nonoverlapping. Thus,

‖ẑ‖2 ≤ ν

nnp∑

i=1

‖ẑi‖2. (B.5)

The proofs ends showing that
nnp∑
i=1

‖ẑi‖2 ≤ η2. Indeed, takingv = ẑi in equation

(4.6) and (B.2) and applying the Cauchy-Schwarz inequality

‖ẑi‖2 = aωi(ẑi, ẑi) = R∗(φiẑi) = awi(ηi, ẑi) ≤ ‖ηi‖wi‖ẑi‖wi .

Then, summing over all the stars and noticing that‖ẑi‖wi ≤ ‖ẑi‖ (since‖wi‖∞ ≤ 1)

it follows that

nnp∑

i=1

‖ẑi‖2 ≤
nnp∑

i=1

‖ηi‖wi‖ẑi‖wi ≤
nnp∑

i=1

‖ηi‖wi‖ẑi‖,

where applying the Cauchy-Schwarz inequality again lead to the desired expression

nnp∑

i=1

‖ẑi‖2 ≤
( nnp∑

i=1

‖ηi‖2
wi

) 1

2
( nnp∑

i=1

‖ẑi‖2
) 1

2

= η
( nnp∑

i=1

‖ẑi‖2
) 1

2

. (B.6)
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Finally, joining equations (B.5) and (B.6), the estimate‖ẑ‖ can be bounded by

‖ẑ‖ ≤ √
νη.

Theorem B.0.2 does not state that the estimate‖ẑ‖ provides a better upper bound

for the energy norm of the error, because of the factor
√

ν > 1. However, the

bound‖ẑ‖ ≤ √
νη is obtained using repeatedly the Cauchy-Schwarz inequality, the

property‖v‖wi ≤ ‖v‖ and also Lemma B.0.1. Thus, the constant
√

ν is dictated by

the most pathological functionŝzi leading to

‖
nnp∑

i=1

ẑi‖2 = ν

nnp∑

i=1

‖ẑi‖2,

where there is no cancellation between the different estimatesẑi. Then, in practice

one would expect to find that‖ẑ‖ ≤ Cη for smaller values ofC which in the worst-

case scenario would at most lead toC =
√

ν. In fact, if one considers a regular

triangular mesh the theory of graphs informs us thatν = 4 and taking then the local

weighted functions wi = 1
3
, one has that‖ẑ‖ ≤

√
4
3
η.

Numerical examples confirm this impression: the estimate‖ẑ‖ provides sharper

bounds for the energy norm of the error than the estimateη leading toC << 1 (see

Section 4.5).
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Strict bounds for outputs of interest:
bounds for theJ-integral

This appendix presents ana-posteriorimethod for computing strict upper and lower

bounds of theJ-integral in two dimensional linear elasticity. TheJ-integral, which

is typically expressed as a contour integral, is recast as a surface integral which

yields a quadratic continuous functional of the displacement. By expanding the

quadratic output about an approximate finite element solution, the output is ex-

pressed as a known computable quantity plus linear and quadratic functionals of

the solution error. The quadratic component is bounded by the energy norm of the

error scaled by a continuity constant, which is determined explicitly. The linear

component is expressed as an inner product of the errors in the displacement and

in a computed adjoint solution, and bounded using standard a-posteriori error esti-

mation techniques. The method is illustrated with two fracture problems in plane

strain elasticity. An important feature of the method presented is that the computed

bounds are strict with respect to the weak solution of the elasticity equation.

Xuan et al. (2004) present a method for computing bounds for the J-integral

which is a quadratic functional of the solution field. However, the bounds for the

J-integral are strict only with respect to a reference solution. Xuan et al. (2005)

continues the work of Xuan et al. (2004) presenting bounds which are strict with

respect to the weak solution of the elasticity equations andnot for a reference so-

lution. The bounds for the linear component of the output arecomputed using the

error estimation technique presented in Chapter 5 and in (Parés, Bonet, Huerta and

Peraire 2005).

C–1
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This appendix is structured as follows: first the expansion of the J-integral as

a known computable term plus linear and quadratic functionals is provided. Then,

upper and lower bounds for the quadratic term are provided and finally the upper

and lower bounds for the linear term are treated.

Reformulation of the J-integral

Consider the elasticity problem with Neumann and homogeneous Dirichlet bound-

ary conditions written in weak form as: findu ∈ V such that

a(u,v) = ℓ(v) ∀v ∈ V , (C.1)

whereV = {v ∈ [H1(Ω)]2, v|ΓD = 0}. The linear forcing functionalℓ ∈ V
′

ℓ(v) =

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓ, (C.2)

contains both the internal forces per unit volumef ∈ [H−1(Ω)]2 and the Neumann

boundary tractionsg ∈ [H− 1

2 (ΓN)]2 anda : V × V → R is the symmetric coercive

bilinear form given by

a(w,v) =

∫

Ω

σ(w) : ε(v) dΩ.

For a two-dimensional linear elastic body the energy release rate,J(u), can be

calculated as a path independent line integral known as theJ-integral (Rice 1968).

If the geometry shown in Figure C.1 is considered, theJ-integral has the following

expression,

J(u) =

∫

Γ

(
W en1 − T · ∂u

∂x1

)
dΓ,

whereΓ is any path beginning at the bottom crack face and ending at the top crack

face,W e = (σ : ε)/2 is the strain energy density,T is the traction given asT =

σ · n, andn = (n1, n2) is the outward unit normal toΓ.

An alternative expression forJ(u) was proposed by Li, Shih and Needleman

(1985), where the contour integral is transformed into the following area integral

expression,

J(u) =

∫

Ωχ

(
(∇χ)T · σ ∂u

∂x1

− W e ∂χ

∂x1

)
dΩ. (C.3)
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Figure C.1: Crack geometry showing coordinate axes and theJ-integral contour
and domain of integration.

Here, the weighting functionχ is any function inH1(Ωχ) that is equal to one at the

crack tip and vanishes onΓ.

For a givenχ, J(u) is a bounded quadratic functional ofu. To be able to obtain

bounds forJ(u) it is convenient to make the quadratic dependence ofJ(u) more

explicit. To this end, define the bilinear form̄q(w,v) : V × V → R as,

q̄(w,v) =

∫

Ωχ

(∇χ)T · σ(w)
∂v

∂x1

dΩ −
∫

Ωχ

1

2
σ(w) : ε(v)

∂χ

∂x1

dΩ,

and its symmetric partq(w,v) : V × V → R, q(w,v) = 1
2
(q̄(w,v) + q̄(v,w)) .

It is clear from these definitions that,J(u) = q(u,u) , and that there existsη < ∞
such that,

|q(v,v)| ≤ η‖v‖2 ∀v ∈ V . (C.4)

The goal is to compute upper and lower bounds, forJ(u), whereu satisfies

problem (C.1). LetuH ∈ VH be the finite element approximation ofu lying in

the finite dimensional subspaceVH ⊂ V . For simplicity, we shall assume thatVH

is the space of piecewise linear continuous functions defined over a triangulation,

TH , of Ω which satisfies the Dirichlet boundary conditions. An approximation to

J(u), JH , can be obtained asJH = q(uH ,uH), where, for convenience,χ in (C.3)

is chosen to be piecewise linear over the elementsTH ∈ TH . Exploiting the bi-

linearity of q(w,v), we can write

J(u) − JH = q(u,u) − q(uH ,uH) = q(u − uH ,u − uH) + 2q(u,uH) − 2q(uH ,uH)

= q(e,e) + 2q(e,uH),
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wheree = u − uH is the error in the approximationuH . It is clear that if we are

able to compute boundsQ andL± for the quadratic and linear error terms,

|q(e,e)| ≤ Q and L− ≤ q(e,uH) ≤ L+,

then, the bounds forJ(u), J±, follow as,

J− ≡ JH − Q + 2L− ≤ J(u) ≤ JH + Q + 2L+ ≡ J+.

Bounds for the quadratic error term

Xuan et al. (2004) show that for two dimensional linear elasticity, a suitable value

for the continuity constant in expression (C.4) is given by

ηχ = max
TH∈TH

(3K + 4µ)|∇χ|2

4

√
(3K + µ)

(
3µ

(
∂χ

∂x1

)2

+ (3K + 4µ)
(

∂χ

∂x2

)2) , (C.5)

whereµ = E/(2(1+ν)) is the elastic shear modulus,K is the elastic bulk modulus

which is given byK = E/(1+2ν)/(3(1−ν2)) for plane stress, andK = E/(3(1−
2ν)) for plain strain. In these expressions,E is Young’s elastic modulus andν is

the Poisson’s ratio. Therefore,

|q(e,e)| ≤ ηχ‖e‖2.

The computation of a bound forq(e,e) is straightforward once a bound for the error

in the energy norm‖e‖ has been obtained.

The errore ∈ V is the solution of the residual equation

a(e,v) = RP(v) ∀v ∈ V, (C.6)

where

RP(v) =

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓ − a(uH ,v).

The residual equation for the error (C.6) corresponds tof ∗ = f , g∗ = g and

zH = uH in (5.1). Thus, one may apply the error estimation procedurepresented

in Chapter 5 to obtain a statically admissible stress fieldσe ∈ S verifying
∫

Ω

σe : ε(v) dΩ = RP(v) ∀v ∈ V , (C.7)
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and yielding the upper bound

‖e‖ ≤ |||σe|||,

and therefore the bound for the quadratic termq(e,e)

Q = ηχ|||σe|||2.

Bounds for the linear error term

In order to derive upper an lower bounds for the linear termq(e,uH), the proce-

dure to obtain bounds for linear outputs of interest for symmetric model problems

detailed in Chapter 2 may be considered.

Denote bys = q(e,uH). In order to find bounds fors, the following dual or

adjoint problem is introduced: findψ ∈ V such that

a(v,ψ) = q(v,uH) ∀v ∈ V . (C.8)

The finite element approximation of the dual problem is denoted byψH ∈ VH and

its associated error isε = ψ − ψH ∈ V solution of the residual problem

a(v, ε) = q(v,uH) − q(ψ,uH) = RD(v) ∀v ∈ V .

Then, bounds fors may be obtained from equation (2.14) as

−1

4
‖κe − 1

κ
ε‖2

UB ≤ s ≤ 1

4
‖κe +

1

κ
ε‖2

UB,

and the problem reduces to find upper bounds for the linear combinationsκe± 1
κ
ε.

Letσe ∈ S be a statically admissible stress field for the primal residual problem

verifying equation (C.7). Consider in an analogous form the statically admissible

stress field for the dual residual problemσε ∈ S verifying
∫

Ω

σε : ε(v) dΩ = RD(v) ∀v ∈ V .

Then, the linear combinationκσe ± 1
κ
σε is a statically admissible stress field for

the combined residual problem

a(κe ± 1

κ
ε,v) = κRP(v) ± 1

κ
RD(v) ∀v ∈ V ,
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and therefore

‖κe ± 1

κ
ε‖ ≤ |||κσe ± 1

κ
σε|||.

The bounds for the linear term are

L− = −1

4
|||κσe − 1

κ
σε|||2, L+ =

1

4
|||κσe +

1

κ
σε|||2,

and the value of the arbitrary parameterκ which optimizes the bounds isκ =√
|||σε|||/|||σe|||.
The procedure to obtain the bounds for theJ-integral is summarized in the box

in Table C.2.

1.- ComputeuH andψH ∈ VH s.t.

a(uH ,v) = ℓ(v) ∀v ∈ VH ,

a(v,ψH) = q(v,uH) ∀v ∈ VH .

2.- Computeσe andσε ∈ S s.t.
∫

Ω

σe : ε(v) dΩ = RP(v) ∀v ∈ V ,

∫

Ω

σε : ε(v) dΩ = RD(v) ∀v ∈ V .

3.- Computeηχ as

ηχ = max
TH∈TH

(3K + 4µ)|∇χ|2

4

√
(3K + µ)

(
3µ

(
∂χ

∂x1

)2

+ (3K + 4µ)
(

∂χ

∂x2

)2) .

4.- Computeκ =
√

|||σε|||/|||σe||| andJ− andJ+ as

J− = J(uH) − ηχ|||σe|||2 − 1

2
|||κσe − 1

κ
σε|||2,

J+ = J(uH) + ηχ|||σe|||2 +
1

2
|||κσe +

1

κ
σε|||2.

Figure C.2: Main steps of the strategy used to obtain upper bounds for the energy
norm of the solution of a symmetric boundary value problem.
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Rennes, France.

Ladev̀eze, P. and Leguillon, D. (1983), ‘Error estimate procedurein the finite
element method and applications’,SIAM Journal on Numerical Analysis
20(3), 485–509.

Ladev̀eze, P. and Maunder, E. A. W. (1996), ‘A general method for recovering equi-
librating element tractions’,Computer Methods in Applied Mechanics and En-
gineering137(12), 111–151.



Bibliography iii

Larsson, F., Hansbo, P. and Runesson, K. (2002), ‘Strategiesfor computing goal-
oriented a posteriori error measures in non-linear elasticity’, International
Journal for Numerical Methods in Engineering55(12), 879–894.

Li, F. Z., Shih, C. F. and Needleman, A. (1985), ‘A comparison of methods for
calculating energy release rates’,Engineering Fracture Mechanics21(2), 405–
421.

Machiels, L., Maday, Y. and Patera, A. T. (2000), ‘A “flux-free” nodal Neu-
mann subproblem approach to output bounds for partial differential equa-
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Mathématique330(3), 249–254.

Maday, Y., Patera, A. T. and Peraire, J. (1999), ‘A general formulation for a posteri-
ori bounds for output functionals of partial differential equations; application
to the eigenvalue problem’,Comptes Rendus des Séances de l’Acad́emie des
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SUMMARY

Classical residual type error estimators approximate the error �ux around the elements and yield upper
bounds of the exact (or reference) error. Lower bounds of the error are also needed in goal oriented
adaptivity and for bounds on functional outputs. This work introduces a simple and cheap strategy to
recover a lower bound estimate from standard upper bound estimates. This lower bound may also be
used to assess the e�ectivity of the former estimate and to improve it. Copyright ? 2003 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Implicit residual-type error estimators require to set proper boundary conditions for the local
(usually element by element) error equations. If these boundary conditions are of Neumann
type [1, 2] the obtained estimates are upper bounds of the error. The error estimators based on
the error in the constitutive relation introduced by Ladev�eze [3, 4] may also be classi�ed in this
group and also overestimate the error. The selection of the �ux on the interelement edges may
use either a trivial �ux averaging [1] or a more sophisticated recovering technique yielding
equilibrated residuals [2, 3]. The equilibrated residual strategies are expected to furnish more
realistic boundary conditions for the local problems and, consequently, to yield better error
estimates.
On the other hand, residual-type error estimators using Dirichlet boundary conditions in

the local error equations [5, 6] yield lower bounds of the error. Basically, the lower bound
property is induced by the continuity of the obtained estimate.
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The comparison of these two approaches suggest the idea of postprocessing residual-type
error estimators yielding upper bound, enforcing continuity and obtaining a lower bound of
the error with a small supplementary e�ort.
The idea of obtaining a couple of upper and lower bound estimates at the same time

is also suggested by the goal oriented adaptive strategies [7, 8]. Indeed, in the context of
symmetric (self-adjoint) problems, these strategies require both a lower and an upper bound
of the error in the standard energy norm to assess the error in an output of interest. However,
the approach introduced in Reference [8] allows also to obtain upper and lower bounds for
functional outputs of non-symmetric problems.
The approach presented here is based on the postprocessing of the upper bound estimate

eest, which is discontinuous. The postprocessing introduces a correction ecor such that the
corrected error distribution, econt := eest + ecor, is continuous. Thus, the correction ecor must
compensate the discontinuities of eest. Then, a lower bound is computed straightforward using
eest and ecor.
The remainder of the paper is structured as follows. The model problem is stated in Sec-

tion 2. Section 3 is devoted to introduce the local and global versions of error equation, and
the reference error. In Section 4, the residual-type error estimators approximating the local
�ux are described. The upper bound property of this kind of estimators is easily proved.
Attention is paid to the solvability problems of the pure di�usion case. Then, in Section 5,
the estimate eest yielding an upper bound is corrected to enforce its continuity and a lower
bound is recovered. Also at this point, some additional e�ort must be done to deal with the
pure di�usion case, where the original estimate is locally determined up to a constant. These
local constants do not a�ect the norm of eest but do condition ecor and, consequently, in
order to have an optimal correction, it is worthy to select them properly. Numerical examples
demonstrating the good behaviour of the proposed strategy are shown in Section 6.

2. STATEMENT OF THE PROBLEM

2.1. Model problem

Let us consider the following linear Neumann boundary value problem in an open, bounded
domain �⊂R2

−∇ · (a∇u) + bu= s in �

a∇u · n= gN on @�

}
(1)

In order to simplify the presentation, the boundary conditions are assumed to be only of
Neumann type. Accounting for Dirichlet or mixed boundary conditions does not introduce
any additional conceptual di�culty. Moreover, in order to ensure ellipticity, it is assumed that

0¡a6 a(x)6 	a

06 b6b(x)6 	b

for some a; 	a; b and 	b.

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1465–1488
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The weak form of this problem reads: �nd u∈H 1(�) such that

a(u; v)=
∫
�
sv d� +

∫
@�
gNv d
 ∀v∈H 1(�) (2)

where

a(u; v) :=
∫
�
(a∇u · ∇v+ buv) d�

and H 1(�) stands for the standard Sobolev space.
The Galerkin �nite element method provides an approximation uh to u, lying in a �nite-

dimensional space Vh⊂H 1(�) and verifying

a(uh; v)=
∫
�
sv d� +

∫
@�
gNv d
 ∀v∈Vh (3)

The �nite-dimensional space Vh is associated with a �nite element mesh of characteristic
size h. The degree of the complete polynomials used in the interpolation of Vh is denoted
by p. The geometric support of the elements of this mesh are open subdomains denoted by
�k ; k=1; : : : ; nelem. It is assumed that 	�=

⋃
k
	�k (the mesh covers the whole domain) and

�k ∩ �l= ∅ for k �= l (di�erent elements have in common, at most, part of their boundary).
The derivation of a priori estimates requires further regularity conditions for the mesh. The
precise assumptions on the meshes may be found in Reference [9, Section 1.3.3].
The goal of a posteriori error estimation is to assess the accuracy of the approximate

solution uh, that is, to evaluate and measure the error, e := u− uh, or an approximation to it.
The error is measured using some functional norm. One of the most popular options is the
energy norm induced by a(· ; ·):

‖e‖ := [a(e; e)]1=2 (4)

Local restrictions of the norm are needed to describe the spatial distribution of the error. In
the following, the restriction of a(·; ·) to the element �k (k=1; : : : ; nelem) is denoted by ak(·; ·).
Thus, the restriction of ‖ · ‖ to �k ; ‖ · ‖k , is induced by ak(·; ·). In order to describe the spatial
distribution of the error, the value of ‖e‖k in each element is estimated.

2.2. Error equations and reference error

The global equation for the error is recovered from Equation (2), replacing u by uh + e:

a(e; v)=
∫
�
sv d� +

∫
@�
gNv d
− a(uh; v)=:R(v) ∀v∈H 1(�) (5)

The r.h.s. term of Equation (5), R(v), is the weak residual associated with the approximate
solution uh.
The local counterpart of Equation (5) is derived integrating the weighted residual of the

strong form, Equation (1), in �k . It reads,

ak(e; v)=Rk(v) +
∫
@�k∩�

a∇u · nv d
 ∀v∈H 1(�k) (6)

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:1465–1488
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where Rk(v) is the restriction of R(v) to �k :

Rk(v) :=
∫
�k

sv d� +
∫
@�k∩@�

gNv d
− ak(uh; v) (7)

Note that the last term of the r.h.s. of Equation (6) accounts for the unknown �ux on the
interelement edges. In other words, the boundary conditions of the local problem are not
known.
The error is estimated approximating the solution of the local error equation (6). The

characterization of any residual-type error estimator requires to select both:

• the �nite-dimensional space where the local error equation is solved (local h- or
p-re�nement) and

• the unknown boundary conditions for the local problems.

The �rst point is related with the concept of reference error. Residual a posteriori error
estimation techniques are based on assessing and bounding the reference error and not the
error itself. For all practical purposes, the exact value of the error, e, is replaced by a reference
(or ‘truth’) error, eref , lying in a �nite-dimensional space much re�ned with respect to the
computational space Vh. Let us denote by V ref this re�ned space. V ref is generated either as
a h or p-re�nement of Vh. That is, denoting by h̃ and p̃ the characteristic element size and
the degree of interpolation of the elements generating V ref , either h̃�h or p̃�p holds.
Thus, the reference error, eref ∈V ref , veri�es the discrete form of Equation (5), that is

a(eref ; v)=R(v) ∀v∈V ref (8)

The direct computation of eref is computationally una�ordable because it requires to solve a
system of equations with the number of degrees of freedom equal to the dimension of V ref .
The fact of using a reference error (that is, replacing the continuous space H 1(�) by the

re�ned space V ref , and the exact error e by the reference error eref ) does not introduce a
signi�cant loss of accuracy in the error estimation procedure. Consequently, the quality of a
residual-type error estimation procedure depends essentially on the approximation of the local
boundary conditions.

