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Abstract

Oscillatory response of cellular tissues has been observed in multiple
embryogenetic developmental stages. The source of these oscillations has
been attributed to imbalance of instabilities in the chemo-mechanical sig-
nalling and delayed cell activity. Although the relation of these oscillations
with further drastic tissue deformation remains uncertain, it is apparent
that intracellular remodelling events seem to drive the viscoelastic prop-
erties and the measured pulsatile deformations.

We here resort to a viscoelastic model that is based on a variable rest-
length of the cell. We include a delay between the measured elastic strain
and the evolution of the rest-length which dynamically adapts to the cell
strain. This law is not only able to reproduce the relaxation phenomena
observed in embryonic tissues in vitro and in vivo, but also to give rise
to oscillatory cell responses. We analyse the stability of the resulting
oscillations on minimal systems with two cells, and also on planar or out
of plane deformation modes of monolayers. We conclude that in all cases,
the stability decreases with an increasing delay or with the ability to adapt
in a faster manner.

keywords: Oscillations, tissues, stability, delay differential equations, em-
bryogenesis, Monolayers

1 Introduction

The analysis of the oscillatory behaviour of cells has attracted the attention of
experimental and theoretical researchers in recent years. They are ubiquitous
and precede drastic morphogenetic shape changes. For instance, sustained pla-
nar oscillations of monolayers have been observed during embryonic germband
extension in Drosophila embryo [15], or during dorsal closure [24, 7] or ventral
invagination [14].

These oscillations have been associated with the coupling between the chem-
ical and mechanical signalling [19, 11], or the relation between cell polarity and
force transmission [18, 21], with a potential dependence on the confinement [20].
More recently, it has been observed that the relocation of actomyosin compo-
nents from medial to junctional areas of the cell may trigger these pulsatile
response, suggesting that this biochemical delay between motor molecules is
responsible of the observed oscillations [26].
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Some recent works have analysed the dynamics of the chemo-mechanical
coupling through diffusion reaction equations, with applications in apical con-
striction in epithelia [11], monolayers on substrates [18, 21] or wound healing
[22]. In order to analyse the stability of such systems, we here focus on the
delay and model it explicitly by resorting to a delayed cell rheology and the
resulting delay differential equations, in similar manner to the stress analysis in
yeast [13], neural axons conduction [3], transport in respiratory systems [5], or
in cell maturation [10].

We here analyse the stability and oscillatory response of a planar deformation
mode that preserves cell areas. We include a viscous like rheological law based
on an adaptive rest-length [16], where the latter varies according to a delayed
measure of strains. This work extends previous uni-dimensional analysis [17] to
a planar and non-linear mode of deformation.

This chapter is structured as follows. We first present the periodic planar
deformation mode and the resulting equilibrium equations for are preserving
planar deformations of a tissue in Section 2. We then analyse the linearised
equations and the resulting delay differential equations, and provide bounds for
the delay and material parameters in Section 2.3. We also study the stability
and oscillatory bounds of the non-linear system (Section 2.4. We also present
the equilibrium equations for the cross-section of the tissue in Section 3, and
analyse the stability for on-plane (Section 3.1) and out-of-plane (Section 3.2)
deformations. We finally give some concluding remarks in Section 4.

2 Planar deformations

2.1 Planar deformation mode and equilibrium equations

We will simplify our mechanical analysis by assuming that the epithelium can
be represented by a two-dimensional patch of regular hexagons, as shown in
Figure 1a. We will additionally suppose that the cells deform in an area pre-
serving mode, and that this deformation has the same periodicity of the whole
pattern. The tissue deformation is thus fully described by the vertex displace-
ment given in the greyed area of Figure 1b. Although this periodicity is not
exactly observed experimentally, cells locally share similar distortions. The sim-
plification employed here also allows us to parametrise the whole deformation
through the displacement of a single vertex, denoted by u = {ux uy}T , and to
obtain analytical results on the stability of the resulting oscillations.

According to these assumptions, the planar deformations of the two-dimen-
sional patch are fully described with the 3 elements depicted in Figure 1b,
which represent the junctions of three generic cells. We will henceforth study
the motion of the cells in the system by analysing the equilibrium equations and
the rheology of these 3 elements.

