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Abstract

The paper introduces a methodology to compute upper and lower bounds for linear-functional outputs of the exact solutions of par-
abolic problems. In this second part, the bounds account for the error both in space and time. The assumption stating that the error
introduced by the time marching scheme is negligible, used in the first part, is removed here. The bounds are computed starting from
an approximation of the exact solution, associated with a spatial mesh and a time grid. Nevertheless, the bounds are guaranteed with
respect to the exact solution, with no reference to any mesh or time discretization.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Goal-oriented adaptive strategies and the related error
assessment techniques have been extensively studied for
steady elliptic problems [13,12,2,4,9]. The error in the
quantity of interest is assessed combining upper and lower
bounds for the energy norm of the original problem (pri-
mal) and of an auxiliary problem (adjoint) associated with
the selected output. The bounds of the quantity of interest
are readily obtained operating with the energy estimates.
Most of these tools provide asymptotic bounds that is with
respect to a much finer reference discretization. Other
approaches focus on guarantying exact bounds, that is
bounds guaranteed with respect to the exact solution, inde-
pendently of any underlying reference mesh. The motiva-
tion to develop these numerical tools is to certify the

accuracy of the solutions of boundary value and/or evolu-
tion problems, see [17,18,14,22].

This paper and its associated first part [15] provide a
methodology to obtain computable strict bounds for quan-
tities of interest in the context of parabolic problems. In
this context, the list of previous references is much shorter
[1,3,19,10,5]. The strategy presented here uses ideas from
[10,18,7] and produces exact bounds for linear-functional
outputs accounting both for the error arising from the
space and time discretization. Note that in the first part
[15] the effect of the time discretization is neglected. The
error information and the bounds are used in an adaptive
procedure where both h and Dt (space mesh size and time
step) are adapted.

The methodology presented here takes as input two con-
tinuous (both in space and time) approximate solutions of
both the direct advection-reaction–diffusion problem and
the adjoint problem associated with the selected output.
In the application examples, these approximations are
obtained post-processing the approximations given by the
discontinuous Galerkin method in time, that is smoothing
out the time discontinuities. Actually, any other method
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providing a piecewise continuous polynomial function both
in space and time may be used. The methodology presented
here works out the space–time residual error equations and
reduces the problem of finding bounds of the output of
interest to properly combine the solutions of a number of
steady (time-independent) problems where the standard
methods are applicable. Thus, computable bounds are
derived using a strategy based on the ideas given in [18],
which allows producing bounds for steady problems, to a
series of steady reaction-diffusion problems.

2. Problem statement

2.1. Model problem

The transient convection-reaction-diffusion equation is
considered in X � Rnsd , where nsd is the number of spatial
dimensions and X is polygonal for nsd = 2 and polyhedric
for nsd = 3. The time interval of interest is I = ]0,T]. For
the sake of a simple presentation, it is assumed that all
the boundary conditions are of Dirichlet type and homoge-
neous. Thus, the weak solution u is such that for each
t 2 I ; uðtÞ 2H1

0ðXÞ :¼V, where H1
0ðXÞ denotes the stan-

dard Sobolev space of functions vanishing on oX. More
specifically, the weak solution u belongs to the space

W :¼ fv 2L2ðI ;VÞ such that _v 2L2ðI ;V0Þg;

where L2ðI ;VÞ (resp. L2ðI ;V0Þ) denotes the Bochner
space associated to V of square-integrable functions from
I into V (resp. V0)

L2ðI ;VÞ :¼
�

v : I !V; vðtÞ isV-measurable andZ T

0

kvðtÞk2
V dt < þ1

�
;

k � kV being the norm associated with V, k � kV ¼ k � k1.
The weak (both in space and time) variational form of

the problem is: find u 2W such that

Aðu; vÞ ¼ LðvÞ 8v 2L2ðI ;VÞ; ð1Þ

for

Aðw; vÞ :¼
Z T

0

½h _w; vi þ aðt; w; vÞ�dt þ ðwð0Þ; vð0ÞÞ;

and

LðvÞ :¼
Z T

0

‘ðt; vÞdt þ ðu0; vð0ÞÞ;

where hÆ,Æi denotes the duality pairing between V0 and
V; ð�; �Þ denotes the L2(X) inner product and u0 is the initial
condition weakly imposed.

Here, u0 2V and the forms a(t;Æ,Æ) and ‘(t;Æ) are

aðt; w; vÞ :¼
Z

X
½mðtÞrw � rvþ aðtÞ � rwvþ rðtÞwv�dX;

and

‘ðt; vÞ :¼ hf ðtÞ; vi ¼
Z

X
f ðtÞvdX;

where f 2L2ðI ;V0Þ and for each t 2 I, mðtÞ 2L1ðXÞ is a
strictly positive real coefficient, rðtÞ 2L1ðXÞ is a nonneg-
ative real coefficient and aðtÞ 2Hðdiv; XÞ is a prescribed
vector field which is assumed for simplicity to be diver-
gence-free, r � aðtÞ ¼ 0, that is a is a velocity field of an
incompressible flow. Moreover m, r and a are assumed to
be sufficiently smooth in time.

2.2. Continuous approximation

The exact solution of the boundary value problem (1)
has to be approximated. In the following, the approxima-
tion of u, usm

s;h, is assumed to be continuous both in space
and time. Note that if the method provides a discontinuous
approximation, it has to be smoothed out in order to fulfill
this assumption.

The approximation usm
s;h is associated with a spatial mesh

of the domain X and to a time-grid discretization of I. The
characteristic element size of the mesh is denoted by h and
the characteristic time step is denoted by s. The space mesh
generates a discrete space Vh �V. The points of the time
grid are denoted by 0 = t0 < t1 < � � � < tn < � � � < tN = T and
the corresponding time slabs are denoted by In = ]tn�1, tn[.

The approximation usm
s;h is piecewise polynomial in time;

that is, usm
s;h is polynomial of degree q inside each time slab In

and globally continuous. In every time t 2 I, the spatial
dependence is such that u sm

s;h ðtÞ 2Vh. That is,

usm
s;h 2Ws;h :¼ fv 2 C0ð�I ;VÞ; vjIn

2 PqðIn;V
hÞ;n¼ 1; . . . ;Ng:

The time-polynomial space PqðIn;V
hÞ is defined in terms

of the one dimensional Lagrangian shape functions of de-
gree q in the interval In, Nnj(Æ), j = 0, . . . ,q

PqðIn;V
hÞ :¼ v : In !Vh; vðtÞ ¼

Xq

j¼0

vjN njðtÞ; vj 2Vh

( )
:

ð2Þ

It is important to note that Eq. (1) only imposes the initial
condition weakly; however, the smoothed approximation
usm

s;h must verify the initial condition exactly, namely
usm

s;hð0Þ ¼ u0. This is only possible if u0 2Vh �V and
therefore this has to be also included as an assumption.

In this work, the approximation usm
s;h is obtained post-

processing the approximation of u provided by the discon-
tinuous Galerkin method in time, cG(p)dG(q). The
cG(p)dG(q) approximation of u is a standard continuous
Galerkin finite element approximation of degree p in space
(where p denotes the degree of the complete polynomials
used in the interpolation of Vh) and it is a piecewise poly-
nomial globally discontinuous Galerkin approximation of
degree q in time [20,6,21]. Thus, the continuous space–time
approximation required here, usm

s;h, is recovered by a simple
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post-processing, smoothing out the time-discontinuities at
t = tn, n = 1, . . . ,N � 1. It is worth noting, however, that
the method presented here is valid for any approximation
of u in Ws;h such that usm

s;hð0Þ ¼ u0.
In order to simplify the notation, in the remainder of the

paper the dependence on the time discretization is omitted
and, consequently, the continuous approximation usm

s;h and
the associated interpolation space Ws;h are denoted by
uh and Wh, respectively.

2.3. Error equation

The equation for the error associated with uh,
e ¼ u� uh 2W, is obtained replacing u = e + uh in Eq.
(1) and using the linearity of the first argument of A(Æ,Æ).
Thus, e 2W is such that

Aðe; vÞ ¼ LðvÞ � Aðuh; vÞ ¼: RP ðvÞ 8v 2L2ðI ;VÞ; ð3Þ

where RP(Æ) is the residual associated with the approxima-
tion uh. It is worth noting that, since uh is not a Galerkin
approximation of u, then, the Galerkin orthogonality con-
dition of the residual does not hold in general, that is

RP ðvÞ is not necessarily 0 8v 2Wh: ð4Þ

3. Outputs of interest and adjoint problem

As previously said, this paper aims at providing upper
and lower bounds for quantities of interest depending on
the exact solution u. Here, the quantities of interest are
restricted to be linear functions and therefore they take
the form

LOðuÞ ¼
Z T

0

‘Oðt; uÞdt þ ðuO
T ; uðT ÞÞ; ð5Þ

where uO
T 2Vh and the linear functional ‘Oðt; �Þ reads

‘Oðt; vÞ :¼ hf OðtÞ; vi ¼
Z

X
f OðtÞv dX;

for f O 2L2ðI ;V0Þ. Note however, that the linear restric-
tion may be relaxed in some problems, see [22].