3. STANDARD RESIDUAL-TYPE ERROR ESTIMATES

Standard residual-type error estimators [1–3] solve the local error equation (6) using approx-
imated Neumann boundary conditions. The values of the �ux a∇u · n|@�k∩�, see Equation (6),
are determined or approximated along the boundary of each element �k . This section is de-
voted to brie�y describe this kind of estimators and to recall the proof of their upper bound
property.

3.1. Approximation of �uxes

The approximation of the �ux is based on smoothing the approximate �ux a∇uh · n, which is
discontinuous. The basic idea due to Bank and Weiser [1] is to average the approximate �ux
on every interelement edge. Let 
m, for m=1; : : : ; nint, be the interelement edges of the mesh.
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That is, for every m∈{1; : : : ; nint} they exist k; l∈{1; : : : ; nelem}; k �= l, such that 
m=�k ∩�l.
Then

a∇u|
m 	 [a∇uh]A := 1
2 (a∇uh|@�l + a∇uh|@�k ) for m=1; : : : ; nint (9)

where [·]A stands for the average on 
m. The approximation given in Equation (9) is used in
Equation (6).
More sophisticated �ux averaging procedures are used by other authors [2, 3] in order to

obtain equilibrated local problems. They improve the e�ciency of the estimator. Here, the
simplest averaging is used for illustration purposes. In fact, the following developments are
also valid for these approaches: it su�ces to use a more complicated de�nition for the average
[a∇uh]A.

3.2. Discrete local residual equation

Thus, the error estimate eest is computed locally by solving the following problem: �nd
eest ∈V refk such that

ak(eest ; v)=Rk(v) +
∫
@�k∩�

[a∇uh]A · nv d
 ∀v∈V refk (10)

where V refk is the restriction of V ref to �k , that is

V refk := {v∈H 1(�k)=∃ṽ∈V ref ; v= ṽ|�k} (11)

Equation (10) is the discrete version of Equation (6) using the approximation given by Equa-
tion (9).
Note that the sum of the spaces V refk is not equal to V ref . In fact, V refbrok :=

⊕
k V

ref
k is a space

of ‘broken’ functions. In order to recover V ref it is necessary to restrict the space forcing the
continuity: V ref =V refbrok ∩ C0.
A global equation for the error estimate eest is found summing up Equation (10) for all

k (k=1; : : : ; nelem),

a(eest ; v)=R(v) +
nint∑
m=1

∫

m
[a∇uh]A · [vn]J d
 ∀v∈V refbrok (12)

where [vn]J stands for the jump of vn across 
m=�k ∩�l, that is,

[vn]J := (v|�k )nk + (v|�l)nl (13)

being nk =− nl the corresponding outward normal unit vectors. The recovered �ux, see Section
3.1, is said to be consistent if the approximation of the �ux is continuous, i.e. if the approxi-
mation of a∇u|
m is the same viewed from �k and from �l. In order to derive Equation (12)
it is necessary that the recovered �uxes are consistent.
Furthermore, if the test functions are continuous, i.e. if v is in V ref ⊂V refbrok, then [vn]J =0

and from Equation (12) one gets

a(eest ; v)=R(v) ∀v∈V ref ; where still eest ∈V refbrok (14)
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In other words, if the consistency condition is satis�ed, the interelement edges are not a source
of �ux in the global error equation (for v continuous). In the following, some properties of
the estimate eest are derived replacing v in Equation (14) by particular functions in V ref .

Remark 1
In Equation (12), the de�nition of a(· ; ·) must be generalized to accept ‘broken’ functions in
the arguments. Thus, for v; w∈V refbrok,

a(w; v) :=
nelem∑
k=1
ak(w; v) (15)

Of course, this generalized de�nition coincides with the standard one when the arguments are
in H 1(�).

3.3. Upper bound property

The consistency condition implies that the error estimates computed using Equation (10) are
upper bounds of the reference error. Although this is a well-known property of this kind of
estimators, the corresponding theorem is revisited and proved here because it is important in
the following.

Theorem 1
The error estimate eest computed solving Equation (10) yields an upper bound of the error,
that is

�upp := ‖eest‖2¿‖eref‖2 (16)

Proof
Taking v= eref in Equations (14) and (8) it follows that

a(eest ; eref )= a(eref ; eref ) (17)

Then, the proof is completed by the following algebraic manipulation.

06a(eref − eest ; eref − eest) = a(eref ; eref ) + a(eest ; eest)− 2
=a(eref ; eref )︷ ︸︸ ︷
a(eest ; eref )

= a(eest ; eest)− a(eref ; eref )

Remark 2
It is worth noting that the upper bound �upp is de�ned in Equation (16) as the squared norm
of the error estimate. This is because the use of squared norms simpli�es the presentation.
Thus, in the following, the estimates of the squared error norms, approximations of ‖eref‖2,
are denoted by �?.

Remark 3
In the general case, eest is not continuous (it is in V refbrok but not in V

ref ). Thus, in general,
it is not possible to take v= eest in Equation (14). However, if a particular choice of the
boundary conditions of the local problems leads to a continuous estimate eest, then it can be
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easily shown that a(eest ; eest)6a(eref ; eref ) and, consequently, a(eest ; eest)= a(eref ; eref ). That is,
the choice of the Neumann boundary conditions giving a continuous estimate is optimal.

3.4. Solvability problems when b=0

If the reaction term vanishes in Equation (1) (b=0), the solvability of the local Neumann
problem, Equation (10), requires proper data ensuring equilibrium. It is well known that if the
source term s (body load) is not equilibrated by the prescribed boundary �ux, the Neumann
problem does not have any solution. Locally (in element �k), the equilibrium condition reads∫

�k

s d� +
∫
@�k∩@�

gN d
 +
∫
@�k∩�

[a∇uh]A · n d
=0 (18)

The simple averaging described in Equation (9) does not enforce the equilibrium condition.
Two di�erent strategies may be used in order to ensure the solvability of the local problems.

A �rst option is to use approximation of �uxes yielding equilibrated local problems.
The second strategy is to restrict the set of admissible functions in the local problem

eliminating from the local interpolation space the kernel of the l.h.s. of Equation (10). In
fact, the second and third estimators introduced by Bank and Weiser in Reference [1] use
this strategy. These estimators are used in the numerical examples and are they denoted by
e2 and e3, respectively.

Remark 4
The description of these estimators requires to introduce the hierarchical decomposition of
V ref ; V ref =Vh ⊕ V com, where V com is the hierarchical complement of Vh in V ref . The space
V com contains the functions v of V ref such that the degrees of freedom (nodal values) of v
corresponding to Vh are null. Typically, for p-re�nement, the functions of V com are of the
bubble type. Then, for all v∈V ref ; ∃!vh ∈Vh and ∃!vcom ∈V com such that v= vh + vcom. Thus,
the nodal projection from V ref to Vh; I : V ref → Vh is de�ned such that I(v)= vh.
The second estimator, e2 is then computed as the solution of the following local problem:

ak(e2; v)=Rk(v−I(v)) +
∫
@�k∩�

[a∇uh]A · n(v−I(v)) d
 ∀v∈V refk (19)

where the restriction of e2 to �k is in V refk and, therefore, the global e2 is in V refbrok.
The third estimator, e3, is locally computed as the solution of

ak(e3; v)=Rk(v) +
∫
@�k∩�

[a∇uh]A · nv d
 ∀v∈V comk (20)

where the local restriction of V com; V comk , must be understood in the same sense as in
Equation (11).
It is worth noting that e2 is an upper bound for the reference error but e3 is not. Indeed,

summing up the local Equation (19) on k one gets a global equation for e2 where v ranges
on V refbrok and the same rational given for eest, see Theorem 1, can be followed to deduce
that ‖e2‖¿‖eref‖. On the contrary, in the global equation corresponding to Equation (20), v
ranges on V combrok . The upper bound property cannot be deduced in this case because V

ref �⊂V combrok .
However, in the asymptotic range, that is for h small enough, numerical evidence shows that
e3 behaves also as an upper bound.
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4. CORRECTION AND LOWER BOUND RECOVERING

In the previous section, see Remark 3, it has been noted that the overestimation of the error
is associated with the continuity defaults of the estimate eest. In fact, it has been observed
that if the �ux splitting is such that eest is continuous, then the estimate eest is optimal. Thus,
the idea developed in this section is to introduce a correction of the error estimate in order to
enforce its continuity. This correction allows to deduce a lower bound of the reference (and
exact) error and, hence, to assess the e�ectivity of the original error estimate.

4.1. Correction and lower bound

Babu�ska and co-workers originally proposed to obtain a lower bound �low from a continuous
corrected estimate [10, 11]. Here, the evaluation of the lower bound is improved by de�ning
a scalar parametric family �low(�). Moreover, it is proved in this section that an optimal value
of �; �opt exists and that it can be easily evaluated. Note that the optimal estimate, �low(�opt)
corresponds to the expression proposed in Reference [12], where the optimality of this choice
is not mentioned.
Recall that eest ∈V refbrok, that is eest is, in general, not continuous. Let ecor ∈V refbrok be a cor-

rection of eest such that

econt := eest + ecor ∈V ref (21)

that is, such that the corrected error econt is continuous.
Given a corrected estimate econt, a parametric family of lower bound estimates is found.

Theorem 2
Let eest be an error estimate verifying the hypothesis of Theorem 1 and, therefore, being an
upper bound of the reference error. Let econt be a corrected estimate as described in Equation
(21). Then, for any scalar �∈R, the expression

�low(�) :=2�a(eest ; econt)− �2‖econt‖2 (22)

is a lower bound of the reference error norm, that is,

�low(�)6‖eref‖2 (23)

Proof
Since econt is continuous, it is possible to replace v by econt in Equations (14) and (8).
That is,

a(eest ; econt)= a(eref ; econt) (24)

Then, using Equation (24), inequality (23) is proved considering the following algebraic
manipulation:

06a(eref − �econt ; eref − �econt) = a(eref ; eref ) + �2a(econt ; econt)− 2�a(eref ; econt)
= ‖eref‖2 + �2‖econt‖2 − 2�a(eest ; econt)
= ‖eref‖2 − �low(�)
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Thus, once the corrected estimate econt is obtained, a lower bound of the error is re-
covered computing �low(�), for any value of �. The natural choice, �=1, see References
[10, 11, 13, 15], results in

�low(1)=2a(eest ; econt)− ‖econt‖2 = ‖eest‖2 − ‖ecor‖2 (25)

which in practice only requires the extra computation of ‖ecor‖.
However, the optimal choice for � is the value that maximizes the lower bound �low(�). It

is obvious from Equation (22) that this optimal value is

�opt =
a(eest ; econt)
‖econt‖2 (26)

Consequently, given an upper bound estimate eest, the optimal lower bound associated with a
corrected estimate econt is

�optlow := �low(�opt)=
a(eest ; econt)2

‖econt‖2 (27)

This is, in fact, the expression adopted in Reference [12].

Remark 5
Both �optlow and �low(1) are exact if the recovering technique to obtain the corrected estimate
econt is optimal. Indeed, if the corrected estimate coincides with the reference error, that is
econt = eref , then

�optlow = �low(1)= ‖eref‖2

Thus, both the lower bounds given by Equations (25) and (27) are sharp provided that the
determination of the corrected estimate econt is accurate. In fact, the strategy used to obtain
econt is oriented to enforce econt ≈ eref .
Obviously, given econt, the estimate �

opt
low is sharper than �low(1). Consequently, once econt is

determined, �optlow is used to evaluate the lower bound. Nevertheless, in order to set a criterion
for the determination of econt, the expression of �low(1), Equation (25), is preferred to the
expression of �optlow, Equation (27). This is detailed in the next section.

4.2. Determination of the corrected estimate econt

This section describes the smoothing process that builds up the corrected estimate econt. The
degrees of freedom of the original estimate, eest, a�ecting the continuity (associated with edges
and corners) are simply averaged. This part of the smoothing process is standard [10, 11].
Here, the remaining degrees of freedom a�ecting the interior of the elements (bubble functions
inside the elements) are set using an objective optimality criterion. The presentation is based
in the formulation of the parametric family of scalar lower bounds, �low(�) introduced in
Section 4.1.
The correction ecor and, consequently, the corrected estimate econt and the corresponding

lower bound �optlow are not unique. Any function econt ∈V ref produces a lower bound �optlow. How-
ever, as noted in Remark 5, in order to obtain a sharp lower bound econt must be selected
in order to fairly approximate eref . Assuming that eest is a proper approximation of eref but
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Figure 1. Classi�cation and denomination of the interpolation functions in V refbrok. The functions
a�ecting the boundaries, both associated with corners (left) and edges (centre) are responsible of
the continuity. The interior bubble functions (right) do not a�ect the continuity and they are set

in order to obtain the sharper lower bound �low.

in a broken space, a natural choice is to take the average of the estimated error along the
interelement edges.
In order to formalize this averaging, the following decomposition of the local reference

interpolation space V refk is considered:

V refk =V cornerk ⊕ V edgek ⊕ V bubblek (28)

where V bubblek is the subspace containing the bubble functions (vanishing on @�k), V
edge
k con-

tains the functions having non-zero values in the boundary and vanishing in the corner nodes
of element �k and V cornerk accounts for the degrees of freedom associated with the corner
nodes, see Figure 1 for an illustration. This local decomposition induces the de�nition of the
following global spaces:

V cornerbrok :=
⊕
k
V cornerk V corner :=V cornerbrok ∩V ref

V edgebrok :=
⊕
k
V edgek V edge :=V edgebrok ∩V ref

V bubble :=
⊕
k
V bubblek

Note that V bubble does not have a ‘broken’ version because the bubble functions do not intro-
duce discontinuities along the edges. Thus, V refbrok and V

ref are decomposed as

V refbrok =V
corner
brok ⊕ V edgebrok ⊕ V bubble and V ref =V corner ⊕ V edge ⊕ V bubble (29)

Consequently, the estimate eest is uniquely represented by the following decomposition:

eest = ecornerest + eedgeest + e
bubble
est (30)

where ecornerest ∈V cornerbrok ; eedgeest ∈V edgebrok and ebubbleest ∈V bubble, and econt ∈V ref is uniquely
decomposed as

econt = ecornercont + e
edge
cont + e

bubble
cont (31)

where ecornercont ∈V corner ; eedgecont ∈V edge and ebubblecont ∈V bubble. The determination of econt requires to
set the proper values for ecornercont ; e

edge
cont and ebubblecont .
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Figure 2. Averaging of the degrees of freedom associated with the edges.

Following Remark 5, econt is determined starting from eest and such that econt is likely a
good approximation to eref . The application transforming eest in econt is denoted by M:

M : V refbrok → V ref

eest �→ econt

Thus, to characterize the smoothing operator M it is su�cient to describe econt as a function
of eest, that is ecornercont ; e

edge
cont and ebubblecont as functions of ecornerest ; eedgeest and ebubbleest . Indeed, M is

described by the way it maps eest into econt. Thus, in order to characterize M it su�ces to
de�ne the decomposition of the econt =M(eest), that is ecornercont ; e

edge
cont and ebubblecont , in terms of the

original estimate eest or its decomposition.
In order to enforce continuity, the ‘corner’ and ‘edge’ components are smoothed indepen-

dently, that is ecornercont =M(ecornerest ) and eedgecont =M(eedgeest ). As already mentioned, the simplest
option is to average the discontinuous values. In a 2-D framework, every interelement edge

m (m=1; : : : ; nint) is shared by two elements, say 
m=�k ∩�l and, therefore

eedgecont |
m := 1
2 (e

edge
est |�k + eedgeest |�l) (32)

see Figure 2 for illustration. The same strategy is adopted for the corner points. The con-
tribution of the interpolation functions associated with the corner points, ecornercont is computed
averaging the values of the discontinuous function ecornerest in each corner point. That results in
an expression similar to Equation (32) where, for every corner point, the number of values
to average is equal to the number of elements to which the corner point belongs. This is
illustrated in Figure 3.
Once ecornercont and eedgecont are set it is necessary to �nd the value of ebubblecont . It is worth noting

that the choice for ebubblecont does not a�ect the continuity of econt. The value of ebubblecont is therefore
selected such that the obtained estimate is as sharp as possible.
Recall that, once econt is determined, the sharper lower bound is �

opt
low, see Equation (27).

Then, the �rst idea is to select ebubblecont such that, given ecornercont and eedgecont , it maximizes �
opt
low.

However, this criterion leads to a non-linear global (referred to the whole domain) equation
which is di�cult to solve. On the contrary, �nding ebubblecont such that �low(1), see Equation (25),
is maximum leads to a simple linear local (element by element) equation. This is stated in
the following theorem:
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Figure 3. Averaging of the degrees of freedom associated with the corners.

Theorem 3
Let eest be an error estimate verifying the hypothesis of Theorem 1 and, therefore, being an
upper bound of the reference error. Let econt = ecornercont + e

edge
cont + ebubblecont be a corrected estimate.

Assume that ecornercont and eedgecont are obtained by averaging. Then, the value of ebubblecont maximizing
�low(1) is such that

a(ebubblecont ; v)= a(eest − ecornercont − eedgecont ; v) ∀v∈V bubble (33)

Proof
Recall that �low(1)= ‖eest‖2−‖econt−eest‖2, therefore maximize �low(1) is equivalent to minimize

‖econt − eest‖= ‖ebubblecont − (eest − ecornercont − eedgecont )‖

The problem is reformulated as: �nd ebubblecont ∈V bubble such that ‖ebubblecont − (eest − ecornercont − eedgecont )‖
is minimum. Obviously, the solution of this problem is the projection of eest − ecornercont − eedgecont
on V bubble which satis�es Equation (33).

Thus, taking ebubblecont as the solution of Equation (33) completes the determination of M.
Note that, in this case, econt depends on the ‘corner’ and ‘edge’ components of eest.

Remark 6
The smoothing operator M is linear because ecornercont ; e

edge
cont and ebubblecont are linear functions of

ecornerest ; eedgeest and ebubbleest . Moreover, the quality of the lower bound �optlow depends on the ability
of M to approximate the reference error eref . Note this quality depends only on the averaging
on the boundaries. It su�ces that econt coincides with eref on the interelement boundaries (i.e.
for ecornercont + e

edge
cont ) to obtain an exact error assessment. That is if

econt|
m = eref |
m for every m=1; : : : ; nint

then econt = eref and, consequently (see Remark 5),

�optlow = �low(1)= ‖eref‖2
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4.3. Computational aspects

The selection of the optimal value of ebubblecont is performed solving Equation (33). These com-
putations can be done locally, element by element, because the bubble spaces are orthogonal
(the supports of the bubbles are disjoint). Thus, once ecornercont and eedgecont are computed by simple
averaging, the restriction of ebubblecont to �k ; ebubblecont |�k is computed solving the local version of
Equation (33):

ak(ebubblecont |�k ; v)= ak(eest − ecornercont − eedgecont ; v) ∀v∈V bubblek (34)

Equation (34) results in a small system of linear equations that must be solved to compute
ebubblecont |�k . The number of equations for each local problem is equal to the number of ‘bubble’
degrees of freedom in the reference discretization. For example, for lagrangian quadrilateral
elements, this number is equal to (1 − p̃)2, being p̃ the degree of the polynomials used to
generate V ref .

4.4. Assessment of the e�ectivity index and average estimate

Once the lower bound of the error is computed, the e�ectivity index of the original estimate
‖eest‖ may be easily assessed. Let �est be the e�ectivity index associated with eest,

�est :=
‖eest‖
‖eref‖ (35)

The upper bound property ensures �est¿1. Nevertheless �est may be very large and it is not
possible, in the general case, to assess the quality of the estimate. Using the lower bound �low
of the error, an upper bound of the e�ectivity index �+ is easily computed:

�+ :=
‖eest‖√
�low

=¿�est (36)

This pessimistic value of the e�ectivity index is sharp when the lower bound error estimate
�low is sharp.
Once the upper and the lower bounds of the error, �upp = ‖eest‖2 and �low, are available the

average estimate is introduced

�ave := 1
2 (�upp + �low) (37)

Remark 7
As noted in Remark 2, the estimates �? represent approximations to the squared norms of the
error. The average of the squared norms is larger than the simple averaging of the norms,
that is,

1
2 (�upp + �low)¿[

1
2 (
√
�upp +

√
�low)]2

The behaviour of this average estimate is analysed in the examples presented in Section 6.