The equilibrium equations of the 3 element system are written in terms of
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(a) (b)

Figure 1: (a): scheme of distribution of cells as a regular pattern of hexagons.
(b): detail of the vertex displacement in the shaded are of the left.

an elastic potential function W (u) given by,

W (u) =
1

2

3∑
i=1

k(li(u)− Li)2 (1)

where k is the element stiffness, assumed as constant and equal for all the
elements, li(u) is the apparent (observed) length of each element i = 1, 2, 3, and
Li its rest-length. We point out that the latter is assumed to be not necessarily
constant. Its evolution will be detailed in the next section.

The equilibrium equations are deduced from the stationary condition of
W (u) as,

dW (u)

du

∣∣∣
Li=const

= 0

which from the expression of W (u) in (1) yields,

3∑
i=1

(li − Li)
dli
du

= 0 (2)

Note that the equation above includes two scalar equations, one for ux (hor-
izontal equilibrium) and another for uy (vertical equilibrium). For simplicity,
we will assume that uy = 0, and denote by u the horizontal displacement ux.
The general case with uy 6= 0 will be discussed in Section 2.4, and in fact, a
very similar analysis to the one presented here can be deduced when uy is not
zero.
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The expressions of li in terms of u are found using elemental geometry,

l1 =

√
(l0 sinα)

2
+ (l0 cosα− u)

2
(3)

l2 =

√
(l0 sinα)

2
+ (l0 cosα+ u)

2
(4)

l3 =

√
l0

2 + u2 (5)

where α is the initial angle that elements 1 and 3 form with the horizontal
axis, and l0 is the length of the undeformed configuration, assumed equal for
all the elements (see Figure 1b). Using the expressions above, the horizontal
mechanical equilibrium is deduced from (2) as,

(l1 − L1)
u− l0 cosα

l1
+ (l2 − L2)

l0 cosα+ u

l2
+ (l3 − L3)

u

l3
=0 (6)

In the subsequent sections, we will use the compact notationL(t) = {L1(t) L2(t) L3(t)}T
as the vector of unknown rest-lengths. Consequently, by replacing the geometri-
cal relations in (3)-(5) into the previous non-linear equation, it can be re-casted
as

G(u,L) = 0 (7)

2.2 Cortex rheology and DDEs

We assume that each element has the ability to adapt to its current length li
by changing its resting length Li according to the following evolution law,

L̇i(t) = γi (li(t− τ)− Li(t− τ)) , i = 1, 2, 3 (8)

where γi > 0 is a material parameter called the remodelling rate, and τ > 0 is a
delay that measures the retarding time between the measured strain li−Li and
the cell active rest-length changes. Parameters γi represents the rate at which
cells adapt their length. It has been proved that when τ = 0, the evolution
law in (8) mimics Maxwell viscoelastic response [16]. Such model has been
also employed in embryogenesis [2, 4, 8, 25] or relaxation tests on suspended
monolayers [12].

The presence of delay τ is motivated by the observed oscillatory response
and the measured delay between myosin concentration and area oscillation in
Drosophila fly dorsal closure [7]. The stability of single elements with the evo-
lution law in (8) has been analysed in [17]. We are here interested in extending
these results to multicellular systems.

The presence of the the delay τ in (8) turns this differential equation into a so-
called Delay Differential Equation (DDE) [9], which jointly with the equilibrium
equation in (6) and the geometrical relations in (3)-(5) will allow to analyse the
stability of our primary unknowns u(t) and Li(t), i = 1, 2, 3. More precisely, by
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replacing the expression of li in (8) by the relations in (3)-(5), the time evolution
of u and L(t) are given by the following system of algebraic-DDE,{

L̇(t) = f(u(t− τ),L(t− τ)),
G(u(t),L(t)) = 0,

(9)

with the initial conditions

L(t) = L0

u(t) = u0

}
∀t ∈ [−τ, 0]. (10)

The explicit expression of function f(u(t),L(t)) in (9) is

f(u(t),L(t)) =



γ1

(√
(l0 sinα)

2
+ (l0 cosα− u(t))

2 − L1(t)

)
γ2

(√
(l0 sinα)

2
+ (l0 cosα+ u(t))

2 − L2(t)

)
γ3

(√
l0

2 + u(t)2 − L3(t)

)


. (11)

Note that due to the presence of the DDE in (9), the initial conditions are
defined on the interval [−τ, 0], and that we have assumed for simplicity that u0
and L0 = {L10 L20 L30}T are constant. For consistency, the values of u0 and
L(0) should satisfy G(u0,L0) = 0. We will next study the linearised form of
the initial value problem in (9)-(11).