The quantity of interest depends on the solution at the
final time (via uO

T ) and accounts for the behavior of the
solution along the complete time evolution (via the weight
function f O).

Due to the linearity of LOð�Þ, assessing the value or
obtaining bounds for LOðuÞ is equivalent to evaluate or
bound LOðeÞ. In other words, introducing s :¼ LOðuÞ�
LOðuhÞ ¼ LOðeÞ and computing bounds for s,

slb
6 s 6 sub;

is perfectly equivalent to compute bounds for LOðuÞ:
LOðuhÞ þ slb

6 LOðuÞ 6 LOðuhÞ þ sub:

An adjoint (or dual) problem with respect to the selected
output is introduced in order to derive upper and lower

bounds for s. The adjoint problem reads: find w 2V such
that

Aðv;wÞ ¼ LOðvÞ 8v 2W: ð6Þ

Note that following the definition in (5) the initial condi-
tion for w is now uO

T at t = T.
Analogous to the direct (or primal) problem, the adjoint

problem is solved numerically. Similarly to the primal
problem, the smoothed approximation to the dual prob-
lem, wh, is continuous both in space an time, belongs to
Wh and verifies exactly the ‘‘initial’’ condition whðT Þ ¼ uO

T .
The error associated with the adjoint approximation wh

is e :¼ w� wh 2W, and it is such that

Aðv; eÞ ¼ LOðvÞ � Aðv;whÞ ¼: RDðvÞ 8v 2W; ð7Þ

where RD(Æ) is the weak adjoint residual associated with wh.
Also here, the adjoint residual does not fulfill, in general,
the Galerkin orthogonality condition

RDðvÞ is not necessarily 0 8v 2Wh: ð8Þ

4. Bounding the output by a space–time norm

This section introduces bounds of the output of interest
s in terms of a space–time norm denoted by jjjÆjjj. The
choice of the norm is the same as in [10]. This choice is
not unique. In fact other authors [1,3] use different
measures.

For every time t, the inner spatial product associated
with the symmetric counterpart of the bilinear form a(tÆ,Æ)
is introduced

asðt; w; vÞ :¼ 1

2
ðaðt; w; vÞ þ aðt; v;wÞÞ

¼
Z

X
½mðtÞrw � rvþ rðtÞwv� dX:

Note that the advection term (related to a(t)) is purely
skew-symmetric because a(t) is divergence-free " t 2 I
and the boundary conditions are of Dirichlet type. This in-
ner product induces the norm denoted by
kÆk,kvk2:¼as(t;v,v) = a(t;v,v). The space–time norm jjjÆjjj is
readily defined as

jjjvjjj2 :¼
Z T

0

kvk2dt:

The bilinear form A(Æ,Æ) and the space–time norm jjjÆjjj are
related by the following lemma. The proof is straightfor-
ward from the definition of A(Æ,Æ). See also the particulari-
zation of Lemma 1 in Part I of this work [15] to
continuous-in-time functions.

Lemma 1. For any v 2W

Aðv; vÞ ¼ jjjvjjj2 þ 1

2
ðvð0Þ; vð0ÞÞ þ 1

2
ðvðT Þ; vðT ÞÞP jjjvjjj2:
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The following result shows that bounding s is equivalent to
obtain upper bounds for the errors measured in the space–
time norm jjjÆjjj.

Theorem 1. Let es and es 2 cW be such that for any v 2WZ T

0

asðt; es; vÞdt ¼ RP ðvÞ and
Z T

0

asðt; es; vÞdt ¼ RDðvÞ;

ð9Þ
wherecW :¼ fv 2L2ðI ;VÞ; vjIn

2L2ðIn;VÞ and

_vjIn
2L2ðIn;V

0Þg:
Then,

RP ðwhÞ �
1

4
jes � 1

j
es

���� �������� �������� ����2 6 s 6 RP ðwhÞ þ
1

4
jes þ 1

j
es

���� �������� �������� ����2;
for any nonzero parameter j 2 R.

Proof. Combining Eq. (7) for v = e and Eq. (3) for v = wh

yields the following error representation

s ¼ LOðeÞ ¼ LOðeÞ � Aðe;whÞ þ Aðe;whÞ
¼ RDðeÞ þ RP ðwhÞ; ð10Þ

where the term RP(wh) is not zero, in general, since the
Galerkin orthogonality property of the primal residual
does not hold, see Eq. (4).

Also, taking v ¼ e 2W in Eq. (3) and using the relation
between the bilinear form A(Æ,Æ) and jjjÆjjj given in Lemma 1
it follows that

RP ðeÞ ¼ Aðe; eÞP jjjejjj2: ð11Þ
The proof now follows from a simple algebraic manipula-
tion. Indeed, let j be a nonzero real parameter and con-
sider the inequality

1

2
jes � 1

j
es

� �
� je

���� �������� �������� ����2 P 0: ð12Þ

Expansion of the l.h.s. yields

1

2
jes � 1

j
es

� �
� je

���� �������� �������� ����2 ¼ 1

4
jes � 1

j
es

���� �������� �������� ����2 þ j2jjjejjj2

� j
Z T

0

as t; jes � 1

j
es; e

� �
dt:

ð13Þ
Moreover, using v ¼ e 2W in Eq. (9), the last term in the
r.h.s. of (13) is rewritten as

j
Z T

0

asðt; jes � 1

j
es

h; eÞdt ¼ j2

Z T

0

asðt; es; eÞdt

�
Z T

0

asðt; es; eÞdt

¼ j2RP ðeÞ � RDðeÞ

P j2jjjejjj2 � ðs� RP ðwhÞÞ;

where Eqs. (10) and (11) are used to derive the inequality.

Considering Eqs. (12) and (13) yields

06
1

2
jes� 1

j
es

� �
�je

���� �������� �������� ����26�s�RP ðwhÞþ
1

4
jes� 1

j
es

���� �������� �������� ����2;
that is,

�s 6 �RP ðwhÞ þ
1

4
jes � 1

j
es

���� �������� �������� ����2:
The proof is concluded by noting that the +sign in the pre-
vious equation yields the expression for the upper bound of
s, whereas the �sign yields the expression for the lower
bound of s. h

Theorem 1 reveals that bounds for s are obtained if the
space–time norms of the linear combinations of es and es

are available. It follows also that it is sufficient to obtain
upper bounds of these norms, namely

RP ðwhÞ�
1

4
jes� 1

j
es

���� �������� �������� ����2
UB

6 s6RP ðwhÞþ
1

4
jesþ 1

j
es

���� �������� �������� ����2
UB

;

ð14Þ
where the subscript UB denotes upper bound.

Remark 1. The space cW is obtained from W allowing time
discontinuities at each time stage tn, n = 1, . . . ,N � 1.
Therefore, the primal and dual symmetric errors es and es

are in general discontinuous at these points in time.
Moreover, the conditions given by Eq. (9) do not uniquely
determine es and es because W(cW.

Remark 2. For any v 2W, the primal and adjoint residu-
als, defined in Eqs. (3) and (7), may be rewritten as

RP ðvÞ ¼
Z T

0

½hf � _uh; vi � aðt; uh; vÞ�dt ¼: bRP ðvÞ;

and

RDðvÞ ¼
Z T

0

½hf O þ _wh; vi � aðt; v;whÞ�dt ¼: bR DðvÞ:

by simply integrating by parts the term with the time deriv-
ative. This rearrangement of the residuals requires v to be
continuous and therefore it does not hold for v 2 cW. That
is, in general, for v 2 cW;RPðvÞ 6¼ bRP ðvÞ and RDðvÞ 6¼bRDðvÞ, see Appendix A.

In practice, es and es are chosen as the unique solution of
the following residual equations: find es and es 2 cW such
for any v 2 cWZ T

0

asðt; es; vÞdt ¼ bRP ðvÞ and

Z T

0

asðt; es; vÞdt ¼ bRDðvÞ:

ð15Þ
Note that, according to Remarks 1 and 2, the solutions of
(15) fulfill the assumptions of Theorem 1 and, in particular,
Eq. (9).

The symmetrized errors es and es are non-computable
because the problems (15) are posed in infinite-dimensional
spaces. With respect to the original error equations (3) and
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(7), Eqs. (15) are discontinuous-in-time and symmetric
(both in space and time).

Next section is devoted to obtain computable upper
bounds for the space–time norm jjjÆjjj of the symmetrized
errors es and es.

5. Upper bounds for the space–time norm

Consider the auxiliary function z 2 cW solution ofZ T

0

asðt; z; vÞdt ¼ bR�ðvÞ 8v 2 cW; ð16Þ

where bR�ðvÞ ¼ abR PðvÞ þ bbRDðvÞ for a; b 2 R. Note that for
a = 1 and b = 0, then bR�ðvÞ ¼ bRP ðvÞ and problem (16) is
the residual problem for es. Therefore in this case z = es.
Analogously, the choice of a = 0 and b = 1, producesbR�ðvÞ ¼ bRDðvÞ and the residual problem for es is recovered
yielding z = es. In particular, a = j and b = ±1/j will be
used later to obtain the required upper bounds for
jjjjes ± 1/jesjjj2.

