Fracture toughening and toughness asymmetry induced by flexoelectricity

Author (s): Abdollahi, A.; Peco, C.; Millán, D.; Arroyo, M.; Catalan, G.; Arias, I.
Journal: Physical Review B

Volume: 92
Date: 2015

Cracks generate the largest strain gradients that any material can withstand. Flexoelectricity (coupling between strain gradient and polarization) must therefore play an important role in fracture physics. Here we use a self-consistent continuum model to evidence two consequences of flexoelectricity in fracture: the resistance to fracture increases as structural size decreases, and it becomes asymmetric with respect to the sign of polarization. The latter phenomenon manifests itself in a range of intermediate sizes where piezo- and flexoelectricity compete. In BaTiO3 at room temperature, this range spans from 0.1 to 50 nm, a typical thickness range for epitaxial ferroelectric thin films



        Author = {Sergio Zlotnik and Pedro D\'{\i}ez and David Modesto and Antonio Huerta},
        Title = {{P}roper {G}eneralized {D}ecomposition of a geometrically parametrized heat problem with geophysical applications},
        Fjournal = {International Journal for Numerical Methods in Engineering},
        Journal = {Int. J. Numer. Methods Eng.},
        Volume = {},
        Number = {},
        Pages = {},
        Year = {2015},
	Note = {10.1002/nme.4909}