2.3 Linearised equations of planar deformation

2.3.1 Linear delay-differential equations

The algebraic-DDE system is non-linear due to the expression of f(u(t),L(t))
and G(u(t),L(t)). We will henceforth assume that u(t) � 1, and that the
apparent lengths li(t) can be approximated by the linear terms,

l1(t) ≈ l0 − u(t) cosα,

l2(t) ≈ l0 + u(t) cosα,

l3(t) ≈ l0,
(12)

which are valid at all times. By inserting this linearised forms into the DDEs
in (8) we obtain,

L̇1(t) = −γ1u(t− τ) cosα− γ1L1(t− τ) + γ1l0,

L̇2(t) = γ2u(t− τ) cosα− γ2L2(t− τ) + γ2l0,

L̇3(t) = −γ3L3(t− τ) + γ3l0,

(13)

Furthermore, the linearised form of the equilibrium equation in (6) at (u,L) =
(0,L0) becomes:(

3− L10

l0
sin2 α− L20

l0
sin2 α− L30

l0

)
u(t) + cosα(L1(t)− L2(t)) = 0
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which after setting

λ0 = 3− L10

l0
sin2 α− L20

l0
sin2 α− L30

l0
(14)

may be written at time t− τ as,

u(t− τ) =
cosα

λ0
(L2(t− τ)− L1(t− τ)) . (15)

Replacing this expression of u(t) into (13), our system of algebraic-DDE in
(9)-(11) is approximated by the following linear system of DDEs:{

L̇(t) = AL(t− τ) + l0γ,
L(t) = L0, ∀t ∈ [−τ, 0].

(16)

with

A =


γ1

(
cos2 α
λ0
− 1
)

−γ1 cos2 α
λ0

0

−γ2 cos2 α
λ0

γ2

(
cos2 α
λ0
− 1
)

0

0 0 −γ3

 , γ =

 γ1
γ2
γ3

 . (17)

2.3.2 Solution of linear DDE system

For simplicity we will study the stability of the DDE systems in (16)-(17) as-
suming that

γ1 = γ2 = γ3 = γ. (18)

In this case, since matrix A is a real symmetric matrix, it accepts real
eigenvalues λ1, λ2, λ3. Its eigenvalue decomposition may then be written as,

A = VTDV (19)

with D = diag(λ1, λ2, λ3) and V = [v1, v2,v3] the matrix of normalised eigen-
vectors such that VTV = I. In our case, from the expression of A in (17) we
have that,

D =

 −γ 0 0
0 −γ 0

0 0 −γ
(

1− 2 cos2 α
λ0

)
 , V =

1√
2

 1 0 1
1 0 −1

0
√

2 0

 . (20)

It follows that the DDE system in (16)-(17) is equivalent to the following
diagonal system,{

ẏ(t) = Dy(t− τ) + l0γv,
y(t) = VL0, ∀t ∈ [−τ, 0].

(21)
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with y(t) = VL(t) and v =
∑
i vi. It is worth pointing out though that the

linear system in (16) can be also written as,{
L̇2(t)− L̇1(t) = γ

(
1− 2 cos2 α

λ0

)
(L2(t− τ)− L1(t− τ)),

L̇3(t) = −γL3(t− τ) + γl0,
(22)

with initial conditions{
L2(t)− L1(t) = L20 − L10, t ∈ [−τ, 0]

L3(t) = L30, t ∈ [−τ, 0]

Remark 2.1 The latter forms prompts us to consider the following particular
situation:

a) When L10 = L20, due to the first DDE in (22), we have that

L2(t)− L1(t) = 0 ∀t ∈ [−τ,∞)

This corresponds to reducing the dynamics to solely mode v3 in (20). Also,
due to the equilibrium condition in (15), and when λ0 6= 0, the displacement
u(t) ≡ 0. In this case, the delay equations in (13) are simplified, and matrix
A reduces to

A = −γI (23)

That is, λ1 = λ2 = λ3 = −γ.

b) Additionally, let us assume that L10 = L20 = L30. Then, due to the form of
the system matrix A in (23) and initial conditions, all rest-lengtsh have the
same evolution:

L1(t) = L2(t) = L3(t) ∀t ∈ [−τ,∞).