The purpose of this section is to establish a procedure to
compute upper bounds on jjjzjjj2. It is worth noting that
the model problem under consideration, Eq. (16), is sym-
metric both in space and time and that it does not contain
derivatives with respect to time.

In order to come up with a computable upper bound of
jjjzjjj2 the following four steps are considered. First, it is
shown that z 2 cW may be computed solving q + 1 inde-
pendent steady diffusion-reaction problems in each slab
In. Second, for every infinitely dimensional steady diffu-
sion-reaction problem (q + 1 in every time slab), the solu-
tion is decomposed in its projection into the finite
element mesh Vh (which is computable) and the orthogo-
nal complement (which is assessed with a standard error
estimation technique). The problems characterizing the
orthogonal complement are posed in the whole spatial
domain X. In the third step, a domain decomposition strat-
egy is used to decompose the global problem into nel inde-
pendent (infinite dimensional) local problems defined in the
elements of the mesh (triangles in our case), nel being the
number of elements of the spatial mesh. Finally, the fourth
step uses a duality method to transform each local steady
problem (posed over an infinite dimensional space) into a
computable discrete problem yielding upper bounds of
the solution.

5.1. Time decomposition

The first step to derive a computable expression for an
upper bound of jjjzjjj2 is to decompose the global-in-time
problem given by Eq. (16) into q + 1 steady diffusion-reac-
tion problems in each slab In.

Using Remark 2, for all v 2 cW,

bR�ðvÞ ¼ Z T

0

½hf �; vi � aðt; auh; vÞ � aðt; v; bwhÞ�dt;

where f � ¼ aðf � _uhÞ þ bðf O þ _whÞ. Therefore, using the
broken-in-time nature of the space cW, Eq. (16) decomposes
into: find zn 2WðInÞ such thatZ

In

asðt; zn; vÞdt ¼
Z

In

½hf �; vi � aðt; auh; vÞ � aðt; v; bwhÞ�dt

8v 2WðInÞ; ð17Þ

where

WðInÞ :¼ fv 2L2ðIn;VÞ such that _v 2L2ðIn;V
0Þg:

Now, assume that m(t), a(t) and r(t) are piecewise constant-
in-time functions inside each time slab, that is

mðtÞjIn
¼ mn; aðtÞjIn

¼ an and rðtÞjIn
¼ rn;

for mn;rn2L1ðXÞ;an2Hðdiv;XÞ and r�an¼0. Working
with piecewise constant-in-time parameters has the advan-
tage of avoiding the notational complexity introduced by
more complex time dependencies. The proposed methodol-
ogy is however more general in the sense that it is valid also
for piecewise polynomial parameters m(t), a(t) and r(t). In
this case, however, computing zn2WðInÞ requires solving a
larger number of steady diffusion-reaction problems in each
slab In (larger than q + 1).

Under the assumption of piecewise constant-in-time
parameters, the bilinear forms a(t;Æ,Æ) and as (t;Æ,Æ) are also
piecewise constant-in-time inside the time slabs, that is

aðt; w; vÞjIn
¼: anðw; vÞ

¼
Z

X
½mnrw � rvþ an � rwvþ rnwv�dX;

for w; v 2L2ðI ;VÞ, and

asðt; w; vÞjIn
¼: as

nðw; vÞ ¼
Z

X
½mnrw � rvþ rnwv�dX: ð18Þ

The notation introduced above allows rewriting Eq. (17)
as: find zn 2WðInÞ such thatZ

In

as
nðzn; vÞdt ¼

Z
In

½hf �; vi � anðauh; vÞ � anðv; bwhÞ�dt

8v 2WðInÞ: ð19Þ

The source terms are assumed to have a piecewise polyno-
mial time-dependence, that is f jIn

and f OjIn
belong to

PqðIn;V
0Þ and consequently f �jIn

2 PqðIn;V
0Þ. Recall that

uh and wh belong to PqðIn;VÞ and therefore zn 2 PqðIn;VÞ
and is such that

as
nðzn;vÞ ¼ hf �;vi�anðauh;vÞ�anðv;bwhÞ 8v2WðInÞ8t 2 In:

The previous equation must be fulfilled for every t 2 In.
Nevertheless, due to the polynomial nature of zn it suffices
to enforce it in q + 1 time instants inside In.

Note that the time dependence of znðtÞ 2 PqðIn;VÞ is
uniquely characterized by giving q + 1 space functions zni,
i = 0,1, . . . ,q, corresponding to the representation in a basis
Nn i(t), i = 0,1, . . . ,q, of PqðIn; RÞ, namely
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znðtÞ ¼
Xq

i¼0

zniNniðtÞ; ð20Þ

where zni 2V are the space functions to be determined.
Taking the basis Nn i(t), i = 0, 1, . . . ,q, as the usual 1D fi-
nite element basis, see Fig. 1, the degrees of freedom zni cor-
respond to the values of zn at the intermediate times tn�1+i/q

:¼tn�1 + i(tn � tn�1)/q, that is zni = zn(tn�1+i/q), for
i = 0,1, . . . ,q. For simplicity, tn�1+i/q will be denoted by
tni in the following.

In this case, zni 2V is the solution of the steady diffu-
sion-reaction problem

as
nðzni; vÞ ¼ hf �ðtniÞ; vi � anðauhðtniÞ; vÞ � anðv; bwhðtniÞÞ
8v 2V: ð21Þ

Thus, the solution of Eq. (16), z 2 cW, is computed solving
q + 1 independent steady diffusion-reaction problems in
each time slab In. Once the functions zni 2V are obtained
solving (21), the time-dependent function znðtÞ 2 PqðIn;VÞ
is directly recovered using Eq. (20). The assembly of these
solutions associated with every time slab makes z 2 cW a
piecewise polynomial function in time, discontinuous at
t = tn for n = 1, . . . ,N � 1 (recall that zjIn

¼ zn).

Remark 3. As already mentioned, the assumption that m(t),
a(t) and r(t) are piecewise constant-in-time functions inside
each time slab, and also that f �jIn

2 PqðIn;V0Þ may be
relaxed. In fact, if mjIn

; ajIn
; rjIn

and f �jIn
are polynomial

functions inside In, then a larger degree of the polynomials
representing the time dependence of the solution zn, say ~q,
can be selected such that zn belongs to P~qðIn;VÞ. Then, zn

must be computed solving ~qþ 1 independent steady
diffusion-reaction problems.

5.2. Enforcing orthogonality

The solution zni of the steady diffusion-reaction (21) and
therefore the norm jjjzjjj2 to be used in the bounds are not
computable because V is infinite-dimensional. It is how-
ever possible to derive a computable upper bound for
jjjzjjj2 using a domain decomposition technique and, in
every local problem, a complementary energy approach.
The idea is to use the error estimation strategy proposed
in [18] to each steady reaction-diffusion problem (21) as
in [15]. However, these techniques may only be applied if

the r.h.s. of the residual equation, in this case Eq. (21), van-
ishes for every v 2Vh (this is referred as the orthogonality

property) [2,8,11,16]. This orthogonality condition is
needed to properly produce the domain decomposition
strategies and the equilibration of the local problems.

As already noted, recall (4) and (8), the orthogonality is
not fulfilled. That is, in general for v 2Vh

hf �ðtniÞ; vi � anðauhðtniÞ; vÞ � anðv; bwhðtniÞÞ 6¼ 0:

This problem may be circumvented decomposing zni into

zni ¼ zh
ni þ z?ni;

where zh
ni 2Vh is such that

as
nðzh

ni; vÞ ¼ hf �ðtniÞ; vi � anðauhðtniÞ; vÞ � anðv; bwhðtniÞÞ
8v 2Vh: ð22Þ

Note that the zh
ni is the projection of zni into Vh. Thus, from

(21) the orthogonal complement z?ni 2V is the solution of
the residual equation

as
nðz?ni; vÞ ¼ hf �ðtniÞ; vi � anðauhðtniÞ; vÞ � anðv; bwhðtniÞÞ

� a s
n ðzh

ni; vÞ 8v 2V: ð23Þ

This decomposition precludes the problem associated with
the lack of orthogonality because zh

ni is computable and Eq.
(23) for z?ni, is such that the r.h.s. fulfills the orthogonality
condition. That is, the r.h.s. of (23) vanishes for every
v 2Vh. Therefore, a computable bound for the norm of
z?ni is obtained after a domain decomposition technique.

This orthogonalization strategy is used in [7,16] in a dif-
ferent context (assessment of the pollution). A similar
approach is used also in [19] to recover strict bounds for
the energy.

Summarizing, the upper bound for jjjzjjj2 requires com-
puting first zh

ni 2Vh and then applying the error estimation
technique proposed in [18] to approximate z?ni. This has to
be performed for every time tni (q + 1 times in each time
slab In).

5.3. Domain decomposition and complementary energy

approach

Now, the standard complementary energy approach is
applied to obtain estimates for z?ni given by Eq. (23) follow-
ing the ideas introduced in [17,18,15]. Note that this is pos-

Fig. 1. Representation for q = 2 of the time dependency of the function zn.
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sible because orthogonality has been enforced as described
in the previous section.