5. FITTING LOCAL ARBITRARY CONSTANTS FOR b=0

In problems without a reaction term, the lower bounds of the error obtained with the previously
discussed techniques have a poor (very low) e�ectivity index. In this section, a strategy to
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preclude this de�ciency is introduced. If b=0 in Equation (1) (pure di�usion, no reaction)
eest is locally determined up to a constant because

‖eest‖k = ‖eest + ck‖k ; k=1; : : : ; nelem (38)

Then, the estimate eest may be replaced by eest +
∑nelem

k=1 ck�k without changing the upper bound
�upp, being {�1; �2; : : : ; �nelem} the basis of the space of piecewise constant functions. That is,
for k=1; : : : ; nelem,

�k(x)=

{
1 if x∈�k
0 if x =∈�k

(39)

The upper bound estimate �upp is independent of the constants ck . Nevertheless, the choice
of the constants ck a�ects drastically the value of the corrected error, econt. Moreover, the
correction strategy is expected to work properly only if the average values of eest are close
to eref , see Remark 5. If the constants are set arbitrarily, the value of the correction cannot
be expected to be optimal.
Consequently, the constants ck ; k=1; : : : ; nelem, are taken as unknowns and they are deter-

mined such that the resulting lower bound is somehow optimal. Let c=[c1 : : : cnelem ] be the
vector of unknown constants. The corrected estimate econt may be seen as a function of c:

econt(c) :=M

(
eest +

nelem∑
k=1
ck�k

)
=M(eest) +

nelem∑
k=1
ckM(�k) (40)

It is clear from Equation (40) that, due to the linearity of M; econt(c) is linear. Both the lower
bounds �low(1) and �

opt
low depend on c through econt. The criterion used to select c is obviously

to maximize the lower bound. The maximization of �optlow is the more natural option because
�optlow is the sharper error bound. Nevertheless, similarly to the previous section, �nding c that
optimizes �optlow requires to solve a non-linear problem. On the contrary, to �nd c such that
�low(1) is maximum leads to a simple linear problem. Thus, the criterion for determining c is
based on maximizing �low(1) rather than �

opt
low.

The dependence of �low(1) on c is written by introducing Equation (40) in Equation (25)
and replacing eest by eest +

∑nelem
k=1 ck�k :

�low(1) =
∣∣∣∣
∣∣∣∣eest + nelem∑

k=1
ck�k

∣∣∣∣
∣∣∣∣2 −

∣∣∣∣
∣∣∣∣eest + nelem∑

k=1
ck�k −M(eest)−

nelem∑
k=1

M(�k)ck

∣∣∣∣
∣∣∣∣2

= ‖eest‖2 −
∣∣∣∣
∣∣∣∣eest −M(eest)−

nelem∑
k=1

M(�k)ck

∣∣∣∣
∣∣∣∣2 (41)

Then, to maximize �low(1) is equivalent to minimize the function F(c) de�ned by

F(c) :=
∣∣∣∣
∣∣∣∣eest −M(eest)−

nelem∑
k=1

M(�k)ck

∣∣∣∣
∣∣∣∣

The coe�cients ck that minimize F(c) are obtained imposing that
∑nelem

k=1 M(�k)ck is the
projection of eest −M(eest) on the space generated by the functions M(�k), for k=1 : : : nelem
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�k M (�k )

Figure 4. Construction of M(�k) (right) from �k (left). The function in the centre
accounts only for the ‘corner’ and ‘edge’ terms, before adding the ‘bubble’ term that
a�ects only the interior of the elements. Note that the in�uence of using the proper

‘bubble’ contribution is very important.

(that is, the image by M of the space of piecewise constant functions). Figure 4 illustrates
the shape of the functions M(�k) and their construction from �k .
Thus, the equation to be satis�ed by the coe�cients ck is

nelem∑
k=1
cka(M(�k);M(�l))= a(eest −M(eest);M(�l)) for l=1; : : : ; nelem (42)

That is, c is computed as the solution of a linear nelem × nelem system of equations.
Once the coe�cients ck are computed, the corresponding corrected estimate econt is intro-

duced in the expression of �optlow to obtain the sharper error lower bound.
Numerical experiments demonstrate that the correction obtained with this strategy yields

sharp lower bound estimates because the obtained correction econt is a much better approx-
imation to eref , see Figure 5. On the contrary, the correction for the standard estimate (i.e.
with arbitrary constants) yields lower bound estimates of poor quality.
It is worth noting that the constants ck are determined solving the global system of equa-

tions (42). Thus, adding these constants to the original estimate eest accounts for the in�uence
of the whole domain in the local errors. Consequently, the estimate econt using this informa-
tion may be used to assess the pollution errors, that is, the errors a�ecting each zone of the
domain coming from far from its close neighbourhood.

6. NUMERICAL EXAMPLES

We study in this section the behaviour of the postprocessing estimate presented above. The
examples selected are such that the analytical exact solution is known and they have been
used by other authors to assess the performance of similar techniques [1, 2]. The quality of
the error estimates is measured using the index �

�=
estimated error

exact (or reference) error
− 1
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Figure 5. Illustration of the constant �tting process: the raw estimate eest with arbitrary
constants is smoothed into M(eest) (top), the smoothed version of the estimate corrected
with the optimal constants is much more similar to the reference error (bottom): in the
example the underestimation is improved from 76% (without constant �tting) to 83%.

that is, the e�ectivity index minus one. The use of � is preferred because the sign of �
indicates if the estimate is an upper or a lower bound (positive if upper, negative if lower)
and the absolute value indicates the quality of the estimate (good quality if |�| small). In the
following, the value of � corresponding to every estimate is denoted with the same subscript,
that is,

�?=
√
�?

‖e‖ − 1

where the subscript ? takes the values ‘upp’, ‘low’ and ‘ave’. The superscript C for �low; �Clow,
is used to denote the correction obtained with the determination of elementwise constants
introduced in Section 5. Moreover, we also use the version �+ corresponding to the assessed
e�ectivity index �+ (�+ := �+ − 1), see Equation (36).
As noted in Section 3.4, the second and third estimators introduced in Reference [1], denoted

by e2 and e3, respectively, are used as the original upper bound estimates eest. In the examples,
the performance of these estimates is analysed throughout the values of �upp.

6.1. Example 1

In the �rst example the reaction–di�usion equation is solved, a=1 and b=1 in Equation (1).
The problem is de�ned in the squared domain �= (0; 1)×(0; 1). The boundary conditions
are set to be Dirichlet homogeneous (that is u=0) on 
D := {(x; 0); 06x61} and Neumann
homogeneous (that is @u=@n=0) elsewhere on @�. The source term s is taken such that the
exact solution has the following analytical expression:

u(x; y)=
1
2000

x2(1− x)2e10x2y2(1− y)2e10y (43)

see Figure 6 for a representation. The second example described in this section is stated such
that the solution u is exactly the same.
The approximate solution uh is computed using a bilinear interpolation (p=1) whereas the

error estimates e2 and e3 are computed using a bicubic interpolation (p̃=3).
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Figure 6. Examples 1 and 2: exact solution.

Table I. Example 1: results in a series of uniformly h-re�ned meshes.

Estimate e2 Estimate e3

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �ave �+ �upp �low �ave

36 0.8469 0.7726 0.3453 0.1589 −0:1386 0.0210 0.2713 0.0544 −0:1706 −0:0514
121 0.4331 0.4036 0.2428 0.1221 −0:0971 0.0184 0.2116 0.0569 −0:1277 −0:0310
441 0.3083 0.3064 0.3258 0.2132 −0:0849 0.0745 0.2737 0.1706 −0:0809 0.0524
1681 0.2093 0.2092 0.2578 0.1831 −0:0594 0.0688 0.1843 0.1263 −0:0489 0.0424
6561 0.1144 0.1144 0.1129 0.0845 −0:0255 0.0310 0.0691 0.0498 −0:0181 0.0164

The proposed approach is used to recover new estimates in two sequences of increasingly
re�ned meshes. In the �rst series of meshes the re�nement is uniform, in the second one the
re�nement follows an adaptive strategy based on the error assessment [14].
The results concerning the uniformly re�ned meshes are summarized in Table I and

Figure 7.
In a similar manner, the results concerning the adaptively re�ned meshes are summarized

in Table II and Figure 8. The sequence of adapted meshes is shown in Figure 9.
It is worth noting in Tables I and II that the di�erence between the exact error (in this case

is known) and the reference error is negligible for accurate enough meshes. As expected, the
values of �upp are indeed positive and the values of �low negative. The value of �+ is greater
than �upp. Note that �+ is computed without any information on the exact (or reference)
solution but it furnishes a good approximation of the exact e�ectivity index. Moreover, for
most of the meshes (except for the coarsest) the value of the corrected estimate �low is better
than the original estimate �upp (|�low|¡|�upp|), that results on �ave¿0.
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Figure 7. Example 1: performance of the estimates following a uniform h-re�nement process
for the estimates e2 (left) and e3 (right).

Table II. Example 1: results in a series of adaptively h-re�ned meshes.

Estimate e2 Estimate e3

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �ave �+ �upp �low �ave

36 0.8469 0.7726 0.3453 0.1589 −0:1386 0.0210 0.2713 0.0544 −0:1706 −0:0514
2550 0.0798 0.0798 0.0822 0.0645 −0:0164 0.0248 0.0517 0.0354 −0:0155 0.0103
2905 0.0478 0.0478 0.1263 0.1136 −0:0113 0.0530 0.1129 0.0622 −0:0456 0.0098
3574 0.0433 0.0433 0.1279 0.1152 −0:0113 0.0539 0.1108 0.0614 −0:0445 0.0098
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Figure 8. Example 1: performance of the estimates following an adaptive h-re�nement
process for the estimates e2 (left) and e3 (right)

Remark 8
As expected, the adaptive procedure optimizes the computational resources and yields lower
error with less degrees of freedom. However, the adapted meshes have distorted elements, see
Figure 9, and the quality of the estimates e2 and e3 is slightly degraded in adapted meshes,
see Figure 8. This phenomenon produces a peculiar end e�ect in the plots describing the
evolution of the e�ectivity along the adaptive process. This e�ect does not appear in the
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Figure 9. Example 1: Sequence of adapted meshes with 36; 2550; 2950 and 3574 dof .
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Figure 10. Example 1: performance of the estimators and using di�erent degrees of
interpolation in the reference space (p̃).

uniform h-re�nement process where all the meshes are structured, see Figure 7. The proposed
lower bound corrects this behaviour in the case of the estimate e2 but not in the case of
e3. In this example, the average �ave performs very well in the sense that behaves as a new
estimate, mostly a new upper bound, much more reliable than the original one. The same
e�ect is observed in the next example, see Figure 11.

The e�ect of varying the degree of interpolation in the reference space (p̃) is investigated
for one of the meshes (the second mesh of the adaptive process, with 2550 dof) and for the
estimate e2. We are interested in assessing the in�uence of p̃ in the error estimate and the
corresponding corrections. The results are shown in Figure 10. Note that the e�ectivity of
the original estimate, eest is not improved by using a larger p̃. On the contrary, the larger
values of p̃ are associated with the poorer quality estimates. Nevertheless, the quality of the
postprocessed lower bounds is not so sensitive to the variations of p̃ and their quality does
not depend on p̃.
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Table III. Example 2: results in a series of uniformly h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

36 0.8483 0.7737 0.2729 0.1571 −0:1177 −0:0909 0.0405
121 0.4342 0.4046 0.2059 0.1217 −0:0838 −0:0698 0.0304
441 0.3091 0.3072 0.2220 0.2131 −0:0461 −0:0073 0.1084
1681 0.2099 0.2098 0.1844 0.1831 −0:0321 −0:0011 0.0949
6561 0.1148 0.1148 0.0849 0.0845 −0:0148 −0:0003 0.0430
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Figure 11. Example 2: performance of the estimates following a uniform (left) and an
adaptive (right) h-re�nement process for the estimate e2.

Figure 12. Example 2: sequence of adapted meshes with 36; 2561; 2918 and 3628 dof .

6.2. Example 2

Now, we consider the Poisson equation, a=1 and b=0 in Equation (1). The domain and the
boundary conditions are exactly the same as in the previous example. The source term s is
taken such that the exact solution is also the same, see Equation (43). In this example, we
only study the application of the developed postprocessing strategy to the e2 estimate.
Again, the proposed strategy is used in a series of uniformly and adaptively h-re�ned

meshes. The results for the uniformly re�ned meshes are summarized in Table III and
Figure 11. Figure 12 shows a sequence of adapted meshes and Table IV with Figure 11
describe the behaviour of the di�erent estimates. The notation �Clow is introduced to denote the
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Table IV. Example 2: results in a series of adaptively h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

36 0.8483 0.7737 0.2729 0.1571 −0:1177 −0:0909 0.0405
2561 0.0785 0.0785 0.0593 0.0586 −0:0112 −0:0007 0.0294
2918 0.0482 0.0482 0.1216 0.1186 −0:0077 −0:0027 0.0596
3628 0.0432 0.0432 0.1038 0.1008 −0:0070 −0:0027 0.0503
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Figure 13. Example 2: performance of the estimators and using di�erent degrees of
interpolation in the reference space (p̃).

correction introduced in Section 5. As expected, the value of �Clow is much better than the value
of �low.
The in�uence of p̃ in the di�erent estimates is shown in Figure 13. These results correspond

to the second mesh of the adaptive process, with 2561 dof. Once again, due to the phenomenon
described in the previous example, increasing p̃ does not result in a better e�ectivity index
for the upper bound estimate. Nevertheless, the lower bound estimate econt with the constant
element by element correction (measured by �Clow) is roughly independent of p̃ and much
better compared to the original estimate.

6.3. Example 3

This example was introduced in Reference [1]. We consider the Laplace equation, a=1;
b=0 and s=0 in Equation (1). As in the previous example, only the e2 estimate is used
with the proposed postprocessing strategy.
The domain � is de�ned by �= {(r; �) : 0¡r¡1; 0¡�¡k�=4} where r and � are the

polar coordinates and the analytical solution is

u(r; �)= r2=k sin
(
2�
k

)
(44)
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Figure 14. Example 3: adapted meshes for k =1 (left) k =3 (centre) and k =4 (right).

Table V. Example 3, k =1: results in a series of adaptively h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

69 0.0397 0.0397 0.3788 0.3730 −0:0109 −0:0042 0.1993
1637 0.0069 0.0069 0.1250 0.1224 −0:0052 −0:0022 0.0619
3938 0.0044 0.0044 0.1925 0.1849 −0:0109 −0:0064 0.0934
4668 0.0040 0.0040 0.2051 0.1992 −0:0092 −0:0048 0.1019

Table VI. Example 3, k =3: results in a series of adaptively h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

169 0.0298 0.0294 1.0167 0.6153 −0:2412 −0:1991 0.2749
580 0.0139 0.0138 0.7023 0.3618 −0:2468 −0:2001 0.1168
1436 0.0078 0.0077 0.4700 0.3375 −0:1211 −0:0901 0.1438
3795 0.0047 0.0047 0.3860 0.3242 −0:0626 −0:0446 0.1546
6585 0.0036 0.0035 0.3407 0.2861 −0:0615 −0:0407 0.1345

That is, � is a circular sector and k is a parameter that sets both the size of the domain and
the regularity of the solution. In the following, we consider the cases k=1; 3 and 4. Dirichlet
boundary conditions are imposed along �=0 and Neumann boundary conditions are forced
on the rest of the boundary. The boundary conditions are such that the exact solution is the
analytical expression given in Equation (44).
For each one of the values of k, the error assessment is performed for a sequence of adapted

meshes. Figure 14 shows examples of adapted meshes for each value of k.
The results are shown in Tables V, VI and VII for k=1; 3 and 4, respectively, and also in

Figure 15. It is worth noting that using the constant �tting (the di�erence between �Clow and
�low, see Figure 15) is relevant specially for k=4, that is, when the singularity pollutes the
error estimate based only on local computations.
In order to analyse the spatial distribution of the estimated error, Figure 16 shows the

histograms describing the occurrences of the values of local (element by element) e�ectivity
indices for both the estimated error and the lower estimate. The example corresponds to the
second mesh obtained for k=1 (with 1637 dof ). An almost uniform distribution is obtained
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Table VII. Example 3, k =4: results in a series of adaptively h-re�ned meshes.

Estimate e2

Dof ‖e‖=‖u‖ ‖eref‖=‖u‖ �+ �upp �low �Clow �ave

220 0.1310 0.1200 0.4449 0.1384 −0:2960 −0:2121 −0:0211
372 0.0587 0.0548 0.4858 0.2090 −0:2626 −0:1863 0.0304
723 0.0312 0.0297 0.5364 0.2418 −0:2603 −0:1917 0.0477
3297 0.0126 0.0122 0.4800 0.2293 −0:2346 −0:1694 0.0491
6859 0.0077 0.0076 0.4154 0.2440 −0:1790 −0:1211 0.0770
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Figure 15. Example 3: performance of the estimates following an adaptive h-re�nement for
k =1 (left), k =3 (centre) and k =4 (right).
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Figure 16. Example 3: Histogram representing the occurrences of the local e�ectivity index
for e2 (left) and for the proposed strategy (right).

since the values are close to 100%. As expected, the second Bank and Weiser estimator e2
produces local estimates which overestimate almost everywhere the exact error. The local
corrected estimates, as expected, underestimate the exact error. The bound property for the
global error is then reproduced locally in most elements.
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7. CONCLUDING REMARKS

A simple postprocessing strategy has been presented to recover lower bound estimates from
standard residual estimators producing upper bounds of the error. The main idea is to smooth
the discontinuous estimate eest and to obtain a continuous approximation econt to the reference
error eref . A lower bound of the error is computed using econt.
For the pure di�usion problem (when the reaction term in the PDE vanishes) the estimate

eest is determined up to a local (element by element) constant. In order to improve the
postprocessing in this situation the local arbitrary constants are found such that the sharpest
lower bound is obtained.
Numerical experiments show that the proposed strategy furnishes sharp lower estimates, of

better quality than the original upper ones.
The presented strategy may be used in the framework of error estimation for outputs of

interest, where upper and lower bounds of the energy error measure are required.
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Abstract

A new residual type flux-free error estimator is presented. It estimates upper and lower bounds of the error in energy

norm. The proposed approach precludes the main drawbacks of standard residual type estimators, circumvents the

need of flux-equilibration and results in a simple implementation that uses standard resources available in finite element

codes. This is specially interesting for 3D applications where the implementation of this technique is as simple as in 2D.

Recall that on the contrary, the complexity of the flux-equilibration techniques increases drastically in the 3D case. The

bounds for the energy norm of the error are used to produce upper and lower bounds of linear functional outputs, rep-

resenting quantities of engineering interest. The presented estimators demonstrate their efficiency in numerical tests pro-

ducing sharp estimates both for the energy and the quantities of interest.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Error estimation; Error bounds; Functional outputs; Engineering outputs; Goal-oriented error estimation; Residual-based

estimators

1. Introduction

Assessment of functional outputs of the solution (goal-oriented error estimation) in computational

mechanics problems is a real need in standard engineering practice. In particular, end-users of finite element

codes are interested in obtaining bounds for quantities of engineering interest. Techniques providing these
bounds require using error estimators in the energy norm of the solution. Bounds for quantities of interest

(functional outputs) are recovered combining upper and lower bounds of the energy error for both the ori-

ginal problem (primal) and a dual problem (associated with the selected functional output) [1–3].
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The need of obtaining reliable upper and lower bounds of the error has motivated the use of residual

error estimators, which are currently the only type of estimators ensuring bounds for the error. Classical

residual type estimators, which provide upper bounds of the error, require flux-equilibration procedures

to properly set boundary conditions for local problems [4,2]. Flux-equilibration is performed by a complex

algorithm, strongly dependent on the element type and requiring a data structure that is not natural in a
standard finite element code.

The idea of using flux-free estimates, based on the partition-of-the-unity concept and using local subdo-

mains different than elements, has been already proposed in [5–7]. The main advantage of this approach is

the simplicity of the implementation. Obviously, this is specially important in the 3D case. The boundary

conditions of the local problems are trivial and the usual data structure of a finite element code is directly

employed. Recently, in [8], the flux-free estimates have been compared with the standard hybrid-flux esti-

mates in terms of both their sharpness (effectivity) and their computational efficiency. The main conclusion

of this investigation is that in most of the test cases the hybrid-flux estimates are more accurate while the
overall computational cost is lower for the flux-free estimates.

This paper introduces a new flux-free error estimator improving the effectivity of previous approaches

and with a further simplification in the implementation. The remainder of the paper is structured as fol-

lows. In Section 2, the model problem is described. The development of this technique is motivated by

the need of assessing and bounding the error of the functional outputs of the solution. Then, in Section

3, a procedure to obtain upper and lower bounds of the energy norm is presented. Section 4 is devoted to

analyze the features of the proposed estimates, including proofs of the main properties. In Section 5 the

estimates introduced here are compared with previously published flux-free techniques. The energy norm
estimates are used in Section 6 to assess the error in quantities of interest. Computational aspects of the

proposed methodology and some implementation details are discussed in Section 7. Finally, in Section 8,

the different estimators are used in four numerical examples, from a simple 2D thermal problem to a 3D

mechanical test.

2. Statement of the problem

2.1. Model problem

Let X � Rnsd be an open, bounded domain with piecewise linear boundary and nsd the number of spatial

dimensions. Moreover, oX is divided in two disjoint parts CD and CN such that CN [ CD ¼ oX, CN \ CD ¼ ;
and CD is a non-empty set. Let u be the solution of the linear elasticity problem,

�r � rðuÞ ¼ s in X;

rðuÞ � n ¼ t on CN ;

u ¼ uD on CD;

8><>: ð1Þ

where t and uD are the imposed traction and boundary displacements, respectively.

The weak solution of this problem is u 2 U verifying

aðu; vÞ ¼ lðvÞ 8v 2 V; ð2Þ
where

aðu; vÞ ¼
Z
X
rðuÞ: eðvÞdX; lðvÞ ¼

Z
X
s � vdXþ

Z
CN

t � vdC. ð3Þ
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The usual solution and test spaces are defined U ¼ fu 2 ½H1ðXÞ�nsd ; ujCD
¼ uDg and

V ¼ fv 2 ½H1ðXÞ�nsd ; vjCD
¼ 0g, where H1 is the standard Sobolev space of square integrable functions

and first derivatives. The bilinear form a(Æ,Æ) induces the energy norm, which is denoted by kÆk, that is,
kvk2 ¼ aðv; vÞ.

