Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes

Author (s): Conte, V.; Muñoz, J.; Baum, B. and Miodownik M.
Journal: Physical Biology

Volume: 6, Issue 1
Pages: 16010 – 16021
Date: 2009

Abstract:
Ventral furrow formation in Drosophila is the first large-scale morphogenetic movement during the life of the embryo, and is driven by co-ordinated changes in the shape of individual epithelial cells within the cellular blastoderm. Although many of the genes involved have been identified, the details of the mechanical processes that convert local changes in gene expression into whole-scale changes in embryonic form remain to be fully understood. Biologists have identified two main cell deformation modes responsible for ventral furrow invagination: constriction of the apical ends of the cells (apical wedging) and deformation along their apical-basal axes (radial lengthening/shortening). In this work, we used a computer 2D finite element model of ventral furrow formation to investigate the ability of different combinations of three plausible elementary active cell shape changes to bring
about epithelial invagination: ectodermal apical-basal shortening, mesodermal apical-basal lengthening/shortening and mesodermal apical constriction. We undertook a systems analysis of the biomechanical system, which revealed many different combinations of active forces (invagination mechanisms) were able to generate a ventral furrow. Two important general features were revealed. First that combinations of shape changes are the most robust to environmental and mutational perturbation, in particular those combining ectodermal pushing and mesodermal wedging. Second, that ectodermal pushing plays a big part in all of the robust mechanisms (mesodermal forces alone do not close the furrow), and this provides evidence that it may be an important element in the mechanics of invagination in Drosophila.

  
  

Bibtex:


  	
@article{1478-3975-6-1-016010,
  author={Conte, V.; Muñoz, J.J.;Baum, B. and Miodownik, M.},
  title={Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes},
  journal={Physical Biology},
  volume={6},
  number={1},
  pages={016010},
  url={http://stacks.iop.org/1478-3975/6/i=1/a=016010},
  year={2009},
  }