The basic idea is to relax the problem of finding z?ni 2V
fulfilling Eq. (23). The relaxed problem consists in obtain-
ing a pair of dual estimates p̂ni 2 ½L2ðXÞ�nsd and r̂ni 2
L2ðXÞ such thatZ

X
½mnp̂ni � rvþ rnr̂niv�dX ¼ as

nðz?ni; vÞ 8v 2V: ð24Þ

The estimates for p̂ni and r̂ni are taken in an element-
wise-polynomial space of degree r, namelybPrðXÞ :¼ fv 2L2ðXÞ; vjXk

2 PrðXkÞg;

i.e. r̂ni 2 bPrðXÞ and p̂ni 2 ½bPrðXÞ�2; where Xk for k = 1,
2, . . . ,nel are the elements of the mesh. The fact that the data
fields u0;uO

T ;f ðtÞ and f OðtÞ are assumed to be piecewise
polynomials both in space (element by element) and time
(in each time slab) guarantees that for r large enough a pair
of dual estimates fulfilling Eq. (24) may be found in bPrðXÞ.
This results in a discrete solvable problem, see [17,18].

Remark 4. The dual estimates p̂ni and r̂ni are defined
over the whole domain X. Nevertheless, their computation
can be decoupled locally by selecting appropriate param-
eterizations. In practice, the equilibration procedure yield-
ing equilibrated fluxes is local and the a priori global
problem (24) is split into local dual problems in the
elements of the mesh.

5.4. Computation of an upper bound

Finally, the estimates obtained from (24) are combined
with the projections computed from (22) to build up an
upper bound for jjjzjjj. This is stated in the following
theorem.

Theorem 2. Let p̂ni 2 ½bPrðXÞ�n sd and r̂ni 2 bPrðXÞ be the dual

estimates fulfilling Eq. (24) for every tni, n = 1,2, . . . ,N,

i = 0,1, . . . , q. The time-dependent estimates are readily

recovered in every time slab In:

p̂n ¼
Xq

i¼0

p̂niN niðtÞ and r̂n ¼
Xq

i¼0

r̂niN niðtÞ: ð25Þ

Analogously, let zh
ni 2Vh be the solutions of (22) and

zh
n ¼

Xq

i¼0

zh
niN niðtÞ:

Then, an upper bound for the space–time norm of the solution
z of (16) is computed as

Zjjjzjjj2 6
XN

n¼1

Z
In

Z
X
½mnðp̂n þrzh

nÞ � ðp̂n þrzh
nÞ

þ rnðr̂n þ zh
nÞ

2�dXdt: ð26Þ

Proof. Let z?n ¼
Pq

i¼0z?niN niðtÞ, where z?ni are the solutions of
(23). Then, from Eq. (24) and using Eq. (23), the dual esti-
mates p̂n and rn verify for i = 0, . . . ,q

Z
X
½mnp̂nðtniÞ � rvþ rnr̂nðtniÞv�dX

¼ hf �ðtniÞ; vi � anðauhðtniÞ; vÞ � anðv; bwhðtniÞÞ
� a s

n ðzh
nðtniÞ; vÞ 8v 2V;

since p̂ni ¼ p̂nðtniÞ; rni ¼ r̂nðtniÞ and zh
nðtniÞ ¼ zh

ni. More-
over, since all the time-dependent functions appearing in
the previous equation are polynomials of degree q, the pre-
vious equation is verified for every t 2 In, that is,

Z
X
½mnp̂nðtÞ � rvþ rnr̂nðtÞv�dXþ as

nðzh
nðtÞ; vÞ

¼ hf �ðtÞ; vi � anðauhðtÞ; vÞ � anðv;bwhðtÞÞ 8v 2V8t 2 In:

Integrating from t = tn�1 = tn0 to t = tn = tnq, and expand-
ing the term as

nðzh
nðtÞ; vÞ using Eq. (18) yields

Z
In

Z
X
½mnðp̂n þrzh

nÞ � rvþ rnðr̂n þ zh
nÞv�dXdt

¼
Z

In

½hf �; vi � anðauh; vÞ � anðv; bwhÞ�dt

¼
Z

In

as
nðzn; vÞdt 8v 2WðInÞ;

where in the last equality, Eq. (19) has been used. In partic-
ular, taking v ¼ zn 2WðInÞ in the previous equation
yields:Z

In

Z
X
½mnðp̂n þrzh

nÞ � rzn þ rnðr̂n þ zh
nÞzn�dXdt

¼
Z

In

as
nðzn; znÞdt: ð27Þ

At this point, the previous equality along with an elemen-
tary algebraic manipulations reveal thatZ

In

as
nðzn; znÞdt 6

Z
In

Z
X
½mnðp̂n þrzh

nÞ � ðp̂n þrzh
nÞ

þ rnðr̂n þ zh
nÞ

2�dXdt: ð28Þ

Indeed, the result is obtained using the obvious inequalityZ
In

Z
X
½mnðp̂n þrzh

n �rznÞ � ðp̂n þrzh
n �rznÞ

þ rnðr̂n þ zh
n � znÞ2�dXdt P 0

along with the algebraic manipulation
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Z
In

Z
X
½mnðp̂n þrzh

n �rznÞ � ðp̂n þrzh
n �rznÞ

þ rnðr̂n þ zh
n � znÞ2�dXdt

¼
Z

In

Z
X
½mnðp̂n þrzh

nÞ � ðp̂n þrzh
nÞ þ rnðr̂n þ zh

nÞ
2�dXdt

þ
Z

In

Z
X
½mnrzn � rzn þ rnðznÞ2�dXdt

� 2

Z
In

Z
X
½mnðp̂n þrzh

nÞ � rzn þ rnðr̂n þ zh
nÞzn�dXdt

¼
Z

In

Z
X
½mnðp̂n þrzh

nÞ � ðp̂n þrzh
nÞ þ rnðr̂n þ zh

nÞ
2�dXdt

þ
Z

In

as
nðzn; znÞdt � 2

Z
In

as
nðzn; znÞdt

¼
Z

In

Z
X
½mnðp̂n þrzh

nÞ � ðp̂n þrzh
nÞ þ rnðr̂n þ zh

nÞ
2�dXdt

�
Z

In

a s
n ðzn; znÞdt;

where both Eqs. (27) and (18) have been used.
Finally, using the inequality given by Eq. (28)

jjjzjjj2 ¼
Z T

0

kzk2dt ¼
Z T

0

asðt; z; zÞdt ¼
XN

n¼1

Z
In

asðt; z; zÞdt

¼
XN

n¼1

Z
In

as
nðzn; znÞdt

6

XN

n¼1

Z
In

Z
X
½mnðp̂n þrzh

nÞ � ðp̂n þrzh
nÞ

þ rnðr̂n þ zh
nÞ

2�dXdt;

concluding the proof. h

6. Bounds for the output of interest LOðuÞ: an algorithmic
summary

According to Theorem 1 the upper and lower bounds of
s, and hence of LOðuÞ, are available once the upper bounds
of the energy norm jjjzjjj are obtained for the two combina-
tions (a,b) = (j, 1/j) and (a,b) = (j,�1/j). The general
strategy to obtain these upper bounds is devised in the pre-
vious section. As already mentioned, due to the linearity of
the problem, obtaining the estimates for these two values of
jjjzjjj is equivalent to obtain the estimates for z = es and
z = es, that is for the two combinations (a,b) = (1, 0) and
(a,b) = (0,1).

The following description of the bound algorithm differs
from the description given in part I of this work [15]
because here the algorithm is designed to parallelize the
computation of the estimates in each time slab. However,
if memory requirements are critical, the same strategy pro-
posed in [15] can be implemented. That is, only the primal
solution must be stored. The adjoint one is computed (but
not stored) step by step in each time slab.

The main steps of the procedure to compute bounds for
LOðuÞ are the following:

1. Compute and store the continuous primal and dual
solutions uh and wh, respectively (for instance, comput-
ing the cG(p)dG(q) approximations and smoothing out
the time discontinuities).