The finite element interpolation spaces UH � U and VH � V are associated with a finite element mesh
of characteristic sizeH and degree p for the complete interpolation polynomial base. The geometric support

of the elements for a given mesh are open subdomains denoted by Xk, k = 1, . . .,nel, where X ¼ [kXk. It is

also assumed that different elements do not overlap, that is, Xk \ Xl = ; for k 5 l.

Then, the finite element solution uH which is an approximation to u, lies in the finite dimensional space

UH and verifies

aðuH ; vÞ ¼ lðvÞ 8v 2 VH . ð4Þ

2.2. Error equations and reference error

The goal of a posteriori error estimation is to assess the accuracy of the finite element solution uH, that is,
to evaluate and measure the error, e :¼ u � uH, which belongs to V, either in the energy norm kek, or in a

quantity of interest lOðeÞ.
The global equation for the error is recovered from (2) replacing the exact solution u by uH + e and using

the linearity of the first argument of a(Æ,Æ)

aðe ; vÞ ¼ lðvÞ � aðuH ; vÞ ¼: RP ðvÞ 8v 2 V; ð5Þ
where RP(Æ) stands for the weak residual associated to the finite element approximation uH.

In practice, the exact error e is replaced by a reference error, eh, lying in a finite dimensional space Vh

much richer than the original finite element space VH . That is, the exact solution u is replaced by the

reference (or truth) solution uh; consequently, u � uh = uH + eh. The reference error is the projection of

the exact error into the reference space, that is, eh 2 Vh is the solution of the problem

aðe h; vÞ ¼ RP ðvÞ 8v 2 Vh. ð6Þ
The direct computation of eh is computationally unaffordable because the size of the system of equations

is the dimension of Vh. The idea behind any implicit residual type error estimator is to solve a set of local

problems instead of the global problem (6). In each of these local problems, boundary conditions must be

properly defined in order to obtain a good approximation of the error and to ensure solvability.

2.3. Estimation of outputs of interest

Attention is usually centered in bounding output quantities lOðuÞ, where lOð�Þ is a linear functional, see

for instance [1,9,10,3,11]. These strategies introduce a dual (or adjoint) problem with respect to the selected

output. The weak form of the dual problem reads: find w 2 V such that

aðv ;wÞ ¼ lOðvÞ 8v 2 V.

The finite element approximation of the dual problem is wH 2 VH such that

aðv ;wHÞ ¼ lOðvÞ 8v 2 VH . ð7Þ
Finally, the dual reference error is �h 2 Vh, such that

aðv ; �hÞ ¼ lOðvÞ � aðv;wHÞ ¼: RDðvÞ 8v 2 Vh; ð8Þ
where RD is the weak residual associated with wH.
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If v is replaced by eh in (8), then using Galerkin orthogonality and the parallelogram identity, the follow-

ing representation of lOðehÞ can be obtained

lOðehÞ ¼ aðeh; �hÞ ¼ 1

4
jeh þ 1

j
�h

���� ����2 � 1

4
jeh � 1

j
�h

���� ����2 ð9Þ

for any arbitrary scalar parameter j. To simplify the notation the arguments in the squared norms of the

r.h.s. in (9) are denoted by z�h ¼ jeh � 1
j �h.

In fact, in order to bound the output of the error, lOðehÞ, the r.h.s. of (9) indicates that it is sufficient to

bound the energy norm of zþh and z�h , (i.e. the energy norm of linear combinations of eh and �h).
Define Eu[v] and El[v] as the upper and lower bound of kv2k, respectively. Note that Eu[v] and El[v] are

not functions; instead, it is a convenient notation of the upper and lower bounds of kvk2. Thus, once the
bounds for kz�h k2 are computed, namely

El½z�h � 6 kz�h k2 6 Eu½z�h �;
the output of the error is readily bounded as

1

4
El½zþh � �

1

4
Eu½z�h � 6 lOðehÞ 6 1

4
Eu½zþh � �

1

4
El½z�h �. ð10Þ

This procedure is summarized in Fig. 1 where bounds for the output of interest of the reference approx-

imation, lOðuhÞ, are also shown: lOðuH Þ is added to each term of inequality (10). Next section introduces a

methodology to obtain both upper and lower bound error estimates in energy norm. This approach is then

used to compute Eu½zþh �, Eu½z�h �, El½zþh � and El½z�h �.

Fig. 1. Strategy to obtain bounds for the quantity of interest lOðuhÞ.
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3. Estimation of the energy norm of the error

In this section, error estimates yielding upper and lower bounds of the energy norm are presented. For

the sake of simplicity, the presentation concerns only the primal problem. The methodology is general and

it is also applicable to the dual problem or to linear combinations of both.

3.1. Definitions and preliminaries

Let xi, i = 1, . . .,nnp denote the vertices of the elements in the computational mesh (thus linked to UHÞ
and /i the corresponding linear (or bilinear or trilinear) shape functions, which are such that /i(xj) = dij.
The support of /i is denoted by xi and it is called the star centered in, or associated with, vertex xi.

It is important to recall that the linear shape functions based on the vertices are a partition of unity.

Using this essential property and the linearity of the weak residue RP(Æ), defined in (5), for every
v 2 ½H1ðXÞ�nsd the following equality holds

RP ðvÞ ¼ RP
Xnnp
i¼1

/iv

 !
¼
Xnnp
i¼1

RP ð/ivÞ. ð11Þ

Note that RP(/iv) vanishes if supp v \ xi = ;, because xi is the support of /i. Therefore, the residue is

decomposed into local contributions over each star. This basic property is the key idea to define residual

estimators based in stars. Similar approaches have been used in Refs. [12,5–7].

Let Vh
xi , and Vh

xi denote the local restrictions of the reference and finite element spaces to the star xi,

that is,

Vh
xi :¼ Vh \ ½H1ðxiÞ�nsd and VH

xi :¼ VH \ ½H1ðxiÞ�nsd .
Formally any function v 2 Vh

xi (in particular, v 2 VH
xi � Vh

xi ) is not defined in the whole domain X but

only in the star xi. However, here any v 2 Vh
xi is naturally extended to X by setting the values outside xi to

zero. Thus, functions in Vh
xi are continuous in xi but generally discontinuous across the boundary of the

star xi.

The local restriction Vh to the element Xk, V
h
Xk

:¼ Vh \ ½H1ðXkÞ�nsd , is also extended to X in the same

way. This induces the broken space, namely

Vh
brok :¼ �nel

k¼1
Vh

Xk
.

Note that functions in Vh
brok may present discontinuities across the inter-element edges (or faces) and

that Vh
xi � Vh

brok.

The bilinear form a(Æ,Æ) and the energy norm are generalized to accept broken functions in its arguments;

that is, for v and w 2 Vh
brok,

aðv ;wÞ :¼
Xnel
k¼1

aXk ðv;wÞ and kvk2 :¼
Xnel
k¼1

kvk2k ;

where aXk ð�; �Þ is the restriction of the bilinear form a(Æ,Æ) to the element Xk and kvk2k ¼ aXk ðv; vÞ.
For further developments it is also necessary to introduce the nodal projections of any function in V

onto the finite element space, VH , and the reference space, Vh. That is, pH : V ! VH such that

pHvðx̂iÞ ¼ vðx̂iÞ where x̂i denote every node on the finite element mesh, and ph : V ! Vh such that

phvðx̂iÞ ¼ vðx̂iÞ where x̂i denote now the nodal points of the reference mesh.
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3.2. Upper bound estimate of the reference error

The strategy to compute upper bound estimates of the reference error, Eu[eh], consist in, first, the eval-

uation of the finite element solution uH, which is necessary to compute the residue RP and, second, the ap-

praisal of the local estimates ~ex
i 2 Vh

xi solving problems in each star xi

axið~exi
; vÞ ¼ RP ð/iðv� pHvÞÞ 8v 2 Vh

xi ; ð12Þ
where awið�; �Þ is the restriction of the bilinear form a(Æ,Æ) to the star xi. Then, adding the local estimates,

which have been extended into Vh
brok, a global estimate ~e 2 Vh

brok is obtained,

~e :¼
Xnnp
i¼1

~ex
i ð13Þ

and the upper bound of the energy norm of the reference error is recovered computing the norm of the esti-

mate ~e, that is, Eu½eh� :¼ k~ek2 P kehk2. Fig. 2 describes this strategy in four steps.

Note that the error estimator described above does not require any computation of fluxes (stresses) along

the boundary of the elements (it is flux-free).

Remark 1. In the r.h.s. of (12) the projection pH has been introduced in order to equilibrate the local

problem and ensure its solvability. This is analyzed in Section 4.1. However, for scalar problems and

mechanical problems with high-order elements (at least quadratic) the r.h.s. does not require the projection.

That is, Eq. (12) reduces to

axið~exi
; vÞ ¼ RP ð/ivÞ 8v 2 Vh

xi .

Remark 2. In Section 7 another expression for the r.h.s. of (12) is proposed to drastically simplify the prac-

tical implementation of this estimator.

3.3. Lower bound estimates

The upper bound estimate of the squared energy norm, Eu[eh], is associated with the estimate ~e of the

error function. The upper bound property is intrinsically related with the broken (discontinuous) nature

Fig. 2. Upper bound for the squared energy norm of the reference error.
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of ~e. On the contrary, a lower bound estimate is easily recovered from a continuous estimate of the error

function, see [13]. Thus, once ~e is obtained, a continuous estimate of the error function, ~econt, is computed

by simple post-processing. Two different alternatives can be considered to compute ~econt from ~e. First, the
strategy presented in detail in [13] and valid for any discontinuous estimate ~e (discontinuous across inter-

element edges or faces) can be readily implemented. It averages the discontinuities of the function across
inter-element edges/faces and produces a continuous function that belongs to Vh. Second, the weighting

strategy, where the continuous estimate is obtained from

~econt :¼ ph
Xnsp
i¼1

/i~ex
i

 !
. ð14Þ

This approach uses the fact that local estimates ~ex
i
are continuous in each star. The discontinuities of ~ex

i

on the boundary of each star xi are smoothed by multiplying by /i, which vanishes along the boundary of

xi. Consequently, this is the natural choice for the estimates presented in this paper. The projection into the

reference mesh Vh ensures that the evaluation of RP ð~econtÞ is easily performed. Note that /i~ex
i
may not be-

long to Vh.

For both averaging strategies, a lower bound, El[eh], of the energy norm of the reference error is obtained

from ~econt as

El½eh� :¼ ðRP ð~econtÞÞ2
k~econtk2

6 kehk2. ð15Þ

Moreover, in order to improve the quality of the estimate the global enhancement strategy proposed in

[14] can be implemented. First, ~eG 2 VH is computed solving

að~eG; vÞ ¼ �að~econt; vÞ 8v 2 VH ð16Þ
and then, the lower bound given in (15) is improved using k~eGk2 as

EG
l ½eh� :¼

ðRP ð~econtÞÞ2
k~econtk2 � k~eGk2 6 kehk2. ð17Þ

This strategy is summarized in Fig. 3.

Fig. 3. Lower bounds for the squared energy norm of the error.
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Remark 3. The evaluation of ~eG from Eq. (16) is equivalent to the resolution of a system of equations with

the same matrix used to compute uH, see Eq. (4).

4. Analysis and properties of the proposed estimates

The upper bound estimate Eu[eh] is obtained without any flux recovery or flux splitting technique. The

effect of the flux jumps across each edge of the mesh is implicitly taken into account because the support of

the local problems are the stars, which include the inter-element edges/faces. There is no need to compute
and postprocess fluxes of the finite element solution, uH, along the inter-element edges/faces. Thus, the pro-

posed estimate has two very attractive features:

(1) there is no need to compute fluxes and flux jumps along the element boundaries, and

(2) there is no need to perform any flux equilibration.

Consequently, it is especially well suited to assess the error in a 3D framework, where the cost of com-

puting the boundary fluxes and their equilibration is usually extremely large. Moreover, it is also important
to notice that flux-free estimators only require the standard data structure already present in any standard

finite element code. In particular, there is no need to have structured the information on edges/faces for the

evaluation of the fluxes. The remainder of this section is devoted to analyze the main properties of the esti-

mates introduced above.

4.1. Solvability of the local error equation

The local Eq. (12) is solved in each star xi in order to compute the local estimate ~ex
i
. Note that the r.h.s.

term of (12), RP ð/iðv� pHvÞÞ, does not coincide with the obvious decomposition of the residue given in Eq.

(11), namely

axið~exi
; vÞ ¼ RP ð/ivÞ 8v 2 Vh

xi . ð18Þ
The term RP(/iv) has been replaced in (12) by RP(/i(v � pHv)). This is done to ensure the solvability of

the local equation.

Theorem 4. The local problem for the estimate ~ex
i
,

axið~exi
; vÞ ¼ Rpð/iðv� pHvÞÞ 8v 2 Vh

xi

is solvable.

This Theorem is based on the following one, which can be found in [15, Thm. 9.2.30],

Theorem 5. Let V be a Hilbert space and a(Æ,Æ) be a bilinear form acting on V�V. Let also

V ¼ ker a�cV be a decomposition of V, that is, for any given v 2 V, there exists a unique pair

ðva; v̂Þ 2 ker a�cV such that v ¼ va þ v̂, where

ker a :¼ fva 2 Vjaðva;wÞ ¼ 0 8w 2 Vg.
Assume also that the bilinear form a(Æ,Æ) is coercive on cV, that is

9c > 0 such that aðv̂; v̂Þ P ckv̂k2 8v̂ 2 cV.
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Then, the variational problem: find u 2 V such that

aðu; vÞ ¼ lðvÞ 8v 2 V

is solvable if and only if the following compatibility condition holds:

lðvÞ ¼ 0 8v 2 ker a.

Solvability of a variational problem depends on the verification of the compatibility condition for the

functions in the kernel of the bilinear operator. Thus, solvability of Eq. (12) depends on the model problem

at hand. Here the mechanical problem is discussed but the following remark is concerned with scalar

equations.

Remark 6. Consider the scalar diffusion–reaction equation. The bilinear form for this problem is

aðu; vÞ ¼
Z
X
mru � rvþ luvdX

for a strictly positive real coefficient m 2 L1ðXÞ and a non-negative real coefficient l 2 L1ðXÞ, and its

restriction to a star xi is, as previously, denoted by axiðu; vÞ. A strictly positive reaction term in axiðu; vÞ
ensures the solvability of local Eq. (12) since the ker axi ¼ ;. For ljxi ¼ 0, the kernel of the bilinear oper-

ator axið�; �Þ is the one dimensional space of constants, P0ðxiÞ. Then, Eq. (12) is solvable if and only if the

compatibility condition holds, namely

RP ð/icÞ ¼ cRP ð/iÞ ¼ 0 8c 2 P0ðxiÞ;

which follows from the orthogonality of the primal residual to the finite element space VH , since /i 2 VH .

The bilinear form for the elasticity problem is defined in (3) and the kernel of its restriction to xi, axið�; �Þ,
is defined by the solid rigid motions, that is, the zero energy modes. In 1D, the rigid body motions are only

translations, that is, the one dimensional space of constants, P0ðxiÞ. In this case, as in the scalar (thermal)
problem, for c 2 P0ðxiÞ, RP ð/icÞ ¼ cRP ð/iÞ ¼ 0 due to the Galerkin orthogonality and therefore the com-

patibility equation holds and Eq. (12) is solvable.

However for 2D and 3D mechanical problems, the solid rigid motions include also rotations. For in-

stance in a 2D setup, the kernel of axið�; �Þ is a space of three dimensions generated by two translations

tx and ty and one rotation h. The rotation is a linear function and consequently /ih does not always belong

to VH (for instance, for linear triangular elements, /ih 62 VH ), and hence RP(/ih) is not necessarily zero.

Thus, since the compatibility condition does not hold in general, it cannot be guaranteed that Eq. (12) is

solvable. From a mechanical viewpoint, the forces associated with RP(/ih) are not equilibrated (the sum
of forces is zero but the sum of moments does not vanish).

For domains with piecewise linear boundaries, a natural way to circumvent this problem is to consider

higher-order Lagrange elements. If /i are first-order Lagrange (linear, bilinear or trilinear) shape functions

associated to the set of vertices of the finite mesh, since h is also a linear combination of first-order

Lagrange shape functions then /ih 2 VH and thus the compatibility condition is verified. Thus, Eq. (12)

is solvable.

However, this is no longer valid for first-order Lagrange elements nor for domains with, curved bound-

aries where rotation, h, is not characterized by a linear combination of first-order shape functions (recall
that an isoparametric transformation is used for curved elements). In this case, an alternative is to correct

the r.h.s. of (12) to ensure that the compatibility condition is verified also for rotations.

Since RpðvÞ ¼ RP ðv� pHvÞ for all v 2 V by Galerkin orthogonality, the partition defined by (11) can be

redefined as
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RP ðvÞ ¼
Xnnp
i¼1

RP ð/iðv� pHvÞÞ;

which leads to Eq. (12). In this case, any rigid solid motion vrm belongs to VH , thus vrm � pHvrm = 0 and

consequently problem (12) is solvable.

4.2. The upper bound property

The following results summarize the basic property that most residual type error estimators based in a

flux-equilibration technique verify, see Refs. [16,17], and also proves the upper bound property of this type

of estimates.

Lemma 7. Any estimate ~e 2 Vh
brok verifying the weak error equation

að~e; vÞ ¼ RP ðvÞ 8v 2 Vh ð19Þ

is such that the norm of ~e is an upper bound of the energy norm of the reference error, that is

k~ek2 P kehk2.

Proof. First the following trivial expansion is performed

0 6 keh � ~ek2 ¼ kehk2 þ k~ek2 � 2að~e; ehÞ.
Now, replacing v by eh in (19) and using equality RP ðehÞ ¼ kehk2, see (6), the upper bound property is

obtained as follows

0 6 keh � ~ek2 ¼ kehk2 þ k~ek2 � 2RP ðehÞ ¼ k~ek2 � kehk2. �
Thus, to prove that Eu[eh] is an upper bound of the energy norm of the error, it is only necessary to check

that the global estimate ~e, defined in (13), verifies Eq. (19).

Theorem 8. The estimate ~e ¼Pnnp

i¼1~e
xi
, where ~ex

i
is the solution of the local problem given in (12), is such that

Eu½eh� ¼ k~ek2 P kehk2.

Proof. Using Eqs. (12) and (13) together with Galerkin orthogonality

að~e; vÞ ¼
Xnnp
i¼1

að~exi
; vÞ ¼

Xnnp
i¼1

axið~exi
; vÞ ¼

Xnnp

i¼1

RP ð/iðv� pHvÞÞ ¼ RP
Xnnp

i¼1

/iðv� pHvÞ
 !

¼ RP ðvÞ � RP ðpHvÞ ¼ RP ðvÞ 8v 2 Vh.

And the proof is concluded using Lemma 7. h

4.3. Lower bound by post-processing

The following theorem, see [13] for a detailed proof, shows that every continuous function yields a lower

bound of the energy norm of the error. In particular those obtained by post-processing as indicated in Sec-

tion 3.3. Obviously, for an arbitrary estimate ~econt, the corresponding lower bound may have a very poor

quality. The best choice for ~econt is either e or eh, in order to obtain El equal to kek2 or kehk2. Therefore, to
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obtain sharp lower bounds, the estimate ~econt must be a good approximation of the actual error (either exact

or reference).

Theorem 9. For any ~econt 2 V, a lower bound of the energy norm of the exact error is recovered as

0 6 El½e� :¼ ðRP ð~econtÞÞ2
k~econtk2

6 kek2.

Moreover, if ~econt 2 Vh � V, the lower bound is also a lower bound with respect to the energy norm of the

reference error, that is,

0 6 El½eh� :¼ ðRP ð~econtÞÞ2
k~econtk2

6 kehk2 6 kek2.

4.4. Enhancing the lower bound

The continuous function ~econt is obtained by performing only local computations, consequently the cor-

responding estimate El does not account for pollution errors. The unestimated part of error, e� ~econt in-
cludes the pollution effects and it is denoted as global error. In order to assess pollution, the equation

for the global error is solved on the coarse mesh following the methodology proposed in [14]. Thus,
~eG 2 VH is computed using Eq. (16) and the enhanced lower bound estimate, EG

l ½eh�, is obtained using

(17). The following theorem states that EG
l ½eh� is also a lower bound of the squared error energy norm.

Theorem 10. Let ~eG 2 VH be the solution of

að~eG; vÞ ¼ �að~econt; vÞ 8v 2 VH ;

where ~econt 2 Vh is any continuous estimate. Then

EG
l ½eh� :¼

ðRP ð~econtÞÞ2
k~econtk2 � k~eGk2 6 kehk2.

Proof. Let ~eGcont :¼ ~econt þ ~eG, thus using Theorem 9,

ðRP ð~eGcontÞÞ2
k~eGcontk2

6 kehk2.