In order to analyse the stability of the DDE, let us introduce the general
form of the solutions to the DDE:

Proposition 2.1 The solution of the DDE in (21) is given by function ym =
{ym1, ym2, ym3}T , with components,

ymi(t) = emity0i −
l0γ

λi
, i = 1, 2, 3, (24)

if mi is solution of the characteristic equations,

τλi = mie
mi , i = 1, 2, 3. (25)
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The proposition can be proved by simply inserting the expression in (24)
into (21), which gives rise to the condition

λi = mie
miτ , i = 1, 2, 3. (26)

By using the change of variable t′ = t/τ , the DDE in (21) reads dy/dt′ =
τDy(t′−1)− l0γv, and thus condition in (26) turns into condition in (25). The
latter equation can be written in terms of the Lambert function W (z), which is
defined as the inverse function such that z = W (zez), ∀z ∈ C, or equivalently,
the solution of [6, 9, 23],

z = W (z)eW (z). (27)

Alternatively, functions ymi(t) in (24) are solution of the DDE if

mi = W (λiτ), i = 1, 2, 3. (28)

Remark 2.2 Lambert function can be extended to matrices by using the defi-
nition [1, 27],

W(A)eW(A) = A

In our case though, since A admits the diagonalisation A = VDVT , the
Lambert matrix expression reads W(A) = VTW(D)VT , and thus the analysis
of the values of W(A) reduces to the simpler scalar definition in (27).

Lambert function is multivalued, giving rise to a set of solutions (or branches)
mik, k ∈ Z that satisfy equation (27) [6]. Due to the linearity of the DDE,
component yi(t) of the general solution y(t) can be written as

yi(t) =

+∞∑
k=−∞

emiktcik − l0
γ

λi
, i = 1, 2, 3 (29)

where the coefficients cik, i = 1, 2, 3, k ∈ Z depend on the initial conditions.

2.3.3 Stability and oscillatory analysis of linear DDE

We first recall standard results of the Lambert function and the characteristic
equation [23, 9]:

Proposition 2.2 Lambert function W (z) satisfies,

i)Re(W (z)) > 0 if Re(z) < −π
2

or Re(z) > 0

ii)Im(W (z)) 6= 0 if Re(z) < −1

e
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The bounds in Proposition 2.2 can be verified by searching the values for
which the real part or the imaginary part of mem vanish [9]. Indeed, setting
m = a+ ib and z = ξ + iη, equation z = mem implies

ξ = ea(a cos b− b sin b)

η = ea(b cos b+ a sin b).

When a = 0, we have from the first equation that ξ = b = π/2± kπ, k ∈ Z.
When b → 0, the second equation gives a = − limb→0 b cot b = −1, which
inserted into the first equation yields ξ = −1/e.

Since the solutions ymi(t) contain the term emit, we know that stable solution
will be obtained whenever Re(mi) < 0, and oscillations will appear whenever
Im(mi) 6= 0. Therefore, from Proposition 2.2 and the eigenvalues λi in (20), we
conclude our main result for the linearised problem:

Proposition 2.3 The DDE in (16)-(17), with γ1 = γ2 = γ3 = γ > 0 and τ > 0
will have unstable solutions if

ia) L10 6= L20:

γτ max

(
1, 1− 2 cos2 α

λ0

)
>
π

2
, or, 1− 2 cos2 α

λ0
< 0,

ib) L10 = L20:

γτ >
π

2
,

and oscillatory solutions if

iia) L10 6= L20:

γτ max

(
1, 1− 2 cos2 α

λ0

)
>

1

e

iib) L10 = L20:

γτ >
1

e

Consequently, we have that when λ0 < 0 and L10 6= L20, the initial condi-
tions L0 may determine the presence of oscillations, and that when λ0 < λcrit
with

λcrit = 2 cos2 α, (30)

and L10 6= L20, the stability conditions depend also on the initial conditions.
For instance, for α = π/6, and setting L10 ≈ L20 = L30 = mLl0, with mL ≥ 0
a model constant, we have from (14) that λ0 ≈ 3− 2mL. Therefore, the initial
conditions determine the stability of the DDE whenever 3−3mL/2 < 2 cos2 α =
3/2, that is, when

mL > 1. (31)
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This corresponds to compressive initial states (Li0 > l0), which in cellular
materials is not a common situation. When λ0 > λcrit, the stability is deter-

mined by the value of γτ because 0 <
(

1− 2 cos2 α
λ0

)
< 1, and for unstressed

initial conditions (Li0 = l0), λ0 = λcrit, and thus the stability is not affected by
the initial conditions. A similar conclusion can be drawn when Li0 = 0 (bars
are stretched to their maximum), which yields λ0 = 3.

Figure 2 shows the stability diagram on the (γ, τ) plane for L10 = L20,
which shows the same patterns as the one for one-element system [17]. Figure 3
illustrates the dependence of the stability on λ0. The Figure shows the analytical
results for the linear system (a) and also the numerical results for the non-linear
system (b). The time evolution of L(t) is also shown for a value of λ0 in Figure
4. The fact that the non-linear system shows no dependence on the initical
conditions has motivated the analysis of the following section.

III

II

I

0 1 2 3

τ

0

0.5

1

1.5

2

2.5

3

γ

Figure 2: Stability diagram on the (γ, τ) plane for L10 = L20 = L30 = 0.9l0,
α = π/6, so that λ0 = 1.65.

2.4 Non-Linear system of planar deformations

We have numerically solved the non-linear system in (9) for γ1 = γ2 = γ3 = γ,
and verified that it exhibits no dependence on the initial conditions. The same
stability diagram shown in Figure 2 is obtained for all values of L0. This fact
will be justified in the next result:

Proposition 2.4 The system of non-linear DDE in (9) admits the solution
u̇ = 0 if γ1 = γ2 = γ3 = γ and the initial conditions preserve equilibrium, i.e.
G(u0,L0) = 0.

Proof 2.1 This can be proved by verifying that indeed the solution u̇ = 0 is
compatible with the equilibrium balance in (2) and the associated DDE equations
in (8). First note that when u = const, we have that dli/du = ci = const and
li(t) ≡ l0. Therefore, the equilibrium equations

3∑
i=1

dW

dli

dli
du

= 0 (32)
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0 1 2 3
γτ

0

0.5

1

1.5

2

2.5

3

λ
0

0 1 2 3
γτ

0

0.5

1

1.5

2

2.5

3

λ
0

IIIIII

Figure 3: Stability diagram of the linear system (a) and non-linear system (b)
in the (λ0, γτ) plane, obtained with l0 = 1, α = π

6 , L10 = L30 = 1.2l0 and
L20 calculated with the expression of λ0 in (14). The vertical black lines are
the critical values of the stability and oscillatory: 1

e and π
2 , respectively. The

horizontal black line is the value of λcrit = 2 cos2 α. The red line is the value of
λ0 such that L10 = L20 and corresponds to the value λ0 = 3− L20

l0
(2 sin2 α+ 1).

The sectors: I are the stable and non-oscillatory solutions, II are the stable and
oscillatory solutions and III are the unstable solutions.

read

3∑
i=1

(l0 − Li(t))ci = 0 (33)

The time variation of this equation yields,

−
3∑
i=1

L̇i(t)ci = 0, (34)

which must hold ∀t ∈ [−τ,∞). By replacing L̇i(t) by the expression of the three
evolution laws in (8) we obtain an equivalent equation to the equilibrium in (33),

γ

3∑
i=1

(l0 − Li(t− τ))ci = 0. (35)

If we denote by G(u(t),L(t)) = 0 the equilibrium equation in (33), we have
thus shown that when u̇ = 0 and γ1 = γ2 = γ3, the evolution laws in (8) imply
that,

− d

dt
G(u0,L(t)) = γG(u0,L(t− τ)). (36)

Consequently, if the initial conditions are such that G(u0,L0) = 0, i.e. equi-
librium is preserved during t ∈ [−τ, 0], then equilibrium is preserved at all times
due to the evolution laws. �
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(a)
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t
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1
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u

(b)

Figure 4: Numerical simulations with l0 = γ = τ = 1, α = π
6 , L10 = L30 = 1.3l0,

L20 = 1.2l0, λ0 = 1.075. (a): Linear problem. (b): Non-linear problem.