2. For each time slab In do (this step is independent for
each slab and can be easily parallelized):
2.2. For each subtime tni, i = 0, . . . ,q do:

2.2.1. Compute the primal and adjoint projections
es;h

ni and es;h
ni 2Vh solution of:

as
nðe

s;h
ni ; vÞ ¼ hf ðtniÞ � _uhðtniÞ; vi

� anðuhðtniÞ; vÞ 8v 2Vh;

as
nðe

s;h
ni ; vÞ ¼ hf OðtniÞ þ _whðtniÞ; vi

� anðv;whðtniÞÞ 8v 2Vh:

2.2.2. Compute the primal and adjoint dual esti-
mates p̂P

ni; p̂
D
ni 2 ½bPrðXÞ�nsd and r̂P

ni; r̂
D
ni 2bPrðXÞ such that for all v 2V:Z

X
½mnp̂P

ni � rvþ rnr̂P
niv�dX

¼ hf ðtniÞ � _uhðtniÞ; vi � anðuhðtniÞ; vÞ

� as
nðe

s;h
ni ; vÞ;Z

X
½mnp̂D

ni � rvþ rnr̂D
niv�dX

¼ hf OðtniÞ þ _whðtniÞ; vi � anðv;whðtniÞÞ

� as
nðe

s;h
ni ; vÞ:

2.3. For each element, recover the time-dependent pro-
jections in the time slab In

es;h
nk ðtÞ ¼

Xq

i¼0

es;h
ni

��
Xk

N niðtÞ and

es;h
nk ðtÞ ¼

Xq

i¼0

es;h
ni

��
Xk

N niðtÞ;

and the dual time-dependent estimates

p̂P
nkðtÞ ¼

Xq

i¼0

p̂P
ni

��
Xk

N niðtÞ and

r̂P
nkðtÞ ¼

Xq

i¼0

r̂P
ni

��
Xk

N niðtÞ;

p̂D
nkðtÞ ¼

Xq

i¼0

p̂D
ni

��
Xk

N niðtÞ and

r̂D
nkðtÞ ¼

Xq

i¼0

r̂D
ni

��
Xk

N niðtÞ:
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2.4. Compute and store the three scalar quantities

gP
n :¼

Xnel

k¼1

gP
nk ¼

Xn el

k¼1

Z
In

Z
Xk

½mnðp̂P
nk þres;h

nk Þ
2

þ rnðr̂P
nk þ es;h

nk Þ
2�dXdt;

gD
n :¼

Xnel

k¼1

gD
nk ¼

Xn el

k¼1

Z
In

Z
Xk

½mnðp̂D
nk þres;h

nk Þ
2

þ rnðr̂D
nk þ es;h

nk Þ
2�dXdt;

gPD
n :¼

Xnel

k¼1

gPD
nk

¼
Xnel

k¼1

Z
In

Z
Xk

½mnðp̂P
nk þres;h

nk Þ � ðp̂D
nk þres;h

nk Þ

þ rnðr̂P
nk þ es;h

nk Þðr̂D
nk þ es;h

nk Þ�dXdt:

3. Compute the global quantities

gP ¼
XN

n¼1

gP
n

 !1
2

; gD ¼
XN

n¼1

gD
n

 !1
2

; gPD ¼
XN

n¼1

gPD
n ;

and recover the bounds for the output s� 6 LOðuÞ 6 sþ

where

s� :¼ LOðuhÞ þ RP ðwhÞ �
1

2
gPgD þ 1

2
gPD

and

sþ ¼ LOðuhÞ þ RP ðwhÞ þ
1

2
gPgD þ 1

2
gPD:

Remark 5. The final expression for the bounds of the
output LOðuÞ are recovered by means of the following
considerations. First Theorem 1 states that in order to
obtain bounds for the error in the output s it is sufficient to
obtain upper bounds for the quantities jes � 1

j es
�� ���� ���� ��2

UB
,

see Eq. (14). In order to compute the upper bounds for the
space–time norm, the procedure detailed in Section 5 is
considered for z ¼ jes � 1

j es. Then, from Theorem 2, the
following upper bounds are obtained:

jes�1

j
es

���� �������� �������� ����2
UB

¼
XN

n¼1

Z
In

Z
X

mn jðp̂P
n þres;h

n Þ�
1

j
ðp̂D

n þres;h
n

�
Þ

� �2

þrn jðr̂P
n þes;h

n Þ�
1

j
ðr̂D

n þes;h
n Þ

� �2
#

dXdt:

Finally the given expressions for the bounds are obtained
taking j2 = gD/gP and rearranging terms.

7. Adaptive refinement

The dual estimates p̂P
nk; r̂

P
nk; p̂

D
nk and r̂D

nk and more pre-
cisely the scalar quantities gP

nk; g
D
nk and gPD

nk provide informa-
tion localized in space and time. This information can be
used as an indicator for mesh adaptivity. In this work,
the meshes are adapted aiming to reduce the half bound

gap D:¼(s+ � s�)/2. Note that using the bound average
save:¼(s+ + s�)/2 as a new approximation of the quantity
of interest, D is an upper bound of the absolute error of
the approximation save with respect to the exact value
LOðuÞ, that is

jLOðuÞ � savej 6 D:

In the examples a simple adaptive strategy is used based on
the decomposition of D into local positive contributions
from the elements:

D ¼
Xnel

k¼1

Dk;

where the element contribution to the bound gap Dk is

Dk :¼
XN

n¼1

1

4
j2gP

nk þ
1

4j2
gD

nk

� �
:

The validity of this decomposition is discussed in [15].
Here, the space mesh and the time step are kept constant

all along the time evolution. Thus, the errors are accumu-
lated in time to design a new spatial mesh and restart the
computation. The local contributions of the half bound
gap, Dk, which contain all the contributions of the time
slabs In to the element Xk, are used as indicators on
whether to refine the specific element or not.

Note that the presented strategy assess the entire error
(including the time error). That is, adapting the space mesh
may not suffice to control the half bound gap D due to the
influence of the time-error. Using only h-adaptivity does no
longer suffice to control the error and the time step Dt has
to be also reduced in the next step of the adaptive proce-
dure (although in the present implementation the same Dt

is used along the time). The criterion used to decide if Dt

has to be reduced is based on comparing the error esti-
mated with two different adapted meshes and the same
Dt. The time discretization is considered enough accurate
if the error is reduced according to the rate of convergence
expected for the spatial discretization. If the error does not
decrease as indicated by the a priori spatial estimates, the
time error plays a significant role in the entire error and
therefore Dt is reduced in the next step of the adaptive
loop.

Summarizing, space adaptivity is performed subdividing
the elements with large values of Dk. Then, a new simula-
tion is carried out with the new spatial mesh and the same
Dt. The new error assessment allows deciding if Dt has to
be reduced in the next adaptive step. This strategy is used
in some of the examples presented in next section. In other
examples the time step is kept proportional to some power
of h in order to reduce the error uniformly according to the
a priori estimates.

Setting up a fully adaptive strategy is beyond the scope
of this paper. It is worth noting, however, that the local
quantities gP

n , gD
n and gPD

n could also be used as indicators
for more flexible mesh adaptation in terms of time-varying
space-meshes and non-constant time steps. Moreover, the
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half bound gap is also decomposed into positive local
contributions

D ¼
XN

n¼1

Dn;

where the contribution from the time slab In, Dn is

Dn :¼ 1

4
j2gP

n þ
1

4j2
gD

n ¼
Xnel

k¼1

1

4
j2gP

nk þ
1

4j2
gD

nk

� �
: ð29Þ

This information could be used to decide the new time step
for the next time slab. For instance, time adaptivity could
consist in either decreasing the time step after the time slabs
with larger values of Dn or to restart the computation of the
last time slab with a reduced time step.

Moreover, the terms in the r.h.s. of (29) provide infor-
mation on the error contribution associated with element
k at the time slab n. This can be used as an indicator to
adapt the mesh along the time integration. Obviously,
adapting the mesh along the time evolution makes the
implementation more involved. Changing the mesh along
time is simple if the approximations of the primal and
adjoint problem are discontinuous in time as proposed in
[15]. However, the strategy presented here yielding strict
bounds for the error requires time-continuous approxima-
tions. The spatial meshes of two consecutive slabs cannot
be completely independent. It is worth noting, though, that
this strategy can be easily applied if the meshes are nested,
derived from the same pattern of triangle generation. In
this case the projection of the initial or final conditions
from one mesh to another is straightforward and, conse-
quently, the proposed approach is valid.

8. Numerical examples

The numerical tests presented in this section are the
same as in the first part of the paper [15] but with the
numerical tools introduced in this second part. These
examples are used to demonstrate the ability of the pre-
sented approach to account also for the error associated
with the time discretization and to point out the difficulties
in recovering the predicted a priori convergence rates. The
notation used here is therefore the same as in [15] and it is
briefly recalled. The upper and lower bounds for LOðuÞ
introduced above are denoted by s� and s+. The bound
average, save is taken as a new approximation of the quan-
tity of interest and the half bound gap, D, is seen as an error
indicator. Since the exact solution of the problems is not
known, the relative counterpart of the half bound gap,
Drel = D/save, is also used in the presentation.

8.1. Example 1: Uniformly forced square domain

The transient pure diffusion equation (m = 1, r = 0,
a = 0) is solved in the squared domain X = [0,1] · [0, 1]
and for a final time T = 0.1. A constant source term

f ðtÞ ¼
ffiffiffiffiffi
10
p

and homogeneous Dirichlet boundary condi-
tions and initial condition (u0 = 0) are considered.

The quantity of interest is an average of the space–time
solution

LOðuÞ ¼
Z T

0

Z
X

ffiffiffiffiffi
10
p

uðx; y; tÞdXdt;

that is f O ¼
ffiffiffiffiffi
10
p

and uO
T ¼ 0 in Eq. (5). The solution w of

the adjoint problem is in this case such that u(t) = w(T � t).
Two spatial discretizations are used in this test: linear

and quadratic triangular elements in space, p = 1 and
p = 2. In the computation of the hybrid fluxes, the equili-
brated normal fluxes along the edges of the elements are
linear, both for p = 1 and p = 2. The local approximation
to bZ njk and its fluxes in the interior of the elements,bPnjk 2 ½PrðXkÞ�nsd and bRnjk 2 PrðXkÞ are fourth order poly-
nomials, i.e. r = 4.