First, the residue is modified as

RP ð~eGcontÞ ¼ RP ð~econtÞ þ RP ð~eGÞ ¼ RP ð~econtÞ;
because the weak residue vanishes for every function in the finite element space VH (Galerkin orthogonal-

ity). And second, the proof is completed replacing the denominator by

k~eGcontk2 ¼ k~econtk2 þ k~eGk2 þ 2að~econt;~eGÞ ¼ k~econtk2 þ k~eGk2 � 2að~eG;~eGÞ ¼ k~econtk2 � k~eGk2;
where Eq. (16) is used replacing v by ~eG. h

It is worth noting that the non-enhanced lower bound El[eh] is also an error estimate. The computation

of ~eG and EG
l ½eh� is only performed to improve the quality of the error assessment: the value of the enhanced

estimate is larger and the lower bound property is conserved. Therefore, the enhanced estimate, EG
l ½eh�, is

sharper.
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5. Comparison with other existing methods

Refs. [5–7] use apparently similar techniques to obtain upper bounds of the error in the context of a sca-

lar model problem. This section is devoted to compare these techniques with the approach proposed in this

paper. The rationale in [5–7] is to decompose the bilinear form a(Æ,Æ) in a sum of local contributions asso-
ciated with each star. That is, weighted local bilinear forms aw

ið�; �Þ are introduced such that

aðu; vÞ ¼
Xnnp
i¼1

Z
xi
wirðuÞ: eðvÞdX ¼:

Xnnp
i¼1

aw
iðu; vÞ; ð20Þ

where the weights wi account for the overlapping of the stars verifying the partition of the unity property:

Xnnp
i¼1

wi ¼ 1.

The local norm induced by aw
ið�; �Þ is denoted by k � kwi , that is, kvk2wi :¼ aw

iðv; vÞ.
Two different choices for wi have been considered. In [6], for each element Xk of the star x

i, the proposed

weight is wijXk = (1/rk) where rk is the number of vertices of the element Xk. In [5,7], the local weights are

the shape functions, wi = /i.
Once the bilinear form is decomposed into local contributions, the local estimates êx

i 2 Vh
xi are com-

puted solving the local equation

aw
iðêxi

; vÞ ¼ RP ð/iðv� pHvÞÞ 8v 2 Vh
xi . ð21Þ

Remark 11. In fact, in [5–7] the r.h.s. of (21) does not include the projection pHv . This is because these

papers are only concerned with scalar (thermal) problems and, consequently, the solvability issues discussed
in Section 4.1 are not relevant.

The upper bound of kehk2 is obtained adding the local weighted norms of êx
i
, that is

bEu½eh� :¼
Xnnp
i¼1

kêxik2wi P kehk2.

The strategy to obtain the upper bound estimate is summarized in Fig. 4.

Note that Eu[eh] and bEu½eh� are computed with completely different expressions. The former is the norm

of a sum and the latter is the sum of local norms.

The only difference between Eqs. (12) and (21) is the bilinear form in the l.h.s. term. However, the upper

bounds Eu[eh] and bEu½eh� have a different expression and, consequently, the analysis of the properties of the

estimates follows a different strategy.

The following theorem states that bEu½eh� is indeed an upper bound of the squared energy norm of the

error.

Theorem 12. Let êx
i
be the solution of the local Eq. (21) where wi are a partition of unity. Then,

bEu½eh� ¼
Xnnp

i¼1

kêxik2wi

is an upper bound of the squared energy norm of the reference error, namely, bEu½eh� P kehk2.
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Proof. The decomposition of the bilinear form a(Æ , Æ) defined in (20) leads to the following decomposition of

the energy norm

kvk ¼ aðv; vÞ12 ¼
Xnnp
i¼1

aw
iðv; vÞ

 !1
2

¼
Xnnp
i¼1

kvk2wi

 !1
2

.

Moreover, using Eqs. (11) and (21) together with Galerkin orthogonality, the squared energy norm of

the reference error is rewritten as

kehk2 ¼ aðeh; ehÞ ¼ RP ðehÞ ¼
Xnnp
i¼1

RP ð/iðeh � pHehÞÞ ¼
Xnnp
i¼1

aw
iðêxi

; ehÞ.

Combining these two decompositions and with repeated use of the Cauchy–Schwartz inequality the

proof is completed

kehk2 ¼
Xnnp
i¼1

aw
iðêxi

; ehÞ
�����

����� 6X
nnp

i¼1

aw
iðêxi

; ehÞ
��� ��� 6Xnnp

i¼1

kêxikwikehkwi

6
Xnnp

i¼1

kêxik2wi

 !1
2 Xnnp

i¼1

kehk2wi

 !1
2

6 bEu½eh�
1
2kehk. �

Remark 13. The repeated use of the Cauchy–Schwartz inequality in the proof of Theorem 12 suggests that

the obtained upper bound is not as sharp as the upper bound associated with the estimate ~e. The numerical

examples confirm this impression: the estimate Eu[eh] is usually sharper than bEu½eh�.

6. Bounds of the error in outputs of interest

As shown in Section 2.3, in order to estimate bounds of the error in the output of interest lOðehÞ, upper
and lower bounds of kz�h k are necessary instead of bounds of kehk. Recall that z�h ¼ jeh � 1

j �h where the

error of the primal and dual problems are involved. This section presents and discusses the particular

evaluation of Eu½z�h � and El½z�h �. These values, as indicated by Eq. (10), allow to bound kz�h k. Note also that

bounds for the output of interest, lOðuhÞ, can be computed adding lOðuHÞ to each term of inequality

(10).

Fig. 4. Alternative upper bound for the squared energy norm of the reference error.
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6.1. Upper bound computation of kz�h k

In order to determine Eu½z�h � the error estimate of both the primal and dual problem are necessary. Sec-

tion 3 describes the evaluation of the primal error estimate. The same methodology is used to estimate the

dual error, ~�, by adding local estimates ~�x
i 2 Vh

xi , computed from

axiðv ; ~�x
iÞ ¼ RDð/iðv� pHvÞÞ 8v 2 Vj

xi . ð22Þ
Then, the upper bound for kz�h k2, Eu½z�h �, is obtained as summarized in Fig. 5 and based on the following

Lemma.

Lemma 14. The estimate Eu½z�h � :¼ 2k~ek k~�k � 2að~e; ~�Þ is such that

Eu½z �
h � P kz�h k2.

Proof. Since a(Æ , Æ) is a symmetric bilinear form, the following equation for z�h holds,

aðz �
h ; vÞ ¼ jRP ðvÞ � 1

j
RDðvÞ ¼: R�ðvÞ 8v 2 Vh.

Then, according to Lemma 7, an estimate ~z� 2 Vh
brok yields an upper bound of the energy norm of z�

h if

að~z�; vÞ ¼ R�ðvÞ 8v 2 Vh. ð23Þ
Recall now that the primal estimate ~e verifies Eq. (19), see Lemma 7. Similarly, ~� verifies

að~�; vÞ ¼ RDðvÞ 8v 2 Vh.

Thus, introducing ~z� :¼ j~e� ~�=j 2 Vh
brok Eq. (23) holds true. The proof is completed taking j2 ¼ k~�k=

k~ek in

Eu½z�h � ¼ k½~z�k2 ¼ j2k~ek2 þ 1

j2
k~�k2 � 2að~e; ~�Þ ¼ 2k~ekk~�k � 2að~e; ~�Þ. �

Fig. 5. Upper bounds for the squared energy norm of z�h .
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6.2. Lower bound computation of kz�h k

Upper bound estimates of ~z� are also post-processed to obtain ~z�cont as described in Section 3.3. The strat-

egy used to obtain lower bounds of z�h is summarized in Fig. 6.

Theorem 15. Let ~eG 2 VH and ~�G 2 VH be the global enhancements computed from ~econt 2 Vh and
~�cont 2 Vh, respectively. Then, the estimate ~z�cont :¼ jð~econt þ ~eGÞ � ð~�cont þ ~�GÞ=j provides a lower bound of

the energy norm of z�h that is,

EG
l ½z�h � :¼

ðR�ð~z�contÞÞ2
k~z�contk2

6 k~z�h k2.

Proof. The proof is a direct consequence of Theorem 9 if both k~ek and k~�k are non-zero. The case k~ek ¼ 0

or k~�k ¼ 0 is trivial because it implies that either e = 0 or e = 0, and therefore lOðeÞ ¼ 0. In this case, the

obvious lower bound EG
l ½z�h � is 0. h

7. Computational aspects

7.1. Simplified computation of the weak residual

Eq. (12) is in fact the fundamental equation that is solved repeatedly. The weak residual in its r.h.s. is not

trivial to compute because for v 2 Vh, in general, /iv does not belong to the finite element reference space,

Vh. Note that this is also the case for /i(v � pHv), However, the evaluation of the weak residual is drasti-

cally simplified if its argument is projected into Vh.

For every v 2 Vh the following quality holds

RP ðvÞ ¼ RP ðphvÞ ¼ RP ph
Xnnp
i¼1

/iv

 ! !
¼
Xnnp
i¼1

RP ðphð/ivÞÞ.

Fig. 6. Lower bounds for the squared energy norm of z�h .
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Thus the same partition proposed in (11) can be performed with the residual acting on the projection and

consequently, Eq. (12) can be rewritten as find ~ex
i 2 Vh

xi such that

axið~exi
; vÞ ¼ RP ðphð/iðv� pHvÞÞÞ 8v 2 Vh

xi .

The behavior of the estimates obtained either introducing the projection, ph, or not is similar as shown in

the numerical examples. However the implementation of the r.h.s. term described in the previous equation

is much simpler. This is because the argument of RP(Æ) is reinjected in the reference space, which is a stan-
dard finite element space. Moreover, /i 2 Vh and v 2 Vh, thus ph(/iv) is computed by a simple product of

nodal values of /i and v (or v � pHv when necessary).

7.2. Spatial distribution of upper bound estimates

The upper bound estimate Eu[eh] presented in Section 3.2 can be decomposed into positive contributions

of each element of the mesh, thus providing local indicators of the value of the local energy norm of the

reference error kehkk, that is,

Eu½e h� ¼ k~ek2 ¼
Xnel
k¼1

k~ek2k

and k~ekk is the local indicator for kehkk.

8. Numerical examples

In this section, the behavior of the estimates presented above is analyzed both for thermal and mechan-

ical model problems. Some of the selected examples have been used by other authors to assess performance

of similar techniques [1,3,18]. The quality of the error estimates is measured with the index

q :¼ estimated error norm

true error norm
� 1;

where the ‘‘true’’ error is either the exact error (if available) or the reference error. Index q is the usual effec-

tivity index minus one. The accuracy of the error estimate is given by the absolute value of q and the sign
indicates if the estimate is an overestimation (positive q) or an underestimation (negative q) of the true

error. For instance, q = 2% indicates that estimated error is larger than the ‘‘true’’ error with a factor

1.02 and q = �3% means that the ‘‘true’’ error is underestimated by a factor 0.97.

In the remainder of the section q is used to assess the quality of the different estimates, for instance of

Eu[eh]. Note however that Eu[eh] is an estimate of the squared energy norm, but the corresponding q index is

computed using directly the approximation of the error norm (not squared). Moreover, when the exact

error, e, is known it is always used to compute q. Thus, q(Eu[eh]) is defined either as

qðEu½eh�Þ :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Eu½eh�

p
kek � 1 or as qðEu½eh�Þ :¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Eu½eh�

p
kehk ;

depending on the availability of e. This definition is extended to the other studied error estimates,

for instance qðÊu½eh�Þ.
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8.1. Thermal problem with energy norm assessment

First, the scalar benchmark is solved, see [2,3,13]. A squared domain, X = ]0,1[ · ]0, 1[, with Dirichlet

homogeneous boundary conditions on dX and a source term are chosen such that the exact solution, given

in Fig. 7, has the following analytical expression

uðx; yÞ ¼ x2ð1� xÞ2ðe10x2 � 1Þy2ð1� yÞ2ðe10y2 � 1Þ=2000.
The behavior of the energy norm estimates is analyzed comparing the estimates with the exact energy

error norm kek. Two different non-structured and non-uniform meshes have been considered, see Fig. 7.
In both cases, the approximate solution uH is computed using quadrilateral meshes with bilinear interpo-

lation (p = 1), and the reference space is associated with a mesh of size h = H/4 (i.e. each element of the H-

mesh is divided into 16 new elements).

Table 1 presents the q indices for estimates of upper bounds. Two versions of Eu[eh] are shown, one using
the projection ph in the r.h.s. term of the local Eq. (12), as described in Section 7.1 to simplify computations,

and another without the proposed projection. Two versions of qðÊu½eh�Þ are also evaluated. They corre-

spond to the different weighting functions wi for the bilinear form in the l.h.s. of Eq. (21) described in Sec-

tion 5, and formerly proposed in [6] (wi = 1/r) and in [5,7] (wi = /i).
Paradoxically, in this example, the two upper bounds estimates proposed in this paper (and associated

with Eu[eh]) provide negative values of q. This is because all the presented estimates are upper bounds with

respect to the reference error, eh, that is, they are larger than the reference error but not necessarily larger

than the exact error e which is used to compute q. Then, even if kehk2 6 Eu[eh] stands, in this case the esti-

mates are very sharp and we have kehk2 < Eu[eh] < kek2, see Table 1. The estimates corresponding to Êu½eh�
are far from being sharp, they yield an overestimation of more than 60% (for wi = 1/r) and 20% (for

wi = /i).

As expected, the effectivity indices of Eu[eh] are better than the effectivity indices of Êu½eh� (for both ver-
sions wi = 1/r and wi = /i). Table 1 also shows that the proposed projection ph in the r.h.s. term of local Eq.

(12), as described in Section 7.1, does not modify substantially the values of effectivity indices. Recall that

Fig. 7. Thermal problem: exact solution (left) and meshes with 240 d.o.f. (center) and 913 d.o.f. (right).

Table 1

Thermal problem: q indices for upper bound energy norm estimates

d.o.f. kek
kuk (%)

kehk
kek (%) qðEu½eh�Þ without ph (%) qðEu½eh�Þ with ph (%) qðbEu½eh�Þwi ¼ 1=r (%) qðbEu½eh�Þwi ¼ /i (%)

240 24.9 95.9 �3.26 �3.34 63.9 23.4

913 15.1 96.6 �2.59 �2.65 67.8 25.8
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the use of ph simplifies considerably the implementation of the estimator and it is therefore strongly

recommended.

Effectivity indices for lower bound estimates are displayed in Tables 2 and 3. Estimates Ê1½eh� and Ê
G

1 ½eh�
are computed in the same fashion as E1[eh] but using the continuous function resulting of smoothing

ê ¼Piê
xi

instead of ~e, see Eq. (13). Table 3 shows the results obtained applying the global enhancement

discussed in Section 4.4. These results indicate that lower bounds are not sensitive to the original (discon-

tinuous) estimate, which provides the upper bound. All estimates in Table 2 perform similarly. The effect of

the global enhancement is however very important: the effectivity indices improve drastically from Table 2
to Table 3. Recall that in all these tables q is computed with respect to the exact error because the exact

solution is known.

From a qualitative viewpoint, it is worth noting that the estimated error distribution is in good agree-

ment with the exact error distribution, both for the estimate proposed here (Eu[eh]) and for the estimates

proposed in [5–7] (the two versions of Êu½eh�).
Fig. 8 shows the spatial distribution of the local effectivity index and the histogram representing the

occurrences of local effectivity indices. The histogram shows the number of elements with local effectivity
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Fig. 8. Thermal problem: spatial distribution of the local effectivity (top) and histograms for local effectivity (bottom). The results

correspond to Eu[eh] (left), bEu½eh� with wi ¼ /i (center) and EG
1 ½eh� (right).

Table 2

Thermal problem: q indices for lower bound energy norm estimates

d.o.f. qðE1½eh�Þ without ph (%) qðE1½eh�Þ with ph (%) qðbE1½eh�Þwi ¼ 1=r (%) qðbE1½eh�Þwi ¼ /i (%)

240 �19.9 �19.6 �19.9 �31.0

913 �18.9 �18.6 �18.9 �29.6

Table 3

Thermal problem: q indices for lower bound energy norm estimates with global enhancement

d.o.f. qðEG
1 ½eh�Þ without ph (%) qðEG

1 ½eh�Þ with ph (%) qðbEG
1 ½eh�Þwi ¼ 1=r (%) qðbEG

1 ½eh�Þwi ¼ /i (%)

240 �6.58 �7.30 �6.58 �4.67

913 �5.79 �6.50 �5.79 �3.97
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in a given range. The histograms show a good behavior of the estimate if they display a narrow distribution

(all elements have similar local effectivity indices) concentrated around 100%. Observe that the local values

associated with the estimate Eu[eh] proposed here are much more accurate than the values corresponding to

Eu[eh].

Remark 16. Elements with a small local error are not taken into account. Because the areas where error is

small are not interesting from, an adaptive viewpoint. Moreover, in these areas, small defaults in the error

assessment lead to very bad effectivity indices (small absolute error but large relative error). Here, the

criterion used is to suppress in the histograms elements such that the local error norm is lower than

kehk=4nel (being nel the number of elements). That results on neglecting 20% of the elements
approximately.

8.2. Thin plate energy error assessment

A square thin plate with two holes proposed in [19] is considered next. This is a plane-stress linear elastic

problem loaded with a horizontal unit tension along the vertical edges C0, see Fig. 9. Note that the solution

of this problem has corner singularities due to the interior rectangular cut-outs. Due to symmetry, only one

fourth of the domain is analyzed. Values for Young�s modulus and Poisson ratio are set to 1 and 0.3,

respectively.

Two meshes are considered, a coarse uniform mesh with 70 nodes and a finer one with 850 nodes,

adapted heuristically. Error estimates Eu[eh] and EG
1 ½eh� are computed for both cases and results are sum-

marized in Table 4. The effectivity index of the upper bound estimate is similar for the two meshes, and

close to 1.17 (q � 17%). The lower bound effectivity are not as sharp, they are close to 0.3 (q � �70%).

Spatial distributions of error Eu[eh] are displayed in Figs. 10 and 11 for the uniform and adapted meshes,

respectively. Note that they are computed using ph in the r.h.s of Eq. (12). It is worth noting that the error

distributions for Eu[eh] are in good agreement with the reference error. The bad behavior of the local effec-

tivity index in the first mesh, see Fig. 10, is due to the fact that practically all the error is concentrated in a

Fig. 9. Thin plate model problem and meshes with 140 d.o.f. (center) and 1970 d.o.f. (right).

Table 4

Thin plate: upper and lower bounds for kehk
d.o.f. kehk kehk

kuhk (%) qðEu½eh�Þ with ph (%) qðEG
1 ½eh�Þ with ph (%)

140 0.146 12.8 17.9 �68.7

1970 0.040 3.44 17.1 �70.1
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few relevant elements. The histogram in Fig. 11 is narrow because the number of elements in the zones

where the error is relevant is much higher for the second mesh.

Finally, Fig. 12 shows a comparison between the proposed upper bound estimate,
ffiffiffiffiffiffiffiffiffiffiffiffi
Eu½eh�

p
, the flux-free

techniques proposed in [6] (wi = 1/r) and in [5,7] (wi = /i), and a hybrid-flux upper bound estimate, see [4,2].
The upper bound estimates are computed for a series of adapted triangular meshes. As expected all of them

converge. Moreover, this is an example in which the hybrid-flux bound is sharper than the previously pub-

lished flux-free upper bound estimates. In [8] the majority of the examples behave similarly. However, as

already discussed the proposed flux-free bound is as sharp as the hybrid-flux one.

8.3. Assessment of outputs of interest for a crack opening problem

The error estimator presented in this paper is applied to the crack opening problem proposed in [18]. The
specimen is described in Fig. 13. Loads are a uniform pressure in the upper round cavity and a uniform

normal traction pulling the left upper part of the specimen. Displacements are set to zero along CD, around
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Fig. 10. Thin plate: spatial distribution of the reference error (top left), estimate Eu[eh] (top right), and local distribution of the

effectivity indices (q + 1)% (bottom) for the mesh with 140 d.o.f.
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the centered round cavity. The edges of the crack are denoted by C1 (right) and C2 (left). The quantity of

interest is taken as the average opening along the crack, that is,

lOðuÞ ¼ �
Z
C1

u � ndC�
Z
C2

u � ndC.
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effectivity indices (q + 1)% (bottom) for the mesh with 2588 d.o.f.
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Note that the opposite sides of the crack, C1 and C2, have opposite normal unit outward vectors. Thus,

lOðuÞ is the average (integrated) crack opening, it is positive for opening and negative for penetration.

First, the analysis is performed with the coarse uniform mesh shown in Fig. 13. Energy norm error esti-

mates for both the primal and dual problems are summarized in Table 5. Global effectivity indices are of the

same order of magnitude as in the previous example for the upper bound estimates. Although the mesh is

excessively coarse and the error is large (78% for the dual problem), the behavior of the upper bound is

similar and the quality lower bound estimates is better.

Table 6 shows the energy norm estimates for the quantities zþh and z�h . Recall that these linear combina-
tions of the primal and dual errors, z�h ¼ jeh � 1

j �h, are required to assess the error in the quantities of inter-

est. Upper and lower bounds for the quantity of interest lOðuhÞ are obtained by properly combining upper

and lower bounds in the energy norm of zþh and z�h , see Fig. 1. Table 6 indicates that upper bound estimates

of z�h present similar values of effectivity indices as in previous examples. Effectivity for lower bound esti-

mates is again quite poor, specially for z�h with a value of 0.08 (q � �92%). Note however, that this poor

lower bound effectivity does not drastically downgrade bounds of the desired functional output

lOðuhÞ,which arc computed as indicated in Fig. 1 and Section 6. In fact, the obtained bounds are better than

if the trivial lower bounds (equal to zero) are imposed.