The stability bounds in the non-linear case can now be explained by pointing
out that when u̇ = 0, each element has a constant length li = l0, and therefore
behaves as a single element, where the evolution laws in (8) become independent
and linear. The stability can be then analysed like in the unidimensional case
[17], with stability bounds for γτ given by π/2.

Remark 2.3 The result of Proposition 2.4 for the non-linear systems also holds
if vertical displacements are allowed, i.e. uy 6= 0. In this case, when u̇ = 0, the
equilibrium equations are written for components x and y as,

3∑
i=1

(l0 − Li(t))ci = 0

with ci = dl
du = {dli/dux dli/duy}T . If this equation is expressed as G(u0,L(t)) =

0, a similar relation to the one in (36) is derived, and thus the same conclusions
apply.

Remark 2.4 Proposition 2.4 does not necessary hold when the parameters γi
are not equal, or for the linear system. Indeed, the linearised equilibrium equa-
tions at a point u = 0, Li = Li0 are derived from the expression

G(0,L0) +
dG(u,L)

du

∣∣∣
(0,L0)

u+

3∑
i=1

dG(u,L)

dLi

∣∣∣
(0,L0)

(Li − Li0) = 0,

which result into the equation written in (15),

λ0u(t) + (L1(t)− L2(t)) cosα = 0, (37)

with λ0 given in (14). This equation, which is the linearised version of (32),
differs from the form in (33) and may not be compatible with the evolution
laws in (8). In fact, the time differentiation of (37) reveals that if u̇ = 0,
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then L̇1 = L̇2. However, the evolution laws in (8) imply that L̇1 6= L̇2 when
L10 6= L20. Consequently, the solution u̇ = 0 is not admissible for this initial
condition.

3 Analysis of tissue cross-section

3.1 On-plane deformation

We consider here a strip of tissue where cells are adjacent to each other and
a horizontal displacement u(t) acting on the nodes. We will first analyse on-
plane displacements that preserve cross-section area and that combine top and
bottom surface, as indicated in Figure 6.

2 1

3

1

Figure 5: A section of tissue under the displacement u(t) -in red-. Edges are
enumerated.

By additionally considering a constant height assumption, the DDE for the
rest-length and the equilibrium condition lead to a fully determined system,

L̇1(t) = γ(l0 − 2u(t− τ)− L1(t− τ))

L̇2(t) = γ(l0 + 2u(t− τ)− L2(t− τ))

L̇3(t) = γ
(√

l20 + 4u2(t− τ)− L3(t− τ)
)

0 = L2(t)− L1(t)− 6u(t) +
2u(t)L3(t)√
l20 + 4u2(t)

(38)

Let us consider mu and mL two dimensionless parameters such that:

L1(0) = L3(0) = mLl0, u(0) = mul0

In order to guarantee the initial equilibrium, we introduce a small pertur-
bation ε such that L2(0) = mLl0 + ε. The equilibrium equation provides an
explicit expression for ε:

ε = ε(l0,mL,mu) = 2mul0

(
3− mL√

1 + 4m2
u

)
> 0

Note that in order to avoid overlapping, the dimensionless parameters must
satisfy mu ∈

(
− 1

2 ,
1
2

)
and mL ∈ (0, 1).