The convergence of the bounds is analyzed for a uni-
form mesh refinement in a series of structured meshes.
The initial mesh is composed by eight triangular elements
(half squares) and in each refinement step every triangle
is divided in four similar triangles. The study is done using
different strategies to determine the time step: in each
refinement step the time step is kept constant Dtn = Dt

(all the time slabs In have the same size) but different strat-
egies are used to modify the time step Dt as the meshes are
refined uniformly.

The results for linear elements (p = 1) are shown in
Fig. 2 for three cases: (1) constant time step Dt = 0.05
(N = 20) during all the mesh refinement procedure, (2)
varying the time step as Dt /

ffiffiffi
h
p

and (3) varying the time
step as Dt / h. The optimal finite element convergence rate
in space for the quantity of interest is Oðh2Þ which is
approximately obtained when the time step is taken to be
Dt = h. If a constant time step is considered, the bounds
have the expected rate of convergency for the initial meshes
but in the last step the time discretization error is no longer
negligible in front of the space discretization error. The
strategy which considers Dt /

ffiffiffi
h
p

does not reach the
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Fig. 2. Example 1: Convergence of the half bound gap in a series of
uniformly refined meshes of linear triangular elements (p = 1) using
different strategies to determine the time step Dt.
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expected rate of convergence and shows that in this case
the convergence of the half bound gap is determined by
the time step Dt and not by the mesh size h. This shows that
in order to asymptotically approach the optimal finite ele-
ment convergence rate in space, the time step Dt has to be
chosen carefully.

The bounds obtained with the strategy Dt / h are dis-
played in Table 1 and in Fig. 3. Also the bound average save

and the approximation of the output associated with the
cG(p)dG(q) approximation of u; LOðûhÞ, are shown. Note
that, in this example, the bound average provides a better
approximation of the output LOðuÞ even for the coarser
meshes.

The results for quadratic elements (p = 2) are shown in
Fig. 4 for four cases: (1) piecewise linear interpolation in
time (q = 1) with a constant time step Dt = 0.002
(N = 50), (2) linear interpolation q = 1 for a constant time
step Dt = 0.00025 (N = 400), (3) linear interpolation q = 1
and varying the time step Dt / h2 and (4) quadratic inter-
polation q = 2 for a varying time step Dt / h. For linear
elements, p = 1, if a constant time step is considered, the
bounds have the expected rate of convergence for the initial
meshes but deteriorate as the importance of the time dis-
cretization error increases with respect to the spatial dis-
cretization error (when the time discretization error is no
longer negligible in front of the space discretization error).
In particular, if the time step is kept constant the bound
gap does not converge to zero with h. The strategy taking
Dtn / h2 recovers the expected rate of convergence, but it
requires the use of a non-reasonable amount of time steps
(this could be precluded using a non-uniform time discret-
ization). Finally, using a quadratic interpolation both in
space and time p = q = 2 and Dt / h the desired conver-
gency rate Oðh4Þ is not reached. This is due probably to
two facts: first, a slight drop off in the rate of convergence
may be due to the use of linear equilibrated fluxes for kP

nj

and kD
nj. Second, the convergence rate is possibly deter-

mined by the time step Dt and not by the mesh size h. How-
ever, this strategy allows obtaining reasonably good results
with few time steps.

The results in the case of using both a quadratic interpo-
lation in space and time p = q = 2 combined with the use of
Dt / h are displayed in Table 2 and Fig. 5. In this case the
bound average again provides a better approximation for
the output LOðuÞ than LOðuhÞ and LOðûhÞ. It is worth noting
that in this case s� P LOðuhÞ due to the term RP(wh) which

in this case is a positive number appearing in the expression
of the bounds.

8.2. Example 2: Composite material

The unsteady heat conduction problem is solved in the
domain described in Fig. 6 for a non-uniform (composite)
material. The problem is purely diffusive (r = 0 and a = 0).
The thermal conductivity is smaller in the rectangular
inclusions (m = 0.01) and larger for the bulk material

Table 1
Example 1: Results in a series of uniformly h-refined meshes using linear triangular elements and using the time step Dt = h

nel N Linear elements

LOðûhÞ LOðuhÞ s� s+ save D Drel (%)

8 3 0.017239 0.016743 0.016528 0.022392 0.019460 0.002932 15.07
32 6 0.018582 0.018433 0.017991 0.023181 0.020586 0.002595 12.60
128 12 0.019845 0.019803 0.019669 0.021323 0.020496 0.000827 4.03
512 23 0.020295 0.020282 0.020248 0.020690 0.020469 0.000221 1.08
2048 46 0.020419 0.020416 0.020407 0.020519 0.020463 0.000056 0.27
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Fig. 3. Example 1: Bounds obtained in a series of uniformly h-refined
meshes using linear triangular elements using the time step Dt = h.
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Fig. 4. Example 1: Convergence of the half bound gap in a series of
uniformly h-refined meshes using quadratic triangular elements (p = 2),
using different strategies to determine the time step Dt.
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(m = 1). The specimen is assumed to be thermally isolated
on the lateral sides, that is homogeneous Neumann bound-
ary conditions are prescribed in this part of the boundary.
The temperature is set to zero on the top (u = 0) and a pre-
scribed heat flux is imposed on the bottom, Cb, that is
ru � n ¼ gNðtÞ, where

gNðtÞ ¼
4tð1� tÞ þ 1 for t 2 ½0; 1�
4ð1� tÞð2� tÞ þ 1 for t 2 ð1; 2�:

�
The initial thermal state is assumed to be u(0) = 0 and the
time interval is taken from t = 0 to t = T = 2.

Here, both space and time discretizations are quadratic,
that is p = 2 and q = 2. The selected output of interest is
the average of the temperature on the bottom, Cb:

LOðuÞ ¼ 1

measCb

Z T

0

Z
Cb

uðx; y; tÞdCdt:

This quantity of interest is represented by a Neumann
boundary condition for the dual problem
gO

NðtÞ ¼ 1=measðCbÞ on Cb.
An adaptive procedure is carried out subdividing the ele-

ments with larger values of Dk (larger contributions to the
bound gap). The bounds are obtained using a fourth order
interpolation for the dual estimates, r = 4. The results
along the adaptive process are shown in Fig. 7, where the
representative mesh size h is defined as h ¼

ffiffiffiffiffiffiffiffiffiffi
1=nel

p
. At each

remeshing step 1% of the elements are marked to be
refined. For each step a constant time step is considered
Dtn = Dt and the time step is reduced along the adaptive
loop such that the convergence rate is driven by the space
discretization error. That is, in the adaptive steps where
the rate of convergence of the half bound gap with respect
to the space discretization is not the expected one (due to a
non-negligible time discretization error), the time step Dt is
divided by two. The adaptive procedure is then continued
until the relative bound gap reaches a target value of
0.5%, that is, Drel 6 0.005. The adaptive procedure starts
with N = 7 and the time step does not need to be modified
in all the steps. Note that in this example since the time dis-
cretization error is very small, LOðuhÞ 	 LOðûhÞ. Moreover,
the lower bound estimates provide better approximation
than the upper bound and the bound average.

Table 3 summarizes the results for the first and final iter-
ation and the initial and final meshes are shown in Fig. 8.
The adaptive procedure guarantees a relative half bound
gap less than 0.5% using only N = 7. For the final mesh
an extra computation has been done with a lower time step,
using n = 10 and N = 20 to compare the resulting bounds.
The error in the final mesh with 1429 elements is mainly
due to the space discretization error: decreasing the time
step does not practically vary the output and yields only
a slight improvement of the bounds.

8.3. Example 3: Quasi-2D transport

This example is the transient version of a steady quasi-
2D transport problem introduced in [18]. The effect of
including the convective term is analyzed in this simple
problem for different values of the velocity a. Eq. (1) is
solved in the unit square, X = [0,1] · [0,1], for m = 1,
r = 1 and a uniform horizontal velocity field a = (a, 0).
The performance of the introduced estimates is tested for
different values of a. The boundary conditions are of

Table 2
Example 1: Series of uniformly h-refined meshes using a quadratic interpolation both in space and time, p = q = 2 and Dt = h

nel N Quadratic elements

LOðûhÞ LOðuhÞ s� s+ save D Drel (%)

8 3 0.019892 0.019224 0.019505 0.020906 0.020205 0.000701 3.47
32 6 0.020366 0.020185 0.020286 0.020541 0.020414 0.000128 0.62
128 12 0.020452 0.020404 0.020433 0.020475 0.020454 0.000021 0.10
512 23 0.020461 0.020447 0.020456 0.020464 0.020460 0.000004 0.02
2048 46 0.020462 0.020458 0.020460 0.020462 0.020461 0.000001 0.005
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Fig. 5. Example 1: Bounds in a series of uniformly h-refined meshes using
a quadratic interpolation both in space and time, p = q = 2 and Dt = h.