Table 5

Crack opening problem: energy norm estimates and effectivity indices

d.o.f. Primal Dual

kehk
kuhk (%) qðEu½eh�Þ (%) qðEG

1 ½eh�Þ (%) k�hk
kwhk

(%) qðEu½�h�Þ (%) qðEG
1 ½�h�Þ (%)

346 20.6 18.1 �48.8 61.6 16.4 �19.6

1344 10.5 14.1 �82.9 25.5 19.1 �63.1

Table 6

Crack opening problem: estimates for z�h

d.o.f. kz�h k qðEu½zþh �Þ (%) qðEG
1 ½zþh �Þ (%) kz�h k (%) qðEu½z�h �Þ (%) qðEG

1 ½z�h �Þ (%)

346 0.666 16.7 �30.9 0.457 18.3 �49.7

1344 0.313 17.2 �74.6 0.232 15.2 �84.4

Γ1

ΓD

Γ2

Fig. 13. Crack opening model problem (left), primal (center) and dual (right) solutions. Uniform mesh with 173 nodes (346 d.o.f).
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In fact, for the coarse case (346 d.o.f.), when upper and lower bounds for lOðuhÞ are computed from data

of Table 6, the following range is obtained: 0.141 6 lOðuhÞ 60.299. Note that the coarse mesh estimate is

lOðuH Þ ¼ 0.161 and the reference one is lOðuhÞ ¼ 0.220. In this case, the mesh is very inaccurate for the de-

sired quantity of interest because the error of lOðuH Þ is 26.8% with respect to the reference one. Neverthe-

less, the estimate 0.220 ± 0.079 is a valuable information.
The same analysis is performed with the mesh (1344 d.o.f.) shown in Fig. 14. This mesh is uniformly

densified and heuristically adapted concentrating elements in the neighborhood of the crack tip. As Table

6 shows, the energy errors are improved (10.5% and 26.4% for primal and dual problems) and the error of

lOðuH Þ is now 5.11% with respect to the reference one. Thus the output gap is reduced since

0.200 6 lOðuhÞ 6 0.249 and the estimate is sharper 0.225 ± 0.025.

Fig. 15 shows the spatial distribution of the element-by-element contributions to lOðehÞ. That is, the local
values for akðeh; �hÞ in every element Xk of the mesh are plotted. Note that this is not an estimate but the

actual reference values. These local contributions may be either positive or negative. In order to better de-
pict the areas that contribute to the error the distribution is represented by both the absolute value and the

sign of the local contributions. The distribution of the absolute value shows that the main contributions to

the error in the quantity of interest are related to elements in the neighborhood of the crack tip. Such a

distribution of the error could guide an adaptive process.

The estimated spatial distribution of the error in the output of interest is also shown in Fig. 15. That is,

the estimated values ~e and ~�, see for instance step 2 in Fig. 5, are used to evaluate akð~e; ~�Þ in every element

Xk of the mesh. The similarity of these distributions demonstrates the good agreement between the true and

the estimated error distributions. Therefore, the introduced error estimators may be fairly used in a goal-
oriented adaptive analysis.

8.4. 3D mechanical problem

As previously observed, this approach easily accommodates a 3D analysis. Note that the modifications

in code for the 3D analysis showed here were developed in four hours starting from the 2D implementation.

Moreover, in 3D the conclusions drawn in [8] from a computational cost point of view are more critical.

Fig. 14. Crack opening: heuristically adapted mesh with 672 nodes (1344 d.o.f.).
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The geometry of the problem is inspired in an arch structure proposed in [20]. The structure is casted in

the bottom bases and loaded with a uniform pressure on one lateral side, see Fig. 16. This figure also shows

the mesh of 174 quadratic 10-noded tetrahedra used for the analysis. The error assessment is also per-

 -1

1

  0.0

 1.00E-05

 5.00E-04

 1.00E-03

 1.76E-03

Reference error Estimated error

Fig. 15. Spatial distribution of the absolute value of the local contributions to lOðehÞ (upper-left and zoom into the relevant zones). The

zoom boxes compare the reference error distribution with the estimated error distribution. The upper-right plot describes the sign of

these local contributions for the reference error distribution.

Fig. 16. 3D model problem (left) and uniform mesh (right) with 174 elements and 401 nodes.
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formed on the mesh shown in Fig. 17, which has been heuristically adapted by refining the elements along

the loaded lateral side where stresses are larger. This adapted mesh contains 695 tetrahedra and 1495 nodes.

In this example, we compute the estimates Eu[eh], and EG
1 ½eh� introduced in this paper using the projection

ph for the r.h.s. term of the residual equation, as described in Section 7.1. This estimate is compared with

Êu½eh� described in [5,7] (with wi = /i).

The reference mesh is obtained dividing each tetrahedron in 8 tetrahedra. Table 7 shows that the esti-

mate proposed here is one order of magnitude sharper than the one introduced in [5,7]. Note that lower

bound estimates present similar effectivities.
Surprisingly, comparing results for the uniform mesh with 1203 d.o.f and the adapted mesh with 4485

d.o.f., the reference error is reduced only from 22.0% to 19.2%. This is due to the fact that the first mesh

is too coarse and the corresponding reference mesh is not accurate enough. Using this reference mesh the

norm of the reference error is 4.13, the exact error is however much larger. A finer reference mesh is built up

by splitting each element into 64 tetrahedra (instead of 8). Due to the size of the problem, for this very fine

reference mesh, the reference error can be estimated but it cannot be computed. The obtained values for the

upper bound estimate Eu[eh] and the lower bound estimate EG
1 ½eh� are 4.34 and 5.24 respectively. Thus the

exact error is approximately 5 (probably larger). That means that for the uniform mesh the error is closer
27% than 22%.

9. Concluding remarks

This paper introduces a new approach to subdomain-based error estimates. The implementation is less

cumbersome compared to hybrid-flux estimators where flux-equilibration algorithms must be implemented.

Moreover, accuracy of the results (sharpness of the upper bound) are drastically improved compared to
other flux-free estimates. In fact, it is at least comparable to hybrid-flux techniques.

The resulting estimates yield guaranteed (and sharp) upper bounds of the reference error. A simple and

painless post-processing yields lower bounds of the error with a little extra computational cost. Upper and

Fig. 17. 3D adapted mesh with 695 elements and 1495 nodes.

Table 7

3D upper and lower bounds for kehk
Mesh d.o.f. kehk kehk

kuhk (%) qðEu½eh�Þ (%) qðEG
1 ½eh�Þ (%) qðbEu½eh�Þ (%)

Uniform 1203 4.13 22.0 8.18 �8.56 53.7

Adapted 4485 3.63 19.2 9.67 �14.4 58.6
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lower bounds of the error axe particularly interesting for assessing the error in quantities of interest, com-

puting bounds for functional outputs.

The local problems that have to be solved in this context are flux-free, that is no flux equilibration is

required. The flux-free property is specially significant when compared with the standard residual type error

estimators (hybrid-flux approach). The local boundary conditions for the local problems in the standard
estimators require flux equilibration and result in costly computations and complex programming, espe-

cially in 3D.

The distribution of the local contributions to the error are also accurately estimated, both for the energy

norm of the error and for the error measured using some functional output. These estimates are therefore

well suited to guide goal-oriented adaptive procedures.
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Abstract

We present a method for the computation of upper and lower bounds for linear-functional outputs of the exact solu-

tions to the two dimensional elasticity equations. The method can be regarded as a generalization of the well known

complementary energy principle. The desired output is cast as the supremum of a quadratic-linear convex functional

over an infinite dimensional domain. Using duality the computation of an upper bound for the output of interest is

reduced to a feasibility problem for the complementary, or dual, problem. In order to make the problem tractable from

a computational perspective two additional relaxations that preserve the bounding properties are introduced. First, the

domain is triangulated and a domain decomposition strategy is used to generate a sequence of independent problems to

be solved over each triangle. The Lagrange multipliers enforcing continuity are approximated using piecewise linear

functions over the edges of the triangulation. Second, the solution of the adjoint problem is approximated over the tri-

angulation using a standard Galerkin finite element approach. A lower bound for the output of interest is computed by

repeating the process for the negative of the output. Reversing the sign of the computed upper bound for the negative of

the output yields a lower bound for the actual output. The method can be easily generalized to three dimensions. How-

ever, a constructive proof for the existence of feasible solutions for the outputs of interest is only given in two dimen-

sions. The computed bound gaps are found to converge optimally, that is, at the same rate as the finite element

approximation. An attractive feature of the proposed approach is that it allows for a data set to be generated that

can be used to certify and document the computed bounds. Using this data set and a simple algorithm, the correctness

of the computed bounds can be established without recourse to the original code used to compute them. In the present

paper, only computational domains whose boundary is made up of straight sided segments and polynomially varying

loads are considered. Two examples are given to illustrate the proposed methodology.
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1. Introduction

Linear elastic analysis is one of the most common tools used in practical computer aided engineering

design. Many materials of practical interest can be adequately modelled as being linear elastic and the phys-

ical considerations underlying this assumption are usually well understood. From the theoretical point of

view, the equations of linear elasticity have been studied in depth and a number of finite element algorithms
exist that can be used to compute approximations to the solutions in an efficient and reliable manner. In

particular, a priori error estimates can be established that guarantee the convergence of the computed solu-

tion to the exact solution when the mesh is suitably refined.

In practice, the computed solutions of the elasticity equations are used to determine approximations to

quantities, or outputs, of practical interest such as displacements, forces or stresses. Once a solution has

been computed on a given mesh, one is interested in determining the accuracy of the approximated outputs.

In order to address this question a number of a posteriori error estimation methods have been proposed

that attempt to quantify the error of the computed solution in either the energy norm [1,3,5,8], or more
relevantly, in functional outputs of practical interest such as displacements or stresses [11,13,15]. These a

posteriori approaches can be coupled with mesh adaptive strategies, e.g. [12], thus producing algorithms

that, in principle, can be used to iterate from initial solution until a preset level of accuracy has been met.

Despite these numerous advances a fundamental issue still remains. Procedures that can be used to

unambiguously certify the accuracy of the computed results have been elusive. The reasons for that are

essentially twofold. First, existing a posteriori error estimation methods are considered to be quite reliable

in practice but still involve uncertain ingredients. In some cases the expressions that bound the error involve

continuity or interpolation constants which are non-computable and can approximated accurately only
when the solution is well resolved [13,15]. In other situations, the bounds are uniform for any level of mesh

refinement, but in practice are only computable by assuming that the exact solution can be locally repre-

sented on a conservatively refined mesh [11,12]. Alternatively, numerical integration may be required to

evaluate integrals involving analytic functions [19]. Second, the above solution algorithms are implemented

in computer codes which can easily have hundredths of thousands of lines of code, the correctness of which

is virtually impossible to verify in practice.

In this paper, we present a method to compute upper and lower bounds for linear outputs of interest of

the exact weak solutions of the linear elasticity equations. The method is described in detail for two dimen-
sions but the extension to the three dimensional case does not seem to present major difficulties. The ap-

proach presented can be interpreted as a generalization of the well-known complementary energy

principle [7]. This principle, which in its original form only yields bounds for the energy norm of the solu-

tion, has been known for many decades. Here, an extension to linear outputs of interest is presented.

The starting point for our bounds procedure are finite element approximations to the displacement solu-

tion and to the output dependent adjoint solution. These approximations are then post-processed to yield

the so called inter-element hybrid fluxes. The hybrid fluxes are then used as data for the computation of

locally equilibrated stress fields. The final expression for the bounds is obtained by calculating appropriate
norms of the stress fields. It is shown that the computed bounds are uniformly valid regardless of the size of

the underlying coarse discretization, but as expected, their sharpness depends on the accuracy of the

approximated solutions. A mesh adaptive procedure is also described which can be used to determine

the bounds to a preset level of accuracy. Many of the components involved in this approach were presented

in [17,18] for scalar equations. In this paper we emphasize those aspects of the method which are particular

to the elasticity equations.
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An attractive feature of the proposed approach is that the piecewise polynomial equilibrated stress-like

fields, which are computed as part of the bound process, can be used as certificates to guarantee the cor-

rectness of the computed bounds. It turns out that given a stress field it is easy to check whether this field

corresponds to a valid certificate, and in the affirmative case it is straightforward to determine the value of

the output that it can certify. In particular, the stress fields need to satisfy continuity of normal tractions
across elements, and membership of an appropriate space.

The idea of a certificate that is computed simultaneously with the solution has many attractive features.

In particular, a certificate consisting of the data set necessary to describe the piecewise polynomial stress-

like fields could be used to document the computed results. We note that exercising the certificate does not

require access to the code used to compute it and can be done with a simple algorithm which does not re-

quire solving any system of equations. A very important point is that, if a certificate meets all the necessary

conditions, which in turn are easy to verify, then there is no need to certify the code used to compute it. In

practice, the size of these certificates depends on the required level of certainty. As expected, we shall find
that high levels of certainty, i.e. small bound gaps, will often require longer certificates (larger data sets)

than those required to certify less sharp claims.

2. Problem definition

The elasticity equations on a general two dimensional polygonal domain X are considered. The bound-
ary, C = oX, is divided into two complementary disjoint parts CD and CN, where essential and Neumann
boundary conditions are imposed, respectively. Furthermore, the boundary CD is assumed to be a

non empty set. The weak formulation of the problem consists of finding the displacements �u 2 U, such
that

að�u; vÞ ¼ lðvÞ 8v 2 V;

where U ¼ fv 2 ½H1ðXÞ�2; vjCD ¼ gDg is the space of admissible displacement fields, V ¼ fv 2 ½H1ðXÞ�2;
vjCD ¼ 0g is the space of test functions, and H1ðXÞ denotes the standard Sobolev space.
The linear forcing functional l: ½H1ðXÞ�2 ! R

lðvÞ ¼
Z
X
f � vdXþ

Z
CN

g � vdC;

contains both the internal forces per unit volume f 2 ½H�1ðXÞ�2 an the Neumann boundary trac-
tions g 2 ½H�1

2ðCNÞ�2, and a: ½H1ðXÞ�2 � ½H1ðXÞ�2 ! R is the symmetric positive definite bilinear form
given by

aðw; vÞ ¼
Z
X
rðwÞ: eðvÞdX.

Here, e(v) is the second order deformation tensor, which is defined as the symmetric part of the gradient
tensor $v, that is, eðvÞ ¼ 1

2
ðrvþ ðrvÞTÞ. The stress tensor r(v), is related to the deformation tensor through

a linear constitutive relation of the form, rðvÞ ¼ C : eðvÞ, where C is the fourth-order elasticity tensor.

Throughout the paper the energy norm induced by the bilinear form a(Æ , Æ) is denoted by kÆk, that is,
kvk2 = a(v,v).
Our goal is to compute bounds for output quantities of interest, �s ¼ ‘Oð�uÞ, where ‘O : ½H1ðXÞ�2 ! R is a

linear continuous functional defined as

‘OðvÞ ¼
Z
X
f O � vdXþ

Z
CN

gO � vdC� aðuO; vÞ ð1Þ
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for given f O 2 ½H�1ðXÞ�2; gO 2 ½H�1
2ðCNÞ�2 and uO 2 ½H�1ðXÞ�2. Note that this form may easily incorpo-

rate, as particular cases, displacements or tractions integrated over arbitrary subdomains or boundary

segments.

For any given uD 2 U we can write �u ¼ uD þ u, where u 2 V is the solution of

aðu; vÞ ¼ lðvÞ � aðuD; vÞ ¼: ‘ðvÞ 8v 2 V ð2Þ
and therefore the output of interest can be rewritten as

�s ¼ ‘OðuDÞ þ ‘OðuÞ.
Working with u 2 V rather than �u has the advantage of avoiding the notational complexity introduced

by the non-homogeneous Dirichlet boundary conditions. Thus, our goal will be to compute bounds for

s ¼ ‘OðuÞ, from which we can easily evaluate the bounds for �s ¼ ‘Oð�uÞ.

3. Output bounds

A key ingredient to our bound procedure, is the reformulation of our output of interest as a constrained
minimization problem. We write the output of interest s ¼ ‘OðuÞ as

s ¼ inf
v2V

‘OðvÞ þ j2ðaðv; vÞ � ‘ðvÞÞ
s.t. aðv;uÞ ¼ ‘ðuÞ 8u 2 V

ð3Þ

for all j 2 R. The above statement can be easily verified by noting that, from (2), the constraint

aðv;uÞ ¼ ‘ðuÞ 8u 2 V is only satisfied when v = u and clearly a(u,u) � ‘(u) = 0. Now, the Lagrangian asso-
ciated with the above constrained minimization problem problem is given by

Lðv;uÞ ¼ ‘OðvÞ þ j2ðaðv; vÞ � ‘ðvÞÞ þ ‘ðuÞ � aðv;uÞ ð4Þ
and problem (3) becomes

s ¼ inf
v2V

sup
u2V

Lðv;uÞ. ð5Þ

A lower bound, s�, for the output, s, can be easily found using the strong duality of convex minimization
and the saddle point property of the Lagrange multipliers as

s ¼ inf
v2V

sup
u2V

Lðv;uÞ ¼ sup
u2V

inf
v2V

Lðv;uÞ P inf
v2V

Lðv; ~uÞ � s� 8~u 2 V; ð6Þ

where in order to obtain sharp bounds, it is important to use a good approximation ~u of the Lagrange mul-
tiplier. Thus, we see from (6), that the problem of computing a lower bound for the output of interest is cast

as an unconstrained minimization problem.

The optimal value of for the Lagrange multiplier is obtained by solving the saddle problem (5) and is

given by u� ¼ j2uþ w where w 2 V is the solution of the problem,

aðv;wÞ ¼ ‘OðvÞ 8v 2 V ð7Þ
called dual or adjoint problem with respect to the selected output ‘Oð�Þ. Note that due to the symmetry of
a(Æ , Æ), the only difference between the primal problem (2) for u, and the dual problem (7) for w, is only in the
forcing data (f O instead of f, gO instead of g and uO instead of uD).
The solutions of the primal and dual problems are approximated by uh and wh respectively, which lie in a

finite element interpolation spaceVh � V, associated with a finite element mesh of characteristic size h and
verify
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aðuh; vÞ ¼ ‘ðvÞ v 2 Vh

and

aðv;whÞ ¼ ‘OðvÞ v 2 Vh.

An approximation to the Lagrange multiplier ~u, is now obtained by setting ~u ¼ j2uh þ wh. We note,
however, that different options are also possible (see for instance [6,14]). With our choice for ~u the optimi-
zation over v in (6), leads to

s� ¼ 1
4

juh þ 1jwh

���� ����2 � 14 ju� 1
j
w

���� ����2. ð8Þ

Remark 1. In the particular case when ‘Oð�Þ ¼ ‘ð�Þ, then s ¼ ‘OðuÞ ¼ kuk2 and also u = w and uh = wh.

In this case, the lower bound we obtain for j = 1, is s� = kuhk2, which implies
kuhk2 6 kuk2.

This is the classical lower bound property of the energy norm of the finite element solution with respect to

the exact solution norm.

An analogous expression for an upper bound, s+, of s, is obtained by replacing ‘OðuÞ by �‘OðuÞ in the
original optimization problem (3) to obtain

�s ¼ inf
v2V

�‘OðvÞ þ j2ðaðv; vÞ � ‘ðvÞÞ
s.t. aðv;uÞ ¼ ‘ðuÞ 8u 2 V.

The optimal multiplier in this case is approximated by ~u ¼ j2uh � wh, and the optimization process

yields

�sþ ¼ 1
4

juh � 1jwh

���� ����2 � 14 juþ 1
j
w

���� ����2
which is equivalent to

sþ ¼ 1
4

juþ 1
j
w

���� ����2 � 14 juh � 1jwh

���� ����2.

Remark 2 (Bounds for the output of the error). If the particular lift of �u is its finite element approximation,
that is uD ¼ �uh, then u is the error in the finite element approximation, u ¼ �u� �uh ¼ e, and uh = 0. In this
case, the previous methodology would lead after some algebra to bounds for s ¼ ‘OðeÞ

s� ¼ � 1
4

je� 1
j
�

���� ����2;
sþ ¼ 1

4
jeþ 1

j
�

���� ����2
where � = w � wh is the error in the finite element approximation of the dual problem.
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Writing together the expressions for the upper and lower bounds we have

1

4
juh þ 1jwh

���� ����2 � 14 ju� 1
j
w

���� ����2 6 s 6 1
4

juþ 1
j
w

���� ����2 � 14 juh � 1jwh

���� ����2.
It is clear that these expressions are non-computable, since they depend on the exact solution of both the

primal and dual problems. However, they illustrate our basic approach to obtaining bounds for outputs of

interest: if we can compute upper bounds kju� ð1=jÞwk2UB for kju ± (1/j)wk2, then, we can write comput-
able expressions for the output bounds as

1

4
juh þ 1jwh

���� ����2 � 14 ju� 1
j
w

���� ����2
UB

6 s 6 1
4

ju� 1
j
w

���� ����2
UB

� 1
4

juh þ 1jwh

���� ����2. ð9Þ

In the next section, we present an approach for computing upper bounds for the energy norm of the

solution of the elasticity equations. This result is then generalized in Section 5 to compute the upper bounds

for the linear combination of the primal and dual functions, ju ± (1/j)w.