After the linearisation of the system in (38) at the initial condition we obtain
a system of DDEs that can be written as,
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L̇1(t)

L̇2(t)

L̇3(t)

 =

A B C
B A −C
C −C D

L1(t− τ)
L2(t− τ)
L3(t− τ)

+γl0


1 +

2mLmu

3(1 + 4m2
u)

3
2 −mL

1−
2mLmu

3(1 + 4m2
u)

3
2 −mL

1√
1 + 4m2

u

(
1− 4m2

umL

3(1+4m2
u)

3
2−mL

)


(39)

where,

A = γ
mL − 2

(
1 + 4m2

u

) 3
2

3(1 + 4m2
u)

3
2 −mL

B = −γ
(
1 + 4m2

u

) 3
2

3(1 + 4m2
u)

3
2 −mL

C = −γ
2mu(1 + 4m2

u)

3(1 + 4m2
u)

3
2 −mL

D = γ
mL −

√
1 + 4m2

u(3 + 8m2
u)

3(1 + 4m2
u)

3
2 −mL

In order to analyse the stability, we apply a change of variables z(t) :=
V TL(t) ∈ R3, where V is the eigenvector matrix of the system above, and use
the eigenvalue diagonal matrix

D =

−γ 0 0
0 λ2 0
0 0 −γ


so that λ1 = λ3 = −γ, and

λ2 = γ
mL −

√
1 + 4m2

u(3 + 8m2
u) + 2(1 + 4m2

u)
3
2

3(1 + 4m2
u)

3
2 −mL

< 0

The oscillatory regim of the DDE in (39) is then equivalent to the following
one,

ż(t) = Dz(t− τ)

In view of the eigen-values in D, the oscillatory and stability limits of the
system are:

τoscil =
1

eγ
τstabil =

π

2γ

We have also numerically solved the non-linear system in (38) and using a
length-dependent delay, different for each segment i.e. τi(t) = αli(t − delta),
with δ << 1 the used time-step and α ∈ R>0. The resulting stability diagram is
shown in Figure ?? and resembles the one of the linearised system, but replacing
τ by α.
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Figure 6: A section of tissue under the displacement u(t) -in red-. Edges are
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Figure 7: Stability diagram of the cross-section model with on-plane displace-
ments. Dark blue: stable region. Light blue: unstable region. Orange: regions
where parameters lead to negative lengths.

3.2 Out-of-plane deformation

We consider in this section a strip of tissue where cells are adjacent to each other
and a horizontal displacement u(t) acting on the nodes, as shown in Figure 7.

After assuming a constant height and area, the balance equations for each
segment yield the following system of equations:

L̇1(t) = γ(l0 − 2u(t− τ)− L1(t− τ))

L̇3(t) = γ(
√
l20 + 4u2(t− τ)− L3(t− τ))

0 = l20 + 12u2(t) + 4u(t)L1(t)− 4u(t)l0 −
√
l20 + 4u2(t)L3(t)

(40)

In order to simplify the subsequent equations, let us define the dimensionless
parameters mu and mL, and include a small perturbation of L3(0) denoted by
ε which guarantees the initial equilibrium:

u(0) = mul0, L1(0) = mLl0, L3(0) = mLl0 + ε,
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The equilibrium condition at t = 0 leads to an expression for ε:

ε = ε(l0,mL,mu) = l0

(
−mL +

1 + 12m2
u + 4mumL − 4mu√

1 + 4m2
u

)
> 0

Note that in order to avoid overlapping domains, the paametes must satisfy
mu ∈

(
− 1

2 ,
1
2

)
and mL ∈ (0, 1).

3.2.1 Analysis of linearised form

The linearisation of (40) yields the following system of DDEs

L̇1(t) = γ(l0 − 2u(t− τ)− L1(t− τ))

L̇3(t) = γ(
l20√
l20+4u2

0

− L3(t− τ) + 4u0√
l20+4u2

0

u(t− τ))

4u0

(
L1(t)− L10 − 3u0 − 6u(t) + L30(u0−u(t))√

l20+4u2
0

)
=
√
l20 + 4u20L3(t) + (4l0 − 4L10)u(t)− l20

Note that from the coefficient of u(t) in the equilibrium equation is zero when
mL = −12m3

u−5mu+1. Using the last equations, the system of equations above
can be reduced to,{

L̇1(t)

L̇3(t)

}
=

[
A B
C D

]{
L1(t− τ)
L3(t− τ)