Fig. 6. Example 2: Composite domain X: inside the rectangles, X2, the
thermal conductivity is m = 0.01 and in the remainder of the domain, X1,
m = 1.
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Dirichlet type on the lateral sides, homogeneous on the
right u(1, y) = 0 and set to 1 on the left u(0,y) = 1. The
boundary condition on both the top and bottom are Neu-
mann homogeneous. The source term is f = 0, and the ini-
tial condition is u0(x,y) = 1 � x. Time integration is
performed to t = T = 1. The degrees of the space and time
interpolations are p = 1, q = 1 and r = 4.

The quantity of interest is an overall average of the solu-
tion, that is

LOðuÞ ¼
Z T

0

Z
X

uðx; y; tÞdXdt;

which corresponds to f O ¼ 1.
The error estimation strategies and the computation of

bounds are performed for a series of uniformly h-refined
meshes with Dt = h and different values of a. The results
are displayed in Table 4 and Fig. 9. For all the values of
a, the rate of convergence of the bound gap is found to
be equal to the expected one for the error, that is Oðh2Þ.

It is worth noting that the bound gap is larger as a
increases. For a = 100 the bound gap is 4 orders of magni-
tude larger than the for a = 0, being the quantity of interest
of the same order. The convergence rate in all the cases is
clearly determined by the spatial error. Moreover, although
the bounds account both for the discretization error in
space and time, the results are nearly as sharp as the
bounds obtained in [15] which only considers the contribu-
tion of the spatial error.

This increment in the bound gap does not correspond to
the actual error increment and therefore it has to be con-
cluded that the efficiency of the computed error bounds is
deteriorated if the convection parameter is large.

In order to check the convergence in time of the pro-
posed algorithm a Dt-refining procedure is carried out. A
fixed spatial mesh composed by 2048 triangular elements
(half squares) and an initial constant time step Dt = 0.5
are considered to start the process. In each refinement step,
the time step Dt is divided by two. The results are displayed

Mesh diameter, h
0.03 0.035 0.04 0.045

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

B
ou

nd
s

0.025

0.05

0.1

0.2

0.4

H
al

f 
bo

un
d 

ga
p,

 Δ

1

Mesh diameter, h

N = 7

0.03 0.035 0.04 0.045

Fig. 7. Example 2: Computed bounds for an adaptive h-refinement using a quadratic interpolation both in space and time p = q = 2 (left) and convergence
of the half bound gap (right).

Fig. 8. Example 2: Initial (left) and final meshes (right) of the adaptive procedure with nel = 454 and 1429, respectively.

Table 3
Example 2: Results in a series of adaptive h-refinement

nel N LOðûhÞ LOðuhÞ s� s+ save Drel (%)

454 7 3.19971 3.19517 3.13694 3.99799 3.56747 12.07
1429 7 3.22388 3.21936 3.21962 3.24922 3.23442 0.46
1429 10 3.22404 3.22144 3.22068 3.24844 3.23456 0.43
1429 20 3.22404 3.22310 3.22135 3.24775 3.23455 0.41
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in Fig. 10. The convergence of the bound gap degenerates
as the value of a increases at the same time that the bound
gap is larger for larger values of a. For a = 100 the bound
gap is 4 orders of magnitude larger than the for a = 0,
being the quantity of interest of the same order.

The bounds obtained with the algorithm presented in
the first part I of this work [15] are compared with the
results of the present algorithm. Fig. 10 shows that the
bounds which only account for the spatial error (non-strict
bounds) are nearly insensitive to the change of the time
step. In fact, if the convergence of the bounds which do
not account for the time discretization error is plotted for
each value of a, it can be seen that the bounds increase
as the time step is reduced (although the rise of the half

bound gap is barely perceptible as compared to the varia-
tions of the bounds accounting for both the error in space
and time).

Fig. 11 shows bounds obtained for the values of the con-
vection parameter a = 0,5 and 100. For very large time
steps the smoothed approximation LOðuhÞ is not a good
approximation of LOðuÞ (in comparison with the
cG(p)dG(q) approximation LOðûhÞ). However, for a = 0
and 5, the procedure yields quite competitive bounds tak-
ing into account that the starting point of the procedure
is LOðuhÞ. Therefore, in this case for low values of a the
quality of the bounds is determined by the quality of the

Table 4
Example 3: Results in a series of uniformly h-refined meshes with Dt = h

nel N a = 0 a = 1 a = 5 a = 10

save D save D save D save D

32 6 0.466028 0.001717 0.532588 0.002032 0.738888 0.036791 0.848585 0.171335
128 12 0.465682 0.000414 0.532864 0.000488 0.739246 0.008675 0.849791 0.040686
512 23 0.465587 0.000103 0.532940 0.000120 0.739414 0.002056 0.849588 0.009456
2048 46 0.465562 0.000026 0.532959 0.000030 0.739465 0.000493 0.849582 0.002212
8192 91 0.465555 0.000006 0.532964 0.000007 0.739479 0.000121 0.849585 0.000530
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Fig. 9. Example 3: Convergence of the half bound gap for different
convection parameters a = 0, 1, 5, 10 and 100.
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Fig. 10. Example 3: Convergence with respect to the time discretization of
the half bound gap for different convection parameters a = 0, 1, 5, 10 and
100 using both the methodology presented in this paper and in the first
part [15].

0.03 0.06 0.125 0.25 0.5

0.464

0.465

0.466

0.467

0.468

0.469

0.47

B
ou

nd
s 

fo
r

α 
=

 0

Time step, Δt

0.71

0.72

0.73

0.74

0.75

0.03 0.06 0.125 0.25 0.5
Time step, Δt

B
ou

nd
s 

fo
r

α 
=

 5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.03 0.06 0.125 0.25 0.5
Time step, Δt

B
ou

nd
s 

fo
r 

α 
=

 1
00

Fig. 11. Example 3: Bounds accouting both for the error in space and time for different convection parameters a = 0, 5 and 100 with respect to a uniform
refinement in time.
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smoothed approximations. For large values of a, although
the smoothed approximations are worst that the
cG(p)dG(q) approximation, the bounds are clearly deterio-
rated due to the convection-dominated nature of the
problem.

8.4. Example 4: Rotating transport

Again, a transient version of a steady problem analyzed
in [18] is considered. The computational domain is
X = [0, 1] · [0, 1] and the model parameters are m = 1,
r = 10 and a ¼ 250ðy � 1

2
; 1

2
� xÞ. The boundary conditions

are Dirichlet homogeneous on the whole boundary oX and
the initial condition is u0 = 0. A localized source term is
f = 1000 in the square [0.7,0.8] · [0.7,0.8] and f = 0 else-
where, see Fig. 12. The output of interest is a local average
in the square region [0.2,0.3] · [0.2,0.3], that is f O ¼ 1 in
[0.2,0.3] · [0.2,0.3] and f O ¼ 0 elsewhere. The parameters
describing the space–time discretization are p = 1 and
q = 1, and for a final time T = 0.03.

A series of adapted meshes is produced by subdividing
at each remeshing step 4% of the elements, those with the
larger contributions to the bound gap. Also the time step
Dt is adjusted (is divided by two in the iterations where a
slow convergence of the half bound gap is observed). The
adaptive procedure starts with a mesh of 322 elements
and with N = 6 and stops when the half bound gap reaches
the target value of 0.000006, that is, D 6 6 · 10�6, see
Fig. 13.

The initial mesh of 322 elements and N = 6 certifies a
wide interval for the quantity of interest, LOðusÞ ¼
3:77287
 10�5 � 9:45362
 10�5, after remeshing the
bounds associated with the final mesh of 5855 elements

and N = 896 set a much narrower interval, LOðusÞ ¼
3:79554
 10�5 � 0:58690
 10�5, see Table 5. The primal
and adjoint solutions at the final computational times
(t = T for the primal and t = 0 for the adjoint) are dis-
played in Fig. 14.

The local elementary contributions Dk to the global
bound gap are plotted in Fig. 15 for the initial mesh and
for an intermediate mesh of the adaptive procedure. The
larger values of the local contributions are precisely in
the zones where either the primal or the adjoint solutions
have larger gradients. Also in Fig. 15 the resulting final
mesh is displayed.

8.5. Example 5: Canister

The final example represents the transport of pollutant
inside an active carbon filter. The transient convection-
reaction-diffusion equation is solved in the simplified

Fig. 12. Example 4: Rotating transport forcing and output regions.
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Fig. 13. Example 4: Error bounds for an adaptive h-refinement and adjusting the constant time step Dt.