4. Upper bounds for the energy norm

Consider the generalized elasticity problem with Neumann and homogeneous Dirichlet boundary con-

ditions written in weak form as: find z 2 V such that

aðz; vÞ ¼ ‘�ðuÞ 8v 2 V; ð10Þ
where

‘�ðvÞ
Z
X
f � � vdXþ

Z
CN

g� � vdC� aðu�; vÞ.

It is clear that any linear combination of the primal and dual solutions, au + bw, a; b 2 R, is the solution

of problem (10) with f � ¼ af þ bf O; g� ¼ ag þ bgO and u� ¼ auD þ buO. In particular, the choice a = j,
b = ±1/j will be used later to obtain the required upper bounds for kju ± (1/j)wk2.
In this section we consider the problem of computing an upper bound for kzk2. We recall that kzk2 can

be obtained as the solution of the optimization procedure

kzk2 ¼ sup
v2V
2‘�ðvÞ � aðv; vÞ. ð11Þ

The above problem is to be considered over an infinite dimensional space of functions which are defined

over the whole domain X. In order to come up with a computable expression for an upper bound of kzk2,
two relaxations are introduced. First, a domain decomposition strategy is used to transform the maximi-

zation problem over functions in X, into a number of independent problems which are defined over sub-
domains (triangles in our case). Second, duality is exploited to transform each of the convex maximization
problems into a feasibility problem for the dual functional which is shown to yield an upper bound for the

optimal solution.

4.1. Domain decomposition

We consider a triangulation of the computational domain X into nel triangles and denote by Xk a gen-

eric triangle, k ¼ 1; . . . ;nel. Let Ch be the set of all the edges in the mesh, and K ¼ Qnel
k¼1½H�1

2ðoXkÞ�2 the
space of integrable tractions in Ch. The set of all the interior edges of the mesh is denoted by CI, that is
Ch = C [ CI. For each edge c 2 Ch a unit normal direction, n

c, is assigned such that, if c is an exterior edge,
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nc coincides with the outward unit normal to C. Similarly, given an element Xk and an edge of this element

c 2 oXk, the outward normal to the element associated to c is denoted by nck. Then, sk is defined as
skjc ¼ nck � nc, that is

skjc ¼ nck � nc ¼
1 if nck ¼ nc;

�1 if nck ¼ �nc.

�
Note that if c = oXk \ oXl, then skjc + sljc = 0.
The broken space cV is introduced by relaxing in V both the Dirichlet homogeneous boundary condi-

tions and the continuity of the functions across the edges of Ch, that is,cV ¼ fv̂ 2 ½L2ðXÞ�2; v̂jXk
2 ½H1ðXkÞ�2 8Xk 2 Xg.

Given a function in the broken space v̂ 2 cV, the jump of v̂ across the mesh edges is defined as
½v̂�jc ¼

v̂jXk
skjc þ v̂jXl

sljc; if c ¼ oXk \ oXl 2 CI;

v̂; if c 2 C;

(
where the definition of the jump depends on the arbitrary choice of the edge normals. Note that if v̂ is a
continuous function verifying the Dirichlet homogeneous boundary conditions, v̂ 2 V, then ½v̂� ¼ 0 in
CI [ CD.
Then, given a broken function v̂ 2 cV, the continuity at inter-elemental edges and Dirichlet homoge-

neous boundary conditions in CD can be enforced weakly through the bilinear form b: cV � K ! R

bðv̂; kÞ ¼
X

c2CI[CD

Z
c
k � ½v̂�dC ¼

Xnel
k¼1

Z
oXknCN

skk � v̂jXk
dC

by imposing bðv̂; kÞ ¼ 0 for all k 2 K. Therefore, the space of test functions V can be recovered as

V ¼ fv̂ 2 cV; bðv̂; kÞ ¼ 0 8k 2 Kg.
Let us denote by Vk the restriction of the broken space cV to the element Xk, that is,

Vk ¼ cVjXk
¼ ½H1ðXkÞ�2. Formally, any function vk 2 Vk is not defined in the whole domain X but only

in the element Xk. In the following, any function vk 2 Vk is naturally extended to X by setting the values
outside Xk to zero. Then, a function v̂ 2 cV can be decomposed as the sum of its restrictions to each element

vk ¼ v̂jXk
2 Vk, that is, v̂ ¼

Pnel
k¼1vk, and cV ¼ 	nel

k¼1Vk.

We can now rewrite the maximization problem of Eq. (11) as a constrained saddle problem defined over

functions in cV and Lagrange multipliers in k as,

kzk2 ¼ sup
v̂2V̂

inf
k2K

Jðv̂; kÞ;

where Jðv̂; kÞ is the quadratic-linear Lagrangian which can be expressed using the local restrictions vk of v̂ as

Jðv̂; kÞ ¼
Xnel
k¼1

Jkðvk; kÞ;

where

Jkðvk; kÞ ¼ 2‘�kðvkÞ � akðvk; vkÞ þ 2bkðvk; kÞ. ð12Þ
Here, the subscript k denotes the restriction of the linear and bilinear forms to the element Xk, that is,

akðw; vÞ ¼
Z
Xk

rðwÞ: eðvÞdX;
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‘�kðvÞ ¼
Z
Xk

f � � vdXþ
Z
CN\oXk

g� � vdC� akðu�; vÞ;

and

bkðv; kÞ ¼
Z
oXknCN

skk � vjXk
dC.

Then, using standard duality arguments an upper bound for kzk2 is obtained as
kzk2 ¼ sup

v̂2V̂
inf
k2K

Jðv̂; kÞ ¼ inf
k2K
sup
v̂2V̂

Jðv̂; kÞ 6 sup
v̂2V̂

Jðv̂; ~kÞ 8~k 2 K. ð13Þ

Clearly, the Lagrange multiplier ~k has to be properly chosen in order to ensure that the resulting max-
imization is bounded from above and that the resulting optimum is accurate. The importance of the weak

imposition of the continuity requirement and the approximation of the Lagrange multiplier, is that once the
Lagrange multiplier is fixed, the lagrangian Jðv̂; ~kÞ decomposes into local elementary contributions, and the
maximization in (13) decomposes into local maximization problems in the elements of the mesh.

In order to simplify the notation, we will rewrite Jkð�; ~kÞ in a simpler way. We note that given a Lagrange
multiplier ~k 2 Ch, the values of ~k in CN do not contribute to Jkð�; ~kÞ. Therefore we can define

~kjCN ¼ g�; ð14Þ
so that,Z

CN\oXk

g� � vk dCþ
Z
oXknCN

sk
~k � vk dC ¼

Z
oXk

sk
~k � vk dC

and therefore,

Jkðvk; ~kÞ ¼ 2
Z
Xk

f � � vk dXþ 2
Z
oXk

sk
~k � vk dC� 2akðu�; vkÞ � akðvk; vkÞ. ð15Þ

Thus the global maximization of Eq. (13) can be decomposed as,

sup
v̂2V̂

Jðv̂; ~kÞ ¼
Xnel
k¼1

sup
vk2Vk

J kðvk; ~kÞ; ð16Þ

allowing to obtain an upper bound for kzk2, maximizing the the local functionals Jkð�; ~kÞ in each element of
the mesh independently.

This local maximization problems, although local, can not be solved exactly because Vk is an infinite

dimensional space. Moreover, if we replaceVk with a finite dimensional subspace, the upper bound prop-

erty is lost.

4.2. Complementary energy relaxation

We consider now the problem of finding computable upper bounds for the local maximization problems
(16), that is, find mk 2 R such that,

sup
vk2Vk

J kðvk; ~kÞ 6 mk; ð17Þ

so that a global upper bound for kzk2 will be recovered as

kzk2 6
Xnel
k¼1

sup
vk2Vk

J kðvk; ~kÞ 6
Xnel

k¼1
mk.
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The upper bounds mk are computed using a standard duality argument which transforms the problem of
finding the maximum over the infinite dimensional spaceVk to a problem of finding a feasible solution in

an appropriate finite dimensional space.

Let Sk denote the space of componentwise square-integrable stress fields in Xk, that is, Sk contains all

the second-order tensors with rij 2 L2ðXkÞ; 8i; j. Then,Seq
k denotes the subset ofSk which contains all the

equilibrated stress fields with respect to f *, ~k and u*, that is, rk 2 Seq
k verifiesZ

Xk

rk : eðvkÞdX ¼
Z
Xk

f � � vk dXþ
Z
oXk

sk
~k � vk dC� akðu�; vkÞ 8vk 2 Vk. ð18Þ

The stress fields in Seq
k are usually referred to as being statically admissible. In addition, we define the

complementary energy of a stress field rk 2 Sk, as the value given by the the functional J ck : Sk ! R,

J ckðrkÞ ¼
Z
Xk

rk : C
�1 : rk dX.

Lemma 1. If ~k is such that Jkðvk; ~kÞ is bounded from above for all vk 2 Vk, then the following duality relation

holds:

sup
vk2Vk

J kðvk; ~kÞ ¼ inf
rk2Seq

k

J ckðrkÞ.

Proof. Let rk 2 Seq
k and vk 2 Vk, then

0 6
Z
Xk

ðrk � rðvkÞÞ: C�1 : ðrk � rðvkÞÞdX

¼
Z

Xk

rk : C
�1 : rk dXþ

Z
Xk

rðvkÞ: eðvkÞdX� 2
Z
Xk

rk : eðvkÞdX

¼ J ckðrkÞ þ akðvk; vkÞ � 2
Z
Xk

rk : eðvkÞdX.

Now, since rk 2 Seq
k Eq. (18) holds true and

2

Z
Xk

rk : eðvkÞdX� akðvk; vkÞ ¼ Jkðvk; ~kÞ;

leading to

0 6 J ckðrkÞ � Jkðvk; ~kÞ;
which implies Jkðvk; ~kÞ 6 J ckðrkÞ.
Now, let �vk be the point at which Jkðvk; ~kÞ is maximum, that is,

k�vkk2k ¼ sup
vk2Vk

J kðvk; ~kÞ

where kvkk2k ¼ akðvk; vkÞ. Moreover, the gradient condition for �vk leads to

akð�vk; vkÞ ¼
Z
Xk

f � � vk dXþ
Z
oXk

sk
~k � vk dC� akðu�; vkÞ 8vk 2 Vk

from where it follows that �rk ¼ rð�vkÞ 2 Seq
k .

N. Parés et al. / Comput. Methods Appl. Mech. Engrg. xxx (2005) xxx–xxx 9



Thus, 8rk 2 S
eq
k ; 8vk 2 Vk

J kðvk; ~kÞ 6 Jkð�vk; ~kÞ ¼ k�vkk2k ¼ J ckð�rkÞ 6 J ckðrkÞ
and the lemma is proved. h

Lemma 1 provides the key to the obtention of the local upper bounds mk. It is sufficient to compute a
statically admissible stress field in r�

k 2 Seq
k , and then evaluate its complementary energy

sup
vk2Vk

J kðvk; ~kÞ ¼ inf
rk2Seq

k

J ckðrkÞ 6 J ckðr�
kÞ ¼ mk. ð19Þ

The remainder of the section is devoted to show that one can chose the statically admissible stress field to

be piecewise polynomial provided that the forcing data f*, g* and the displacement fields u* are piecewise
polynomial functions.

4.3. Upper bound computation

In order to construct the statically admissible stress field required in Eq. (19), it is first necessary to eval-

uate the Lagrange multiplier ~k satisfying the necessary constraints. We will then construct the stress fields r�
k

inside the elements.

4.3.1. Lagrange multiplier approximation

In order to obtain a sharp upper bound, the choice of the Lagrange multiplier is critical. In particular,
the maximization in Eq. (17) must be bounded from above.

From Eq. (15), we note that the Lagrange multiplier ~k is precisely the Neumann boundary condition for
the local problems. That is, the traction distribution applied on the boundary of each element. When inte-

grated over each element these tractions must therefore be equilibrated so that the local problems are solv-

able. This is equivalent to saying that

‘�kðvÞ þ bkðv; ~kÞ ¼ 0 8v 2 Psm; ð20Þ
where Psm, is the space of solid motions which includes any combination of translations and rotation.
Moreover, since the optimal traction distribution is given by the tractions of the exact solution z over
the edges of the elements, the Lagrange multipliers have to be both equilibrated and a good approximation
to the tractions of the exact solution.

There are several known choices for the Lagrange multipliers which are approximations to the contin-

uous tractions of the exact solution z at the inter element boundaries. Here we follow the the strategy pro-
posed by Ladeveze et al. [8].

The approximated Lagrange multiplier is denoted by kh and it is a linear function in each edge of the

mesh verifying

bðv̂; khÞ ¼ aðzh; v̂Þ � ‘�ðv̂Þ 8v̂ 2 cVh
; ð21Þ

where zh is the standard Galerkin finite element approximation of z. We note that for any continuous
v̂; bðv̂; khÞ ¼ 0, and therefore aðzh; v̂Þ � ‘�ðv̂Þ ¼ 0 thus highlighting that zh is indeed the finite element
approximation to z.
The above equations do not determine the Lagrange multiplier kh on CN. Therefore, kh is extended into

CN using Eq. (14).

Lemma 2. If kh verifies the equilibration conditions given in Eq. (21), then the local problems

sup
vk2Vk

J kðvk; khÞ

are bounded from above.
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Proof. The null space of the bilinear form ak(Æ , Æ) is the three dimensional space of the rigid solid motions in
the element Xk (translations and rotations), that is, wk is a rigid solid body motion if and only if

a(vk,wk) = 0, 8vk 2 Vk. Then, Jk(wk,kh) must vanish for any rigid motion wk, otherwise, given a rigid solid

motion wk, for any a 2 R; awk 2 Vk,

Jkðawk; khÞ ¼ 2að‘�kðwkÞ þ bkðwk; ~kÞÞ ¼ aJkðwk; khÞ
and this will lead to an unbounded maximization problem. Let us verify that Jk(wk,kh) = 0 for any wk in the
null space of ak(Æ , Æ).
Since the Lagrange multiplier kh is equilibrated, Eq. (21) is satisfied; thus, for any rigid solid motion wk in

the element Xk

bkðwk; khÞ ¼ akðzh;wkÞ � ‘�kðwkÞ ¼ �‘�kðwkÞ;
since wk 2 cVh

. Therefore,

Jkðwk; khÞ ¼ 2‘�kðwkÞ þ 2bkðwk; khÞ � akðwk;wkÞ ¼ 0. �

4.3.2. Construction of an equilibrated stress field rk 2 Seq
k

Once the Lagrange multipliers kh have been determined, an equilibrated stress field rk 2 Seq
k has to be

evaluated in order to obtain an upper bound for kzk2.
The existence of a piecewise polynomial stress field is established in the following theorem.

Theorem 1. For any given forcing function f �jXk
2 ½PrðXkÞ�2 and any equilibrated Lagrange multiplier

khjoXk
2 ½PpðoXkÞ�2, that isZ
Xk

f � � vdXþ
Z
oXk

skkh � vdC ¼ 0 8v 2 Psm; ð22Þ

there exists at least one dual feasible solution rk 2 Sk ¼ fr; rij 2 L2ðXkÞ 8i; jg, verifyingZ
Xk

rk : eðvÞdX ¼
Z
Xk

f � � vdXþ
Z
oXk

skkh � vdC 8v 2 Vk; ð23Þ

which is piecewise polynomial of degree q in each component, with q P p and q > r.

A constructive proof of this theorem, based on some results presented in [4,9], is given in Appendix A.

Remark 3. For a linear equilibrated stress field (useful for linear applied tractions and constant force

term), the local equilibrated stress fields are uniquely determined. Otherwise, q > 1, there are extra degrees

of freedom associated both to the internal boundaries and to the space of divergence free and trace free

stress fields. This degrees of freedom are used to sharpen the bounds, that is, to minimize the value of

J ckðrkÞ.
The computation of the upper bound is summarized in the box shown in Fig. 1.

5. Bounds for the output of interest s

We note that z� ¼ ju� ð1=jÞw 2 V is the solution of the boundary value problem

aðz�; vÞ ¼ j‘ðvÞ � 1
j
‘OðvÞ 8v 2 V; ð24Þ

which is a particular case of (10) with ‘�ðvÞ ¼ j‘ðvÞ � ð1=jÞ‘OðvÞ.
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Therefore, the approach described in the previous section we can used compute upper bounds for the

energy norm of z� ¼ ju� ð1=jÞw 2 V. These can then be used in expression (9) to yield computable
expressions for the upper and lower bounds for s.

First, we compute approximations uh;wh 2 V by solving,

aðuh; vÞ ¼ ‘ðvÞ 8v 2 Vh;

aðv;whÞ ¼ ‘OðvÞ 8v 2 Vh;

respectively, and set z�h ¼ juh � ð1=jÞwh. Here, we assume that u
D and uO are piecewise polynomial over the

elements of the working triangulation. For the particular case in which uD and uO are the finite element
approximations to u and w, respectively, we will have uh = wh = 0.
Second, using the strategy described in [8], compute Lagrange multipliers by equilibrating the primal and

dual problems, namely, find kuh and k
w
h , such that

bðv̂; kuhÞ ¼ aðuh; v̂Þ � ‘ðv̂Þ 8v 2 cVh
;

bðv̂; kwh Þ ¼ aðv̂;whÞ � ‘Oðv̂Þ 8v 2 cVh
.

Extend kuh and k
w
h at the Neumann boundaries according to kuhjCN ¼ g and k

w
h jCN ¼ gO, respectively. Fi-

nally, set k�h ¼ jkuh � ð1=jÞkwh .
Third, for each element in the mesh, we determine an equilibrated stress field r�

k verifying the equivalent

of Eq. (23). That is, we compute ru
k and r

w
k such thatZ

Xk

ru
k : eðvÞdX ¼

Z
Xk

f � vdXþ
Z
oXk

skk
u
h � vdC 8v 2 Vk;

Z
Xk

r
w
k : eðvÞdX ¼

Z
Xk

f O � vdXþ
Z
oXk

skk
w
h � vdC 8v 2 Vk

and set r�
k ¼ jðru

k � rD
k Þ � ð1=jÞðrw

k � rO
k Þ, where rD

k ¼ rðuDÞjXk
and rO

k ¼ rðuOÞjXk
.

Finally, the upper bound is found as

kz�k2 6
Xnel
k¼1

J ckðr�
k Þ ¼ j2mu þ 1

j2
mw � 2muw � kz�k2UB; ð25Þ

Fig. 1. Upper bounds for the squared energy norm of the error.
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where

mu ¼
Xnel
k¼1

J ckðru
k � rD

k Þ;

mw ¼
Xnel
k¼1

J ckðrw
k � rO

k Þ;

muw ¼
Xnel
k¼1

Z
Xk

ðru
k � rðuDÞÞ: C�1ðrw

k � rðuOÞÞdX.

Introducing expression (25) into (9) leads, after some algebra, to the following expressions for the upper

and lower bounds of s:

sþ ¼ 1
2

sh þ 1
2
muw þ j2

4
ðmu � kuhk2Þ þ 1

4j2
ðmw � kwhk2Þ;

s� ¼ 1
2

sh þ 1
2
muw � j2

4
ðmu � kuhk2Þ � 1

4j2
ðmw � kwhk2Þ;

where sh ¼ ‘OðuhÞ.
Following [10,11], the bounds are optimized with respect to the arbitrary parameter j. The optimal value

is given by �j2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mw � kwhk2

q� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu � kuhk2

q� �
. The resulting procedure to determine the bounds for s

is summarized in the box of Fig. 2.

6. Adaptive mesh refinement

Once upper and lower bounds for the output quantity s are computed, one can compute the bound

average

s ¼ 1
2
ðsþ þ s�Þ ¼ sh þ 1

2
muw

and the bound gap

D ¼ sþ � s� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mu � kuhk2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mw � kwhk2

q
.

The bound average s is a new estimate of the output s, where its error with respect to s can be easily

bounded since

j s � s j6 1
2
D.

If this error meets the desired requirements of accuracy the computation is concluded. On the other

hand, if the level of precision does not meet the requirements a mesh adaptive procedure can be easily de-

vised [12].

The bound gap can be written as

D ¼
Xnel
k¼1

�j2

2
muk � kuhk2k

� �
þ 1

2�j2
mwk � kwhk2k

� �
¼

Xnel

k¼1
Dk;

where �j is the optimal value of the parameter j which optimizes the bounds. The above expression identifies
the elemental contributions Dk. These contributions can be shown to be always positive (since the comple-
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mentary energy of an equilibrated stress field and the energy of an arbitrary displacement field, are upper

and lower bounds to the energy of the exact solution, respectively) and can therefore be used as a local

refinement indicator.

Then, given a target bound gap Dtol, at each level of refinement, the elements with Dk P ðDtol=nelÞ are
refined. Numerical experimentation indicates that this strategy leads to a robust and reliable procedure to

achieve the desired accuracy. The refined meshes are obtained using the mesh generator presented in [16].