}
+ γb

with

b =



l0 −
2

(
l20 − 12u20 − 4u0L10 +

4u2
0L30√
l20+4u2

0

)
− 4u0L30√

l20+4u2
0

− 4l0 + 4L10 + 24u0

l20√
l20+4u2

0

+

4u0

(
l20 − 12u20 − 4u0L10 +

4u2
0L30√
l20+4u2

0

)
√
l20 + 4u20

(
− 4u0L30√

l20+4u2
0

− 4l0 + 4L10 + 24u0

)


A = −γ + 8γu0

− 4u0L30√
l20+4u2

0

−4l0+4L10+24u0

B =
−2γ

√
l20 + 4u20

− 4u0L30√
l20+4u2

0

− 4l0 + 4L10 + 24u0

C =

−
(

16γu2
0√

l20+4u2
0

)
− 4u0L30√

l20+4u2
0

− 4l0 + 4L10 + 24u0
D = −γ +

4γu0

− 4u0L30√
l20+4u2

0

− 4l0 + 4L10 + 24u0

The eigenvalues of the system matrix are,

λ1 = −γ < 0, λ2 = γ

(
−2mu −mL + 1

12m3
u + 5mu +mL − 1

)
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These expression allows us to define four different stability and oscillatory
regions according to the sign and values of λ2, as shown in Figure 8:

• In Regions I, II:

τoscil =
1

eγ
, τstabil =

π

2γ

• In Region III:

τoscil =
12m3

u + 5mu +mL − 1

eγ (2mu +mL − 1)
, τstabil =

π(12m3
u + 5mu +mL − 1)

2γ (2mu +mL − 1)

• In Region IV, the system is always unstable.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

m
u

0

0.2

0.4

0.6

0.8

1

m
L

Regions of different oscillatory and stability limits

I

III

II

IV

Figure 8: Stability regions according to sign and values of λ1 and λ2 for out-
of-plane deformation of cross-section. λ1 defines regions I and II. λ2 defines
region III. In region IV , λ2 > 0 and the system is unstable.

3.2.2 Stability of non-linear form

Similarly to Section 2.4, we note that the non-linear system in (40) admits the
solution u̇ = 0 when γ is uniform, unlike the linear system in (38). This is
however not true for the linear system. To see this, the equilibrium equation of
the linear system is:∑

i

k(li − Li(t))ci + b0 = 0, ci =
∂li
∂u

and l̇i(t) = 0,

where b0(mu,mL) 6= 0. Differentiation of the first equation leads to a contra-
dictory results:∑

i

kL̇i(t)ci = 0⇒
∑
i

kγ(li − Li(t))ci = 0 ∀t⇒ b0 = 0

showing that the linear system does not admit u = u0. When u = u0, the DDE
remain unchanged and uncouple, and thus the stability bounds are those of a
single element, i.e. τstab < π/(2γ).
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4 Conclusions

We have analysed the stability and the presence of oscillatory solutions of a
simplified planar deformation mode in a regular homogeneous epithelium, rep-
resented by a three-bar system, and also a simplified cross-section of the tissue.
Resorting to a rheological law with variable rest-length [4, 8] and a delayed
response [16, 17], we have deduced stability and oscillatory bounds, which de-
pend on the remodelling rate γ and the delay τ . For increasing values of the
remodelling rate, the tissues exhibits a lower viscous response, resulting in a
more oscillatory or unstable dynamics of the rest-length.

We have demonstrated that linear stability analysis may restrict the bounds,
introducing a dependence on the initial conditions for some initial stressed
states. This dependence is in fact absent when considering the non-linear version
of the equilibrium equations, as our numerical solutions also illustrate.

Although we have not given general stability conditions for the non-linear
system, we have been able to give some results for some general initial condi-
tions. The bounds are in fact identical to those deduced in linear unidimensional
analysis [17].

The stability and origin of the oscillatory deformation of cells is now un-
der intensive investigation [24, 20]. Although experimentalists have detected
and measured delays between the concentration of motor proteins (myosin or
cadherin) [7], the relation between these oscillations and eventual drastic tissue
deformations remains elusive. Although the work presented here aims at sug-
gesting potential causes behind the observed instabilities, further measurements
are needed to corroborate the deduced instability and oscillatory regimes.
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