Table 5
Example 4: Results for the initial and final meshes of the adaptive h-refinement procedure

nel N LOðuhÞ s� s+ save D

322 6 3.677 · 10�5 �5.681 · 10�5 13.226 · 10�5 3.773 · 10�5 9.454 · 10�5

5855 896 3.792 · 10�5 3.209 · 10�5 4.382 · 10�5 3.796 · 10�5 0.587 · 10�5
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canister geometry shown in Fig. 16. The diffusion is con-
stant m = 0.01 whereas the reaction is larger in the outlet
of the canister (r = 10 in X2 [ XO) and smaller in the rest
of the canister (r = 0.1 in X1). Thus, XO is a pollutant trap
capturing all the pollutant that the actual filter (domain X1)
is not able to retain. The advection field, a, is a piecewise
linear field (see Fig. 16) resulting from a finite element com-
putation of a potential flow in the same mesh. The inlet
concentration of pollutant is set to one (u = 1 in C1) and

the outlet concentration of pollutant is set to zero (u = 0
in C2). The rest of the boundary conditions are Neumann
homogeneous because the walls of the canister are consid-
ered to be impermeable.

The initial pollutant concentration state is taken as
u0 = 1 in the inlet boundary, C1, and zero elsewhere. In
practice, the initial condition u0 has to be interpolated in
the mesh and therefore u0 is set to 1 in the nodes of the
mesh lying in C1 and set to zero in the rest of the nodes.
The time interval is taken from t = 0 to t = T = 2.

The quantity of interest is the total pollutant captured
by the trap domain XO along the complete time evolution.
Note that the canister is considered to work properly if this
quantity is small enough. If the outcome of pollutant
exceeds a threshold value, the canister breaks and the
design is not admissible. This quantity is expressed in terms
of the solution by

LOðuÞ ¼
Z T

0

Z
XO

uðx; y; tÞdXdt;

that is uO
T ¼ 0 and f O ¼ 1 in XO and zero elsewhere, in Eq.

(5).
Two different strategies for space–time adaptation have

been used in order to yield the desired accuracy. The first
procedure yields the desired accuracy in two steps: first
the time discretization error is neglected and the strategy

Fig. 14. Example 4: Primal and adjoint solution at the final time: t = T for the primal and t = 0 for the adjoint.

0.5 1 1.5 2 2.5 3 3.5 4 1 2 3 4 5 6
x10-4

Fig. 15. Example 4: Elementary contributions to the bound gap in initial mesh (left) and intermediate mesh with nel = 1577 (center). Final adapted mesh
(right).

Fig. 16. Example 5: Computational domain (left) and incompressible
advection field a (right).
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proposed in [15] is used to obtain an optimal adapted mesh
with respect to space. It is worth noting that the strategy
proposed in [15] is cheaper since the approximations used
as input of the error estimation procedure verify the Galer-
kin orthogonality property. For this final mesh, the strat-
egy proposed in this work along with a uniform
refinement of the constant time step Dt is used to guarantee
the bounds for LOðuÞ, taking into account both the space
and time discretization errors. The second strategy is to
use the space–time adaptation also used in the previous sec-

tions (in all the intermediate steps the bounds are strict for
LOðuÞ and the time step is adjusted in each step of the adap-
tive procedure).

The starting mesh of the uniform Dt-refinement proce-
dure (obtained using the strategy given in [15] for a target
relative half bound gap of 2.5%) contains 5786 elements,
see Fig. 17. Here, both the spatial and time discretizations
are linear, that is p = 1 and q = 1, and the bounds are
obtained using a fourth order interpolation for the dual
estimates r = 4. The results are displayed in Fig. 17 and
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Fig. 17. Example 5: Starting mesh for the uniform Dt-refinement obtained with the strategy given in [15] for a target relative half bound gap of 2.5% (left),
computed bounds for the Dt-refinement (center) and its convergence (right).

Table 6
Example 5: Computed bounds for a uniform D t-refinement for a constant spatial mesh of 5786 elements

N LOðuhÞ s� s+ save D Drel (%)

25 7.609 · 10�4 5.390 · 10�4 9.802 · 10�4 7.596 · 10�4 2.206 · 10�4 29.04
50 7.609 · 10�4 6.315 · 10�4 8.893 · 10�4 7.604 · 10�4 1.289 · 10�4 16.95
100 7.609 · 10�4 6.834 · 10�4 8.378 · 10�4 7.606 · 10�4 0.772 · 10�4 10.15
200 7.609 · 10�4 7.125 · 10�4 8.088 · 10�4 7.606 · 10�4 0.482 · 10�4 6.33
400 7.609 · 10�4 7.281 · 10�4 7.932 · 10�4 7.607 · 10�4 0.326 · 10�4 4.28
800 7.609 · 10�4 7.355 · 10�4 7.858 · 10�4 7.607 · 10�4 0.252 · 10�4 3.31
1600 7.609 · 10�4 7.384 · 10�4 7.829 · 10�4 7.607 · 10�4 0.223 · 10�4 2.93

Fig. 18. Example 5: Initial, intermediate and final meshes with 686, 1489 and 2703 elements, respectively. The associated time steps are N = 8, 109 and
825, respectively.
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in Table 6. As expected, for large values of N the bounds
present a drop off in the convergence as the contribution
of the spatial discretization error acquires importance with
respect to the error in time.

Also the convergence of the bounds is analyzed using
the strategy presented in the previous examples. The adap-
tive procedure subdivides the elements with larger contri-
bution to the bound gap and adjusts the time step in
each iteration, until the relative half bound gap reaches a
target value of 7%. Also in this example, in each step, 1%
of the elements are marked to be refined. In this case a lin-
ear interpolation in space p = 1 and a quadratic interpola-
tion in time q = 2 are used, whereas the bounds are
obtained using a fourth order interpolation for the dual
estimates r = 4. The initial and final meshes are shown in
Fig. 18.

The corresponding bounds are displayed in Fig. 19. In
the first iteration (nel = 686 and N = 8) the bounds guaran-
tee that LOðuÞ ¼ 7:678
 10�4 � 3:230
 10�4 ¼ 7:678

10�4 � 42:07% whereas for the final mesh (nel = 2703 and
N = 825), the bounds for the quantity of interest guaran-
tee that LOðuÞ ¼ 7:606
 10�4 � 0:524
 10�4 ¼ 7:606

10�4 � 6:89%.

9. Concluding remarks

The methodologies presented in this series of two papers
provide computable bounds for linear outputs of parabolic
problems. In the first part the error associated with the time
discretization is neglected and therefore the space adaptiv-
ity is sufficient to control the accuracy of the solution. The
quality of the bounds is however degraded for large values
of the advection parameter because the error equations to
be solved are symmetrized. In the second part, the method-
ology includes the assessment of the time error and, conse-
quently, time adaptivity is also required to control the
quality of the solution. In this second approach, the
approximate solution has to be post-processed to enforce
continuity. This smoothing is required to use the approxi-
mate solution as an input of the error assessment. The pre-

dicted convergence rates (of the non-smoothed solution)
are affected by this post-processing. The behavior of the
obtained bounds is also degenerated for advection domi-
nated problems.

The results demonstrate that the procedures introduced
here are valuable tools to assess the quality of linear out-
puts in the context of parabolic problems. Nevertheless,
many questions still require an answer and there is space
for further research in this very same topic. For instance,
considering non-symmetric error equations would possibly
allow to better account for the advection effect. Moreover,
the design of optimal adaptive procedures in this context is
also a critical issue, both for the space and time
discretizations.

Appendix A. Proof of remark 2

For any v 2W, using the definitions of the bilinear form
A(Æ,Æ) and of the linear functional L(Æ), the primal residual
can be rewritten as:

RP ðvÞ ¼ LðvÞ � Aðuh; vÞ

¼
Z T

0

‘ðt; vÞdt þ ðu0; vð0ÞÞ �
Z T

0

½h _uh; vi þ aðt; uh; vÞ�dt

� ðuhð0Þ; vð0ÞÞ

¼
Z T

0

½hf � _uh; vi � aðt; uh; vÞ�dt;

since the approximation uh verifies the initial condition
uh(0) = u0.

Similarly, for any v 2W, using the definitions of the
bilinear form A(Æ,Æ), of the linear functional LOð�Þ, and with
the help of the following equalityZ T

0

h _v;whidt ¼ �
Z T

0

h _wh; vidt þ ðvðT Þ;whðT ÞÞ

� ðvð0Þ;whð0ÞÞ;
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Fig. 19. Example 5: Computed bounds for the adaptive space–time procedure (left) and convergence of the half bound gap (right).
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the adjoint residual can be rewritten as:

RDðvÞ ¼ LOðvÞ � Aðv;whÞ

¼
Z T

0

‘Oðt; vÞdt þ ðuO
T ; vðT ÞÞ

�
Z T

0

½h _v;whi þ aðt; v;whÞ�dt � ðvð0Þ;whð0ÞÞ

¼
Z T

0

½hf O; vi � aðt; v;whÞ�dt þ ðuO
T ; vðT ÞÞ

� ðvð0Þ;whð0ÞÞ �
"
�
Z T

0

h _wh; vidt þ ðvðT Þ;whðT ÞÞ

� ðvð0Þ;whð0ÞÞ
#

¼
Z T

0

½hf O; vi þ h _wh; vi � aðt; v;whÞ�dt þ ðuO
T ; vðT ÞÞ

� ðvðT Þ;whðT ÞÞ

¼
Z T

0

½hf O þ _wh; vi � aðt; v;whÞ�dt;

since the approximation wh verifies the final condition
whðT Þ ¼ uO

T .
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