7. Numerical examples

The presented method is illustrated with two numerical examples: a linearly forced square which has a

regular solution for which an analytical expression exists, and a square plate with two interior rectangular

cut-outs, the solution of which, has corner singularitites. The outputs of interest are in both cases displace-

Fig. 2. Bounds for the output of interest s.
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ments and reaction forces integrated over parts of the boundary. Linear finite elements approximations

have been used for the adjoint and the hybrid fluxes have also been interpolated linearly over each edge.

The equilibrated stress fields in the dual problem are also taken to be linearly varying in space.

The coarse mesh problems are solved using triangular linear finite elements, and the local equilibrated

stress fields are taken to be piecewise linear in each triangle of the mesh. Four estimates of s are considered:
the upper and lower bounds (s+ and s�, respectively), their average, s = (s+ + s�)/2, and also the output gi-
ven by the finite element approximation, denoted by sh ¼ ‘OðuhÞ.
In the first example the analytical solution of the problem is known and the quality of the different esti-

mates is measured with the following effectivity indices q± = (s±/s)�1, q = (s/s)�1, and qh = (sh/s) � 1. An-
other measure of the accuracy of the bounds is given by the relative half bound gap

qG ¼ 1
2

sþ � s�

j s j P 0.

Since s+ and s� are upper and lower bounds of s, the index qG is an upper bound of the relative error be-
tween the approximation s and the exact output s, that is

j s � s j
j s j 6 qG.

In the second example, where the analytical solution is not known, the bound accuracy is measured in

terms of the relative half bound gap, qG, which is re-defined as

qG ¼ 1
2

sþ � s�

j s j ;

where the exact output is replaced by the average estimate.

7.1. Linearly forced square

The plane stress elasticity equations are considered in the unity square [0,1]2. On the left edge of the

square, x1 = 0, Dirichlet homogeneous boundary conditions are imposed in the x2 direction, and in the

left-lower corner, (0,0), both the x1 and x2 displacements are prescribed to zero. Also, a linear normal trac-

tion, g = (x2,0)
T, is applied at the right edge, x1 = 1.

The analytical solution of the problem u = (u1,u2), is given by

u1ðx1; x2Þ ¼ 1E x1x2; u2ðx1; x2Þ ¼ � 1

2E
ðmx22 þ x21Þ;

where E and m are the Young�s modulus and the Poisson�s ratio.
The output considered is the weighted average normal displacement at the right edge,

s ¼
Z 1

0

x2u1ð1; x2Þdx2 ¼ 1

3E
.

It turns out that for this particular forcing and output, the primal and adjoint problems are the same.

For this case, called compliance, the output is proportional to the energy norm of the solution and the finite

element approximation directly provides a lower bound. The numerical results demonstrate that our

method, while more expensive, leads to the same lower bound, doing no worse than the inherent bound

of the finite element approximation.

Four uniform triangular meshes have been considered, the initial one with 18 elements (h = 1/3). The

other meshes are obtained by uniformly subdividing each element of the previous mesh into four new ele-
ments. The results are summarized in the Table 1.
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Fig. 3 displays the results graphically and also illustrates the convergence rate of the bounds. The results

for both the upper and lower bounds, average, and relative half bound gap, qG, asymptotically approach
the finite element convergence rate of Oðh2Þ.

7.2. Square plate

A square thin plate with two rectangular holes is considered. Normal tractions are applied on the left
and right sides of the plate [12]. Since the problem is symmetric, only one fourth of the plate is considered,

as shown in Fig. 4.

Two outputs of interest are considered: the average normal displacement over the boundary C0, and the
integrated normal component of the traction in C1, that is,

‘O0 ðvÞ ¼
Z
C0

v � ndC; ‘O1 ðvÞ ¼
Z
C1

n � rðvÞndC. ð26Þ

Remark 4. The first output is already in the form of Eq. (1) with gO ¼ njC0 and gO ¼ 0 elsewhere. The

second output, on the other hand, does not have the same form. In order to transform this output into the

form (1) considered here, we introduce a continuous function v such that vjC1 ¼ 1 and is equal to zero at all
the other vertical boundaries. Then, if n1 ¼ njC1 , we have

s ¼ ‘O1 ðuÞ ¼
Z
C1

n � rðuÞn dC ¼ aðu; vn1Þ ¼: ~‘
O

1 ðuÞ
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Fig. 3. Computed bounds for a a uniform h-refinement process (left) and its convergence (right).

Table 1

Bounds and effectivity indices in a series of uniformly refined meshes

h sh s� s+ s q� q+ q qG

1/3 .3124 .3124 .5621 .4372 �.062740 .686210 .311720 .3745

1/6 .3264 .3264 .4370 .3817 �.020710 .310880 .145070 .1658

1/12 .3314 .3314 .3653 .3484 �.005710 .095990 .045140 .0508

1/24 .3328 .3328 .3419 .3374 �.001480 .025640 .012080 .0136

1/48 .3332 .3332 .3355 .3344 �.000370 .006530 .003080 .0034
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and instead of working with the functional ‘O1 ð�Þ, we work with ~‘
O

1 ð�Þ. This is much easier since this corre-
sponds to uO ¼ �vn1 in Eq. (1).

Fig. 5 and Table 2 show the bounds obtained in this example. A nested sequence of meshes is considered.

The initial mesh (hini) is shown in Fig. 4, and the refined meshes are obtained, as in the first example, divid-

ing each element into 4 new ones. The function v required in ~‘
O

1 ð�Þ, is defined on the initial mesh by setting
all the nodal values equal to zero except for those nodes on C1 which are given a value of unity.

0.5 0.5

0.3

0.5

0.2

x1

x2

Γ

Γ0

1

Fig. 4. Example 2: model problem (left) and initial mesh (right).
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Fig. 5. Bounds convergence for a uniform h-refinement (up) and for the displacement output ‘O0 ðuÞ (left) and for the reaction output
‘O1 ðuÞ (right).
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Unlike the first example, the outputs in (26) are general and the finite element approximation can no

longer be guaranteed to provide a lower bound. This example shows that the bounds behave well even

for problems with singularities. However, it is also observed that the convergence rate for the bounds,

the finite element approximation sh and the bound average, is no longer Oðh2Þ, although it is still faster than
linear.

For the reaction output, ‘O1 ðuÞ, an adaptive procedure has been employed starting with the mesh shown
in Fig. 4) where the bound gap Dini is 0.1075, and two target bound gaps have been considered Dtol ¼ 1

2
Dini

and Dtol ¼ 1
10
Dini.

In order to achieve Dtol ¼ 1
2
Dini four new meshes are generated, where the bound gap for the last mesh is

Df = 0.0471. The resulting sequence of meshes can be seen in Fig. 6, where the local elementary contribu-
tions to the global bound gap are plotted in each element of the mesh. As can be seen not only the zone

where the output is measured (C1) is refined, but also the corners where the solution is singular.

Table 2

Example 2: Bounds and relative bound gap in a series of uniformly refined h-meshes both for ‘O0 ðuÞ and ‘O1 ðuÞ
h Displacement average Reaction average

sh s� s+ s qG sh s� s+ s qG

hini .4060 .3794 .5297 .4546 .1654 �.3199 �.3696 �.2621 �.3158 .1702

1/2hini .4163 .4061 .4706 .4384 .0736 �.3203 �.3438 �.2982 �.3210 .0710

1/4hini .4207 .4172 .4423 .4298 .0292 �.3211 �.3318 �.3133 �.3225 .0286

1/8hini .4224 .4213 .4309 .4261 .0113 �.3217 �.3265 �.3189 �.3227 .0118

0.0000

0.0024

0.0047

0.0071

0.0094

0.0118

0.0141

0.0165

0.0188

Fig. 6. Example 2: sequence of adapted meshes for the output ‘O1 ðuÞ with desired final gap Dtol ¼ 1
2
Dini with nel ¼ 108; 165; 280; 405 and

538.
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The values of the bounds for the adaptive procedure with the desired final gap Dtol ¼ 1
10
Dini are shown in

Table 3.

8. Conclusions

We have presented a method for the computation of bounds for linear-functional outputs of weak solu-

tions to the linear elasticity equations. A distinctive feature of this method is that the computed bounds are
strict with respect to the output of the exact solution. The numerical experiments presented show that the

computed bounds are sharp and converge at the same rate as the finite element solution that would be ob-

tained with a comparable amount of work. To our knowledge, this is the only published approach that can

certify the certainty of the the computed bounds. We believe this feature is of clear interest in real engineer-

ing practice. The method has been presented for the two dimensional elasticity equations, but we expect

that the extension to three dimensions will not present any additional difficulties. The major computational

cost, in addition to a standard finite element solution, is the computation of an adjoint for each output con-

sidered. All other operations are local and result in a low computational overhead. Two limitations in the
presented approach are the need for the forcing function to be of piecewise polynomial form, and the

requirement for the computational domain to have piecewise straight boundaries. Future work will focus

on relaxing these constraints.
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Appendix A. Proof of Theorem 1

In this appendix we present a constructive proof of Theorem 1 which shows the existence of piecewise

polynomial equilibrated stress fields. Towards this end some preliminary notation and results are required
(see [4] for details).

Table 3

Example 2: bounds in a series of adaptively h-refined meshes both for ‘O1 ðuÞ with desired final gap Dtol ¼ 1
10
Dini

nel D sl su

108 .10749 �.36957 �.26208
222 .18215 �.38940 �.20725
433 .12171 �.36880 �.24709
811 .07199 �.35089 �.27891
1387 .03755 �.33750 �.29995
1966 .02428 �.33392 �.30964
2532 .01574 �.32922 �.31348
3069 .01172 �.32826 �.31654
3564 .00834 �.32627 �.31793
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Lemma 1. Given a triangle T, consider the following interpolation spaces:

PqðT Þ ¼ fpolynomial functions of degree less or equal to q in Tg;
SPqðT Þ ¼ fstress fields with rxx; rxy ; ryy 2 PqðT Þg;
RqðoT Þ ¼ fpolynomial functions of degree less or equal to q on each ci 2 oTg;
RcqðoT Þ ¼ fg 2 ½RqðoT Þ�2; s.t. 9r 2 SPqðT Þ;r � n ¼ g on oT g;
UqðT Þ ¼ f1q 2 SPqðT Þ;r � 1q ¼ 0; 1q � njoT ¼ 0g;
Psm ¼ frigid solid body motions in Tg

and P?
sm be the orthogonal complement of Psm with respect to the standard scalar product in [Pq�1(T)]

2, that

is, every p 2 [Pq�1(T)]
2 can be written uniquely as p ¼ psm þ p?, with psm 2 Psm and p? 2 P?

sm. We note that
for the case q = 1, the only member of P?

sm is the null function.

Then, for q P 1, and for any r 2 SPq(T) the following relations imply r = 0:Z
oT
ðr � nÞ � pq dC ¼ 0 8pq 2 RcqðoT Þ; ðA:1Þ

Z
T
r: eðpq�1ÞdX ¼ 0 8pq�1 2 P?

sm; ðA:2Þ
Z

T
r: C�1 : 1q dX ¼ 0 81q 2 UqðT Þ. ðA:3Þ

Proof. First let us check that Eqs. (A.1) and (A.2) imply that r 2 Uq(T). Indeed, on one hand, since

r � njoT 2 RcqðoT Þ, from Eq. (A.1), �oT(r Æ n)2dC = 0, which implies that r Æ n = 0 in oT. On the other hand,
the following integration by parts:Z

T
ðr � rÞ � ðr � rÞdX ¼

Z
oT
ðr � nÞ � ðr � rÞdC�

Z
T
r: eðr � rÞdX;

plus the fact that e(psm) = 0 for p 2 Psm, leads toZ
T
ðr � rÞ � ðr � rÞdX ¼

Z
T
r: eðr � r� psmðr � rÞÞdX;

where psm(Æ) is the projection operator from [Pq�1(T)]
2 onto the space Psm. Then, since

r � r� psmðr � rÞ 2 P?
sm, Eq. (A.2) impliesZ

T
ðr � rÞ � ðr � rÞdX ¼ 0) r � r ¼ 0 in X;

which shows that (A.1) and (A.2) imply that r 2 Uq(T). Finally, using Eq. (A.3),Z
T
r: C�1 : rdX ¼ 0) r ¼ 0;

which ends the proof. h
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Lemma 2. Let fpi
qgi¼1...I , fpj

q�1gj¼1...J and f1l
qgl¼1...L denote the elements of a basis of RcqðoT Þ, P?

sm and Uq(T)

respectively, where I, J and L simply denote the dimensions of each space. Then, any r 2 SPq(T) is uniquely

determined by the following degrees of freedom:Z
oT
ðr � nÞ � pi

q dC; i 2 I ;Z
T
r: eðpj

q�1ÞdX; j 2 J ;Z
T
r: C�1 : 1l

qdX; l 2 L.

Proof. Lemma 1 states that any stress field r 2 SPq(T) can be described giving the values of the previous

degrees of freedom. However, this description it is not necessary unique, that is, different values of the pre-

vious degrees of freedom can yield the same stress field. In order to see that this description is unique, it is

sufficient to see that the number of degrees of freedom coincides with the dimension of SPq(T), where

dimðSPqðT ÞÞ ¼ 3
2
ðq þ 1Þðq þ 2Þ.

Let us consider first the case q > 1. It is clear that dimðRcqðoT ÞÞ ¼ 6ðq þ 1Þ � 3. Now, a basis of
[Pq�1(T)]

2, determined by q(q + 1) elements, defines only q(q + 1) � 3 degrees of freedom of the form

�Tr : e(pq�1)dX, since e(tx) = e(ty) = e(r) = 0, for tx, ty and r the three rigid solid body motions, that is,
dimðP?

smÞ ¼ qðq þ 1Þ � 3.
Then, the only remaining part is to determine the dimension of Uq(T). Any 1 2 Uq(T) can be rewritten as

1xx = o2b/o2y, 1yy = o2b/ox2, 1xy = 1yx = �o2b/oxoy, where b 2 b2T Pq�4ðT Þ for bT the cubic bubble function
on T vanishing on oT and achieving a maximum value of unity on T, see [2]. Therefore, dimðUqðT ÞÞ ¼
dimðPq�4ðT ÞÞ ¼ 1

2
ðq � 2Þðq � 3Þ.

Finally, it is trivial to check that

3
2
ðq þ 1Þðq þ 2Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
dimðSPqðT ÞÞ

¼ 6ðq þ 1Þ � 3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dimðRcqðoT ÞÞ

þ qðq þ 1Þ � 3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
dimðP?

smÞ

þ 1
2
ðq � 2Þðq � 3Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

dimðUqðT ÞÞ

.

For the particular case q = 1, [P0(T)]
2 = htx, ty i, and equations �Tr : e(p0)dX = 0 do not characterize any

degree of freedom. Moreover, in this case dim(U1(T)) = 0. Then the nine boundary degrees of freedom
Rc1ðoT Þ determine uniquely the linear stress field in the triangle. h

We can now proceed directly with the proof of Theorem 1. We will assume that the initial element Xk is a

triangle, but the strategy can be easily extended to quadrilateral elements. In order to find rk, we follow [9]
and divide the initial triangle into three new triangles, Xk = T1 [ T2 [ T3 by adding a point in the triangle

centroid, as indicated in Fig. 1.

Let, rk be a stress field in Xk, where rkjT i
2 SPqðT iÞ, i = 1,2,3, that is, rk is a polynomial stress field of

degree q in each subtriangle, such that, rkjoT = skkh, and with continuous normal tractions at the internal
edges of the partition (dij = Ti \ Tj, i, j = 1. . .3).
Then, setting rk = rk + r0, the initial problem reduces to finding a piecewise polynomial stress field r0

verifyingZ
Xk

r0 : eðvÞdX ¼
Z
Xk

ðf � þ r � rkÞ � vdX 8v 2 Vk. ðA:4Þ

Let r0 be a piecewise polynomial stress field, where in each triangle Ti, the stress field ri
0 ¼ r0jT i

is as-

sumed to be polynomial of degree q in each component, that is, ri
0 2 SPqðT iÞ.
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Then, r0 is uniquely determined by the degrees of freedom characterized in Lemma 2. First, there are the

18(q + 1) � 9 degrees of freedom determining the value of r0 at the edges of Xk and at the internal edges,

namelyZ
oT i

ðri
0 � nÞ � pdC 8p 2 RcqðoT iÞ; i ¼ 1 . . . 3.

Second, we have the degrees of freedom related to the divergence of r0, that isZ
T i

ri
0 : eðpÞdX 8p 2 PsmðT iÞ?; i ¼ 1 . . . 3.

And finally, the degrees of freedom associated to Uq(Ti), i = 1,2,3, which can be set arbitrarily.
The proof ends with the construction of r0 that verifies (A.4). This construction also follows the classi-

fication of Lemma 2: (i) the boundary degrees of freedom, (ii) the divergence ones and (iii) the related to

Uq(Ti), which are not detailed because they are arbitrary.

(i) The 18(q + 1) � 9 boundary degrees of freedom are determined in two steps. First, the 12(q + 1) con-
straints to enforce compatibility are imposedZ

ci

ðri
0 � nÞ � pdC ¼ 0 8p 2 ½RqðciÞ�2; i ¼ 1 . . . 3; ðA:5Þ

where ci = oTi \ oT, andZ
dij

ðri
0 � nÞ � pdC ¼

Z
dij

ðrj
0 � nÞ � pdC 8p 2 ½RqðdijÞ�2; i; j ¼ 1 . . . 3; i < j. ðA:6Þ

Then, the 6q � 3 remainder degrees of freedom are used to impose the following additional constraints,Z
oT i

ðri
0 � nÞ � vdX ¼ �

Z
T i

ðf � þ r � rkÞ � vdX 8v 2 PsmðT iÞ; i ¼ 1 . . . 3. ðA:7Þ

It is important to note that since kh and f* verify Eq. (22), some of the previous equations are redundant.
For q > 1, Eq. (A.7) represents nine constraints but only 6 degrees of freedom are required to impose them

because Eq. (22) is scalar and dim(Psm) = 3. In the case q = 1, Eq. (A.7) represents six constraints but only
three of them are independent for the same reason. Note that for q = 1, the boundary degrees of freedom

are uniquely determined, while for q > 1, there are 6q � 9 degrees of freedom left associated to the internal
boundaries which can be set arbitrarily.

Fig. 1. Local subdivision of an element Xk into the triangles T1, T2 and T3.
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(ii) Once the boundary degrees of freedom are fixed, we impose those related to the divergence of r0,

namelyZ
T i

ri
0 : eðpÞdX ¼

Z
T i

ðf � þ r � rkÞ � pdXþ
Z
oT i

ðri
0 � nÞ � pdC ðA:8Þ

for all p 2 PsmðT iÞ?, i = 1. . .3.
Once (A.7) and in (A.8) have been imposed, r0 verifiesZ

T i

ri
0 : eðpÞdX ¼

Z
T i

ðf � þ r � rkÞ � pdXþ
Z
oT i

ðri
0 � nÞ � pdC ðA:9Þ

for all p 2 [Pq�1(Ti)]
2, i = 1. . .3.

To conclude the proof it only remains to show that the stress field r0 indeed verifies (A.4). On one hand,

a simple integration by parts shows that Eq. (A.9) is equivalent toZ
T i

ðr � ri
0 � ðf � þ r � rkÞÞ � pdX ¼ 0 8p 2 ½Pq�1ðT iÞ�2; i ¼ 1 . . . 3. ðA:10Þ

Since r � ri
0; f

� and $ Æ rk 2 [Pq�1(Ti)]
2, we have r � ri

0 ¼ f � þ r � rk, and thus Eqs. (A.9) and (A.10) hold
not only for p 2 ½Pq�1ðT iÞ�2 but for p 2 ½H1ðT iÞ�2. One the other hand, using a similar reasoning, we have
that ri

0 2 SPqðT iÞ and Eqs. (A.5), (A.6) give ri
0 � njci ¼ 0; i ¼ 1 . . . 3 and ðri

0 � r
j
0Þ � njdij

¼ 0;
i; j ¼ 1 . . . 3; i < j. Thus,Z

ci

ðri
0 � nÞ � pdC ¼ 0 8p 2 ½RqðciÞ�2; i ¼ 1 . . . 3; ðA:11Þ

where ci = oTi \ oT, andZ
dij

ðri
0 � nÞ � pdC ¼

Z
dij

ðrj
0 � nÞ � pdC 8p 2 ½RqðdijÞ�2; i; j ¼ 1 . . . 3; i < j ðA:12Þ

hold, not only for p 2 ½RcqðciÞ�2 and p 2 ½RcqðdijÞ�2, but for p 2 ½H1
2ðciÞ�2 and p 2 ½H1

2ðdijÞ�2, respectively.
Finally, for any v 2 Vk ¼ ½H1ðT Þ�2 using the infinite dimensional versions of Eqs. (A.5), (A.6)
and (A.9), and the fact that v is continuous on dij,Z

T
r0 : eðvÞdX ¼

X3
i¼1

Z
T i

ri
0 : eðvÞdX ¼

Z
T
ðf � þ r � rkÞ � vdXþ

X3

i¼1

Z
oT i

ðri
0 � nÞ � vdC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

¼
Z

T
ðf � þ r � rkÞ � vdX. �
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